
Neural-Based Test Oracle Generation: A Large-Scale Evaluation
and Lessons Learned

Soneya Binta Hossain∗

sh7hv@virginia.edu
University of Virginia

USA

Antonio Filieri
afilieri@amazon.com
Amazon Web Services

USA

Matthew B. Dwyer
matthewbdwyer@virginia.edu

University of Virginia
USA

Sebastian Elbaum
selbaum@virginia.edu
University of Virginia

USA

Willem Visser
vissie@amazon.com
Amazon Web Services

USA

ABSTRACT
Defining test oracles is crucial and central to test development, but

manual construction of oracles is expensive. While recent neural-

based automated test oracle generation techniques have shown

promise, their real-world effectiveness remains a compelling ques-

tion requiring further exploration and understanding. This paper

investigates the effectiveness of TOGA, a recently developed neural-

based method for automatic test oracle generation. TOGA utilizes

EvoSuite-generated test inputs and generates both exception and

assertion oracles. In a Defects4j study, TOGA outperformed spec-

ification, search, and neural-based techniques, detecting 57 bugs,

including 30 unique bugs not detected by other methods. To gain a

deeper understanding of its applicability in real-world settings, we

conducted a series of external, extended, and conceptual replication

studies of TOGA.

In a large-scale study involving 25 real-world Java systems,

223.5K test cases, and 51K injected faults, we evaluate TOGA’s

ability to improve fault-detection effectiveness relative to the state-

of-the-practice and the state-of-the-art. We find that TOGA mis-

classifies the type of oracle needed 24% of the time and that when

it classifies correctly around 62% of the time it is not confident

enough to generate any assertion oracle. When it does generate

an assertion oracle, more than 47% of them are false positives, and

the true positive assertions only increase fault detection by 0.3%

relative to prior work. These findings expose limitations of the

state-of-the-art neural-based oracle generation technique, provide

valuable insights for improvement, and offer lessons for evaluating

future automated oracle generation methods.

CCS CONCEPTS
• Software and its engineering→ Software testing and debug-

ging; • Computing methodologies→ Neural networks.

∗Part of the work was done while interning at Amazon Web Services

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616265

KEYWORDS
Neural Test Oracle Generation, TOGA, EvoSuite, Mutation Testing

ACM Reference Format:

Soneya Binta Hossain, Antonio Filieri, Matthew B. Dwyer, Sebastian El-

baum, and Willem Visser. 2023. Neural-Based Test Oracle Generation: A

Large-Scale Evaluation and Lessons Learned. In Proceedings of the 31st ACM

Joint European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San

Francisco, CA, USA. ACM, New York, NY, USA, 13 pages. https://doi.org/10.

1145/3611643.3616265

1 INTRODUCTION
Testing is the standard method for validating that a program meets

its requirements. To test a program a test input is passed to the

program and its output is judged by a test oracle that asserts a

property of the expected program behavior on the given input [37].

A test suite is comprised of a set of input-oracle pairs, called test

cases. The key value of a test suite lies in its ability to detect faults.

Fault detection relies on the choice of good test inputs – to ensure

that any faulty statements are executed – and, for each input, a test

oracle that can detect error states introduced by faults and judge

them against necessary conditions for correctness [57].

A rich literature on test adequacy metrics exists to assess the

fault exposure ability of test inputs [11, 59] and a growing litera-

ture exists on the importance of strong test oracles for fault detec-

tion [24, 25, 27, 46, 51, 60, 62]. Unfortunately, manual development

of high-quality test suites is extremely costly, time consuming,

and error-prone [4, 27]. Consequently researchers have focused on

methods for automating the generation of test cases. They have

been particularly successful in developing a range of cost-effective

methods for generating high-quality test inputs [1, 8, 10, 19, 21, 32,

34, 35, 48, 61]. Automatically generating effective test oracles has

proven more challenging and many of these techniques have used

either implicit oracles which use checks enforced by the runtime

system, such as null pointer dereference exceptions, differential

oracles which compare the output of two programs or program

versions against each other [36], or metamorphic which check for

known relations between mutation of the inputs and corresponding

changes of the outputs [47].

To unleash their full potential, test generation techniques must

go beyond implicit, differential, and metamorphic oracles, pairing

test inputs with input value-specific oracle assertions that capture

intended program behavior. Researchers have explored the use of

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

120

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-7282-061X
https://orcid.org/0000-0001-9646-646X
https://orcid.org/0000-0002-1937-1544
https://orcid.org/0000-0001-9592-1352
https://orcid.org/0000-0002-0913-3091
https://doi.org/10.1145/3611643.3616265
https://doi.org/10.1145/3611643.3616265
https://doi.org/10.1145/3611643.3616265
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616265&domain=pdf&date_stamp=2023-11-30


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Soneya Binta Hossain, Antonio Filieri, Ma�hew B. Dwyer, Sebastian Elbaum, and Willem Visser

natural language processing (NLP) and patternmatching techniques

to generate test oracles based on code comments and text documen-

tation [6, 7, 22, 38, 52]. Such techniques are able to infer assertion

oracles that check actual program output against expected output,

and exception oracles that capture intended exceptional behavior of

the program under test. More recently neural techniques have been

applied to generate test oracles using a transformer-based model

that learns from the method under test and developer-written test

cases [54, 55, 58]. Following on this work, the TOGA [17] neural-

based test oracle generator was recently found to outperform prior

work in detecting real faults. We explain TOGA in detail in §2, but

briefly: given a method under test, a test prefix which is a code

fragment that includes the test input and a sequence of operations

to drive the program under test into a desired execution state, and

optional documentation strings, TOGA predicts whether an excep-

tion oracle or an assertion oracle should be generated, and in the

latter case, it generates the predicate within the assertion oracle. On

a study performed on the Defects4j benchmark [29] consisting of

835 bugs from 17 Java applications, TOGA was reported to outper-

form other neural-based assertion generation techniques [54, 55, 58]

by detecting 57 bugs, of which 30 unique bugs not detected by any

other competing techniques.

While the original evaluation of TOGA was focused mostly on

the Defects4j benchmark, in this work, we set to evaluate its effec-

tiveness on larger benchmarks and with perspectives and methods

that more closely resemble those of industrial practice. To this

end, we conduct a series of three external replications of TOGA

with the objectives of validating its original fault detection find-

ings, characterizing its precision (i.e., the frequency of generating

correct oracles), measuring the fault-detection power of the gen-

erated correct oracles, and broadening our understanding of its

generalizability to a wider set of programs.

To distinguish our research questions (RQ) from those in the

TOGA paper, we subscript references to the latter with ) .

RQ1 (Exact Replication of RQ3) ): In RQ1, our hypothesis is

that RQ3) was well-designed and executed, therefore, we should

obtain similar results. To this end, we conducted an exact replication

of the Defects4j fault study as described in the original paper.

We were able to obtain the same results. However, we found

that the majority (67%) of total reported bugs could be identified

by Java “implicit oracle” (i.e., exceptional behavior triggered by

executing the test prefix alone). Such prefixes eliminate the need

for test oracles generated by TOGA and led to an overestimation of

TOGA’s fault detection capability. An important lesson from this

finding is that future experimental evaluation should include the

implicit oracle as a baseline to correctly attribute the bug detection

capabilities of generated oracles (§3.5).

RQ2 (Conceptual Replication of RQ2) ): This replication

study evaluates TOGA’s performance on a broader and newer set

of inputs. We hypothesize that a new dataset would yield similar

results to the original TOGA study, indicating its replicability (same

method on new dataset). To this end, from 25 large-scale Java ap-

plications, we constructed a new dataset with a total of 223k test

cases – each having a test prefix and a single assertion or exception

oracle, whereas RQ2) studied 61k inputs from a held-out test set.

Going beyond the TOGA paper, we computed additional metrics

for deeper insights into technique performance. For instance, we

calculated the false positive rates for each type of ground truth label:

“No Exception” (18%), “Exception Expected” (81%), and “Assertion”

(47%). Furthermore, we computed a “no assertion generation rate”

of 62%, indicating that even when TOGA correctly predicts the

need for an assertion oracle, it may not generate one confidently.

Additionally, we analyzed false positive rates for different types of

assertion oracles (74% FPR for assertEquals, Table 4), which offers

further insights into TOGA’s assertion oracles generation capability.

In RQ2) , the stated overall accuracy for assertion oracle inference

is 69%, while our findings show an overall accuracy of 52%. For

exceptional oracle inference, TOGA reported 86% accuracy, while

our findings indicate a lower accuracy of 75%. Moreover, when

considering only the “exception expected” ground truth, we found

an accuracy 19%, which was not reported in the original paper.

These results indicate that TOGA did not generalize effectively to

the large and diverse dataset studied.

Moreover, TOGA’s high false positive rates raise concerns about

its practical usefulness.Widely cited studies [12, 28, 45] have demon-

strated that high false positives are a major barrier to the adoption

of automated software testing in industry and tools that generate

more than 10% false positives waste developers time causing devel-

opers to lose trust in them and gradually abandon them. To improve

TOGA-like techniques going forward, it is crucial to significantly

reduce false positive rates. In this context, our findings offer valu-

able guidance by identifying the specific types of test oracles and

assertions that predominantly contribute to false positives. Thus,

presenting potential opportunities for future refinement to ensure

their usefulness in real-world scenarios. An important lesson from

this study is that future research should comprehensively evaluate

the precision and recall of oracle generation techniques (§3.5).

RQ3 (Conceptual Replication of RQ3) ): This study inves-

tigates the relative strength of the assertion oracles generated by

TOGA and EvoSuite. Our motivation for this research question

is twofold: firstly, strong assertion oracles are crucial for detect-

ing specification violations and assertions are strongly correlated

with the fault-detection effectiveness of a test suite [46, 50, 53, 62];

secondly, constructing strong assertion oracles requires an under-

standing of program specification and TOGA is designed to leverage

natural language specifications (docstrings).

TOGA leverages EvoSuite-generated prefixes, reaping benefits

from EvoSuite’s search-based technique that creates test inputs opti-

mizing coverage, fault detection and minimizing false positive/flaky

tests [2, 15, 39, 49, 56]. Furthermore, TOGA employs a deep learning

approach utilizing the powerful CodeBERT model, enabling it to

learn from large-scale open source codebases and natural language

code documentation (docstrings). This gives TOGA the potential to

improve on traditional rule-based static techniques, which do not

utilize natural language specifications. We limit this study to 34K

test prefixes, from the RQ2 experiment, on which TOGA generated

non-empty and correct assertion oracles and only consider Evo-

Suite assertions for those prefixes. Our hypothesis is that TOGA,

by leveraging both EvoSuite prefixes and a broader understanding

of the code’s intended behavior learned from codes and docstrings,

would generate strong assertion oracles capable of identifying a

significant number of faults not detected by EvoSuite.

We employ mutation testing, a scalable and effective method,

to measure the fault-detection effectiveness of test assertions [3, 5,

121



Neural-Based Test Oracle Generation: A Large-Scale Evaluation and Lessons Learned ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

13, 40, 41, 46, 62]. From a pool of 51K injected faults, 20.5K were

detected by the Java implicit oracle. EvoSuite assertions detected

an additional 9,814 faults. Finally, with the addition of TOGA’s

assertions, an additional 105 faults were detected. This suggests

that the added value of TOGA-generated assertions with EvoSuite

prefixes is limited, and its use may not be warranted given the costs

associated with its high false-positive rate (from RQ2).

Our primary contributions are (1) a series of replication studies

that broaden the understanding of TOGA’s applicability, general-

izability, precision, fault detection power; 2) the identification of

limitations of the latest learning-based test oracle generation ap-

proach; (3) the identification of actionable lessons learned that can

be applied to future studies of such techniques; and (4) a substantial

dataset constructed by an external group, consisting of 223K test

cases from 25 large-scale applications for evaluating test oracles.

2 TOGA
TOGA is an automated test oracle generation technique [17]. It

takes two inputs: the unit context, comprised of the method un-

der test and associated docstrings, and test prefix. The test prefix

is typically generated with an auxiliary test generator; following

the original paper [17], we also adopt EvoSuite. TOGA has three

major components: Exception Oracle Classifier, Assertion Oracle

Generator, and Assertion Oracle Ranker.

In the reminder of this section, we briefly summarize the func-

tioning and role of EvoSuite and of TOGA’s three components.

EvoSuite is a search-based unit test generation tool for Java [19,

20]. It automatically produces a code fragment, called test prefix,

that defines the inputs for each generated test. EvoSuite assumes

that the unit under test is correct in order to generate test oracles for

each prefix that detect regression bugs. These oracles can take two

forms. Assertion oracles check program output against expected

output. Exception oracles check if an expected exception is thrown.

Listing 1: EvoSuite tests with assertion and exception oracles

public void test00 () throws Throwable {

Stack <Integer > stack0 = new Stack <Integer >();

Integer integer0 = new Integer (0);

stack0.push(integer0);

assertEquals (1, stack0.size()); // assertion oracle

}

public void test11 () throws Throwable {

Stack <Integer > stack0 = new Stack <Integer >();

try {

stack0.pop();

// exception oracle

fail("Expecting exception: EmptyStackException");

} catch(EmptyStackException e) {

verifyException("Stack", e);

}

}

Listing 1 shows two test cases generated by EvoSuite for the

Java Stack class. test00 tests the pushmethod: inserts an element,

and checks if the size of the stack is equals to 1 with an explicit

assertion oracle. test11 calls the pop method without pushing

anything on to the stack, therefore, an expected behavior is to

throw an Exception. If the exception is not thrown then the test

will fail, which is checked with the exception oracle.

2.1 Exception Oracle Classifier (EOC)
The Exceptional Oracle Classifier (EOC) is a pretrained CodeBERT

[18] model trained on both natural language and code-masked

language modeling and fine-tuned on binary classification. For

fine-tuning, they used a dataset called Methods2Test*, a corpus of

method context (c), test prefix (p), and binary label (0/1). For a given

pair of (c,p), label 1 indicates that the execution of the test prefix

should throw an exception, and label 0 indicates that no exception

should be thrown.

For example, in Listing 1, test11 pops from an empty stack

which should throw an EmptyStackException. Given this test pre-

fix, it is expected that EOCwill predict a “1". On the contrary, given

the test prefix from test00 in Listing 1, the expected prediction

is 0, meaning that no exception should be thrown. As mentioned

earlier, "no exception should be thrown" is Java’s implicit oracle.

2.2 Assertion Oracle Generator (AOG)
When EOC classifies that an exception should not be thrown for a

unit context and test prefix, the Assertion Oracle Generator (AOG)

is invoked to generate a set of assertion candidates. Note that AOG

is a non-ML-based algorithm (Algorithm 1 in [17]) that generates

assertions based on the type of the variable being checked. It is

worth noting that the target variable is extracted from the Evo-

Suite generated assertion. Based on the variable type, TOGA gen-

erates five types of JUnit assertions: assertNull, assertNotNull,

assertTrue, assertFalse, assertEquals. For example, if a vari-

able is an Object, AOG may generate assertion candidates us-

ing assertNull(), assertNotNull() and assertEquals meth-

ods. Similarly, for variables with boolean type, assertTrue() and

assertFalse() oracles can be generated.

Generating assertEquals is more complex as it requires two

values: expected value and the variable being checked. For deriving

an expected value, TOGA draws from the most frequently appear-

ing constant values in the AOR training data (Global Dictionary).

For each type, this dictionary holds the top K values. Similar to

the global dictionary, they also construct a local dictionary from

the input test prefixes, consisting of variables and constants in

the prefix. We refer readers to Section 4.4 of [17] for more de-

tails on the local and global dictionary. Our experimental studies

(RQ2) show that TOGA mostly uses 0 or 1 for the expected value

in assertEquals for numerical domains. Out of the 16059 false

positive assertEquals oracles generated by TOGA, 14913 (93%)

assertions used either 0 or 1 as expected value. Only 7% oracles used

some other variables from the test prefix as the expected value. Con-

sequently, this type of assertion results in a large number of false

positives (73% FPR). For example, in Figure 1, for test01, TOGA

generated an incorrect assertion by comparing stack size with 0

when the expected value should be 1.

2.3 Assertion Oracle Ranker (AOR)
Like EOC, the Assertion Oracle Ranker (AOR) is also a pretrained

CodeBERT [18] model trained on both natural language and code-

masked language modeling, however, fine-tuned on ranking tasks

instead of binary classification. For fine-tuning, a supervised dataset,

Atlas*, was used. Atlas* is a corpus of method context (c), test prefix

(p), assertion (a), and a binary label (0/1). As this is a ranking task,

for a pair of (c,p), only one assertion in the candidate set will have

a binary label “1"’, indicating the most preferred assertion from

the candidates. The rest of the assertions will be labeled as “0"’ for

that given pair of (c,p).

122



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Soneya Binta Hossain, Antonio Filieri, Ma�hew B. Dwyer, Sebastian Elbaum, and Willem Visser

//true positive TOGA assertion

public void test03 () throws Throwable {

Stack <Object > stack0 = new

Stack <Object >();

boolean boolean0 = stack0.isEmpty ();

assertTrue(boolean0); //ES oracle

} // 0, assertTrue(boolean0)

/// false positive TOGA assertion

public void test01 () throws Throwable {

Stack <Object > stack0 = new

Stack <Object >();

Integer integer0 = new Integer (1920);

stack0.push(integer0);

int int0 = stack.size();

assertEqual (1, int0); // ES oracle

} /// 0, assertEquals (0, int0)

public void test05 () throws Throwable {

Stack <Object > stack0 = new

Stack <Object >();

try {

stack0.peek();

fail();

}catch(NoSuchElementException e) {

verifyException(""Stack"", e);

}

} // 1, correct classification

public void test06 () throws Throwable {

Stack <Object > stack0 = new

Stack <Object >();

try {

stack0.pop();

fail();

}catch(NoSuchElementException e) {

verifyException(""Stack"", e);

}

} /// 0, incorrect classification

Figure 1: Test Oracle Generated by TOGA for Stack class. For test03, a correct assertion in generated; for test01, a false positive

assertion is generated; for test05, TOGA correctly predicts that exception is expected; for test06, TOGA incorrectly predicts

no exception, when it should.

During assertion oracle inference, for an input (c, p, a), AOR

predicts a binary label and assigns a confidence score. Based on the

label and achieved confidence score, the highest-ranked assertion

will be selected as the output. The model does not output any

assertion oracle when it is not confident enough; in our study,

TOGA did not generate any assertion for more than 62% of the

correctly classified test prefixes.

2.4 Sample Test Oracles Generated by TOGA
In Figure 1, we provide a few examples of the TOGA-generated test

oracles for the Stack class. Using EvoSuite, we have generated 13

test cases, 11 with assertion oracles and two with exception oracles.

We have used the method under test, its docstrings (available for all

methods), and the test prefixes to predict test oracles with TOGA.

TOGA generated four assertion oracles, two correct (e.g., test03)

and two false positive assertions (e.g., test01). For the remaining

seven out of the 11 test prefixes, TOGA correctly classified that

they should not throw any exception; however, it did not generate

any assertions. Out of the two test prefixes with an EvoSuite ex-

ception oracle, TOGA classified one correctly (e.g., test05) and one

incorrectly (e.g., test06). For both assertion and exception oracle

inference, false positive rate is 50%.

2.5 TOGA Original Findings
The original TOGA study included three research questions.

RQ1) evaluated whether TOGA’s grammar represents most

developer-written assertions or not. They found that 82% developer-

written assertions from the ATLAS dataset [58] can be represented

with their grammar.

RQ2) evaluated TOGA’s oracle inference accuracy on held-out

test sets. For exception oracle inference, they used Methods2Test*

dataset [17], and TOGA achieved 86% accuracy, 55% precision, 30%

recall, and .39 F1-score. For assertion oracle inference, the Atlas*

[17] dataset was used, and TOGA achieved 96% in-vocab accuracy

and 69% overall accuracy.

RQ3) evaluated TOGA-generated oracles fault-detection effec-

tiveness on Defects4j fault database. Using 364 test prefixes gen-

erated on the fixed versions, TOGA detected 57 out of the 835

Defects4j bugs, where five were detected by exception oracle, 14

were detected by assertion oracle, and 38 were detected by EvoSuite

prefixes throwing uncaught exceptions. EvoSuite detected 120 bugs.

3 EXPERIMENTAL STUDY
We investigate the following research questions:

Figure 2: TOGA oracle inference of 57 Defects4j bugs

RQ1 (Exact Replication of RQ3) ): How many of the bugs

reported in the original study could be exclusively detected by

TOGA’s explicit assertion and exception oracles and how many

have been detected by implicit oracles, i.e., the uncaught exception

thrown by EvoSuite prefixes (e.g., a dereferenced null pointer)?

RQ2 (ConceptualReplication ofRQ2) ):Howprecise is TOGA

in classifying the type of oracle required and in generating correct

assertion oracles?

RQ3 (Conceptual Replication of RQ3) ):What is the added

value of TOGA generated assertions in detecting faults relative to

the state-of-the practice?

3.1 RQ1 (Exact Replication of RQ3) )
This research question investigates the 57 Defects4j bugs reported

as detected by TOGA in the original study. To this end, we obtain

the original paper replication package [16], run the experiments

as indicated, and examined the detected bugs and the oracles that

catch them using our own tools and scripts.

3.1.1 Original Artifacts and Procedure

The bug-detection effectiveness of the TOGA-generated test ora-

cles was evaluated on the Defects4j benchmark, a dataset of real

bugs [29], consisting of 17 Java applications containing a total of

835 labeled bugs. For each bug, the dataset keeps both the buggy

and fixed versions. Each bug is labeled with a unique bug id, and

the fixed and buggy versions for that bug can be identified and run

on a set of test cases efficiently.

TOGA’s bug detection capabilities have been investigated using

the following protocol [17]:

(1) Run EvoSuite on the fixed versions of the programs for three

minutes to generate test cases;

(2) Run EvoSuite-generated tests on the buggy versions and keep

123



Neural-Based Test Oracle Generation: A Large-Scale Evaluation and Lessons Learned ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 1: Defects4j bug detection (Bug ID: JxPath 5) by TOGA. TOGA correctly predicted that “no exception is expected” (note

that this is an “implicit assertion”, which is the default assumption of a run-time system and JUnit test runner). However, it

generated one false positive assertion and no assertion for the rest. Running the EvoSuite prefix alone on the buggy version

detected a bug as the test failed due to uncaught exception thrown by the EvoSuite prefix.

EvoSuite Test TOGA Input 1 TOGA Input 2 TOGA Input 3

public void test48 () throws Throwable {

/** EvoSuite prefix: **/

QName qN0 = new QName("");

VariablePointer vP0 = new VariablePointer(qN0);

NodePointer nP0 = NodePointer.newChildNodePointer(vP0 ,

qN0 , qN0);

BasicVariables bV0 = new BasicVariables ();

VariablePointer vP1 = new VariablePointer(bV0 , qN0);

int int0 = nP0.compareTo(vP1);

/** end of EvoSuite prefix **/

assertEquals (1, int0);

assertEquals(Integer.MIN_VALUE , vP1.getIndex ()); }

public void test48 () throws

Throwable {

/** EvoSuite Prefix **/

assertEquals (1, int0);

}

public void test48 () throws

Throwable {

/** EvoSuite Prefix **/

assertEquals(Integer.MIN_VALUE ,

vP1.getIndex ());

}

public void test48 () throws

Throwable {

/** EvoSuite Prefix **/

}

TOGA Oracle Inference: assertEquals(0, int0) Empty Empty

Aggregated Test:

public void test48 () throws

Throwable {

/** EvoSuite Prefix **/

assertEquals (0, int0)}

public void test48 () throws

Throwable {

/** EvoSuite Prefix **/}

public void test48 () throws

Throwable {

/** EvoSuite Prefix **/}

Test Execution Status: FP: Failed on Fixed
TP: Passed on Fixed, Failed on

Buggy
TP: Passed on Fixed, Failed on

Buggy

records of the failed test cases. These tests are called “bug-reaching

tests” as they failed on the buggy versions, indicating that they

exercised buggy behavior.

(3) Separate test prefix and assertions in the “bug-reaching tests”

test cases. When a bug-reaching test contains more than one as-

sertion, it is replicated into multiple tests composed of a single

assertion and a test prefix that computes the variable checked by

the assertion. For example, from the EvoSuite test case with two

assertions shown in Table 1, three test cases were generated. In

total 364 test prefixes were used for this study.

(4) TOGA processes test prefixes and EvoSuite assertions (to deter-

mine the variable to be asserted) and generates oracles for each of

the prefixes. TOGA oracles can be assertions or exception oracles,

where the test prefix is wrapped within a try-catch block.

(5) TOGA tests (EvoSuite+ TOGA assertion) are executed on both

fixed and buggy version, where a bug is classified as detected if the

test passes on the fixed version while failing on the buggy one.

To conduct this replication, we followed the same protocol, uti-

lized the identical set of EvoSuite test prefixes provided in the TOGA

replication package.

3.1.2 Results

In the Sankey diagram shown in Figure 2, we report the analysis of

all 57 bug detection reported by TOGA. We first categorize the 364

TOGA inputs based on the expected oracle types: exception and

assertion oracles. Of the 60 TOGA inputs consisting of test prefixes

expected to throw an exception, 53 were misclassified, resulting

in an 88% false positive rate. The 7 correctly classified exception

oracles found 5 distinct bugs.

For the remaining 304 inputs (bottom left branch of diagram),

TOGA correctly classified 261 prefixes that an exception is not

expected, and 43 are misclassified. For 140 test prefixes, TOGA did

not generate any explicit assertion oracles. For 121 prefixes, TOGA

generated an explicit assertion oracle, only 58 of them are true

positive and they detected 14 unique bugs. Rest of the generated

assertions (63), either failed on the fixed versions (FP + FN) or

passed on the buggy version (TN).

67% (38 of 57) of the bugs reported as detected, were found

by implicit assertions through a TOGA oracle expressing that “a

test should fail if no exception is predicted but is thrown when

executing the test on the buggy version”. This is a default oracle of

the Java run-time system and default behavior of the JUnit (used

by Defects4j) test framework that a test must fail on uncaught

exception. Therefore, these 38 out of the 57 bugs would still be

detected by Java run-time system by simply running the EvoSuite

test prefixes without any TOGA-generated oracle.

In Table 1, we provide an example of how TOGA detected a bug

in the JxPath application. The first row shows the test generated

by EvoSuite and three TOGA inputs generated from the same test

prefix: one per assertion and one containing only the prefix. Note

that TOGA utilizes the EvoSuite assert statement to identify the

variable for which to generate assertions. The second row shows

the output from TOGA. For all three inputs TOGA correctly pre-

dicted that no exception is expected (implicit oracle), however, it

generated only one assertion for input 1. For inputs 2 and 3, TOGA

did not generate any explicit assertion oracle. When running the ag-

gregated tests (third row), TOGA test 1 failed in the fixed version as

it is an incorrect assertion. For TOGA tests 2 and 3, only EvoSuite

test prefixes were run on both versions (fixed and buggy), and the

bug was detected. This is one of the 38 bugs that can be detected

without any TOGA oracles, Java implicit oracle suffices. This eval-

uation setting has two negative consequences: 1) it overestimates

TOGA’s fault detection capability relative to the state-of-the-art

considering that 67% bugs can be detected by the standard implicit

test oracle, and 2) it does not control for the fact that other tech-

niques that do not explicitly generate the “No Exception” oracle

could be misrepresented with this protocol.

For instance, seq2seq, which utilizes the same EvoSuite prefixes,

should theoretically be capable of detecting these 38 implicitly

detected bugs, unless the generated assertions failed on the fixed

version of the program and so have been classified as false positives.

Similarly, JDoctor which also uses the same EvoSuite prefixes,

should also detect these 38 bugs, unless it generates a large percent-

age of false positives. However, according to RQ3) , FPR is only .4%

124



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Soneya Binta Hossain, Antonio Filieri, Ma�hew B. Dwyer, Sebastian Elbaum, and Willem Visser

(2/364 tests are false positives). Therefore, JDoctor, in theory, should

also detect these bugs. An exact replication of these methods was

not possible because neither the TOGA paper nor its replication

package provided data regarding how these tools were run, e.g.,

time spent running each technique, the preparation of inputs, and

tool configurations.

The total number of misclassification (total: 96) and generation

of incorrect assertions failing on fixed versions (total: 49) sum to

40% of the 364 tests prefixes in the original TOGA study. These

tests may fail when they should not and it would require engineer

time to triage, diagnose, and repair the tests. This cost might be ac-

ceptable if TOGA were able to generate valuable assertions, but for

54% (140/261) of correctly classified test prefixes, TOGA generated

no assertions and the faults detected from TOGA generated asser-

tions comprise only 19 of the 57 reported in the original paper. We

investigate the precision and value of TOGA generated assertions

further in RQ2 and RQ3.

RQ1 Findings: Out of the 57 bugs reported in the original

study, 5 were detected by exception oracles, 14 were detected by

explicit assertion oracles generated by TOGA, and 38 were due

to uncaught exceptions thrown by EvoSuite-generated prefixes

that can be detected by the run-time system (implicit oracle)

without requiring any TOGA-generated oracles.

3.2 RQ2 (Conceptual Replication of RQ2) )
In this research question, we investigate the ability of TOGA to

generate non-trivial and precise oracles on a large set of programs

and generated oracles.

3.2.1 New Artifacts

We study 25 large-scale open-source Java applications from GitHub

and Apache Commons Proper [43]. 8 of the artifacts comprise the of-

ficial EvoSuite benchmark [9] and 17 were selected from the Apache

Commons packages. We use the 8 EvoSuite artifacts because: (i)

they have several thousand stars and users (min: 3.3k and max:

9.8K) on GitHub attesting to their popularity and adoption among

developers, (ii) many researchers have studied them to evaluate

test adequacy metrics, fault-detection techniques and automated

test/oracle generation methods [29, 46, 62], and (iii) they have a

large code base with multiple modules and thereby better reflect

real-world software complexity. For our study, we use the latest

stable release of these artifacts as of Sep 30th, 2022.The Apache

Commons are popular Java utility packages, frequently used in soft-

ware engineering empirical studies [29, 46, 62] and have actively

maintained large-scale code bases and test suites. Of the 43 Apache

Commons packages, 22 are Java 8 compatible, a prerequisite for

the latest EvoSuite. EvoSuite was unable to generate tests for 5 of

those, leaving 17 packages for our study. . We use OpenJDK 8 to run

EvoSuite, Maven (3.6.3) to build Java classes, JUnit (4.12) to execute

test suites, and TOGA replication package [16] to generate oracles.

3.2.2 New Procedure

TOGA input prefixes require following a specific pattern with ex-

actly one assertion at the end, and the variable under test is ex-

tracted from that assertion. EvoSuite’s test format allows TOGA

to easily parse and decompose large tests into multiple single as-

sertion tests. Due to this reason, we also generate EvoSuite tests

instead of suing the developer written tests.

Generating Ground Truth.We need to generate the ground truth

to determine whether a test oracle generated by TOGA is a false

positive. To this end, for all artifacts, we download the latest stable

releases (shown in Table 2) with no known faults, meaning that the

programs’ implementations are correct. EvoSuite is a regression-

based technique that assumes the implementation of the program

under test as correct and generates test oracles based on the exe-

cuted behavior. Therefore, we considered the EvoSuite-generated

tests as the ground truth to detect the false positive oracles gener-

ated by TOGA – this is the approach taken in the original TOGA

study. We allocate six minutes per class for test generation as rec-

ommended by the authors of EvoSuite [20]. In a large-scale study,

EvoSuite developers and other researchers [49], found that EvoSuite

occasionally generates non-compiling (4%) and flaky (3.4%) tests,

however, no false positives are generated by EvoSuite. We also find

the same and following the same recommendations from [49], we

detect and remove non-compiling and flaky tests and report the

total test cases per artifact in Table 2.

Listing 2: False Positive Assertion

public void test1 () throws Throwable {

Locale locale0 = new Locale("TZea6h)b", "LE$&{r\f+E=b+Uz}rR",

"TZea6h)b");

Locale locale1 = Locale.KOREAN;

List <Locale > list0 = LocaleUtils.localeLookupList(locale0 ,

locale1);

assertEquals (4, list0.size()); /* EvoSuite Assertion */

/// AssertionError: expected:<1> but was:<4>*

assertEquals (1,list0.size());/// false positive assertion by TOGA

}

Listing 3: Type Incorrect Assertion

public void test1 () throws Throwable {

MutableLong mutableLong0 = new MutableLong ();

MutableLong mutableLong1 = new MutableLong ();

mutableLong1.incrementAndGet ();

boolean boolean0 = mutableLong0.equals(mutableLong1);

assertEquals (( short)1, mutableLong1.shortValue ()); /* EvoSuite

Assertion */

/// incompatible types: short cannot be converted to boolean

assertTrue(mutableLong1.shortValue ()); /// TOGA assertion with

type error"

}

Generating TOGA Oracles. Following a similar procedure as

TOGA, we split test cases with multiple assertions into multiple

test cases with a single assertion and a test prefix that computes the

variable checked in the assertion. We compile and execute these test

cases to confirm that all decomposed tests successfully compile and

pass, resulting in 223,557 test cases with either an assertion oracle

or an exception oracle. Finally, we construct inputs for TOGA (focus

method, test prefix, doc-string) and generate oracle predictions. We

construct TOGA generated test cases with EvoSuite test prefixes

and TOGA-generated oracles and execute the test cases to count

the false positives. We categorize the input test prefixes based on

the type of oracle expected (assertion or exception) and present our

findings in Table 3.

3.2.3 Results

In Table 3, the first column shows the artifact name, and the second

column shows the total test input prefixes processed by TOGA.

Columns 3-7 represent TOGA prediction results when the ground

125



Neural-Based Test Oracle Generation: A Large-Scale Evaluation and Lessons Learned ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 2: Overview of Artifact Descriptions and Associated Metrics: SLOC, JavaDoc, and Test Size.

Artifact (version) Description
Program

Size (SLOC)
JavaDoc (L)

Test Size
(SLOC)

Test
Case(#)

JSON(20220924) JSON library for Java 4,220 3,549 27,351 883

async-http-client(2.12.3) Asynchronous HTTP library 16,299 3,288 69,889 1,534

bcel(6.5.0) Bytecode Engineering Library 35,571 15,569 263,796 7,073

commons-beanutils(1.9.4) Reflection and Introspection API 11,725 15,074 29,939 1,654

commons-collections4(4.4) Utilities for Java Collections Framework 6,697 6,532 2,149 576

commons-configuration2(2.8.0) Utilities for reading configuration files 4,553 4,882 2,858 1,764

commons-dbutils(1.7) Java utility for JDBC development 3,079 4,158 10,144 479

commons-geometry (1.0) Geometric types and utilities 14,168 12,195 48,862 4,274

commons-imaging (1.0-alpha3) Java image library 32,275 5,003 103,120 4,997

commons-jcs3(3.1) Caching system 14,328 6,045 33,542 705

commons-jexl3(3.2.1) Scripting utilities for Java application 2,295 2,267 5,613 3,819

commons-lang3(3.12.0) Java helper utilities 5,321 6,671 8,131 5,816

commons-net(3.8.0) Network utilities/protocol implementations 19,407 16,574 42,841 2,701

commons-numbers(1.0) Java utility for number types 5,502 5,566 56,339 1,270

commons-pool2(2.11.1) Object Pooling Library 1,197 1,335 2,688 749

commons-rng(1.4) Pseudo-random generators 9,654 161,553 16,241 1,359

commons-validator(1.7) Client and server side data validation 7,829 7,338 22,352 1,737

commons-vfs(2.9.0) Virtual File System library 7,751 4,966 13,890 1,181

commons-weaver(2.0) Utility to enhance compiled Java classes 4,527 1,546 14,462 310

http-request(6.0) Library for making HTTP requests 1,395 1,511 10,450 208

joda-time(2.11.2) Date and time library 32,312 31,127 156,345 7,111

jsoup(1.15.3) Java library for HTML 13,905 4,627 186,371 2,974

scribejava(8.3.1) OAuth library 2,173 1,303 14,094 1,019

spark(2.9.3) Framework for creating web applications 6,124 4,361 39,273 1,429

springside4(5.0.0-SNAPSHOT) JavaEE application reference architecture 9,336 4,387 33,357 2,246

Total: 271,643 331,427 1,214,097 57,868

truth is “assertion oracle”, meaning that TOGA should predict “no

exception” and generate an assertion oracle for that test prefix.

Columns 8-9 present results when the ground truth is “exception

oracle”, meaning that TOGA should predict that the test prefix

throws an exception. In total, we evaluate TOGA on 223,557 pre-

fixes; ideally, TOGA should generate an assertion oracle for 202,475

of the prefixes, and predict an exception oracle for the remaining

21,082 prefixes.

The first step for TOGA is to predict whether the execution of

a test prefix should throw an exception or not. Our study shows

that 18.3% (column 4) of the assertion prefixes are misclassified

and 81.7% test prefixes are correctly classified by TOGA for a total

misclassification rate of 24.1%. For 62% of the assertion test prefixes,

TOGA could not generate an assertion oracle (column 5) and for

38%, an assertion was generated (column 6). Out of the 62k test

prefixes on which TOGA generated an assertion, 47.5% (column 7)

of them were false positive – assertions that failed when combined

with the test prefix and run on the original program. The false

positive rate for TOGA generated assertions was as high as 73%

– for the Apache commons-numbers package. Listing 2 shows an

common example of a false positive assertion generated by TOGA

involving an assertEquals with an incorrect value predicted. We

also encountered assertions that do not compile due to “incompati-

ble types" errors because TOGA generated type incorrect assertions,

an example of which is shown in Listing 3. While this latter class

of incorrect assertion is easier to filter out, it only represented 563

of the more than 29K false positive assertions in the study.

In Table 4, we show the total number of each type of asser-

tions generated by TOGA and the corresponding false positive rate.

The highest false positive rate is generated for assertEquals. We

conjecture that TOGA struggles to generate this type of assertion

because it requires a second value, the expected value, to compare

with the variable being checked. TOGA collects the most frequently

appearing constants and variables from the test prefix and during

the training of the model, which appears to not be an effective

strategy based on the high false positive rates. TOGA uses the val-

ues 0 and 1 very frequently resulting in false positives like those

shown in Figure 1, Table 1, and Listing 2. The second highest false

positive rate is for assertTrue oracles. The lowest false positive

is achieved for assertNotNull, however, this type of oracle has

limited fault detection power [62]. TOGA did not generate any

assertNull assertions in our experiments.

For exception oracle prediction, TOGA’s misclassification rate

is 81% on average and it has reached as high as 94% for some

artifacts. Exception oracles are essential in testing to ensure that

an exception should be thrown when test inputs trigger defensive

programming, such as the checking of preconditions at runtime.

For example, when a pop operation is performed on an empty stack,

an EmptyStackException should be thrown.

The high rates of misclassification and false positive assertions

found in this study suggest that use of TOGA is impractical for use

on real-world software at present.

126



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Soneya Binta Hossain, Antonio Filieri, Ma�hew B. Dwyer, Sebastian Elbaum, and Willem Visser

Table 3: Breakdown of TOGA’s Test Oracle Generation Performance (AO: Assertion Oracle, EO: Exception Oracle)

Artifact
Total
Test

Prefix (#)

Ground Truth: AO Ground Truth: EO

Correctly Classified

Total
Assertion
Prefix (#)

Mis-
Classified (%)

No
Assertion

Predicted (%)

Assertion Predicted

Total (%)
False

Positive (%)

Total
Exception
Prefix (#)

Mis-
Classified (%)

JSON-java 13,995 13,794 13% 49% 38% 51% 201 82%

commons-configuration2 1,519 1,000 14% 40% 46% 44% 519 71%

spark 6,194 5,637 35% 57% 9% 39% 557 78%

commons-geometry 5,516 4,244 3% 64% 33% 56% 1,272 89%

http-request 7,074 7,052 33% 50% 17% 18% 22 50%

commons-collections4 1,589 1,338 8% 41% 51% 31% 251 66%

springside4 4,814 3,858 9% 58% 33% 44% 956 78%

commons-rng 1,804 1,352 22% 63% 14% 65% 452 70%

commons-vfs 1,423 997 6% 46% 48% 49% 426 74%

commons-numbers 41,412 41,163 36% 61% 4% 73% 249 47%

commons-lang3 14,918 13,455 9% 59% 32% 38% 1,463 71%

commons-pool2 12,134 11,961 36% 37% 27% 54% 173 67%

commons-beanutils 1,780 1,036 9% 47% 44% 50% 744 69%

commons-validator 2,659 2,261 4% 39% 57% 48% 398 83%

jsoup 22,721 21,844 1% 36% 63% 44% 877 88%

commons-weaver 284 187 11% 50% 39% 42% 97 77%

commons-net 3,865 2,462 3% 34% 63% 54% 1,403 86%

async-http-client 2,500 2,008 2% 48% 50% 37% 492 94%

commons-jexl3 4,275 3,219 5% 37% 58% 62% 1,056 76%

commons-jcs3 5,860 4,861 3% 37% 59% 56% 999 84%

commons-dbutils 818 635 2% 42% 56% 38% 183 93%

bcel 24,049 20,657 5% 60% 35% 47% 3,392 83%

commons-imaging 10,731 8,397 5% 64% 31% 58% 2,334 88%

joda-time 30,527 28,408 25% 43% 32% 46% 2,119 84%

scribejava 1,096 649 5% 26% 69% 28% 447 81%

Total (average %): 223,557 202,475 36,949 (18.3%) 102,606 (62%) 62,920 (38%) 29,883 (47.5%) 21,082 17,149 (81%)

Table 4: Assertion Oracles by TOGA and Their Associated

False Positive Rates.

Assertion Type Total False Positive

assertTrue 17,025 9,543 (56%)

assertFalse 5,375 1,864 (34.7%)

assertNull 0 0 (0%)

assertNotNull 18,785 1,854 (9.9%)

assertEquals 21,735 16,059 (74%)

Total: 62,920 29,320 (47%)

RQ2 Findings: TOGA misclassifies the type of oracle required

for a test prefix 24% of the time. When it correctly predicts that

an assertion is required, 62% of the time it fails to generate an

assertion and when it does generate an assertion, nearly half

of those, 47%, are false positive.

3.3 RQ3 (Conceptual Replication of RQ3) )
Assertion oracles play a critical role in detecting functional bugs

caused by incorrect implementations and are highly correlated with

the fault-detection effectiveness of a test suite [46, 62]. Due to their

importance, this research question investigates the fault-detection

effectiveness of TOGA-generated assertions relative to EvoSuite.

We address several limitations of the TOGA Defects4j study

(RQ3) ) and carefully control our experimental setup to ensure a

fair comparison with EvoSuite. First, RQ3) only considered bug-

reaching EvoSuite test prefixes, which limited TOGA’s ability to

detect bugs outside those prefixes. Our study considers all prefixes

allowing TOGA to exploit its potential to detect faults that EvoSuite,

despite having the capability to reach them, fails to detect with

its own assertions. Second, we explicitly control for the faults that

are detected by Java implicit oracle and solely focus on the faults

detected by test assertions.

To ensure a fair comparison, we take several measures. For both

EvoSuite and TOGA, we only consider the test cases on which

TOGA generated non-empty and correct assertion oracles during our

RQ2 experiment. This set of assertion oracles represents a variant

of the ground-truth assertion oracles generated by EvoSuite, as

they share the same test prefixes, test the same variables, and pass

successfully on the program version from which they have been

generated, thereby mirroring the current program behavior much

like EvoSuite. Therefore, EvoSuite and TOGA both have the exact

same set of prefixes, and an equal number of test assertions. The

difference between the test suites are the types and strength of the

assertions.

127



Neural-Based Test Oracle Generation: A Large-Scale Evaluation and Lessons Learned ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

EvoSuite prefix:

public void test22 () throws Throwable {

Character character0 = Character.valueOf('8');

char char0 = CharUtils.toChar(character0 , '(');}

EvoSuite prefix + EvoSuite assertion:

public void test22 () throws Throwable {

Character character0 = Character.valueOf('8');

char char0 = CharUtils.toChar(character0 , '(');

assertEquals('8', char0);}

EvoSuite prefix + TOGA assertion:

public void test22 () throws Throwable {

Character character0 = Character.valueOf('8');

char char0 = CharUtils.toChar(character0 , '(');

assertNotNull(char0);}

Figure 3: Test cases across suites: same prefixes, different

oracles.

3.3.1 New Artifacts

This research question includes all 25 artifacts studied in RQ2. We

generate variations of each program using mutation testing, which

injects minor code modifications (mutations), e.g., altering con-

ditional predicates and arithmetic operators, to deviate from the

intended behavior of the original program. A modified program

is called a mutant, and a mutant is killed if any test fails when

running on it, thus detecting the change. A limitation of the TOGA

Defects4J study is that tests are generated on fixed program ver-

sions – where the bugs the test oracles aim to detect have been

fixed – and then those test prefix+TOGA-generated oracles are

executed on the buggy versions to catch those same bugs. This

is unrealistic since fixed programs are not available when testing

buggy versions. Mutation testing offers an alternative that has been

shown to have a statistically significant correlation with real fault

detection [3, 30, 40], and is being increasingly used in industry [42].

This made it the method of choice in previous studies aimed at

measuring the fault detection effectiveness of test oracles [46, 62],

which is also the goal of this study. Including both real bugs (RQ1)

and mutants of large-scale applications (RQ3) provides a broader

perspective on the replication of TOGA and its evaluation method-

ology.

In our research, we use PIT, a state-of-the-art mutation testing

tool for the Java programs [13]. PIT is compatible with test frame-

works like JUnit and can be easily integrated into development

environments [14]. Furthermore, several studies suggested that PIT

is more effective than many other existing mutation testing tools

in assisting the generation of strong tests, meaningful mutants,

and a lower number of equivalent mutants [31, 33, 44]. We use

the latest maven plugin for PIT-1.9.8 and, as recommended by the

developer of the tool, we only used strong mutators (the rest of

the PIT parameters are set to their default values).

3.3.2 New Procedure

To evaluate fault detection effectiveness while controlling for the

number of assertions generated across techniques, we exclude all

test prefixes for which TOGA did not generate any assertion oracles,

generated a false positive assertion, or test prefixes with exception

oracles. Then, for each artifact, we generate three different versions

of test suites – TS1, TS2, and TS3 – of the same size containing those

same set of prefixes, but with different assertion oracles. (Figure 3

shows a sample test from each suite.)

• TS1 (EvoSuite prefix only):

each test case contains an EvoSuite-generated test prefix detect-

ing faults through implicit oracles, e.g., uncaught exception.

• TS2 (EvoSuite prefix + EvoSuite assertion): each test case contains

an EvoSuite-generated test prefix and a single EvoSuite-generated

assertion oracle for the prefix.

• TS3 (EvoSuite prefix + TOGA assertion): each test case contains

an EvoSuite-generated test prefix and a single TOGA-generated

assertion oracle for the prefix.

First, we run the test prefixes from TS1 on the set of buggy programs

(mutants) to catch bugs without any explicit assertions. Second, we

run the tests from TS2 to record how many additional bugs can

be detected by EvoSuite assertions. Third, we run TS3 to detect

more faults using TOGA-generated assertions. This would allow

us to evaluate the added value of TOGA assertions over EvoSuite.

Notably, since EvoSuite’s tests are part of TOGA’s input, it is far to

assume they are available at no extra cost whenever TOGA is used.

3.3.3 Results

Table 5 reports the data for the study. For each artifact (column 1)

it provides the number of tests (column 2), number of generated

mutants executed by at least one test (column 3), and the number of

mutants detected by the different test suites: by implicit checks in

the runtime system (column 4), by EvoSuite assertions (excluding

those already detected by implicit checks, i.e., before reaching the

assertion) (column 5), and by TOGA assertions (again, excluding

those detected by implicit checks) (column 7). We break out the data

for EvoSuite and TOGA, to report the mutants uniquely detected by

EvoSuite assertions (column 6), and the mutants uniquely detected

by TOGA assertions (column 8).

As shown in Table 5, we have generated more than 51,000 faulty

programs using mutation testing, with 20,597 of those detected

without any explicit assertion oracles. We use TS1 to detect those

mutants. When adding EvoSuite-generated assertions to pair with

the EvoSuite test prefixes (TS2), an additional 9,814 mutants were

detected including 3,026 unique ones not detected by TOGA asser-

tions. TS3, EvoSuite prefixes with TOGA assertions detected 6,893

mutants, with 105 being distinct from the ones found by TS2.

Listing 4: Fault detected by EvoSuite assertion and missed by

TOGA

private HttpURLConnection createConnection () {

try {

final HttpURLConnection connection;

if (httpProxyHost != null)

connection = CONNECTION_FACTORY.create(url , createProxy ());

else

connection = CONNECTION_FACTORY.create(url);

connection.setRequestMethod(requestMethod); /// fault: method

call removed

return connection;

} catch (IOException e) {

throw new HttpRequestException(e);}

}

public void test1280 () throws Throwable {

URL uRL0 = MockURL.getHttpExample ();

HttpRequest httpRequest0 = HttpRequest.options(uRL0);

String string0 = HttpRequest.CONTENT_TYPE_FORM;

HttpURLConnection htCon = httpRequest0.getConnection ();

assertEquals("OPTIONS", htCon.getRequestMethod ());/* Fault

Detected By EvoSuite Assertion */

assertNotNull(htCon.getRequestMethod ());}/// Fault Missed by TOGA

Assertion

128



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Soneya Binta Hossain, Antonio Filieri, Ma�hew B. Dwyer, Sebastian Elbaum, and Willem Visser

Table 5: Fault-Detection Performance of EvoSuite vs. TOGA Assertions.

Artifact Tests (#)
Generated
Mutants (#)

Mutant Detected by

Implicit
Oracle (#)

EvoSuite
Assertion (#)

EvoSuite
Unique (#)

TOGA
Assertion (#)

TOGA
Unique (#)

async-http-client 635 1,366 337 398 169 229 0

bcel 3,911 5,142 2,203 618 241 377 0

commons-beanutils 227 1,437 363 434 223 212 1

commons-collections4 512 425 248 35 0 44 9

commons-configuration2 225 1,906 854 276 27 249 0

commons-dbutils 222 295 52 58 1 59 2

commons-geometry 688 3,158 1,407 611 99 512 0

commons-imaging 1,088 3,551 1,073 676 257 420 1

commons-jcs3 1,251 1,861 407 374 145 229 0

commons-jexl3 1,191 3,988 2,509 522 71 451 0

commons-lang3 2,707 5,325 1,581 1,508 661 847 0

commons-net 667 1,847 382 500 158 344 2

commons-numbers 514 757 166 181 30 152 1

commons-pool2 1,531 859 492 140 9 136 5

commons-rng 68 1,133 384 114 0 114 0

commons-validator 666 1,722 452 462 27 436 1

commons-vfs 349 1,317 590 243 36 208 1

commons-weaver 33 199 39 53 23 30 0

http-request 959 238 76 20 3 17 0

joda-time 4,836 6,702 3,582 957 355 652 50

JSON-java 2,629 1,088 303 185 69 119 3

jsoup 7,910 4,110 2,393 640 172 497 29

scribejava 322 690 197 159 73 86 0

spark 301 983 232 267 80 187 0

springside4 936 1,286 275 383 97 286 0

Total: 34,378 51,385 20,597 9,814 3,026 6,893 105

TOGA uses EvoSuite prefixes and assertions to generate its own

assertions. Our study indicates that those assertions are less effec-

tive than those in EvoSuite. Even with the same set of prefixes, and

the same number of assertions as EvoSuite, TOGA detected nearly

3,000 (30%) fewer mutants than EvoSuite. Out of 25 artifacts, TOGA

did slightly better for only two artifacts: commons-collections4

and commons-dbutils. For commons-rng, EvoSuite and TOGA de-

tected same mutants. For the remaining 22, EvoSuite detected more

mutants, indicating EvoSuite assertions are stronger than TOGA.

In summary, starting from the set of prefixes on which TOGA

providedmeaningful assertions (non-empty and not-false positives),

out of the 51,385 generated mutants, EvoSuite assertions killed

30,411 (59%) while TOGA-generated assertions killed 105 additional

mutants (0.3%).

RQ3 Finding: Despite having the same number of test cases

with the same set of prefixes and exactly the same number of

assertions, TOGA detected 30% less faults and 96% less unique

faults than EvoSuite assertions. 105 mutants (0.3% of the total)

were killed exclusively by TOGA.

Additional observations. To better understand when TOGA may

struggle or excel, we perform a deeper examination of the cases in

which the generated assertions are the same or differ.

As TOGA uses EvoSuite assertions to extract the variable to

assert on, for a given test prefix, there is no difference between the

assertTrue and assertFalse oracles generated by EvoSuite and

TOGA. In this study, 33% of the total assertions are of assertTrue

and assertFalse type for both EvoSuite and TOGA.

When the asserted variable is of type object or primitive types

(int, float, double, long), we have already seen that TOGA strug-

gles to generate effective assertEquals oracles as they require a

precise expected value. In this study, we find that 17% of TOGA

assertions are assertEquals and 50% are assertNotNull, while

the distribution for EvoSuite is 57% of assertEquals and 10% are

assertNotNull oracles. This shift in distribution has implications

as assertEquals predicates are stronger than assertNotNull.

Listing 4 exemplifies this difference for the http-request arti-

fact, where PIT removes the setRequestMethod method call. Evo-

Suite generated an assertEquals oracle that compares the return

value of setRequestMethod with the expected output and is able

to kill the mutant. TOGA generated an assertNotNull oracle that

only checks whether the value is not null and thus is not able to

kill the mutant.

We found a common pattern among the TOGA assertions that

revealed unique mutants: they are able to leverage the local con-

stants in the test prefix to generate oracles. Listing 5 provides an

example for the commons-pool2 artifact, which has a method’s re-

turn value of type Integer object mutated. EvoSuite generates an

assertion that only checks the not null condition. Whereas, using

the local constants in the test prefix (integer0), TOGA generates

an assertEquals oracle that compares two objects, thus killing

129



Neural-Based Test Oracle Generation: A Large-Scale Evaluation and Lessons Learned ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

the mutant. However, this feature is also one the main sources for

the high percentage of false positives as shown in Table 4 where

73% of the generated assertEquals oracles are false positive.

Listing 5: Fault detected by TOGA assertion and missed by

EvoSuite

public Integer getFetchDirection () {

return fetchDirection; /// Fault: return value modified

}

public void test58 () throws Throwable {

StatementConfiguration.Builder scb = new

StatementConfiguration.Builder ();

Integer int0 = new Integer (( -587));

scb.fetchDirection(integer0);

StatementConfiguration sc0 = scb.build ();

Integer int1 = sc0.getFetchDirection ();

assertNotNull(int0);/// Fault Missed By EvoSuite Assertion

assertEquals(int0 , int1); /* Fault Detected By TOGA Assertion */

}

3.4 Threats to Validity
Our replication for RQ1 suffers from the same external threats to va-

lidity of the original paper, and somewhat reduced internal threats

given that we were able to successfully run the original tools and

scripts with assistance from TOGA’s authors. The first replication

does, however, address what may be considered a construct valid-

ity threat in the original paper in that the intended concept to be

measured, the value-added by TOGA, does not account for what a

baseline technique can already find.

To mitigate the threats to external validity of the original pa-

per, we extended it through our replication with 25 open-source

Java applications from various domains and organizations. These

applications vary in program and test suite size, number of test

cases with assertions and exception oracles, and the size of their

Javadoc. Introducing these applications may have shifted the input

distribution expected by TOGA, although it seems unlikely given

the powerful CodeBERT model it uses. We also address the lim-

ited number of faults available in the original paper by generating

a large number of mutants as proxy for real bugs. A threat that

remains is the generalization of the study to test suites generated

through other tools beyond EvoSuite, a limitation inherited by the

current implementation of TOGA but not intrinsic of the method.

In addition to the original replication package, we have imple-

mented several tools and scripts to conduct our experiments, which

may have bugs. To run test suites, we have used JUnit, and to

generate mutants, we have used PIT. Even though these tools are

well-established and have been used in numerous studies, they may

have unknown bugs. To mitigate the threats, we have performed

extensive sanity tests and run each experiment multiple times to

make sure that we get consistent results, besides making all data

and code available at [23] for anyone to review.

3.5 Lessons Learned
Besides shining a new light on the specific performance of TOGA,

this study will hopefully inform future evaluation methodologies

for similar oracle inference approaches. In particular, besides con-

tributing a large dataset for future evaluations of such techniques,

we summarize below three actionable lessons learned.

1) JUnit implicit oracle detected over 50% of both real and injected

bugs. The ability of detecting unexpected exceptional behaviors

via the sole execution of the test prefixes that emerged from our

experiments is also consistent with previous studies [17, 26, 46].

Therefore, in a realistic evaluation setting, one should use these

implicit, i.e., “No Exception” oracles as the baseline and report the

fault-detection effectiveness improvement relative to the implicit

oracle. (RQ1)

2) The precision of the generated oracles should be a central evalu-

ation metric for a realistic assessment of oracle generation methods.

Imprecise oracles will require developers to diagnose and repair

failing tests due to false positive assertions. Recall should be always

evaluated together with precision. (RQ2)

3) Using test prefixes generated from fixed programs to catch bugs

in the buggy versions may inappropriately bias findings. In such

cases, just executing the test prefixes generated from the fixed ver-

sions on the buggy versions is often sufficient to detect many bugs.

More systematic evaluation approaches, such as mutation testing,

that more closely reflect how a developer can practically assess a

test suite in the real world should be included in the evaluation of

automated test generation methods. (RQ3)

4 CONCLUSIONS
In this paper, we replicated with a different and broader experimen-

tal protocol TOGA [17], a recent neural-based oracle generation

method. Our study aimed at 1) investigating more closely the added

bug detection value of TOGA-generated oracles, 2) evaluating the

precision of TOGA in terms of false positive bug reports from its

oracle, and 3) evaluating the defect prediction recall using muta-

tion testing methods. For our first objective, we obtained results

consistent with the original study: TOGA detected the same 57

bugs. However, upon deeper investigation, only 19 detections are

imputable to TOGA’s exception or assertion oracles, while for the

other 38 the sole execution of the test prefix – generated by Evo-

Suite – threw exceptions making the test fail. The second and

third objectives involved a broader set of subjects. While TOGA

generated assertions only for half of the test prefixes, 47% of the

assertions produced false positive reports, besides misclassifying

whether an exception or an assertion oracle was needed for an av-

erage of 24% of the test prefixes. Finally, we differentially compared

the mutation killings counts of JUnit failures due to unexpected

exceptions, EvoSuite assertions, and TOGA assertions, observing

that out of the 51,385 mutants, only 105 were killed exclusively by

TOGA assertions.

Overall, while TOGA’s innovative approach will likely bear fruit-

ful future research directions, our study suggests the need for deeper

investigation of the reasons behind findings produced by learning-

based methods, and a challenge for the research community to

develop techniques for reducing their currently too high false posi-

tive rate to enable industrial adoption.

ACKNOWLEDGEMENTS
This material is based in part upon work supported by the DARPA

ARCOS program under contract FA8750-20-C-0507, by The Air

Force Office of Scientific Research under award number FA9550-21-

0164, and by Lockheed Martin Advanced Technology Laboratories.

We are thankful to Gabriel Ryan for assisting in running the

TOGA replication package.

130



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Soneya Binta Hossain, Antonio Filieri, Ma�hew B. Dwyer, Sebastian Elbaum, and Willem Visser

REFERENCES
[1] Shaukat Ali, Lionel C Briand, Hadi Hemmati, and Rajwinder Kaur Panesar-

Walawege. 2009. A systematic review of the application and empirical inves-
tigation of search-based test case generation. IEEE Transactions on Software
Engineering 36, 6 (2009), 742–762. https://doi.org/10.1109/TSE.2009.52

[2] M Moein Almasi, Hadi Hemmati, Gordon Fraser, Andrea Arcuri, and Janis Bene-
felds. 2017. An industrial evaluation of unit test generation: Finding real faults
in a financial application. In 2017 IEEE/ACM 39th International Conference on
Software Engineering: Software Engineering in Practice Track (ICSE-SEIP). IEEE,
263–272. https://doi.org/10.1109/ICSE-SEIP.2017.27

[3] J.H. Andrews, L.C. Briand, and Y. Labiche. 2005. Is mutation an appropriate tool
for testing experiments? [software testing]. In Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE 2005. 402–411. https://doi.org/10.
1109/ICSE.2005.1553583

[4] Earl T. Barr, Mark Harman, Phil McMinn, Muzammil Shahbaz, and Shin Yoo. 2015.
The Oracle Problem in Software Testing: A Survey. IEEE Transactions on Software
Engineering 41, 5 (2015), 507–525. https://doi.org/10.1109/TSE.2014.2372785

[5] Moritz Beller, Chu-PanWong, Johannes Bader, Andrew Scott, Mateusz Machalica,
Satish Chandra, and Erik Meijer. 2021. What it would take to use mutation testing
in industry—a study at facebook. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering: Software Engineering in Practice (ICSE-SEIP). IEEE, 268–
277. https://doi.org/10.1109/ICSE-SEIP52600.2021.00036

[6] Arianna Blasi, Alberto Goffi, Konstantin Kuznetsov, Alessandra Gorla, Michael D.
Ernst, Mauro Pezzè, and Sergio Delgado Castellanos. 2018. Translating Code
Comments to Procedure Specifications. In Proceedings of the 27th ACM SIGSOFT
International Symposium on Software Testing and Analysis (Amsterdam, Nether-
lands) (ISSTA 2018). Association for Computing Machinery, New York, NY, USA,
242–253. https://doi.org/10.1145/3213846.3213872

[7] Arianna Blasi, Alessandra Gorla, Michael D Ernst, Mauro Pezzè, and Antonio
Carzaniga. 2021. MeMo: Automatically identifying metamorphic relations in
Javadoc comments for test automation. Journal of Systems and Software 181
(2021), 111041. https://doi.org/10.1016/j.jss.2021.111041

[8] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security. 2329–2344. https://doi.org/10.1145/
3133956.3134020

[9] José Campos, Andrea Arcuri, Gordon Fraser, and Rui Abreu. 2014. Continuous
Test Generation: Enhancing Continuous Integration with Automated Test Gener-
ation. In Proceedings of the 29th ACM/IEEE International Conference on Automated
Software Engineering (Vasteras, Sweden) (ASE ’14). Association for Computing
Machinery, New York, NY, USA, 55–66. https://doi.org/10.1145/2642937.2643002

[10] Chen Chen, Baojiang Cui, Jinxin Ma, Runpu Wu, Jianchao Guo, and Wenqian
Liu. 2018. A systematic review of fuzzing techniques. Computers & Security 75
(2018), 118–137. https://doi.org/10.1016/j.cose.2018.02.002

[11] John Joseph Chilenski and Steven P Miller. 1994. Applicability of modified
condition/decision coverage to software testing. Software Engineering Journal 9,
5 (1994), 193–200. https://doi.org/10.1049/sej.1994.0025

[12] Maria Christakis and Christian Bird. 2016. What developers want and need
from program analysis: an empirical study. In Proceedings of the 31st IEEE/ACM
international conference on automated software engineering. 332–343. https:
//doi.org/10.1145/2970276.2970347

[13] Henry Coles, Thomas Laurent, Christopher Henard, Mike Papadakis, and An-
thony Ventresque. 2016. Pit: a practical mutation testing tool for java. In Proceed-
ings of the 25th international symposium on software testing and analysis. 449–452.
https://doi.org/10.1145/2931037.2948707

[14] Mickaël Delahaye and Lydie du Bousquet. 2013. A Comparison of Mutation
Analysis Tools for Java. In 2013 13th International Conference on Quality Software.
187–195. https://doi.org/10.1109/QSIC.2013.47

[15] Xavier Devroey, Sebastiano Panichella, and Alessio Gambi. 2020. Java unit
testing tool competition: Eighth round. In Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops. 545–548. https:
//doi.org/10.1145/3387940.3392265

[16] Elizabeth Dinella, Gabriel Ryan, Shuvendu K. Lahiri, and Todd Mytkowicz. 2022.
Replication Artifact for TOGA: A Neural Method for Test Oracle Generation. https:
//doi.org/10.5281/zenodo.6210589

[17] Elizabeth Dinella, Gabriel Ryan, Todd Mytkowicz, and Shuvendu K. Lahiri. 2022.
TOGA: A Neural Method for Test Oracle Generation. In Proceedings of the 44th
International Conference on Software Engineering (Pittsburgh, Pennsylvania) (ICSE
’22). Association for Computing Machinery, New York, NY, USA, 2130–2141.
https://doi.org/10.1145/3510003.3510141

[18] Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xiaocheng Feng, Ming Gong,
Linjun Shou, Bing Qin, Ting Liu, Daxin Jiang, et al. 2020. Codebert: A pre-trained
model for programming and natural languages. arXiv preprint arXiv:2002.08155
(2020).

[19] Gordon Fraser and Andrea Arcuri. 2011. Evosuite: automatic test suite generation
for object-oriented software. In Proceedings of the 19th ACM SIGSOFT symposium
and the 13th European conference on Foundations of software engineering. 416–419.

https://doi.org/10.1145/2025113.2025179
[20] Gordon Fraser and Andrea Arcuri. 2014. A large-scale evaluation of automated

unit test generation using evosuite. ACM Transactions on Software Engineering
and Methodology (TOSEM) 24, 2 (2014), 1–42. https://doi.org/10.1145/2685612

[21] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Directed
automated random testing. In Proceedings of the 2005 ACM SIGPLAN confer-
ence on Programming language design and implementation. 213–223. https:
//doi.org/10.1145/1064978.1065036

[22] Alberto Goffi, Alessandra Gorla, Michael D. Ernst, and Mauro Pezzè. 2016. Au-
tomatic Generation of Oracles for Exceptional Behaviors. In Proceedings of the
25th International Symposium on Software Testing and Analysis (Saarbrücken,
Germany) (ISSTA 2016). Association for Computing Machinery, New York, NY,
USA, 213–224. https://doi.org/10.1145/2931037.2931061

[23] Soneya Binta Hossain. 2023. Artifact: Neural-Based Test Oracle Generation: A
Large-scale Evaluation and Lessons Learned. (8 2023). https://doi.org/10.6084/
m9.figshare.21973091.v4

[24] Soneya Binta Hossain and Matthew B Dwyer. 2022. A Brief Survey on Oracle-
based Test Adequacy Metrics. arXiv preprint arXiv:2212.06118 (2022). https:
//doi.org/10.48550/arXiv.2212.06118

[25] Soneya Binta Hossain, Matthew B. Dwyer, Sebastian Elbaum, and Anh Nguyen-
Tuong. 2023. Measuring and Mitigating Gaps in Structural Testing. In 2023
IEEE/ACM 45th International Conference on Software Engineering (ICSE). 1712–
1723. https://doi.org/10.1109/ICSE48619.2023.00147

[26] Ali Reza Ibrahimzada, Yigit Varli, Dilara Tekinoglu, and Reyhaneh Jabbarvand.
2022. Perfect is the Enemy of Test Oracle. In Proceedings of the 30th ACM Joint
European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (Singapore, Singapore) (ESEC/FSE 2022). Association for
Computing Machinery, 70–81. https://doi.org/10.1145/3540250.3549086

[27] Gunel Jahangirova, David Clark, Mark Harman, and Paolo Tonella. 2016. Test
oracle assessment and improvement. In Proceedings of the 25th International
Symposium on Software Testing and Analysis. 247–258. https://doi.org/10.1145/
2931037.2931062

[28] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert Bowdidge.
2013. Why don’t software developers use static analysis tools to find bugs?. In
2013 35th International Conference on Software Engineering (ICSE). IEEE, 672–681.
https://doi.org/10.1109/ICSE.2013.6606613

[29] René Just, Darioush Jalali, and Michael D Ernst. 2014. Defects4J: A database of ex-
isting faults to enable controlled testing studies for Java programs. In Proceedings
of the 2014 International Symposium on Software Testing and Analysis. 437–440.
https://doi.org/10.1145/2610384.2628055

[30] René Just, Darioush Jalali, Laura Inozemtseva, Michael D. Ernst, Reid Holmes, and
Gordon Fraser. 2014. Are Mutants a Valid Substitute for Real Faults in Software
Testing?. In Proceedings of the 22nd ACM SIGSOFT International Symposium on
Foundations of Software Engineering (Hong Kong, China) (FSE 2014). Association
for Computing Machinery, New York, NY, USA, 654–665. https://doi.org/10.
1145/2635868.2635929

[31] Marinos Kintis, Mike Papadakis, Andreas Papadopoulos, Evangelos Valvis, Nicos
Malevris, and Yves Le Traon. 2018. How effective are mutation testing tools?
An empirical analysis of Java mutation testing tools with manual analysis and
real faults. Empirical Software Engineering 23, 4 (2018), 2426–2463. https:
//doi.org/10.1007/s10664-017-9582-5

[32] Kiran Lakhotia, Phil McMinn, andMarkHarman. 2010. An empirical investigation
into branch coverage for C programs using CUTE and AUSTIN. Journal of Systems
and Software 83, 12 (2010), 2379–2391. https://doi.org/10.1016/j.jss.2010.07.026

[33] Thomas Laurent, Mike Papadakis, Marinos Kintis, Christopher Henard, Yves Le
Traon, and Anthony Ventresque. 2017. Assessing and Improving the Mutation
Testing Practice of PIT. In 2017 IEEE International Conference on Software Testing,
Verification and Validation (ICST). 430–435. https://doi.org/10.1109/ICST.2017.47

[34] Valentin JM Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science, and engi-
neering of fuzzing: A survey. IEEE Transactions on Software Engineering 47, 11
(2019), 2312–2331. https://doi.org/10.1109/TSE.2019.2946563

[35] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated
testing for android applications. In Proceedings of the 25th international symposium
on software testing and analysis. 94–105. https://doi.org/10.1145/2931037.2931054

[36] William M McKeeman. 1998. Differential testing for software. Digital Technical
Journal 10, 1 (1998), 100–107.

[37] Glenford J Myers, Corey Sandler, and Tom Badgett. 2011. The art of software
testing. John Wiley & Sons.

[38] Rahul Pandita, Xusheng Xiao, Hao Zhong, Tao Xie, Stephen Oney, and Amit
Paradkar. 2012. Inferring method specifications from natural language API
descriptions. In 2012 34th International Conference on Software Engineering (ICSE).
815–825. https://doi.org/10.1109/ICSE.2012.6227137

[39] Sebastiano Panichella, Alessio Gambi, Fiorella Zampetti, and Vincenzo Riccio.
2021. Sbst tool competition 2021. In 2021 IEEE/ACM 14th International Workshop
on Search-Based Software Testing (SBST). IEEE, 20–27. https://doi.org/10.1109/
SBST52555.2021.00011

131

https://doi.org/10.1109/TSE.2009.52
https://doi.org/10.1109/ICSE-SEIP.2017.27
https://doi.org/10.1109/ICSE.2005.1553583
https://doi.org/10.1109/ICSE.2005.1553583
https://doi.org/10.1109/TSE.2014.2372785
https://doi.org/10.1109/ICSE-SEIP52600.2021.00036
https://doi.org/10.1145/3213846.3213872
https://doi.org/10.1016/j.jss.2021.111041
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/3133956.3134020
https://doi.org/10.1145/2642937.2643002
https://doi.org/10.1016/j.cose.2018.02.002
https://doi.org/10.1049/sej.1994.0025
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2970276.2970347
https://doi.org/10.1145/2931037.2948707
https://doi.org/10.1109/QSIC.2013.47
https://doi.org/10.1145/3387940.3392265
https://doi.org/10.1145/3387940.3392265
https://doi.org/10.5281/zenodo.6210589
https://doi.org/10.5281/zenodo.6210589
https://doi.org/10.1145/3510003.3510141
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2685612
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/1064978.1065036
https://doi.org/10.1145/2931037.2931061
https://doi.org/10.6084/m9.figshare.21973091.v4
https://doi.org/10.6084/m9.figshare.21973091.v4
https://doi.org/10.48550/arXiv.2212.06118
https://doi.org/10.48550/arXiv.2212.06118
https://doi.org/10.1109/ICSE48619.2023.00147
https://doi.org/10.1145/3540250.3549086
https://doi.org/10.1145/2931037.2931062
https://doi.org/10.1145/2931037.2931062
https://doi.org/10.1109/ICSE.2013.6606613
https://doi.org/10.1145/2610384.2628055
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1145/2635868.2635929
https://doi.org/10.1007/s10664-017-9582-5
https://doi.org/10.1007/s10664-017-9582-5
https://doi.org/10.1016/j.jss.2010.07.026
https://doi.org/10.1109/ICST.2017.47
https://doi.org/10.1109/TSE.2019.2946563
https://doi.org/10.1145/2931037.2931054
https://doi.org/10.1109/ICSE.2012.6227137
https://doi.org/10.1109/SBST52555.2021.00011
https://doi.org/10.1109/SBST52555.2021.00011


Neural-Based Test Oracle Generation: A Large-Scale Evaluation and Lessons Learned ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[40] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2021. Does
mutation testing improve testing practices?. In 2021 IEEE/ACM 43rd International
Conference on Software Engineering (ICSE). IEEE, 910–921. https://doi.org/10.
1109/ICSE43902.2021.00087

[41] Goran Petrovic, Marko Ivankovic, Gordon Fraser, and René Just. 2021. Practical
mutation testing at scale: A view from Google. IEEE Transactions on Software
Engineering (2021). https://doi.org/10.1109/TSE.2021.3107634

[42] Goran Petrović, Marko Ivanković, Gordon Fraser, and René Just. 2022. Practical
Mutation Testing at Scale: A view from Google. IEEE Transactions on Software
Engineering 48, 10 (2022), 3900–3912. https://doi.org/10.1109/TSE.2021.3107634

[43] Apache Commons Proper. 2022. Apache Commons Proper – A repository of
reusable Java components. https://commons.apache.org/components.html, Last
accessed on 2022-10-11.

[44] Shweta Rani, Bharti Suri, and Sunil Kumar Khatri. 2015. Experimental comparison
of automated mutation testing tools for java. In 2015 4th International Conference
on Reliability, Infocom Technologies and Optimization (ICRITO) (Trends and Future
Directions). 1–6. https://doi.org/10.1109/ICRITO.2015.7359265

[45] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, LiamMiller-Cushon, and Ciera
Jaspan. 2018. Lessons from building static analysis tools at google. Commun.
ACM 61, 4 (2018), 58–66. https://doi.org/10.1145/3188720

[46] David Schuler and Andreas Zeller. 2013. Checked coverage: an indicator for
oracle quality. Software testing, verification and reliability 23, 7 (2013), 531–551.
https://doi.org/10.1109/ICST.2011.32

[47] Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz-Cortés. 2016. A
Survey on Metamorphic Testing. IEEE Transactions on Software Engineering 42, 9
(2016), 805–824. https://doi.org/10.1109/TSE.2016.2532875

[48] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A concolic unit testing
engine for C. ACM SIGSOFT Software Engineering Notes 30, 5 (2005), 263–272.
https://doi.org/10.1145/1095430.1081750

[49] Sina Shamshiri, René Just, José Miguel Rojas, Gordon Fraser, Phil McMinn, and
Andrea Arcuri. 2015. Do Automatically Generated Unit Tests Find Real Faults?
An Empirical Study of Effectiveness and Challenges (T). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). 201–211. https:
//doi.org/10.1109/ASE.2015.86

[50] Kavir Shrestha and Matthew J. Rutherford. 2011. An Empirical Evaluation of
Assertions as Oracles. In 2011 Fourth IEEE International Conference on Software
Testing, Verification and Validation. 110–119. https://doi.org/10.1109/ICST.2011.50

[51] Matt Staats, Michael W Whalen, and Mats PE Heimdahl. 2011. Programs, tests,
and oracles: the foundations of testing revisited. In 2011 33rd international con-
ference on software engineering (ICSE). IEEE, 391–400. https://doi.org/10.1145/
1985793.1985847

[52] Shin Hwei Tan, Darko Marinov, Lin Tan, and Gary T. Leavens. 2012. @tComment:
Testing Javadoc Comments to Detect Comment-Code Inconsistencies. In 2012
IEEE Fifth International Conference on Software Testing, Verification and Validation.
260–269. https://doi.org/10.1109/ICST.2012.106

[53] Valerio Terragni, Gunel Jahangirova, Paolo Tonella, and Mauro Pezzè. 2020.
Evolutionary improvement of assertion oracles. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. 1178–1189. https://doi.org/10.1145/3368089.
3409758

[54] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, Shao Kun Deng, and Neel
Sundaresan. 2020. Unit test case generation with transformers and focal context.
arXiv preprint arXiv:2009.05617 (2020).

[55] Michele Tufano, Dawn Drain, Alexey Svyatkovskiy, and Neel Sundaresan. 2022.
Generating accurate assert statements for unit test cases using pretrained trans-
formers. In Proceedings of the 3rd ACM/IEEE International Conference on Automa-
tion of Software Test. 54–64. https://doi.org/10.1145/3524481.3527220

[56] Tássio Virgínio, Luana Almeida Martins, Larissa Rocha Soares, Railana Santana,
Heitor Costa, and Ivan Machado. 2020. An empirical study of automatically-
generated tests from the perspective of test smells. In Proceedings of the XXXIV
Brazilian Symposium on Software Engineering. 92–96. https://doi.org/10.1145/
3422392.3422412

[57] Jeffrey M. Voas. 1992. PIE: A dynamic failure-based technique. IEEE Transactions
on software Engineering 18, 8 (1992), 717. https://doi.org/10.1109/32.153381

[58] Cody Watson, Michele Tufano, Kevin Moran, Gabriele Bavota, and Denys Poshy-
vanyk. 2020. On learning meaningful assert statements for unit test cases. In
Proceedings of the ACM/IEEE 42nd International Conference on Software Engineer-
ing. 1398–1409. https://doi.org/10.1145/3377811.3380429

[59] Elaine J. Weyuker. 1988. The evaluation of program-based software test data
adequacy criteria. Commun. ACM 31, 6 (1988), 668–675. https://doi.org/10.1145/
62959.62963

[60] Michael Whalen, Gregory Gay, Dongjiang You, Mats P. E. Heimdahl, and Matt
Staats. 2013. Observable modified condition/decision coverage. In 2013 35th
International Conference on Software Engineering (ICSE). 102–111. https://doi.
org/10.1109/ICSE.2013.6606556

[61] Michal Zalewski. 2017. American fuzzy lop (AFL). URL: http://lcamtuf. coredump.
cx/afl (2017).

[62] Yucheng Zhang and Ali Mesbah. 2015. Assertions are strongly correlated with test
suite effectiveness. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering. 214–224. https://doi.org/10.1145/2786805.2786858

Received 2023-02-02; accepted 2023-07-27

132

https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/ICSE43902.2021.00087
https://doi.org/10.1109/TSE.2021.3107634
https://doi.org/10.1109/TSE.2021.3107634
https://commons.apache.org/components.html
https://doi.org/10.1109/ICRITO.2015.7359265
https://doi.org/10.1145/3188720
https://doi.org/10.1109/ICST.2011.32
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1145/1095430.1081750
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ASE.2015.86
https://doi.org/10.1109/ICST.2011.50
https://doi.org/10.1145/1985793.1985847
https://doi.org/10.1145/1985793.1985847
https://doi.org/10.1109/ICST.2012.106
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/3368089.3409758
https://doi.org/10.1145/3524481.3527220
https://doi.org/10.1145/3422392.3422412
https://doi.org/10.1145/3422392.3422412
https://doi.org/10.1109/32.153381
https://doi.org/10.1145/3377811.3380429
https://doi.org/10.1145/62959.62963
https://doi.org/10.1145/62959.62963
https://doi.org/10.1109/ICSE.2013.6606556
https://doi.org/10.1109/ICSE.2013.6606556
https://doi.org/10.1145/2786805.2786858

	Abstract
	1 Introduction
	2 TOGA
	2.1 Exception Oracle Classifier (EOC)
	2.2 Assertion Oracle Generator (AOG)
	2.3 Assertion Oracle Ranker (AOR)
	2.4 Sample Test Oracles Generated by TOGA
	2.5 TOGA Original Findings

	3 Experimental Study
	3.1 RQ1 (Exact Replication of RQ3T)
	3.2 RQ2 (Conceptual Replication of RQ2T)
	3.3 RQ3 (Conceptual Replication of RQ3T)
	3.4 Threats to Validity 
	3.5 Lessons Learned

	4 Conclusions
	References

