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ABSTRACT

Log parsing, which extracts log templates from semi-structured
logs and produces structured logs, is the first and the most critical
step in automated log analysis. While existing log parsers have
achieved decent results, they suffer from two major limitations by
design. First, they do not natively support hybrid logs that consist
of both single-line logs and multi-line logs (e.g., Java Exception and
Hadoop Counters). Second, they fall short in integrating domain
knowledge in parsing, making it hard to identify ambiguous to-
kens in logs. This paper defines a new research problem, hybrid log
parsing, as a superset of traditional log parsing tasks, and proposes
Hue, the first attempt for hybrid log parsing via a user-adaptive
manner. Specifically, Hue converts each log message to a sequence
of special wildcards using a key casting table and determines the
log types via line aggregating and pattern extracting. In addition,
Hue can effectively utilize user feedback via a novel merge-reject
strategy, making it possible to quickly adapt to complex and chang-
ing log templates. We evaluated Hue on three hybrid log datasets
and sixteen widely-used single-line log datasets (i.e., Loghub). The
results show that Hue achieves an average grouping accuracy of
0.845 on hybrid logs, which largely outperforms the best results
(0.563 on average) obtained by existing parsers. Hue also exhibits
SOTA performance on single-line log datasets. Furthermore, Hue
has been successfully deployed in a real production environment

for daily hybrid log parsing.
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1 INTRODUCTION

In recent years, software systems, such as online services (e.g.,
Google Search and Bing Search) and system software (e.g., An-
droid and Windows), have become an integral part of our daily
lives, which generate extremely large amounts of software logs
every day. These logs can be used in various tasks, e.g., anom-
aly detection [4, 15, 22, 35], root cause analysis [1, 14, 19], failure
prediction [34], log compression [20, 33], and user profile construc-
tion [18]. Because of the rapid growth of the log volume, it is difficult
to identify valuable information from the massive log data manually.
To this end, automatic log analysis has been widely studied in recent
years. The first step of automatic log analysis is log parsing, which
aims at extracting log templates and converting semi-structured
log messages into structured log messages for downstream tasks.
Specifically, the core task of log parsing is to distinguish between
constants and variables in log messages, where constants are the
tokens written by developers in the logging statements (e.g., a de-
scription of a software operation) and variables are tokens that can
change according to runtime environments (e.g., an IP address).
Recent log parsers [3, 7, 12, 23, 28, 32] have achieved decent results
on open-source log datasets (i.e., Loghub [36]). However, they still
suffer from two major limitations:

First, existing parsers assume the incoming logs are single-line,
and they try to extract the common pattern as templates line by line.
However, in practice, log messages could be multi-line, such as KPI
tabular echos (e.g., CPU usage), tracebacks (e.g., Java Exception),
and key-value pairs (e.g., Hadoop Counters). In addition, due to the
complexity of modern software and the centralized log collection
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Hybrid logs

J [17:51:33][1][root] authentication: uid=0 rhost=60.30.224.116 user=root
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Figure 1: A simplified example of hybrid log parsing.

practice, software logs could be hybrid, where single-line log mes-
sages mix with multi-line log messages. For example, Fig. 1 presents
an example of hybrid log parsing that contains a single-line log
message and two multi-line log messages. In our opinion, hybrid
log parsing is a more general research problem that aims to parse
either single-line logs, multi-line logs, or their mix, while recent
research mainly focuses on parsing single-line logs.

Second, since the logging statements of these log messages are
often inaccessible (e.g., written in third-party libraries), it is difficult
to tell whether a token is a constant or a variable. People could de-
fines different templates for the same logs due to the disagreement
on some ambiguous tokens. For example, recent research [17, 21]
reports that the widely-used parsing datasets Loghub contains label-
ing errors, which are typically caused by the difference in opinions.
In addition, whether a log template is "correct” or not depends
on the requirements of the downstream tasks. For example, in a
real business scenario in Huawei Cloud, the developer-labeled log
template for the console log "display ipv6" is "<*> ipv6" in
the root cause analysis task and "display <*>" in the user profile
construction task. In practice, many "correct” log templates can be
summarized only with expert domain knowledge. Thus, we argue
that human feedback is "the last mile" in log parsing and a log
parser that can effectively and efficiently integrate human feedback
is highly in demand.

In this paper, we introduce a new, general, and practical research
problem, hybrid log parsing, which aims to parse single-line logs,
multi-line logs, and their mix. To this end, we propose Hue, the first
hybrid log parser that works in an online manner and efficiently
adopts human feedback. Hue is simple yet effective. Hue adopts
key casting, line aggregating, and pattern extracting to precisely
parse complex hybrid logs. We further design a novel mechanism
that allows users to reject a template update on potentially am-
biguous tokens. We evaluate our approach on (1) three hybrid log
datasets collected from both open-source software and Huawei
Cloud’s cloud services, and (2) sixteen widely-used single-line log
datasets (i.e, Loghub). The results show that Hue achieves an aver-
age grouping accuracy (GA) of 0.845, which largely outperforms
the best result obtained by existing parsers (0.563 on average). Hue
also exhibits SOTA accuracy on single-line log parsing without
leveraging the human feedback component, achieving the highest
GA on 8 out of 16 datasets, which is the most among all compared

Xu et al.

1 mkdir: cannot create directory '/home/team7/results': File exists

2 mkdir: cannot create directory '/home/team7/results/terasort': File exists
3 150z mkdir: cannot create directory '/home/team7/results/bayes': File exists

4 :50: mkdir: cannot create directory '/home/team7/results/pagerank': File exists
5/ [17:50: Traceback (most recent call last):
6

7

8

File "/HiBench3/bin/functions/load_config.py", line 713, in <module>
load_config(conf_root, workload_configFile, workload_folder, patching_config)
File "/HiBench3/bin/functions/load_config.py", line 217, in load_config

9 generate_optional_value()

10 File "/HiBench3/bin/functions/load_config.py", line 641, in generate_optional_value

11 probe_masters_slaves_hostnames()

12 File "HiBench3/bin/functions/load_config.py", line 577, in probe_masters_slaves_hostnames
13 probe_masters_slaves_by_Yarn()

14 File "/HiBench3/bin/functions/load_config.py", line 528, in probe_masters_slaves_by_Yarn
15 assert 0, "Get workers from yarn-site.xml page failed.

16| AssertionError: Get workers from yarn-site.xml page failed.

17| [17:50:32] Parsing conf: /home/team7/HiBench3/conf/hadoop.conf

Parsing conf: /home/team7/HiBench3/conf/hibench.conf

Parsing conf: /home/team7/HiBench3/conf/spark.conf

H Parsing conf: /home/team7/HiBench3/conf/workloads/micro/terasort.conf
21! [17:50:34] display configuration commit list

23/ No. CommitId Label User TimeStamp

24

251 1 1001225122 td-begin_backroll root 2022-11-20 17:50:32
261 2 1001225121 - root 2022-11-20 17:50:31

Figure 2: An example of hybrid logs collected from an indus-
trial log management platform.

parsers. Hue has been successfully deployed in the cloud services
in Huawei Cloud to parse daily hybrid logs.
This paper makes the following main contributions:

o It introduces a new, general, and practical research problem,
hybrid log parsing, which is a superset of the existing single-
line log parsing problem.

o It proposes Hue, the first log parser that natively supports
hybrid log parsing and has a human feedback integration
mechanism that largely reduces unnecessary queries.

o It presents the evaluation of Hue using three hybrid log
datasets and sixteen single-line log datasets, demonstrating
that Hue achieves SOTA accuracy and efficiency on both
hybrid and single-line logs.

o Itreleases two hybrid log datasets collected from open-source
software and cloud system for this research direction.

2 MOTIVATION

This section intends to further explain the two major limitations of
existing parsers that motivates our work. The following is mainly
inspired by and summarized from our collaboration experience
with engineers in Huawei Cloud.

2.1 Neglected Hybrid Logs

Hybrid logs are a common type of data in the software industry. As
shown in Fig. 2, they are usually generated from cloud platforms
and can contain a mixed combination of single-line and multi-line
log messages. The hybrid nature of the logs is often caused by per-
mission restrictions between different service departments within
an organization. In particular, IT operators may not be able to ac-
cess logs in all components directly and must instead use a log
aggregation system to gather all the service outputs for centralized
management. This means that hybrid logs may contain a variety of
log types, including single-line logs such as component event logs
and multi-line logs such as console echoes, exception traceback, and
even tabular system key performance indicators (KPIs). Hybrid logs
are not only found in closed-source software, but they are also com-
monly encountered in open-source components such as Hadoop,
Spark, and MySQL. This highlights the widespread availability of
hybrid logs in both closed-source and open-source software.
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Parsed Template Case #1: Merge

17
Situation #1: Parsing without source code /4[ i open through proxy <x> <x>

Parsed Template Case #1:
Root cause analysis

display ipvé

display clock

reset ipvé

display <>

reset clock

reset <>

Figure 3: Two typical situations that difficult for the parser
to determine the template automatically.

Hybrid logs contain valuable information that can be utilized in
many downstream tasks, including IT operators using the trace-
back for failure prediction and root cause analysis, QA engineers
selectively testing APIs through KPI tables, and commercializa-
tion departments constructing user profiles from console echoes
to target potential user needs. However, the structural variability
of hybrid logs presents a challenge for current log parsers, leading
to them ignoring these logs during training and deployment. If
single-line parsers are used in pipelines, they tend to split a multi-
line log message into multiple lines of text and regard each line
as a separate single-line log message, leading to incorrect parsing
results. Even if IT operators try to use special regex to flatten hybrid
logs, tabular messages may still not be parsed correctly because of
the uncertainty in the number of table rows. To address these is-
sues, this paper proposes key casting (Sec. 4.2) and line aggregating
techniques (Sec. 4.3). The limitations of existing work are further
discussed in our experiments (Sec. 5.2).

2.2 Ambiguous Template Tokens

Recent research found that different people could generate different
log templates because of ambiguous tokens [17, 21]. In Huawei
Cloud, there are two typical situations that confuse parsers. (1)
Whether to merge two candidate templates by turning a constant
into a variable. For example, in Fig. 3, Situation 1, it is debatable
whether the two logs belong to the same event (and should be
merged). (2) A log message could have multiple "correct” templates
when it was used by different downstream tasks. For example, in
Fig. 3, Situation 2, for user profiling modeling, the analyst cares
about the instructions and actions the user performed, whereas
for root cause analysis, the analyst cares about the object being
manipulated. The difference in their preferences leads to different
"correct” log templates.

To improve the compatibility and generalizability of the log
templates generated in log parsing, we introduce an efficient manual
feedback mechanism (Sec. 4.5) that works seamlessly within a parse
tree and effectively improves parsing accuracy with little manual
involvement. The benefits of this mechanism are further explained
in our experiments (Sec. 5.4).
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3 PRELIMINARY

This section intends to introduce the main concepts in hybrid log
parsing, especially our definition and the characteristics of hybrid
log and the input and output of hybrid log parsing.

3.1 Hybrid Logs

Hybrid logs could be single-line logs, multi-line logs, or their mix.
Based on our experience with hybrid log analysis in Huawei Cloud,
in this paper, we mainly consider three kinds of logs in hybrid
logs: event logs (single-line), table logs (multi-line), and text logs
(multi-line). For example, in Fig. 2, line 1-4 and line 17-20 are event
logs, line 5-16 is a text log, and line 21-27 is a table log.

3.1.1 Event Log. Event logs are single-line log messages. An event
log records an operation or status of a service or component and
contains a log header and message content. To align with the defi-
nition in existing single-line log parsing research [13, 17], an event
log’s template consists of constants in the log message and wild-
cards that indicate variables.

3.1.2 Table Log. Table logs are multi-line logs that contain a table
header, multiple lines of parameters, and potentially table lines.
Table logs with the same log template (1) have the same number
of table columns and the token data type in the same column is
the same (e.g., the timestamps in the last column in the table log in
Fig. 2); (2) might have different numbers of rows. Typical table logs
contain various system metrics and these logs are often generated
by the performance testing component in the cloud and the echoes
from the user shell. Since the header of the table logs consists of
the key information (i.e., column number and column types) that
distinguishes between different tables, the template of a table log is
the table header, while the table content is regarded as parameters
in the parsed log message (as illustrated in Fig. 1). Therefore the
goal of log parsing on table logs is to extract its table header and
transform its table content into parameters.

3.1.3  Text Log. Text logs are multi-line logs that do not fall into
the "table log" category. Text logs record the detailed information
in addition to the system event in plain text, such as traceback call
stack in a program or database content in the form of key-value
pairs. Text logs are widely available in many components such as
Hadoop, Spark, and MySQL. However, to the best of our knowledge,
only a little log analysis research utilized this kind of log and we
think one of the main reasons is that existing log parsers cannot
accurately parse text logs. We define the template of a text log as
tokens in several lines that remain constant, such as the traceback
error type or the keys in the message. Thus, the goal of log parsing
on text logs is to extract these lines from the message.

3.2 Hybrid Log Parsing

The goal of hybrid log parsing is to extract log templates from log
messages and generated structured logs accordingly. In our opinion,
hybrid log parsing, which focuses on single-line logs, multi-line
logs, and their mix, is a superset of existing log parsing research
that targets single-line logs. The output of this task includes (1) a
meta-file that contains the template of each log message and its
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location in the original log file, and (2) files with structured variable
lists (e.g., headers and parameters) in each log type.

In this paper, we view hybrid log parsing as a classification
problem. Given a raw log message L consisting of n tokens across /
lines, denoted as [t1, t2, ..., tn], a hybrid log parser should predict
the type T of log message L, the log template group gz e GT =

{ng, ng, g]TV} it belongs to among the total N templates in type T,
and whether a token #; is a constant (y; = 1) or a variable (y; = 0).
Finally, the log parser must output its predictions in a structured
format. Hybrid log parsing is challenging because it is non-trivial
to automatically distinguish between different types of logs when
they are mixed and identify the constants and variables in them.

4 APPROACH

4.1 Overview

This section introduces Hue, an unsupervised online log parser
that utilizes a heuristic parse tree and an efficient human feed-
back integration mechanism. The overview of Hue is presented
in Fig. 4, which contains four main components: key casting, line
aggregating, pattern extracting, and online updating.

Specifically, Hue streamly reads the log data line by line, splits
each line into tokens by spaces, and sends the raw token sequence to
main components for parsing: First, key casting transforms part of
the tokens into keys, i.e., special wildcards indicating representative
token data type. For instance, a raw token sequence with n tokens
Sraw = [t1,t2, 13, ..., tn] can be casted to a new token sequence S =
[t1, Ko, K, ..., tn], where each K represents a specific key. When
all lines in a log are fully casted, line aggregating combines adjacent
token sequences into blocks (i.e., lists of adjacent token sequence)
via heuristic rules. For example, a log with [ lines L = [S1, Sa, ..., ;]
can be aggregated to L’ = [By, By, ..., B] = [[S1], [S2, S3], -, [S1]],
which contains k blocks. Then, pattern extracting ultilizes aggre-
gated blocks to obtain log tempates. Finally, online parsing revises
the current log template in an online manner with the guidance of
an optional human feedback mechanism.

Note that hybrid logs could be single-line logs, multi-line logs,
or their mix, thus Hue, which is the first hybrid log parser, can be
utilized to parse single-line logs as existing parsers.

4.2 Key Casting

Preprocessing has been widely adopted by existing parsers. A typ-
ical preprocessing process identifies common variables (e.g., IP
address) by regular expressions, and then either remove the identi-
fied tokens or replaces them with the wildcard "<*>" [13]. However,
these preprocessing strategies are not effective when dealing with
hybrid logs. which may contain table logs and text logs. Table logs
have lines with only variables, which would be all removed or
transformed into the same wildcard "<*>" by existing preprocess-
ing strategies, leading to significant inaccuracy. In addition, these
strategies might exacerbate the difficulty of distinguishing text logs
from table logs. To address this problem, it is possible to manually
configure a list of delimiters for each system separately. However,
this is impractical for hybrid logs because they are often collected
from different system components or even different systems.

Hue adopts a novel preprocessing strategy called key casting. The
main idea is to use different wildcards (e.g., "<*int>" and "<*ip>")

Xu et al.

to better encodes prior knowledge in preprocessing. Hue split a
line by spaces and transforms tokens that have been commonly
used as variables (e.g., IP addresses, file paths, boolean values) into
the corresponding wildcards called "keys" according to a general
casting table. For example, in Fig. 4, "authentication: uid=0
rhost=60.30.224.116 user=root" would be transformed into
"authentication: uid=<*int> rhost=<*ip> user=root". Key
casting is simple yet effective for hybrid log parsing, and we believe
it could also benefit existing log parsing approaches as a general
preprocessing strategy. In our implementation, we construct a gen-
eral key casting table for all datasets, which contains seven kinds
of keys, as illustrated in Fig. 4. Users can also easily customize their
own key casting table by changing one line of code.

4.3 Line Aggregating

To correctly parse hybrid logs, identifying log type is critical. Intu-
itively, using line numbers to identify event logs is relatively easy;
but distinguishing between table logs and text logs is challenging
because both of them have a multi-line structure. To overcome this
issue, we propose line aggregating to differentiate between table
logs and text logs. Specifically, we observe that adjacent lines in
table logs tend to exhibit higher similarity, whereas in text logs,
although adjacent lines are less similar, they often share the same
indentation. Thus, Hue aggregates adjacent lines in multi-line logs
and identifies log types based on adjacent lines’ (1) sequence simi-
larity and (2) indent number.

The workflow of line aggregating is shown in Algo. 1. Hue first
determines whether the current log is an event log by checking
if it only consists of single line (line 2). If the log has multiple
lines, Hue sequentially aggregates adjacent lines into several blocks
(Sec. 4.1) if sequence similarity exceeds the aggregating similarity
threshold ¢, (i.e., a hyperparameter determined before parsing)
or they have the same indentation (line 4-13). Then, Hue utilizes
a type counter C to keep track of the predominant reason in the
aggregation process (line 14): if C < 0, sequence similarity is the
primary reason for aggregating, suggesting that the log should be
a table log; if C > 0, indentation number is the primary reason for
aggregating, suggesting that the log should be a text log. Finally,
Hue utilizes the aggregated logs for subsequent pattern extraction.
To enhance understandability, we also provide an example of line
aggregating for text logs in Fig. 5. Specifically, similarity Sim(Si, S2)
represents the proportion of identical tokens at the same positions
in two sequences (Eq. 1), where N is their average token length,
and Equ(ty, t2) measures the equality of two tokens (Eq. 2).

>N, Equ(S1]i], S2[i])

Sim(81,S2) = N 1)
1 ifty =t
B ={y o, @

Notably, there are a few details in implementing line aggregating:
(1) Lines consisting of only delimiters or null characters should be
skipped. (2) Based on our observation in both open-source and
industrial software, hybrid logs are often preceded by log headers,
which can serve as delimiters between logs.
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[17:59:21] Traceback (most recent call last): Log Type: Text log e
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Figure 4: The overview of Hue with two examples. Users can customize the key casting table and provide feedback to optimize
Hue for more complex data types and usage scenarios based on the target data characteristics and their own domain expertise.

Casted log

Aggregated log
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1 File "<xdir>", line <xint>, in parse 11 File "<xdir>", line <xint>, in parse |
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| N ! € et pa‘ se Sim < €_a, diff indents: s e, C=1
\KeyError: "<xdir>" does not exist in path C>0: Text log /l
Figure 5: An example of line aggregating. (assume &, = 0.9)

Algorithm 1 Line Aggregation & Type Determination

Input: Sequence queue of current message, Q = {S1,S2, ..., Sn }

Aggregating similarity threshold ¢,

1: Log type 7 = "EVENT", Block queue Qg = {}, Last block
Blast =51

2. if |Q| > 1 then

3. Type counter C =0

4 forS; €Qdo

5 SB4; = the common sequence of all S € By,

6: if Sim(S;, Sp,,,,) =¢q then

7: C—C-1,8B1554 — Biast USi

8: else if S; and Sp,, have the same indents then

9: C —C+1,Ba5t < Bigst USi

10: else

11 Qg — Qg U Bluss, Brast = {Si}

12: end if

13:  end for

14: T ="TABLE"if C < 0, else: 7~ = "TEXT"

15: end if

16 Qg — Qg U By,

Output: Qg, 7

4.4 Pattern Extracting

To extract log templates, log parsers often first group logs with
the same template into the same group [12, 28, 32]. Traditional log
parsers often use complete log messages (all tokens) for clustering,
which is inefficient in hybrid log parsing (shown in Fig. 9) because a
hybrid log message can be very long after flattened. In addition, the
line number of multi-line logs from the same template group can
vary greatly, leading to low accuracy in message-level clustering.
To tackle these challenges, Hue proposed pattern extracting,
which utilizes the block queue Qp and log type T obtained from
line aggregating to group logs with the same templates. As shown
in Fig. 4, Hue uses a special sequence of each log, the "log identifier"
(S1p), which may contain a log template as defined in Sec. 2, as a
manual feature. Hue assumes that logs from the same template have
similar Syp, and uses this information to group logs. Specifically,
Sip is (1) the entire sequence for an event log, (2) the concatenated
common sequences from the first and last blocks for a text log, and
(3) the sequence of the first block with a capacity of one before
the first block with a capacity greater than one for a table log. The
choice of the identifier is based on an assumption that text logs
often have template tokens at the beginning or end (e.g., Error
Type), and that table headers are typically distinct and should be
aggregated with the table content. 4 as shown in Fig.6.

4.4.1 Coarse-grained Grouping. To group logs, Hue counts the
number of tokens and keys in each log’s identifier S;p, creating a
tuple (N¢, Ni). The logs are then assigned to the group with the
same tuple. This process is based on two assumptions: (1) identifiers
from the same template have the same token number; (2) identi-
fiers from the same template have the same key number. The first
assumption is commonly used and has been verified in previous
research [12, 23], where the identifiers of event logs are themselves.

4.4.2  Fine-grained Grouping. To further group the logs, Hue uses
a multinomial search tree with a unique search rule for each tuple
(N, Ni.). First, the tree forks based on the keys in the Ny layer,
and then forks based on non-key prefix tokens in the next N
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Figure 6: An example of pattern extracting and guided online
parsing for event logs. (assume maximum tree depth is 2)

(Np = Nt = Ni) layer. The tree is initialized with only one root node.
Hue creates a new node each time when a new identifier S;p comes
and no corresponding node exists at the current layer. This forking
strategy is based on the assumption that template tokens are often
at the beginning and variable tokens are often at the end of logs. To
further improve the accuracy of parsing, Hue allows setting limits
on tree depth and identifier length. This helps prevent too long
or too short logs from affecting the parsing accuracy by creating
incorrect parsing rules. Identifiers not meeting the length criteria
will be assigned to a designated group for similarity matching,
rather than going through the tree.

4.5 Online Parsing

Upon a Syp reaching a leaf node, Hue performs online parsing,
which involves obtaining current log’s template and updating the
outdated template in each log group. It assigns the current log
to a specific log group, obtains the group template St (i.e., the
common sequence of logs’ Syp in the group) as the current log’s
template, and dynamically updates St with new incoming Srp. Pre-
vious studies [12, 23, 28] commonly employed automatic template
updates and maintenance, which may be ineffective for parsing
logs with ambiguous tokens, as discussed in Sec. 2.2. Therefore,
Hue introduces a guided updating mechanism to enhance parsing
performance for log files with ambiguous logs, while retaining the
classic auto updating mechanism for regular log files. The follow-
ing sections provide a detailed explanation of the two updating
methods.

Xu et al.

4.5.1 Auto Updating. Hue calculates the similarity (Eq. 1) between
Sip and all groups’ templates within current node. If a template St
has the highest similarity score that exceeds the merging similarity
threshold ¢, (i.e., a hyperparameter determined before parsing),
Hue will update the template to be the common sequence of Syp
and the original template St (i.e, ST < Sip N St). If no such
templates exist, Hue creates a new template and initializes it as Syp.
By continuously updating and outputting log templates based on
the newly added S;p, Hue achieves log parsing in an online manner.

4.5.2 Guided Updating. Hue still calculates the similarity (Eq. 1)
between Syp and all templates in node. However, instead of solely
relying on ¢y, to perform updating, Hue introduces a "merge-reject”
strategy that allows users to reject a template merge on a potentially
ambiguous token in candidate templates. Specifically, Hue first
conducts a check: whether tokens requiring updating in St contain
non-key tokens? If yes, it triggers a merge query, i.e., output current
St and Syp, and prompts the user to decide whether to reject the
automatic merging and updating process. If rejected, Hue creates
a new group under the same leaf node, initializing it with Syp as
the template. Otherwise, the merging process continues, and St is
updated with the common sequence of tokens between St and Syp.
The two cases (i.e., trigger a merge query or not) are illustrated
with examples in Fig. 7.

The idea of developing a human feedback mechanism was in-
spired by a recent parser, SPINE [32]. However, Hue provides a
different and more efficient mechanism. Specifically, Hue largely
reduces the frequency of triggered queries by skipping the updates
of keys. This is because the keys are casted parameter tokens in the
preprocessing and the ambiguous tokens are non-key tokens. In
addition, Hue does not involve numerical computation to determine
whether a merging process should trigger a query in guided mode,
making it efficient in development scenarios.

5 EXPERIMENTS

We conducted extensive experiments on public datasets and indus-
trial datasets to answer the following research questions:

e RQ1: How accurate and efficient is Hue on hybrid logs?

e RQ2: How accurate and efficient is Hue on single-line logs?

¢ RQ3: How effective is Hue’s human feedback integration
mechanism?

5.1 Experiment Setup

5.1.1 Implementation. All of the experiments were performed on
a virtual machine with 128 Intel(R) Xeon(R) Platinum 8375C CPU
@ 2.90GHz processors and 94GB RAM on Ubuntu 20.04.5 LTS. We
implemented Hue in Python 3.9.12 with the same key casting table
shown in Fig. 4. Additionally, we implemented specific hyperparam-
eter configuration files to manage all Hue’s hyperparameters for
each log source. Specifically, the hyperparameters include (1) the
maximum tree depth, (2) the maximum and minimum identifiers
length, (3) the aggregating similarity threshold ¢4, and (4) the merg-
ing similarity threshold &,,. Similar to previous works [3, 12, 32],
hyperparameters are only related to the log file source and remain
unchanged during the parsing process after being determined by
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Figure 7: Two cases of guided updating mode. The updates of keys do not need human guidance since they are typically

considered as non-ambiguous tokens. (assume ¢, = 0.7)

grid search, a common hyperparameter tuning method, on small-
scale homogeneous log data (i.e., 100 random samples for each
dataset).

Notably, in experiments, we observed that setting the ¢, under
the guided updating mode (denoted as &/,,4) to be approximately 0.2
lower than &, under the auto updating mode (denoted as &,,4) will
result in better parsing performance for most log sources. To avoid
frequent editing of configuration files when switching updating
modes, we introduced an elastic variable & = &g — £mg to optimize
the performance in both modes. Specifically, ¢, is typically set to
0.2 by default. Only in a small amount of log sources, ¢, need to be
changed to further enhance parsing performance.

5.1.2  Datasets. Our experiments are conducted on 19 log datasets,
including 16 single-line log datasets from LogPAI [36] and 3 hybrid
log datasets collected by us. The LogPAI datasets cover a variety of
log types, including OS logs, app logs, and microserver logs, with 2k
messages each and 5 to 200 templates. The hybrid datasets consist
of runtime logs generated by a cloud system benchmark (HiBench),
multi-source logs collected by a cloud testing system (CTS), and
multi-terminal logs collected in PaaS product in Huawei Cloud
(Paas). We manually labeled all hybrid log datasets and released the
first two datasets for replication. Table. 1 presents the statistics of
these datasets. All of these datasets include ground truth labels.

Table 1: Dataset statistics of hybrid log datasets.

Num. (Event/Table/Text) HiBench CTS PaaS
Message Num. 1879/2057/64  260/17/101  386/36/255
Template Num. 92/7/18 93/7/43 129/6/93

5.1.3  Metrics. Our evaluation uses two commonly used metrics:
Grouping Accuracy [2, 17, 36] and Template F1-score [17]. The
former measures the proportion of correctly parsed log messages,
while the latter measures the F1 score of the generated templates
from the parser. We use these metrics to conduct fair comparisons
at both the message and template levels. Additionally, we compare
the execution time of different parsers to evaluate their efficiency.

5.1.4 Baselines. We selected AEL [7], LenMa [28], Spell [3], IPLoM
[23], Drain [12], and SPINE [32], the top-performing unsupervised

Table 2: Grouping accuracy on hybrid log datasets.

Metrics AEL LenMa Spell IPLoM Drain  Hue

HiBench 0308 0.238 0.360 0.300 0.442 0.932"
CTS 0.620 0432 0.571 0513 0.746  0.848*
PaaS 0.178  0.300 0.130 0.345 0.502  0.754*

Average 0.369 0.323 0.354 0.386  0.563  0.845"

log parsers, as our baselines for comparison. Since Hue is the first at-
tempt for parsing hybrid logs, there is no other baseline for compar-
ison on parsing multi-line logs. To demonstrate Hue’s effectiveness
on hybrid logs, we collect and flatten multiple lines into individual
log entries with line delimiters "/n", which is a typical solution for
managing multi-line logs in real development scenarios [5, 6, 26, 27]
(including in Huawei Cloud) before inputting hybrid logs into ex-
isting parsers. Note that since SPINE is not open-source, we cannot
reproduce their results. To improve the scientific rigor of our re-
search, we compare Hue with SPINE in part of our experiments by
using results from its original paper under the same experimental
settings, i.e., grouping accuracy on single-line logs and feedback
results on the Linux dataset. All baselines are implementations pro-
vided by LogPAI or their original repositories with all parameters
set to their optimal configuration.

5.2 RQ1: How Accurate and Efficient is Hue on
Hybrid Logs?

For RQ1, we use grouping accuracy, template F1-score, and execu-
tion time as evaluation metrics. We conducted experiments on 3
hybrid log datasets. Note that the comparison is not apple to apple
because as to our knowledge, Hue is the first parser attempting to
parse hybrid logs (including multi-line logs). Therefore, we cannot
find other more suitable baselines for comparison. Our purpose
is not to claim this is a weakness of existing single-line parsers
because they were not designed for hybrid log parsing, but rather
to highlight the importance of designing a new parser for parsing
hybrid logs. In addition, the experiments intended to show that it
is non-trivial to adapt single-line parsers to hybrid logs. To be fair,
we use the same set of regexes for all parsers including Hue.

5.2.1 Accuracy. The results are shown in Table. 2 and Table. 3. The
best results in each dataset are marked with a star symbol, and the
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Table 3: Template F1-score on hybrid log datasets.

Metrics AEL LenMa Spell IPLoM Drain  Hue

HiBench 0.083 0.590 0.641 0.687 0.753 0.836"
CTS 0.662  0.569 0.618 0.645 0.784 0.839"
PaaS 0.326  0.388 0.292 0.450 0.540 0.801"

Average 0357 0516 0.517 0.594 0.692 0.825*

results with grouping accuracy greater than 0.9 and F1-score greater
than 0.8 are emphasized in bold font. Hue demonstrates state-of-
the-art accuracy and F1-score on all three hybrid log datasets, out-
performing the best traditional parser, Drain. In comparison, Drain
achieves an average grouping accuracy of 0.563 and an average
F1-score of 0.692, while Hue achieves the highest average grouping
accuracy of 0.845 and the highest average F1-score of 0.825. This
superior performance can be attributed to the design of Hue, which
is specifically built to handle the unique challenges posed by hybrid
log parsing. Unlike traditional parsers, Hue is able to effectively
parse logs that span multiple lines and retain the structure between
lines, whereas traditional parsers fall short because they were not
designed to natively support multi-line log parsing. As mentioned
in Sec. 2.1, the structure between lines is lost after flattening logs
across lines. For example, in table logs, different instances of the
same template may have different line numbers, which can result in
significant differences in the message lengths after flattening. This,
in turn, results in far more templates than ground truth, making it
difficult or even impossible for downstream tasks to use the logs
for vectorized representation.

In particular, we find that Hue has a significant advantage in
parsing event logs and table logs. Fig. 8 illustrates the comparative
advantages, i.e., calculating the ratio of correctly parsed message
number or template number dividing the total message number or
template number on each log type when they are parameterized to
maximize template F1-score. For example, on HiBench, Hue demon-
strates promising performance in parsing table logs, while other
log parsers struggle to parse table logs. In addition, on CTS, Hue
exhibits significant advantages in parsing event logs. These results
demonstrate the necessity of designing a parser specifically for
hybrid logs, and migrating existing parsers for hybrid log parsing
is not trivial.

m Event log message Text log message Table log message  MEN Event log template. Text log template Table log template

AEL LenMa Spell IPLoM Drain  Hue

AEL LenMa Spell IPLoM Drain  Hue
Parsers Parsers

AEL LenMa Spel IPLoM Drain  Hue
Parsers

Figure 8: The ratio of correctly parsed message/template num-
bers in each type. The upper bound of each stacked bar is 3.0.

5.2.2  Efficiency. We specially collected a large quantity of log data
on these three hybrid logs for efficiency evaluation. Specifically, we
compare average time consumption after running five times in a
scaling-up scenario. The results of the experiments are displayed in
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Figure 9: Execution time on hybrid logs.

Table 4: Grouping accuracy on LogPAT’s loghub datasets.

Dataset AEL LenMa Spell IPLoM Drain SPINE  Hue

HDFS 0.998 0.998 1* 1* 0.998 0.998 0.998
Spark 0.905 0.884 0.905 0.920 0.920 0.925 0.942"
BGL 0.758  0.690  0.787 0.939 0.963" 0.948  0.849

Windows 0.690 0.566 0.989 0.567 0.997* 0.990 0.990
Linux 0.690  0.701 0.605  0.672 0.690 0.676  0.749"
Android 0.682 0880 0.919 0.712 0.911 0.932* 0.826
Mac 0.764  0.698  0.757  0.673 0.787 0.789  0.901*
Hadoop 0.538  0.885 0.778 0.954 0.948 0.946 0.966"
HealthApp  0.568 0.174 0.639 0.822 0.780  0.988*  0.903
OpenSSH  0.538  0.925" 0.554  0.802 0.788 0.681 0.804
Thunderb. 0.941 0.943 0.844  0.663 0.955 0.964" 0.962
Proxifier 0.518 0508  0.527  0.515 0.527 0.967 1*
Apache 1* 1* 1* 1* 1* 1* 1"
HPC 0.903  0.830 0.654 0.824 0.887 0.871  0.951*
Zookeeper 0.921  0.841 0.964 0.962 0.967 0.989" 0.987
OpenStack  0.758  0.743  0.764  0.871 0.733 0.757  0.993*
Average 0.754  0.721 0.751  0.777 0.865 0.901 0.927*

Fig. 9. We observe that Hue obtains SOTA results and its execution
time increases linearly with the number of logs. Some multi-line
logs, after being flattened, can be very long and cause sequence
clustering-based parsers to fail. Although Drain performs the best
effectiveness among all baselines, it still lacks of efficiency on hybrid
logs. Specifically, Drain times out when the number of messages
reached 4.0 million. The reason might be that Drain relies on direct
comparison to group extra-long logs, which is highly inefficient on
flattened multi-line logs.

5.3 RQ2: How Accurate and Efficient is Hue on
Single-line Logs?

For RQ2, we use grouping accuracy, template F1-score, and execu-

tion time for evaluation. We compared Hue (auto-updating) with 6

SOTA log parsers on 16 open-source single-line log datasets.

5.3.1 Accuracy. The results are presented in Table 4 and Table 5.
Hue achieves the SOTA results with the highest average values in
both grouping accuracy and template F1-score. SPINE [32] is the
best among existing parsers on single-line logs. Compared with
SPINE, Hue performs better than at the message level (Grouping
accuracy) on 8 datasets and is comparable on 4 datasets. Hue also
achieves SOTA results at the template level for 9 datasets. To sum
up, Hue achieves the highest average values of 0.927 in group-
ing accuracy and 0.870 in template F1-score, surpassing the best
traditional parser results of 0.901 and 0.749, respectively.
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Table 5: Template F1-score on LogPATI’s loghub datasets.

Dataset AEL LenMa Spell IPLoM Drain  Hue

HDFS 0.998 0.867 1* 1* 0.867 0.867
Spark 0.511 0.373 0.510 0.769 0.780  0.870*
BGL 0.819 0.412 0.487  0.832" 0.830 0.700
Windows  0.833  0.752 0.777 0.774  0.932* 0.811
Linux 0.818 0.944* 0.802 0.796 0.930 0.926
Android 0.726  0.838 0.867* 0.703 0.825 0.834

Mac 0.759  0.655 0.634 0.743 0.797  0.885"
Hadoop 0.702 0.672 0.604 0.863 0.820 0.880"
HealthApp 0.306  0.114 0.367 0.463 0.351  0.960"
OpenSSH 0571 0.824"  0.630 0.667 0.824*  0.767

Thunderb.  0.695  0.748 0.638  0.784"  0.773 0.779
Proxifier 0.400  0.154 0.134 0.600 0.534 1"
Apache 1 1" 1" 1" 1* 1*

HPC 0.750  0.297 0.739 0.711 0.753  0.872%
Zookeeper  0.718 0.755 0.729 0.744  0.854" 0.854"
OpenStack  0.657  0.244 0.089 0.693 0.117  0.978*

Average 0.696  0.603 0.629 0.759 0.749  0.870"
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Figure 10: Execution time on single-line logs.

We also observe that Hue’s accuracy and F1-score are lower on
certain datasets (e.g., Linux). We think this is caused by some am-
biguous tokens in the logs. For instance, "usbcore: registered
new driver usbfs" and "usbcore: registered new driver hub"
result in lower accuracy on this dataset. To address this issue, Hue
provides the human feedback integration mechanism (guided up-
dating), which will be discussed in the following section.

5.3.2  Efficiency. We assessed the efficiency the parsers on three
major datasets, i.e., using HDFS, Spark, and BGL for executing time
comparisons [32]. We also compare average time consumption after
running five times in a scaling-up scenario. The results are shown
in Fig. 10. The results indicate that Hue is comparable with the
best baseline in terms of processing speed for single-line log data.
However, Hue is slightly slower than the fastst baseline in some
cases, which we argue is acceptable.

5.4 RQ3: How Effective is Hue’s Human
Feedback Integration Mechanism?

For RQ3, we conducted experiments on all three hybrid logs as well
as the three single-line logs that achieve relatively unsatisfactory
grouping accuracy (below 0.9) and consist of a large number of
log templates (over 100 templates) in Sec. 5.3 (i.e., Linux, Android,
and BGL) to highlight the improvement brought by Hue’s feedback
mechanism. Specifically, we set Hue to guided updating mode and
evaluate the improvement on various datasets by changing the
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maximum limit of triggered merge queries. Furthermore, in the
experiments, we keep all feedback provided by the user correct to
eliminate any potential perturbation caused by human factors.

The results are shown in Fig. 11 and Fig. 12. Aside from CTS,
Hue’s grouping accuracy was able to improve to over 0.92 and
template F1-score to over 0.87 for all datasets with less than 20
feedback queries. The performance on CTS might not be optimal,
which could be due to the relatively high number of templates and
low amount of corresponding logs in the dataset.

For effectiveness comparison, we selected SPINE-Feedback [32]
to demonstrate the superiority of Hue’s feedback integration mech-
anism. We carried out experiments on Linux where both Hue and
SPINE did not perform satisfactorily, i.e., with the lowest group-
ing accuracy of 0.749 and 0.676 among all 16 single-line datasets,
respectively. To highlight the strength of Hue’s feedback mecha-
nism, we intentionally reduced Hue’s base grouping accuracy by
tuning its parameters to be lower than SPINE’s to highlight its
feedback mechanism strength, despite its initially higher accuracy
than SPINE’s in auto-updating mode.

The results are shown in Fig. 13. Compared with SPINE, Hue is
able to improve accuracy efficiently with fewer feedback queries
significantly. Moreover, it achieves a higher final grouping accuracy
after tens of queries. The efficient and effective feedback perfor-
mance of Hue may be attributed to two aspects: (1) Hue pre-filters a
large number of unnecessary feedback queries by checking whether
all tokens to be updated are keys. As discussed in Sec. 4.5.2, Hue as-
sumes that keys are potential parameter tokens or non-ambiguous
tokens. Therefore, the template updates that are solely targeting
keys are considered as correct updates and will not trigger feedback
queries. (2) The feedback mechanism of Hue resembles "preventing
erroneous template updates,” whereas the feedback mechanism of
SPINE resembles "correcting errors after they occur. Specifically,
SPINE iteratively partitions the already merged groups into new
groups and triggers feedback queries each time. However, this may
not be able to resolve the cases where logs belonging to the same
template have already been clustered in the wrong groups, where
the partition feedback queries cannot help them correctly clustered
together again. In contrast, Hue raises feedback queries before merg-
ing logs into wrong groups, which can effectively prevent incorrect
grouping cases at the very beginning. Thus, Hue can effectively
achieve higher final accuracy.

Additionally, we observe that Hue’s accuracy finally saturates as
the number of merge queries increases in some experiments. This is
because the parsing errors could also come from other components
of Hue (e.g., from the heuristic parse tree in fine-grouping).

6 INDUSTRIAL DEPLOYMENT

We deployed Hue in Huawei Cloud and it ran smoothly for two
months, from October 2022 to December 2022. During this period,
we annotated 1,000 logs for each downstream task every week.
Throughout the evaluation, IT operators did not have access to the
source code of the log statements.

To assess the performance of Hue, we calculated the percentage
of each type of log message over the two-month period for root
cause analysis tasks. As shown in Fig. 14, the blue part represents
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Figure 11: The increase of grouping accuracy and template F1-score on hybrid log datasets with feedback.
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correctly parsed templates, while the orange part represents incor-
rectly parsed templates. Out of all parsed log templates, 32.3% were
event logs, 26.1% were text logs, and 41.6% were table logs. Nearly
70% of them were multi-line, making it challenging for traditional
log parsers to provide accurate log templates for downstream tasks.

In our department in Huawei Cloud, the logs are used for two
downstream tasks: root cause analysis and user profile construction.
Since IT operators cannot directly access the source code and extract
templates from logging statements, they are limited to manually
defining log templates according to their requirements. However, as
discussed in Sec. 2.2, distinct downstream tasks may possess varying
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Figure 14: Results in Huawei Cloud.

interpretations of log templates. For example, event logs typically
exhibit a "verb-object" structure, manifesting as "performed an
action on a specific object” (Fig. 3). In the root cause analysis task,
engineers focus on the objects being operated, so they partition
templates based on objects. In the user profile construction task,
engineers focus on the recorded action, so they partition templates
based on actions. To achieve more accurate log parsing aligned with
their downstream task requirements, they utilized Hue’s guided
updating mode to parse the collected log samples with different
human feedback.

Fig. 14 shows the results, where the solid and dashed lines are
for root cause analysis and user profile construction, and blue and
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orange lines are for auto-updating and guided-updating modes,
respectively. This performance has been deemed acceptable by
the engineers responsible for their respective downstream tasks.
They have successfully integrated the parsed hybrid log data into
their experimental models. Furthermore, in our discussion with
engineers, we learned that Hue did not trigger an excessive number
of feedback queries during the actual parsing process, thus avoiding
user fatigue in providing feedback. In fact, the average number of
feedback queries triggered in every 1,000 logs was less than 30,
while the grouping accuracy remained acceptable (i.e., over 0.9).
This enabled them to try to incorporate hybrid logs as available data
in their models for the first time. We also found that Hue’s space-
based tokenization strategy (discussed in Sec. 4.2) has minimal
impact on the downstream tasks in Huawei Cloud, contrary to our
previous belief that it could threaten the practicality of Hue. This is
primarily due to the fact that Huawei Cloud’s business solely uses
vectorized logs for various tasks, where the main requirement is
accurate clustering of logs belonging to the same template, rather
than ensuring every token in the extracted templates (represented
as strings) is correctly parsed. Therefore, we believe that Hue also
demonstrates a certain level of practicality in industrial scenarios.

7 THREATS TO VALIDITY
In this work, we identified the following major threats to validity.

e Data Quality: Our evaluation uses multiple log datasets
and we found that they contain labeling errors that can
negatively impact parser performance. Also, most parsers,
including Hue, assume that logs have a specific header. Hue
segments logs based on headers. For logs without headers,
Hue’s performance would be degraded. Thus, we regard
parsing hybrid logs without headers as future work.

e Key Adaptability: In Sec. 5.3, we use the most common
key setting for all experiments. However, some logs may
not fit this setting, which could affect the parsing result. To
mitigate this threat, we allow users to customize their own
key casting configurations.

e Query Correctness: In Sec. 5.4, we assume that human
feedback to the query is always correct. However, if the user
provided incorrect feedback, it might introduce new parsing
errors. To mitigate this impact, we recommend that users
discuss the query in detail if they are not sure about the
correct template.

8 RELATED WORKS

Log parsing methods can be categorized into unsupervised and
supervised methods according to the parsing algorithms.
Unsupervised log parsers do not require labels on existing
log data and thus they have been more widely explored. There
are three main categories of unsupervised log parsers: frequent
pattern mining-based, clustering-based, and heuristic-based meth-
ods. (1) Frequent pattern mining-based methods regard the mined
frequent patterns (e.g., n-grams) as log templates. For example,
SLCT [30], LFA [25], LogCluster [31], and Logram [2] try to use
different methods to extract frequent patterns in logs. (2) Clustering-
based methods aim to group similar logs first, assuming that logs
in the same cluster share the same template, and then extract the
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common tokens as the template in each cluster. Some clustering-
based methods can perform in an online manner because they adopt
an online grouping strategy rather than clustering all the offline
logs at once. Specifically, LKE [8], LogSig [29], LogMine [10] are
offline methods, SHISO [24], and LenMa [28] are online methods. (3)
Heuristic-based methods encode expert domain knowledge into gen-
eral and effective heuristic rules. For example, AEL [7], IPLoM [23],
Spell [3], and Drain [12] utilize different heuristic rules to extract
templates from logs. In particular, Drain [12] achieved SOTA in
all open-source traditional parsers with a parse tree structure to
perform log parsing in an online manner. POP [11] improves Drain
and provides a parallel implementation on Spark for distributed
deployment. SPINE [32] improves Drain and proposes a progressive
clustering step for human feedback. In particular, SPINE introduced
a manual correction paradigm to log parsing. Although SPINE also
considers human feedback, this paper proposed a new human feed-
back integration mechanism based on the merge-reject strategy,
which largely improves efficiency and achieved higher accuracy.

Supervised log parsers are less common because they rely
on lots of precise ground truth labels manually constructed by IT
operators. UniParser [21] utilizes a contrast learning strategy to
overcome the pattern difference in heterogeneous log sources and
uses a BILSTM [9] model for token and context encoding. Sem-
Parser [16] utilizes a special semantic miner for template extracting
and uses a BILSTM [9] model for encoding. Different from these
supervised approaches, Hue is an unsupervised log parser that does
not rely on label log datasets.

Different from these existing parsers, Hue is the first attempt to
parse hybrid logs, providing an approach to utilize neglected hybrid
logs for various downstream tasks in log analysis. Moreover, most
existing parsers can only improve parsing performance through
hyperparameter tuning, while Hue, in addition to hyperparameter
tuning, further enhances parsing effectiveness through a feedback
mechanism.

9 CONCLUSION

This paper introduces a new, general, and practical research prob-
lem, hybrid log parsing, which is the superset of the widely-studied
single-line log parsing problem. We also present Hue, the first at-
tempt to tackle this problem. Hue leverages both patterns in the
incoming log messages and expert domain knowledge to parse both
hybrid and single-line logs in an online manner. The use of a key
casting table and a merge-reject strategy enables Hue to effectively
utilize user feedback, making it possible to quickly adapt to complex
and changing log templates. The results of our evaluation on three
hybrid log datasets and sixteen widely-used single-line log datasets
demonstrate the superiority of Hue in terms of accuracy and ef-
ficiency. The successful deployment of Hue in a real production
environment further highlights its practical value. We hope Hue
and its replication package can serve as the first step in hybrid log
parsing and benefit a line of future research in this interesting and
practice direction.

10 DATA AVAILABILITY
We uploaded our repository at https://github.com/logpai/hybridlog


https://github.com/logpai/hybridlog
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