
“We Feel Like We’re Winging It:”
A Study on Navigating Open-Source Dependency Abandonment

Courtney Miller
courtneymiller@cmu.edu
Carnegie Mellon University

Pittsburgh, PA, USA

Christian Kästner
Carnegie Mellon University

Pittsburgh, PA, USA

Bogdan Vasilescu
vasilescu@cmu.edu

Carnegie Mellon University
Pittsburgh, PA, USA

ABSTRACT

While lots of research has explored how to preventmaintainers from

abandoning the open-source projects that serve as our digital infras-

tructure, there are very few insights on addressing abandonment

when it occurs. We argue open-source sustainability research must

expand its focus beyond trying to keep particular projects alive, to

also cover the sustainable use of open source by supporting users

when they face potential or actual abandonment. We interviewed 33

developers who have experienced open-source dependency aban-

donment. Often, they used multiple strategies to cope with aban-

donment, for example, �rst reaching out to the community to �nd

potential alternatives, then switching to a community-accepted

alternative if one exists. We found many developers felt they had

little to no support or guidance when facing abandonment, leaving

them to �gure out what to do through a trial-and-error process

on their own. Abandonment introduces cost for otherwise seem-

ingly free dependencies, but users can decide whether and how to

prepare for abandonment through a number of di�erent strategies,

such as dependency monitoring, building abstraction layers, and

community involvement. In many cases, community members can

invest in resources that help others facing the same abandoned

dependency, but often do not because of the many other competing

demands on their time – a form of the volunteer’s dilemma. We dis-

cuss cost reduction strategies and ideas to overcome this volunteer’s

dilemma. Our �ndings can be used directly by open-source users

seeking resources on dealing with dependency abandonment, or

by researchers to motivate future work supporting the sustainable

use of open source.

CCS CONCEPTS

• Software and its engineering→Maintaining software;Open

source model; Software evolution.

KEYWORDS

Open Source Sustainability, Dependency Management, Human Fac-

tors in Software Engineering

ACM Reference Format:

Courtney Miller, Christian Kästner, and Bogdan Vasilescu. 2023. “We Feel

Like We’re Winging It:” A Study on Navigating Open-Source Dependency

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616293

Abandonment. In Proceedings of the 31st ACM Joint European Software Engi-

neering Conference and Symposium on the Foundations of Software Engineer-

ing (ESEC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New

York, NY, USA, 13 pages. https://doi.org/10.1145/3611643.3616293

Dependency

Identified

as Abandoned

Dependency

Becomes

Abandoned

Dependency

Adoption
Response to

Abandonment

time

(a) Pre-Adoption

Considerations

(b) Preparations

Once Adopted

(c) Identifying

Abandonment

(d) Dealing with

Abandonment

(e) Impacts of Abandonment

- Switch to Alternative - Fork/Vendor Code

- Seek Support from Others - Create Workaround Independently

- Refactor Code Minimizing Use - Help Find New Maintainers

- [Try to] Contribute to Dependency

- Language Incompatibilities - Creating Roadblock

- Performance Decreases - Security Concerns

- Concerns About Future Updates - Missing Needed Features

- Costing Time and Other Resources

(e) Impacts of

Abandonment

(Sec. 4)

(a) Pre-Adoption

Considerations

(Sec. 6.1)

(b) Preparations

Once Adopted

(Sec. 6.2)

(d) Dealing with

Abandonment

(Sec. 6.3)

(c) Identifying

Abandonment

(Sec. 5)

- Use High-Confidence Dependencies - Localize Dependency Use

- Monitor Dependency - Build Relationship w/ Maintainers

- Community Involvement - Minimize Num. Dependencies

- [Plan to] Fork Dependency

- Num. Maintainers - Project Popularity - Update Frequency

- Commit Frequency - Response to Issues and PRs

- Maintainer Reputation and Response

- Notice of Abandonment or Archival - Project Activity

- Automated Warning or Flag

Figure 1: Dependency life cycle with the common stages

where dependency abandonment is addressed highlighted.

1 INTRODUCTION

Open-source digital infrastructure is heavily relied upon by billion-

dollar corporations, governments, startups, hobbyists, and pretty

much everyone else who builds software [33]. However, despite the

broad reliance on open source, the reliability and continued main-

tenance of many of these projects is no sure thing, especially since

much of the creation and maintenance e�ort comes from volunteer

maintainers who may stop contributing and disengage from the

project at any point [33, 39]. When open source maintainers dis-

engage, more often than not, nobody else steps up and the project

becomes abandoned [4]. This tension between the reliance on open

source and the uncertainty of future maintenance has fueled the

need to study, and improve, open-source sustainability.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1281

https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3611643.3616293
https://doi.org/10.1145/3611643.3616293
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616293&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Courtney Miller, Christian Kästner, and Bogdan Vasilescu

In general, open-source sustainability research has so far focused

on keeping particular projects and ecosystems alive, i.e., maintained,

e.g., by improving onboarding processes [34, 49, 95], �nding sus-

tainable funding models [92, 112], or preventing maintainer dis-

engagement [4, 13, 73]. Yet, maintainers often leave projects for

arguably sensible reasons [73], such as changing jobs, losing in-

terest, or starting a family. As such, there will always be a risk for

users of open-source infrastructure that some direct or indirect de-

pendencies become abandoned. Therefore, we argue that more time,

attention, and e�ort should be invested into supporting the users

of open source who face dependency abandonment. For example,

as we will show, there are many ways that developers can pre-

pare for abandonment either individually or collectively, and many

strategies that can help reduce reaction costs when abandonment

occurs. In this paper, we collect, curate, and contextualize the experi-

ences and practices of developers who have dealt with open-source

dependency abandonment. With the goal of understanding what

developers do when facing open-source dependency abandonment,

we explore this topic with two research questions (RQs):

RQ1 How do developers prepare for the risk of open-source de-

pendency abandonment?

RQ2 How do developers deal with open-source dependency aban-

donment, once it occurs?

We conducted semi-structured, in-depth interviews with 33 de-

velopers who have experienced open-source dependency abandon-

ment, which we will refer to as just abandonment moving forward

for brevity. We identi�ed three stages during the dependency life

cycle where interviewees commonly took action to address the

risks and realities of dependency abandonment: before adoption,

while using a dependency that is still being maintained, and after a

dependency has become abandoned (see Figure 1). While we iden-

ti�ed a wide range of philosophies surrounding preparing for and

dealing with abandonment, there was a common sentiment that

there are often very few resources on dealing with abandonment;

interviewees often had to �gure it out by trial-and-error with little

guidance.

While not all interviewees believed it was worthwhile to invest

in preparing for abandonment, some did, and they prepared, e.g.,

by creating abstraction layers in their code base to localize depen-

dency use, and by monitoring the dependency and its surrounding

community to stay informed of any issues or potential signs of

abandonment. Once interviewees identi�ed abandonment, they

often sought support and guidance from the community, switched

to alternative dependencies, and forked or vendored abandoned

dependency code. Overall, we suggest that there is a potential to

reduce the costs associated with abandonment through investments

into preparation, but it is often unclear whether that preparation

will pay o�. In addition, there is often potential for community

members to invest in solutions that will bene�t others facing the

same problem, such as creating a migration guide, we call these

community-oriented solutions. However, developers often have lit-

tle incentive to create such community-oriented solutions – an

instance of the volunteer’s dilemma [30]. We survey solutions to the

volunteer’s dilemma from �elds like social psychology and game

theory, and discuss how they can be applied to this context.

In summary, this paper makes the following contributions: (1) a

list of stages in the dependency life cycle where the risks and

realities of dependency abandonment are commonly addressed; (2) a

taxonomy of common strategies developers use to prepare for and

deal with dependency abandonment which can serve as a reference

to both practitioners and researchers; (3) a theoretical framework

for the costs associated with abandonment as well as suggested cost-

reduction strategies; and (4) the concept of community-oriented

solutions and evidence-based strategies to overcome the volunteer’s

dilemma to collectively address abandonment.

2 RELATED WORK

Dependency Management. Open-source dependencies can pro-

vide free reusable functionality to developers. By building on these

resources, developers can turn ideas into prototypes and prototypes

into deployment code in a fraction of the time and at a fraction

of the cost previously possible. However, there is a notable down-

side to dependencies, namely dependency management. Due to both

internal and external evolutionary pressures to enhance features,

�x bugs, and patch vulnerabilities, dependencies and their appli-

cation programming interfaces (APIs) change over time [63, 81],

sometimes becoming incompatible with old versions or other de-

pendencies a project may have [8, 54, 82]. Such pressures often

make coordinating dependency updates and maintaining compati-

bility between dependency requirements a complex task, especially

when lots of dependencies are used or when breaking changes occur,

i.e., changes that require users to refactor their code. Additionally,

projects can face security vulnerabilities through their dependency

supply chain, including transitive dependencies where dependen-

cies have dependencies of their own [61]. Cross-ecosystem studies

of the presence of vulnerable dependencies have highlighted the

importance of managing and updating dependencies [85, 111]. Be-

cause of the complexities of dependency management, there have

been calls for documenting all dependencies in a software bill of

materials (SBOM), including a US executive order signed in May

2021.1 In short, dependency management is a complex ongoing

problem that has been studied in di�erent ways.

When developers switch dependencies or update after a break-

ing change, they often face nontrivial migration work in their own

code base. Researchers have attempted to address the many chal-

lenges surrounding dependency migration by trying to understand

how developers migrate between libraries [2, 23, 98, 99], and by

creating numerous tools supporting migration [3, 15, 108]. Even so,

attempts to support migration thus far have generally supported

limited varieties of API evolution, giving them a limited scope of

applicability [16, 31, 80], and limited success in practice [23].

Because keeping up to date with dependency updates can be

challenging, research has studied how developers approach and

manage dependency updates [6, 26, 27]. Despite common concerns

about the continued maintenance of dependencies [33], developers

tend to either be slow about updating dependencies or not update

them at all [28, 29, 89], raising questions about whether abandon-

ment is actually a problem if many projects rely on old versions

anyway. A study of 4,600 GitHub projects found that developers

1https://whitehouse.gov/brie�ng-room/presidential-actions/2021/05/12/executive-
order-on-improving-the-nations-cybersecurity/

1282

https://whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/
https://whitehouse.gov/briefing-room/presidential-actions/2021/05/12/executive-order-on-improving-the-nations-cybersecurity/

“We Feel Like We’re Winging It:” A Study on Navigating Open-Source Dependency Abandonment ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

tend not to update dependencies even when security vulnerabilities

are involved, with 81.5% of projects having outdated dependen-

cies [60]. In addition to studying how updates are managed at large,

particular focus has been directed towards studying how breaking

changes are dealt with [8]. However, to the best of our knowledge,

little research has studied the opposite problem, dealing with de-

pendencies that have been abandoned and that are therefore no

longer receiving updates. Because dependency abandonment can

be a costly and complex issue for dependents [33], this study pro-

vides detailed information on how dependents can prepare for and

address dependency abandonment.

Open-Source Sustainability. Nearly everything we do on screens

from checking email and stock prices to online shopping and read-

ing the news relies on and could not function without open-source

software [33]. In 2018, npm, Inc. estimated that, on average, 97%

of the code on modern web applications comes from npm [79].

While di�cult to quantify, the economic value of open source is

also signi�cant; some estimate that in 2010 open-source software

produced 342 billion Euros of economic value in Europe alone [25].

Nonetheless, despite the widespread reliance on open source, the re-

liability and continued maintenance of many of these projects is no

sure thing – this is a key motivation for open-source sustainability

research.

Prior research argues that a project’s maintainers are a crucial

part of its success [17], and that it is vital to attract new contributors,

support their onboarding, and retain core maintainers. Each of these

parts of the contributor life cycle have been studied thoroughly.

In terms of attracting new contributors, researchers have stud-

ied the barriers faced by new contributors [83, 94–96, 106], the

project characteristics associated with greater attractiveness to new

contributors [10, 42, 87], and even the role of social media [35].

Research supporting the onboarding of contributors has studied

the onboarding process [24, 32, 55, 106], the role of sca�olding,

mentoring, and social ties [34, 52, 56, 97, 103, 109], and the char-

acteristics of contributors who succeeded in becoming part of the

core team [44, 104, 113]. Research on retaining core contributors

focused on why they disengage [13, 57, 73], the role of maintain-

ing a healthy community to reduce that risk [38, 72, 86], and the

impact of disengagement on the health and survival probability of

a project [37, 40, 58, 67, 76, 88, 105].

Research has also studied the impacts of project and ecosys-

tem characteristics and organizational structures on open-source

projects including the e�ect of codes of conduct [93, 101], how

badges can be used as a signal to attract new contributors [102],

how project and ecosystem characteristics impact maintainer re-

tention and project activity [19, 51, 105], the maintainability and

sustainability of projects [18, 51, 91, 110, 114], and the impact of

commercial involvement on open-source development [14].

Taking a step back, we can observe that almost all sustainabil-

ity research focuses on studying various factors, characteristics,

and phenomena that support the goal of keeping particular projects

or ecosystems alive and actively maintained. However, because of

the self-organized and volunteer-based nature of much of open

source, we likely cannot stop all projects from being abandoned

or ensure their ongoing maintenance. Many popular open-source

projects hosted on GitHub rely on one or two core maintainers who

Identify &

Recruit

Participants

Run

Interviews

Perform

Qualitative

Analysis

Perform

Validity

Check

Figure 2: Research Methodology Flow Chart

are often volunteers to keep the project running [5, 33], and core

maintainers sometimes disengage for various reasons that occur

normally in life, such as starting a family, switching jobs, no longer

having enough time, or simply losing interest [73]. Maintainers

losing interest or no longer having enough time to contribute are

two common reasons open-source projects fail [17]. One study

of popular projects on GitHub found that 16% were abandoned

by maintainers, and in 59% of those abandoned projects, nobody

stepped up to take over maintenance e�orts leaving the project fully

abandoned [4]. Therefore, since open source is depended on by “our

economy and society, from multi-million dollar companies to govern-

ment websites” [33] to support the rapid and e�cient development

of modern software, we argue open-source sustainability research

must expand its focus to include supporting the sustainable use of

open source by helping developers better prepare for and deal with

dependency abandonment and its consequences when it occurs.

This general direction, which we pursue in this paper, has received

relatively little attention in the literature, with a few exceptions of

prior works measuring and communicating library and community

health to potential users to help them avoid selecting packages to

depend on which may be in decline or otherwise have indicators

of being unsustainable [75, 105].

3 RESEARCH DESIGN

Because, as far as we know, there has been little research studying

how developers prepare for (RQ1) and deal with (RQ2) dependency

abandonment, we used an iterative research process and qualitative

research methods. Speci�cally, we performed semi-structured inter-

views with interwoven analysis and exploration, as we illustrate in

Figure 2. As is often recommended, we did not compartmentalize

the interviews and the analysis into separate discrete phases, but

instead iteratively built our understanding and adjusted our inter-

view guide and codebook in tandem throughout the interviews [66].

We will now discuss study design, analysis, and limitations.

3.1 Identifying and Recruiting Participants

Because we wanted to talk to people who had experience deal-

ing with open source dependency abandonment, for our interview

study we speci�cally targeted people who had depended on an open

source project that then became abandoned recently. To identify

such maintainers, we worked backward: First, we identi�ed aban-

doned projects, then we identi�ed projects that depend on each

abandoned project, i.e., the dependents, and �nally, we identi�ed

the maintainers of those dependents.

De�ning and Identifying Abandoned Projects. Because cus-

toms and behaviors surrounding dependency management can

vary widely by ecosystem [8], we searched for abandoned projects

1283

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Courtney Miller, Christian Kästner, and Bogdan Vasilescu

in three package manager ecosystems to collect a diverse pool of ex-

periences: npm2 (Javascript), PyPi3 (Python), and Composer4 (PHP).

Using data cross-linked between GHTorrent [47] and each ecosys-

tem’s respective package manager website (matching packages to

their corresponding GitHub repositories, when mentioned explic-

itly in the package manager metadata), we heuristically searched

for projects with signs of abandonment. Concretely, we identi�ed

all projects with at least ten commits a month for two consecutive

years and less than three commits total in the following year, i.e.,

the year in which the project is presumed abandoned; the three-

commits threshold allows for some residual activity (e.g., posting

warnings about abandonment in the README �le) and mirrors

prior work [73, 105]. Once we had a pool of potentially abandoned

projects, we randomly sampled and manually evaluated whether

each project seemed indeed abandoned by investigating the activity

patterns on each project’s GitHub repository until we had 10-20

high-con�dence abandoned projects per ecosystem. For this we

looked at the most recent period we could observe at the time –

the �rst six months of 2022, regardless of the year we suspected

the project was abandoned based on the automated heuristic – and

manually checked if the project either (1) did not have any signi�-

cant commit activity;5 or (2) had an explicit label or notice that it

was abandoned, archived, or simply no longer maintained.

Identifying Dependent Projects and Maintainers.We then used

GitHub’s dependency graph feature to get the list of dependents

for each abandoned project [45], and collected the data using the

github-to-sqlite library.6 We ensured the dependent projects were

active by considering only dependents that had, on average, at least

ten commits a month in the �rst half of 2022. We then identi�ed

each dependent project’s top maintainers by commit counts during

the �rst half of 2022, collected their publicly available email from

their GitHub pro�les, and sent out 412 interview invitations in total

in staggered batches of 10-20. Our study design was approved by

our Institutional Review Board.7

3.2 Interview Protocol

Interviews began with introductions and verbal consent. The main

topics of the semi-structured interview guide included (1) how inter-

viewees identi�ed abandonment; (2) the impact of abandonment on

their project; (3) how they dealt with the abandonment and what

solutions they used; (4) whether they prepared for the risk of the

dependency becoming abandoned before identifying abandonment;

2Node.js Package Manager, https://npmjs.com
3The Python Package Index, https://pypi.org
4PHP Dependency Manager, https://getcomposer.org
5Since abandonment need not align with calendar year boundaries, we still considered
as abandoned projects with a few trailing commits at the beginning of the six-month
window but no commits thereafter.
6https://github.com/dogsheep/github-to-sqlite
7We sent a small number of targeted emails, based on information our participants
posted publicly in their pro�le. In terms of research ethics, especially the Belmont
report’s principles of respect for persons and bene�cence, we consider that the costs (e.g.,
potentially unwanted emails) and risks (e.g., releasing con�dential information) to
potential participants are low, and insights gained in better dependency management
bene�t all open source contributors. We considered alternative sampling strategies
and concluded that because we were interested in speaking to a speci�c group of open
source maintainers, that it seems unlikely that we could have recruited people in a
di�erent (less targeted way) without increasing the general cost to the community by
engaging with large groups of maintainers.

and (5) whether they considered or evaluated the risk of the de-

pendency becoming abandoned before adoption. Since the goal of

the interviews was to understand how interviewees prepared for

and dealt with the abandonment, during interviews where time

permitted we identi�ed additional abandoned dependencies to dis-

cuss, in addition to the original dependencies that were identi�ed,

by asking “have there been other instances of any of your project’s

open-source dependencies becoming unmaintained or abandoned by

maintainers?” We typically were able to discuss two abandoned

dependencies per interview, and we kept discussions focused on

those speci�c cases to get concrete insights.

3.3 Data Collection and Analysis

The interviews took place over Zoom and lasted 25 minutes on

average. In total we conducted 32 interviews (P1-32) where one

interview was with two developers (P2a, P2b). We qualitatively

analyzed the interview transcripts using iterative thematic analy-

sis [9]. The process followed Lincoln and Guba’s trustworthiness

criteria [48], as discussed by Nowell et al. [77]. During this process,

we were perpetually switching between the stages of exploring

the rich transcripts, engaging with and analytically memoing the

data [71], coding, searching for themes, and re�ning the codes and

coding framework, as is recommended [66].

The analysis began with the �rst author performing open-ended

inductive coding of each interview as we went. After the �rst eleven

interviews, all the authors came together and performed an in-depth

analysis of the codes and coding frame. Iterative adjustments to the

coding frame and interview guide were made as necessary. Once

a coding frame was settled on, the �rst author re-coded all the

transcripts, with any uncertain cases being reviewed by another

author. We stopped running interviews once we reached our satu-

ration criterion, which we de�ned as three consecutive interviews

without learning any new major insights [41]. A later participant

discussed a dependency that was marked abandoned but still re-

ceived security updates, and we explored this further by identifying

and interviewing developers who faced this type of dependency

abandonment. We quickly reached saturation and did not �nd any

new major insights.

3.4 Validity Check

To validate and check for �t and applicability of our �ndings as

de�ned by Corbin and Strauss [22], we performed a validity check

by sharing our �ndings and results with interviewees.We con�rmed

our interpretations of the rich interview data aligned with the

interviewees’ experiences by getting interviewees’ thoughts and

feedback. We sent all interviewees summaries and the complete

drafts of Secs. 4, 5, 6, and 7. We also sent a list of prompts and

questions asking interviewees to look through the documents for

areas of agreement or disagreement, general correctness, and any

additional insights they gained after reading through the �ndings

as well as the experiences and strategies of other developers.

Six interviewees responded, all six con�rmed that they largely

agree with our �ndings, e.g.,“I think your paper is a well-considered

analysis of the subject that �ts with my experience, fwiw” (P11). One

interviewee pushed back on augments made by other interviewees

suggesting that abandonment was not always a problem because

1284

https://npmjs.com
https://pypi.org
https://getcomposer.org
https://github.com/dogsheep/github-to-sqlite

“We Feel Like We’re Winging It:” A Study on Navigating Open-Source Dependency Abandonment ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

there are not always impacts. They argued that “abandonment is al-

ways problematic and always has an impact, even if the software itself

is not broken, because abandonment still forces a consumer to act as

if it is abandoned, i.e. to prepare for breakage or vulnerabilities” (P4).

3.5 Limitations

The �ndings of our qualitative interview study su�er from the

same limitations commonly found in work of this kind. Generaliza-

tion beyond the pool of interviewees should be made with caution.

Self-selection bias could in�uence the transferability of the results

because there could be di�erences in the personalities and beliefs in

the sample and the subset that chose to participate [70, 90]. We tried

to reduce this risk by streamlining the enrollment process and keep-

ing interviews short. There is also a question of authenticity in how

we de�ned ‘abandoned’ dependencies since the de�nition may not

fully represent the concept of project abandonment [68], although

during the discussions with interviewees there was agreement with

our de�nition.

4 IMPACTS OF ABANDONMENT

Unlike breaking changes which by de�nition break things, it is not

obvious that dependency abandonment in and of itself is problem-

atic. If a dependency worked last year and has not been changed,

there is no inherent reason why its abandonment would cause

problems. However, Lehman argues that software either “undergoes

continual changes or becomes progressively less useful” [64]. We start

by exploring if and how abandonment impacted interviewees. We

provide a summary of the types of impacts experienced in Figure 1.

Concrete Problems.We de�ne concrete problems as technical prob-

lems that impact a dependent project. Language Incompatibili-

ties (P11, 17, 23) occurred when interviewees were trying to update

other parts of the project but could not, because the unmaintained

dependency caused a language incompatibility between itself and

other dependencies or the rest of the project. For example, “we were

trying to upgrade our Saas platform from Python 2 to Python 3, and it

was a core dependency, so we needed it to work [with Python 3], and

it didn’t. So we ended up having to move to another library” (P17).

Some interviewees described experiencing performance de-

creases (P13, 32) as a result of dependency abandonment. One

interviewee described how they had to depend on multiple versions

of their core libraries because the unmaintained dependency relied

on older versions but their other dependencies relied on newer

versions as they were released, which increased compile times and

binary size for end users (P32).

Some dependencies were missing needed features (P14, 20,

23) or features that interviewees believed may be necessary in the

future, which they no longer expected because of the abandonment.

Anticipated Problems. Anticipated problems are problems inter-

viewees are concerned may impact the project in the future but

have yet to materialize. Some interviewees had concerns about

future updates (P16, 22, 29) and worried there could be problems

down the line due to the lack of maintenance, such as incompatibil-

ity issues when updating other dependencies. For example, “I was

not facing any problem in particular, but I was concerned because the

library didn’t get any updates” (P16).

Some had security concerns (P4, 22, 28, 29) about potential

future vulnerabilities or other security-related issues. However, no

interviewees reported experiencing an actual security vulnerability

associated with an abandoned dependency. For example, “we’ve

never had a security incident related to an abandoned dependency,

but that’s always a concern— that there could be a security vulnera-

bility” (P4).

General Impacts. In many cases, interviewees described general

impacts of abandonment rather than speci�c problems, so we distin-

guish this discussion from the discussions above. Dealing with de-

pendency abandonment often costs time and other resources (P4-

7, 9, 10, 20, 21, 23, 25), which was often related to replacing the

dependency or creating a workaround to deal with abandonment.

For example, “right now, we’re working through the fact that the [de-

pendency] is no longer being actively worked on. Which means that we

need to switch to something else. We’re looking at [alternative depen-

dency], but there’s really no way to replace that dependency without

rewriting huge portions of the project, and so that’s just something

we have to put e�ort into and work through” (P7). Sometimes aban-

donment created a roadblock (P10, 16, 21, 27, 29, 30) or notable

problem that stopped or signi�cantly impacted project progress,

and required a workaround or solution to be employed quickly.

Some interviewees reported the abandonment had no mean-

ingful impact (P6, 7, 9, 11, 16, 25, 29) and argued that just because

a dependency was abandoned does not necessarily mean there is

a problem (in contrast to the interviewees that mentioned antici-

pated problems, who were at least concerned about possible future

problems). They explained that if the software is complete, does

not interact with other software, and does not become insecure

itself, then the abandonment is not necessarily problematic. For

example, “it was recognized within the organization that [...] one of

the dependencies that the business runs on is totally unsupported for

years [...], and because it wasn’t a cause of many problems it wasn’t

necessarily an issue” (P11).

Overall, interviewees rarely mentioned concrete problems when

discussing how dependency abandonment impacted them. Most of

the impacts described were concerns about anticipated problems or

general impacts whose problems of origin were not mentioned. It

appears some interviewees had expectations of their dependencies

regarding ongoing maintenance, feature creation, or support. When

abandonment occurred, those expectations were no longer being

met, making them feel like they were impacted even though no

concrete problems like an un�xed bug, unpatched security vulnera-

bility, or dependency version incompatibility had occurred yet. This

leads to questions about dependent projects’ exact expectations

and how they interact with and relate to the concrete technical

problems caused by abandonment.

Distinctions in Impact Between Dependencies. The impact of

abandonment can varywidely depending on the type of dependency

in question. There was often much more concern about dependen-

cies used at runtime, for security, or for other user-impacting tasks

compared to dependencies used in development environments or

as infrastructure during testing and deployment, which were com-

monly seen as less impactful and concerning. For example, “if we

have a runtime dependency that is abandoned or not maintained or

has security issues, we either typically contribute to that project to

1285

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Courtney Miller, Christian Kästner, and Bogdan Vasilescu

bring it up to speed and �x those vulnerabilities or look for an alternate,

so we’re really speci�c and careful about runtime dependencies” (P2a).

Key Insights: Most impacts were not concrete technical

issues but broad concerns about potential future issues or

general impacts like costing time. While some interview-

ees were concerned about possible future security vulnera-

bilities, no interviewees reported experiencing a security

vulnerability associated with an abandoned dependency.

5 IDENTIFYING ABANDONMENT

It is important to understand how abandonment is identi�ed, be-

cause in cases where identi�cation happens after a concrete prob-

lem has occurred, immediate action is frequently needed which can

be disruptive to projects. Thus many developers want to identify

abandonment before it causes a concrete problem, so they can react

without immediate time pressures. Interviewees used a wide range

of information to identify abandonment. This information varied

along two dimensions, �rst how visible the information was, and

second how the information was discovered. We now catalog the

information used to identify abandonment and discuss how it varies

across the aforementioned dimensions. We provide a summary of

the codes in Figure 1.

Manually-Identi�ed Information.Abandonment was oftenman-

ually identi�ed by observing various project characteristics like

commit frequency (P8, 21), lack of updates (P4, 6-8, 12, 29, 30,

32), and lack of progress resolving issues or pull requests

(PRs) (P2a, 16, 17, 21, 29). These forms of information often have

high visibility since they are easily observed during a quick inspec-

tion of the project.

Many participants identi�ed abandonment by observing a no-

tice of abandonment/archival (P3, 4, 7, 13, 17, 20, 29, 30). The

notices were often posted somewhere on the abandoned depen-

dency’s repository page, but there was a wide variation in visibility

depending on the particular location. Sometimes the information

was highly visible, being posted as a �ag/warning at the top of

the page, a message at the top of the README, or as a note in an

issue tracker thread explicitly discussing the maintenance status

of the project. For example “my colleague saw as he was looking

at issues [...] that there was this issue saying ‘this will no longer be

maintained”’ (P3). The project inspection that led to the discovery

of this information often occurred because the interviewee traced

an error back to the dependency or because they were using the de-

pendency as a reference when doing something like implementing

a new feature. Other times, the information had low visibility, mean-

ing it was possible to �nd but required more e�ort to locate (e.g., an

unrelated issue or PR that a maintainer responded to announcing

they no longer plan to maintain the project).

Tool-Supported Identi�ed Information. Some interviewees used

information from observing an automated warning or �ag (P4,

6, 7, 13, 22, 25, 27, 29, 31, 32) which often provided highly visible in-

formation. Often these warnings occurred because the dependency

maintainers had explicitly marked the project as abandoned/depre-

cated or because the unmaintained dependency was causing some

sort of incompatibility error, such as those described in Sec. 4.

Flags for abandoned/deprecated packages are a recent feature of

several package managers, allowing maintainers to explicitly signal

that a package is abandoned/deprecated. These �ags generate warn-

ings when users either install, update, or use said package (with

speci�cs depending on the package manager). In 2015, Composer

incorporated the ability to add a �ag to a package indicating it has

been abandoned which is used to generate warnings when users in-

stall or update �agged packages.8 Similarly, ‘since 2020 npm as had

the npm-deprecate command, which allows maintainers to add a

deprecation �ag to a package’s npm registry entry, producing a dep-

recation warning whenever someone installs the package [78]. We

could not identify an equivalent PyPi feature, but found community

discussions that proposed creating one and cited the npm-deprecate

function as an example.9 GitHub also has an platform-wide archive

�ag for repositories.10

Key Insights: Manually-identi�ed information like

project characteristics were often used to identify abandon-

ment, such as commit frequency and progress resolving

issues or PRs. Some package managers like npm and

Composer provide abandoned/deprecated project �ags,

which can be used to automatically detect abandonment in

projects that have been explicitly �agged as such.

6 PREPARING FOR AND ADDRESSING
ABANDONMENT

Through our qualitative analysis, we identi�ed several stages in

the timeline of an interviewee’s experience with a dependency

where they frequently took action to prepare for or deal with de-

pendency abandonment. In Figure 1, we present these key stages,

which are (1) considerations before adoption regarding current or

future dependency maintenance, (2) strategies used during or after

adoption to prepare for the risk of abandonment, and (3) solutions

to address abandonment once identi�ed. We now discuss each stage

chronologically to mirror interviewees’ experiences.

6.1 Considerations Before Adoption

When deciding whether to adopt a dependency, interviewees of-

ten reported evaluating the current maintenance status and the

expected risk of future abandonment by examining project and

maintainer characteristics. Essentially all mentioned factors mir-

ror those discussed in literature about general dependency selec-

tion [8, 62, 74, 87]. However, we distinguish these considerations

from those for general dependency selection because we speci�cally

asked if and how they evaluate the risk of a potential dependency

becoming unmaintained or abandoned before adopting it. For the

sake of completeness, we present the considerations discussed by

interviewees.

Project popularity (P2a, 6, 9, 10, 12, 13, 16, 17, 19, 21, 23-25,

27, 30, 31) was often operationalized by looking at the number

of stars, forks, or users. The update frequency or time of the

8https://github.com/composer/composer/issues/4610
9https://github.com/pypi/warehouse/issues/345
10https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-
repositories

1286

https://github.com/composer/composer/issues/4610
https://github.com/pypi/warehouse/issues/345
https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories
https://docs.github.com/en/repositories/archiving-a-github-repository/archiving-repositories

“We Feel Like We’re Winging It:” A Study on Navigating Open-Source Dependency Abandonment ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

last update (P5, 6, 10, 11, 13, 17, 20, 22, 27-30) and the commit

frequency or time of the last commit (P4, 5, 8-13, 16, 24, 28)

often gave insights into the regularity and recency of general project

activity and progress. Interviewees used these highly-visible project

metrics to make quick judgments and predictions about current and

future maintenance status. The response to issues and PRs (P4,

9-12, 16, 21, 28, 30) provided insights into whether there were

(1) a lot of bugs or problems with the project; and (2) whether the

maintainers were still actively participating.

The number of maintainers (P2b, 7, 13, 16, 19, 28, 30, 31)

often impacted expectations for future maintenance; projects with

fewer maintainers were often seen as less desirable since maintainer

disengagement may have a more considerable impact on project

maintenance.

Some also considered the content and tone of the response

or reaction of dependency maintainers (P2a, 2b, 4, 9-12, 21)

when deciding whether to trust the project. Maintainers who were

helpful, friendly, and welcoming often gave interviewees more

con�dence that they would be cooperative and helpful if something

were to occur. Some used the reputation, status, or previous

experience of the potential dependency maintainers (P4, 8,

10, 11, 17, 19) as an important metric when deciding whether to

trust a potential dependency. Having experienced maintainers with

positive, long-standing reputations was reported to be a good sign.

Choosing Between Dependencies. Several interviewees discussed

factors they use when deciding between multiple potential depen-

dencies. In general, they reported preferring projects that seemed

more reliable and maintainable over projects with better perfor-

mance or more cutting-edge features. This often appeared to come

from being burned by an abandoned dependency previously, and

wanting to avoid experiencing another similar situation.

Key Insights: A project’s popularity, activity, and main-

tainer reputation were often used when considering the risk

of a potential dependency becoming abandoned, mirroring

factors used in general dependency selection [8, 62, 74, 87].

6.2 Preparations Once Adopted

Between when a project decides to adopt a maintained dependency

and when that dependency is identi�ed as abandoned, some inter-

viewees prepared for the risk of abandonment occurring. Interview-

ees engaged in many di�erent kinds of preparation. Some forms of

preparation focus on making it easier to identify abandonment and

others focus on making it easier to deal with abandonment when

it occurs. Additionally, some forms of preparation are one-time

actions whereas others are reoccurring actions.

A method of preparation that was highly regarded and seemed to

be relatively successful was minimizing/localizing dependency

use (P2a, 6, 7, 16, 27, 32) in the project’s code base. This often meant

explicitly designing the implementation at the time of dependency

adoption in a way that made dependency replacement easier by

minimizing the points of contact using an abstraction layer. For

example, “as much as possible, we try to bu�er dependencies with

abstractions so that speci�c implementation details of a third-party

library aren’t scattered through the whole application in di�cult

ways” (P7).

Some interviewees prepared by directlymonitoring the depen-

dency (P2a, 4, 10, 13, 27) to keep an eye on how things are going,

often by looking at project characteristics similar to those described

in Sec. 5. For example, “we are always conscious of the dependencies

and looking closely at them” (P2a). By remaining aware of the state

of the dependency and its community, interviewees place them-

selves in a better position to identify early signals of abandonment

which gives them an opportunity to act before abandonment and

any resulting concrete problems occur, if they so choose. Some

also prepared by being active and informed members of the

community (P2b, 16, 17, 31) and building relationships with

dependency maintainers (P1), often so they could notice issues

earlier or have people to reach out to if abandonment occurs. This

often involves at least semi-frequent interactions with dependency

maintainers or other community members to stay informed of the

goings-on in the project and aware of any potential issues or warn-

ing signs of something like abandonment being on the horizon.

For example, “I suppose I engaged pretty actively in the open source

community, particularly around Python, so I would hope I would

have a feeling for what was going on. I think it’s partly about being

aware” (P17).

Some interviewees report only using high-con�dence depen-

dencies (P6, 7, 11, 18, 19, 21, 25, 27) in the �rst place, which they

believed were su�ciently unlikely to be abandoned. Similarly, some

minimize the number of dependencies (P2a, 9, 11, 24, 27) they

use by actively going through and removing unnecessary depen-

dencies to reduce their surface area of exposure. For example, “I

think [we] removed a couple dependencies that we didn’t need, there

were small use cases, and [we] just authored code to replace the depen-

dencies” (P2a). One interviewee reported that their development

team has a speci�c role called the Sustainability Engineer (a.k.a., the

’sus’ role) whose responsibilities each sprint include, among other

things, managing dependencies by looking through their code base

and �nding parts that can be cleaned up by removing unnecessary

dependencies. This allows their team to slowly and incrementally

manage and remove unnecessary dependencies, making it less of

a large and daunting task. Some prepared by creating plans for

dealing with particularly important dependencies if they become

abandoned, e.g., forking or planning to fork dependency (P2a,

5, 9, 11, 20) so they have a backup if something happens.

Whether to Prepare or Not. For various reasons, interviewees

often did no preparation (P3, 4, 6, 9, 10, 14, 16, 17, 19, 20, 22-

25, 29). In some cases, preparation was something they had yet

to consider. Others reported that it would be nice if they had the

time, but that ultimately preparing sounds like an overwhelming

or di�cult task given how many dependencies they have. Others

subscribe to the philosophy that ‘it is not a problem until it is a

problem,’ meaning they do not concern themselves with potential

future issues. These interviewees did not believe it was necessarily

worthwhile to prepare for the risk of abandonment because they did

not believe abandonment is in and of itself always problematic or

impactful, as discussed in Sec. 4. For example, “unmaintained doesn’t

necessarily mean that there is any problem with the library” (P32).

They instead wait until there is a concrete problem, at which point

1287

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Courtney Miller, Christian Kästner, and Bogdan Vasilescu

they deal with it. Another interviewee said the decision of how

and whether to prepare for dependency abandonment points to

a long-standing perpetual balance in software engineering. They

explained, for example, that abstraction layers increase project

robustness but can also increase code complexity making it harder

to maintain, which can also act as a roadblock when introducing

and onboarding new contributors (P4).

Key Insights: Interviewees who prepared for the risk of

dependency abandonment often did so by localizing the

use of dependencies in their code base by building abstrac-

tion layers or by remaining aware of the goings-on in the

dependency itself and the broader community.

6.3 Solutions to Abandonment

Once dependency abandonment was identi�ed, nearly all interview-

ees deployed some sort of solution to deal with abandonment. The

most common solution was switching to a better maintained

alternative (P1-4, 6, 7, 10, 12-14, 16, 17, 20, 23, 27, 29, 31, 32). Inter-

viewees found these alternatives in various ways. Sometimes, an

issue or PR on the abandoned project included a discussion recom-

mending an alternative. For example, “actually, I can see now on

the ‘is the project dead’ issue there’s someone saying use [alternative

project], which was the alternative that we ended up going to” (P17). In

other cases, interviewees used search engines such as DuckDuckGo,

forum websites such as Reddit or StackOver�ow, package managers

such as PyPi, or even specialized open-source library recommenda-

tion websites such as libhunt.com to �nd pointers to alternatives.

Another interviewee described how an automated warning about

an abandoned dependency included a list of alternatives, which

was used to select a replacement (P32).

Often the goal was not just to �nd another project that had the

same functionality, but that also has a similar API tomakemigration

easier and minimize disruption to their code base. For example, one

interviewee found an alternative with essentially the same API so

the migration entailed “basically just changing the namespace on

what we import that functionality from” (P32).

Another common solution was to fork or vendor code (P1-2b,

4, 5, 7, 10, 12-14, 16, 20, 23, 30, 32) from the abandoned dependency;

vendoring means incorporating 3rd party software directly into

a code base [100]. For example, “sometimes we vendor some code,

which means we’ll just directly copy the code and re-license it into

the package itself” (P1). A drawback of this solution is that it can

increase the amount of code a developer is responsible for main-

taining over time. As one interviewee put it “I think that’s like the

last thing that anyone wants to do, just develop it yourself, because

then you would have to become the one that maintains it” (P31).

Most of the time, when interviewees forked a project, it was

used as a personal fork, acting as their own stable version with

which they could control and maintain compatibility. Only one

interviewee explicitly discussed making a hard fork that they ad-

vertised as an alternative for others to use (P30).

Seeking support from others (P4, 5, 7, 10, 12-14, 17, 21, 23,

25, 30, 32) by reaching out to the maintainers or others in the

community provided insights into the situation and what potential

solutions or next steps could be. In several cases fellow community

members had already posted bug �xes or pointers to alternative

dependencies in the abandoned dependency or created blog posts

explaining how to migrate to an alternative. For example, “The �rst

[strategy] we �gured out is, you know, go through the issue list and

see what kind of issues people are having, and if it’s similar issues, I

try to talk to them to �gure out what the exact �xes are and stu� like

that” (P10).

Others [tried to] contribute to the dependency (P2a, 3, 5,

13, 23, 30) by reaching out to the maintainer about helping or pro-

viding maintenance support. In some cases, the old maintainers

would respond after several months, and in other cases this was

not a successful solution because they did not receive a response.

For example, “I and others were reaching out to the original main-

tainer trying to see if we could take it over, and he was basically

non-responsive. He had originally posted on Twitter; if you look at

that discussion, he was looking for a maintainer. But he just dropped

o� the map” (P30).

Another solution used by some was trying to help �nd new

maintainers (P4, 5, 7, 12, 25) by supporting community e�orts to

recruit new maintainers to take over. This was often accomplished

through discussions on the abandoned project’s issue tracker. For

example, “I’d say my strategy has been to reach out to folks in the issue

tracker and encourage them to rename the project and get something

up and running, and o�er myself for testing if somebody works on

it. So at this point, I’m just monitoring the situation and trying to

encourage others to step up and work on it” (P25).

Key Insights: Seeking support from the community and

switching to an alternative dependency can be e�ective and

low-e�ort solutions assuming the required infrastructure

is present. Given a de�ciency of such, forking or vendoring

the abandoned dependency can be a quick �x but can also

increase the maintenance e�ort required over time.

7 DISCUSSION: TOWARDS MORE
SUSTAINABLE USE OF OPEN SOURCE

Our research has catalogued a diversity of practices to prepare for or

deal with open-source dependency abandonment. Re�ecting on the

costs and potential bene�ts of all these practices, we now discuss

higher-level emerging themes, drawing also from the theory of the

volunteer’s dilemma.

7.1 The Cost of Dependency Abandonment

From interviewees, we heard about the costs associated with aban-

donment throughout our study: We showed the sometimes disrup-

tive impacts of abandonment (Sec. 4) and showed the various, often

costly actions developers used to deal with abandonment (Sec. 6.3).

When a dependency becomes abandoned, it shifts at a high level

from being a free and easy to use software artifact to a potential

liability and source of unexpected disruptions, costs, and concerns.

One way to think about the total anticipated cost of abandonment

is as a product of the probability of abandonment occurring and

impacting the dependent project (impact probability) and the e�ort

required to react to the abandonment once it happens (reaction

1288

libhunt.com

“We Feel Like We’re Winging It:” A Study on Navigating Open-Source Dependency Abandonment ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

e�ort):

anticipated cost of aband. = impact probability × reaction e�ort

With this framing, almost all the actions that we see developers

take to prepare serve as investments to reduce the anticipated cost

of abandonment by trying to reduce either the impact probability

or the reaction e�ort, for example:

• Only using high-con�dence dependencies and minimizing

the number of dependencies (Sec. 6.1) both reduce the impact

probability but require investment both in terms of necessary

research e�ort and accepting potential opportunity costs

from not using certain dependencies.

• Minimizing/localizing dependency use (Sec. 6.2) can reduce

the reaction e�ort post abandonment with some upfront

investment in terms of designing an abstraction layer.

• Monitoring the dependency (Sec. 6.2) can be seen as an in-

vestment to notice dependency abandonment before it be-

comes an urgent problem – this gives developers an oppor-

tunity to act on their own time with lower reaction e�ort

compared to when they are forced to react in an emergency

situation to a roadblock or other concrete problem.

• Although outside the scope of this paper, any investments

to keep projects alive, such as by improving funding (Sec. 2),

can reduce impact probability.

This cost framing highlights how developers can consider invest-

ing in preparation to reduce the anticipated cost of abandonment.

Whether that investment is prudent is often not obvious in practice

and depends on both the risk aversion of the developer and the

relative investment costs and cost reduction bene�ts:

return on investment =
reduction of anticipated cost of aband.

investment cost for preparation

7.2 Aspirational Cost Reduction Strategies

Beyond the preparation strategies discussed earlier, the software

engineering literature as well as some interviewees suggest possi-

ble solutions to reduce impact probability or reaction e�ort or the

investment cost for preparation – each making such investments

more e�cient. While most are not widely adopted, we discuss them

here as aspirational strategies and promising directions for future

work.

Proactive Warnings for Unmaintained Dependencies (Identi-

fying Abandonment). Often identifying whether a dependency is

abandoned requiresmanual e�ort (e.g., observing commit frequency

or looking for notices of abandonment/archival, see Sec. 5). To re-

duce the investment required, automated tools can provide proac-

tive warnings for unmaintained dependencies. For example, one

interviewee expressed how they wished they had a tool that would

notify themwhen one of their dependencies has been unmaintained

for a given period of time. They described how a Dependabot-like

tool could indicate “if there are no updates to this package in, say,

six months, eight months, a year” (P23)., which “would give an idea

of what kind of things I’m depending on that are starting to go out of

style” (P23). Only one interviewee (P20) reported using a tool that

does just that– the beta Risk Intelligence service by FOSSA noti�es

users when a dependency has not been updated in the past two

years [84]. Future work could explore how to design such tools

without overwhelming developers with con�guration work and

alerts causing noti�cation fatigue.

Increasing Transparency about Expected Project Maintenance

(Preparing for Risk of Abandonment). While many prepared

by only relying on high-con�dence dependencies (Sec. 6.2), deter-

mining whether a dependency is high-con�dence was often done

with non-trivial manual evaluations of project characteristics like

responses to issues and PRs. Transparency mechanisms frequently

studied in software engineering and collaborative work [102], such

as badges in READMEs, can make it easier to assess the status of a

project. One interviewee (P22) explained how their company has

started putting badges in their public projects’ READMEs showing

their intended support status (e.g.,).

Such transparency mechanisms can be used to declare maintenance

intention (e.g., beta phase, hobby project, actively maintained, com-

mercial support available) but can also be used to automatically

summarize information, e.g., the last activity of the maintainer or

the typical recent issue response latency. Beyond shield.io’s tem-

plate for a maintained badge (, not widely

used), we are not aware of any more advanced transparency mecha-

nisms regarding maintenance status or abandonment risk, although

e�orts seem underway at least as part of the CHAOSS project [46].

Supporting the Construction of Abstraction Layers (Prepar-

ing for Risk of Abandonment). The building and deploying of

abstraction layers (Sec. 6.2) was widely credited with signi�cantly

reducing the reaction e�ort, but building abstraction layers was

often a time-intensive process that did not scale well to a large

number of dependencies. As an alternative to the vast amount of

research on API migration (see Sec. 2), refactoring tools could be

enhanced to provide direct support for creating abstraction layers.

Additionally, developers could write reusable abstraction layers for

certain libraries that can be shared with other developers to make

subsequent migration between libraries easier (similar to how JDBC

abstracts from individual database protocols).

Advertising Alternatives (Addressing Abandonment). Switch-

ing to an alternative dependency (Sec. 6.3) is a common solution

when faced with abandonment, but �nding a suitable one can be

challenging, as it is not always clear where to look. Also �nding

actively maintained forks can be di�cult in projects with many

forks. Making suitable alternatives easier to �nd can reduce reac-

tion e�orts. Interviewees mentioned several speci�c strategies for

advertising alternatives: (1) posting pointers to alternatives on the

abandoned dependency’s repository page (e.g., notes in an issue

thread about abandonment); (2) promoting alternatives on relevant

online forums (one interviewee (P30) reports creating posts on

relevant Subreddits like r/python when they have a new release

celebrating it and giving an overview of the project and its features);

and (3) creating blog posts discussing alternatives. Platforms could

highlight posts for alternatives, curate links to external resources,

and highlight active forks. They could also gather a lot of informa-

tion automatically, for example, by scraping what other projects

have migrated to in the past.

SupportingDependencyMigration (AddressingAbandonment).

Some interviewees expressed how each time they face dependency

abandonment, it feels like there is no existing game plan or guid-

ance to refer to, and that they have to �gure out how to move

1289

http://shields.io

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Courtney Miller, Christian Kästner, and Bogdan Vasilescu

forward on their own. For example, “we really do need rubrics or

tools or something because every time a project becomes abandoned,

or we think it might be abandoned, we feel like we’re winging it. We

feel like we’re dealing with it for the �rst time and we don’t have a

run book for that, and I doubt anybody really does” (P4). Beyond just

suggesting possible alternatives, platforms, tools, and community

initiatives can provide support for how to deal with an abandoned

dependency, such as creating a migration guide, showing examples

of how to use alternative APIs, or even to attempt API migration

(semi-)automatically. Such information can be curated with com-

munity inputs or generated from activities in other repositories,

which could help reduce developers’ reaction e�orts by minimizing

the amount of trial-and-error and manual work required to address

a given dependency’s abandonment.

7.3 The Volunteer’s Dilemma and Reducing
Community E�ort

The previous two sections discuss the various actions used by de-

velopers to reduce the anticipated cost of abandonment, each at

some investment cost. However, the person who makes the invest-

ment and the person who bene�ts from said investment does not

necessarily have to be the same. The actions of one developer can

bene�t many others. For example, tool builders and platforms like

GitHub can invest in making it easier to �nd and migrate to alterna-

tives, which can bene�t all the developers who use such platforms.

Similarly, many interviewees bene�ted from the actions of other in-

dividual developers when �guring out how to address dependency

abandonment, including �nding pointers to forks or alternatives,

learning about abandonment early through community channels,

�nding blog posts explaining migration, bene�ting from posted bug

�xes, and receiving help �nding new maintainers (Sec. 6.2–6.3).

We call these investments designed to bene�t others community-

oriented solutions. They reduce the redundant reaction e�ort ex-

pended by subsequent projects facing the same abandoned depen-

dency, as we illustrate in Figure 3. Creating community-oriented

solutions requires additional e�ort on top of the reaction e�ort re-

quired for a developer to address the abandonment in their own

project, for example, by writing a blog post after �xing their own

problem.

However, beyond the small handful of interviewees who reported

doing so (P2a, 2b, 13, 30), interviewees did not typically consider

creating community-oriented solutions, because they had many

competing demands, no incentive to invest the additional e�ort,

or simply had not considered it. This situation is an example of

the volunteer’s dilemma [30], which is canonically formalized as a

game with a group of members, where each member can decide

whether to volunteer and incur the associated cost of producing a

public good that all group members bene�t from collectively, and

if nobody volunteers, the entire community loses [107].

The volunteer’s dilemma has been studied both theoretically

and empirically in �elds like economics, social psychology, orga-

nizational behavior, and game theory for decades. Surveying this

wealth of knowledge, we collected some practical solutions that

we suspect may encourage the creation of community-oriented

solutions for dependency abandonment:

Abandoned
Dependency

B

C

D

E

A

Everybody migrates
individually

Developer A writes
migration guide

1 d

1 d

1 d

1 d

5 d

2 d

.5 d

.5 d

.5 d

.5 d

Dependents

depends on

1 d

4 d

Figure 3: Illustration of the volunteers dilemma for dealing

with abandoned dependencies: A developer who invests extra

e�ort in writing a migration guide can save all other devel-

opers migration e�ort (measured in days of e�ort). Writing a

migration guide is e�cient for the entire community, though

more expensive for the developer creating it.

Reducing the Cost of Creating Community-Oriented Solutions.

Increasing volunteering costs reduces the individual likelihood of

each group member volunteering and the overall likelihood that the

public good will be produced [53, 59]. This suggests that one of the

most straightforward ways to support the creation of community-

oriented solutions is by decreasing the additional e�ort required

to do so. For example, creating a uniform and visible place on

abandoned projects to discuss solutions can make it easier for com-

munity members to post about alternatives or share advice. We

conjecture that tools, especially platform features in GitHub, have

substantial potential to facilitate and streamline the sharing of in-

formation about how to deal with speci�c abandoned dependencies.

Nudging Potential Volunteers. Where relevant characteristics

of group members are visible, nudging [11] people who are in a

better position to volunteer and have lower volunteering costs can

be an e�ective way to encourage creating the public good [65].

For example, a bot could nudge developers who already created

an active fork by suggesting they advertise it on the abandoned

dependency project. More research is needed to determine who is

in a ‘favorable’ position and to design nudges that �t into existing

work�ows and practices.

Priming Potential Volunteers and Re-framing Volunteering.

Priming potential volunteers to be in a charitable or competitive

mindset can impact the likelihood of an individual volunteering [69].

This suggests that framing the creation of community-oriented so-

lutions as a deliberate act to bene�t the larger open-source commu-

nity could encourage such creation and normalize it as a common

action. Also estimating the possible impact of creating a community-

oriented solution could be motivating for some. More research on

the attitudes of developers toward various community-oriented

actions and how actions for abandoned dependencies �t in could

help design a supportive framing.

Rewarding Volunteers. Research studying the e�ects of rewards

and punishments on the volunteer’s dilemma found that rewarding

volunteers who step up can be more e�ective than punishing poten-

tial volunteers who do not, suggesting that shaming strategies are

less e�ective than positive reinforcement [65]. For example, since

many developers are motivated by helping others and supporting

1290

“We Feel Like We’re Winging It:” A Study on Navigating Open-Source Dependency Abandonment ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

their community [43], highlighting the estimated community-wide

bene�t of creating a community-oriented solution could illustrate

the good volunteering does and how such actions align with their

motivations. Public recognition for community-oriented solutions,

such as awards at community events or even just listing them as part

of a GitHub pro�le, could provide further incentives and highlight

positive role models. Gami�cation approaches could be deliber-

ately used, such as awarding badges or points, but they also come

with risks [50]. More research is needed to understand which re-

ward mechanisms are e�ective in encouraging community-oriented

solutions.

Facilitating and Encouraging Group Discussion. In general,

incorporating communication into coordination games tends to

improve outcomes and facilitate coordination [7, 12, 20, 21, 36].

Facilitating and encouraging communication between agents in-

creases transparency and awareness of the choices others are mak-

ing, giving potential volunteers more complete information, thus

allowing them to make more educated decisions about whether

to volunteer [36]. This suggests that by improving transparency

about what others who face the same abandoned dependency have

done or plan to do, developers are able to make more informed

decisions themselves. For example, providing discussion forums

on abandoned projects could help with highlighting demand (or

lack thereof) for solutions. Tooling that creates transparency about

how others have or have not already dealt with the abandoned

dependency (see Sec. 7.2) can provide insights about the scope

of the problem and assurance about the usefulness of a proposed

community-oriented solution. More research in communication

patterns, information needs, and automated identi�cation of how

others dealt with abandonment can help to deliberately design

communication spaces and transparency mechanisms.

8 CONCLUSION

Assuming that not all projects will be maintained forever, we refo-

cus sustainability research on how to sustainably use open-source

software given the risks and realities users face today.We conducted

interviews to study how developers prepare for and deal with open-

source dependency abandonment. We catalogued the varying be-

liefs and philosophies surrounding dealing with dependency aban-

donment, preparations and considerations used to mitigate risk

proactively, and solutions used to deal with abandonment. Develop-

ers generally navigate the tradeo� between proactive preparation

and later potential reaction costs, with little information about the

actual costs involved. We particularly highlight that sharing solu-

tions can bene�t many others facing the same problem, but that

such sharing is not common. Looking at this problem through the

lense of the volunteer’s dilemma, we suggested future research di-

rections inspired by �ndings in game theory and social psychology.

We hope the strategies and insights can be helpful to the many

developers who navigate abandoned dependencies daily.

9 DATA AVAILABILITY

The complete interview guide along with a table with anonymized

summary statistics for the 33 interview participants are available

on Zenodo [1].

ACKNOWLEDGMENTS

Firstly, special thanks and deep gratitude are given to Chanel

for continuing her integral work as a brilliant world-class canine

researcher and for always being there to support, encourage, and

inspire the team. We would like to thank all our interview partici-

pants for sharing their time, expertise, and wisdom with us, with-

out them this project would not have been possible. This material

is based upon work supported by the National Science Founda-

tion Graduate Research Fellowship Program under Grant Number

DGE2140739. Any opinions, �ndings, and conclusions or recom-

mendations expressed in this material are those of the author(s)

and do not necessarily re�ect the views of the National Science

Foundation. Kaestner and Vasilescu’s work was supported in part

by the National Science Foundation (awards 2106853, 2131477 and

2206859) and the Sloan Foundation. This work was also supported

in part by a Google Faculty Research Award and a Google Award

for Inclusion Research.

REFERENCES
[1] 2023. Supplementary Material for "We Feel Like We’re Winging It:" A Study on

Navigating Open-Source Dependency Abandonment. Zenodo. https://doi.org/10.
5281/zenodo.8102547

[2] Hussein Alrubaye et al. 2020. How does library migration impact software
quality and comprehension? an empirical study. In Proc. Int’l Conf. Software
Reuse (ICSR). Springer, 245–260.

[3] Hussein Alrubaye, Mohamed Wiem Mkaouer, and Ali Ouni. 2019. Migration-
miner: An automated detection tool of third-party java library migration at the
method level. In Proc. Int’l Conf. Software Maintenance and Evolution (ICSME).

[4] Guilherme Avelino, Eleni Constantinou, Marco Tulio Valente, and Alexander
Serebrenik. 2019. On the abandonment and survival of open source projects: an
empirical investigation. In Proc. Int’l Symp. Empirical Software Engineering and
Measurement (ESEM). ACM Press, 1–12.

[5] Guilherme Avelino, Leonardo Passos, Andre Hora, and Marco Tulio Valente.
2016. A novel approach for estimating truck factors. In Proc. Int’l Conf. Program
Comprehension (ICPC). IEEE, 1–10.

[6] Gabriele Bavota, Gerardo Canfora, Massimiliano Di Penta, Rocco Oliveto, and
Sebastiano Panichella. 2013. The evolution of project inter-dependencies in a
software ecosystem: The case of apache. In Proc. Int’l Conf. Software Maintenance
(ICSM). IEEE, 280–289.

[7] Andreas Blume and Andreas Ortmann. 2007. The e�ects of costless pre-play
communication: Experimental evidence from games with Pareto-ranked equi-
libria. Journal of Economic theory 132, 1 (2007), 274–290.

[8] Christopher Bogart, Christian Kästner, James Herbsleb, and Ferdian Thung. 2016.
How to break an API: cost negotiation and community values in three software
ecosystems. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).
109–120.

[9] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative research in psychology 3, 2 (2006), 77–101.

[10] Scott Brisson, Ehsan Noei, and Kelly Lyons. 2020. We are family: analyzing
communication in GitHub software repositories and their forks. In Proc. Int’l
Conf. Software Analysis, Evolution, and Reengineering (SANER).

[11] Chris Brown and Chris Parnin. 2019. Sorry to bother you: Designing bots for
e�ective recommendations. In Int’l Workshop on Bots in Software Engineering.

[12] Anthony Burton and Martin Sefton. 2004. Risk, pre-play communication and
equilibrium. Games and economic behavior 46, 1 (2004), 23–40.

[13] Fabio Calefato, Marco Aurelio Gerosa, Giuseppe Ia�aldano, Filippo Lanubile,
and Igor Steinmacher. 2022. Will you come back to contribute? Investigating
the inactivity of OSS core developers in GitHub. Empirical Software Engineering
(2022).

[14] Andrea Capiluppi, Klaas-Jan Stol, and Cornelia Boldyre�. 2012. Exploring the
role of commercial stakeholders in open source software evolution. In IFIP Int’l
Conf. on Open Source Systems. Springer, 178–200.

[15] Chunyang Chen. 2020. Similarapi: mining analogical apis for library migration.
In Comp. Int’l Conf. Software Engineering (ICSE). IEEE, 37–40.

[16] Kingsum Chow and David Notkin. 1996. Semi-automatic update of applications
in response to library changes. In Proc. Int’l Conf. Software Maintenance (ICSM),
Vol. 96. 359.

[17] Jailton Coelho andMarco Tulio Valente. 2017. Whymodern open source projects
fail. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).

1291

https://doi.org/10.5281/zenodo.8102547
https://doi.org/10.5281/zenodo.8102547

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Courtney Miller, Christian Kästner, and Bogdan Vasilescu

[18] Jailton Coelho, Marco Tulio Valente, Luciano Milen, and Luciana L Silva. 2020.
Is this GitHub project maintained? Measuring the level of maintenance activity
of open-source projects. Information and Software Technology (IST) (2020).

[19] Eleni Constantinou and TomMens. 2017. An empirical comparison of developer
retention in the RubyGems and npm software ecosystems. Innovations in Systems
and Software Engineering 13, 2 (2017), 101–115.

[20] Russell Cooper, Douglas V DeJong, Robert Forsythe, and Thomas W Ross. 1989.
Communication in the battle of the sexes game: some experimental results. The
RAND Journal of Economics (1989), 568–587.

[21] Russell Cooper, Douglas V DeJong, Robert Forsythe, and Thomas W Ross. 1992.
Communication in coordination games. The Quarterly Jrnl. of Econ. (1992).

[22] Juliet Corbin and Anselm Strauss. 2014. Basics of qualitative research: Techniques
and procedures for developing grounded theory. Sage publications.

[23] Bradley E Cossette and Robert J Walker. 2012. Seeking the ground truth: a
retroactive study on the evolution and migration of software libraries. In Proc.
Int’l Symposium Foundations of Software Engineering (FSE). 1–11.

[24] Kevin Crowston, Kangning Wei, James Howison, and Andrea Wiggins. 2008.
Free/Libre open-source software development: What we know and what we do
not know. ACM Computing Surveys (CSUR) 44, 2 (2008), 1–35.

[25] Carlo Da�ara. 2012. Estimating the economic contribution of open source
software to the European economy. In Proc. Openforum Academy Conf.

[26] Cleidson RB de Souza and David F Redmiles. 2008. An empirical study of
software developers’ management of dependencies and changes. In Proc. Int’l
Conf. Software Engineering (ICSE). 241–250.

[27] Alexandre Decan, TomMens, Maëlick Claes, and Philippe Grosjean. 2016. When
GitHub meets CRAN: An analysis of inter-repository package dependency
problems. In Proc. Int’l Conf. Software Analysis, Evolution, and Reengineering
(SANER).

[28] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the evolution
of technical lag in the npm package dependency network. In Proc. Int’l Conf.
Software Maintenance and Evolution (ICSME). IEEE, 404–414.

[29] Alexandre Decan, Tom Mens, and Eleni Constantinou. 2018. On the impact of
security vulnerabilities in the npm package dependency network. In Proc. Conf.
Mining Software Repositories (MSR). 181–191.

[30] Andreas Diekmann. 1985. Volunteer’s dilemma. Jrnl of con�ict resolution (1985).
[31] Danny Dig and Ralph Johnson. 2006. How do APIs evolve? A story of refactoring.

Journal of Software Maintenance and Evolution: Research and Practice (2006).
[32] Nicolas Ducheneaut. 2005. Socialization in an open source software community:

A socio-technical analysis. Proc. Conf. Computer Supported Cooperative Work
(CSCW) 14, 4 (2005), 323–368.

[33] Nadia Eghbal. 2016. Roads and bridges: The unseen labor behind our digital
infrastructure. Ford Foundation.

[34] Fabian Fagerholm, Alejandro S Guinea, Jürgen Münch, and Jay Borenstein.
2014. The role of mentoring and project characteristics for onboarding in open
source software projects. In Proc. Int’l Symp. Empirical Software Engineering and
Measurement (ESEM). 1–10.

[35] Hongbo Fang, Hemank Lamba, James Herbsleb, and Bogdan Vasilescu. 2022.
“This is damn slick!” Estimating the impact of tweets on open source project
popularity and new contributors. In Proc. Int’l Conf. Software Engineering (ICSE).

[36] Christoph Feldhaus and Julia Stauf. 2016. More than words: the e�ects of cheap
talk in a volunteer’s dilemma. Experimental Economics 19, 2 (2016), 342–359.

[37] Fabio Ferreira, Luciana Lourdes Silva, and Marco Tulio Valente. 2020. Turnover
in Open-Source Projects: The Case of Core Developers. In Proc. of Brazilian
Symp. on Software Engineering. 447–456.

[38] Isabella Ferreira, Jinghui Cheng, and Bram Adams. 2021. The “shut the f**k up”
phenomenon: Characterizing incivility in open source code review discussions.
Proc. of the ACM on Human-Computer Interaction 5, CSCW2 (2021).

[39] Nicole Forsgren et al. 2021. 2020 State of the Octoverse: Securing the World’s
Software. arXiv preprint arXiv:2110.10246 (2021).

[40] Matthieu Foucault, Marc Palyart, Xavier Blanc, Gail C Murphy, and Jean-Rémy
Falleri. 2015. Impact of developer turnover on quality in open-source software.
In Proc. Europ. Software Engineering Conf./Foundations of Software Engineering
(ESEC/FSE). 829–841.

[41] Jill J Francis et al. 2010. What is an adequate sample size? Operationalising data
saturation for theory-based interview studies. Psychology and Health (2010).

[42] Felipe Fronchetti, Igor Wiese, Gustavo Pinto, and Igor Steinmacher. 2019. What
attracts newcomers to onboard on OSS projects? tl;dr: Popularity. In IFIP Inter-
national Conference on Open Source Systems (OSS).

[43] Marco Gerosa et al. 2021. The shifting sands of motivation: Revisiting what
drives contributors in open source. In Proc. Int’l Conf. Software Engineering
(ICSE). IEEE, 1046–1058.

[44] Mohammad Gharehyazie, Daryl Posnett, Bogdan Vasilescu, and Vladimir Filkov.
2015. Developer initiation and social interactions in OSS: A case study of
the Apache Software Foundation. Empirical Software Engineering 20, 5 (2015),
1318–1353.

[45] GitHub. 2022. Exploring the dependencies of a repository. https:
//docs.github.com/en/code-security/supply-chain-security/understanding-
your-software-supply-chain/exploring-the-dependencies-of-a-repository.

Accessed: 2022-09-23.
[46] Sean P Goggins, Matt Germonprez, and Kevin Lumbard. 2021. Making open

source project health transparent. Computer 54, 8 (2021), 104–111.
[47] Georgios Gousios. 2013. The GHTorent dataset and tool suite. In Proc. Conf.

Mining Software Repositories (MSR). IEEE, 233–236.
[48] Egon Guba. 1979. Naturalistic inquiry. Improving Human Performance Qtrly.

(1979).
[49] Mariam Guizani, Thomas Zimmermann, Anita Sarma, and Denae Ford. 2022.

Attracting and retaining oss contributors with a maintainer dashboard. In Int’l
Conf. on Software Engineering: Software Engineering in Society (ICSE-SEIS).

[50] Reza Hadi Mogavi, Ehsan-Ul Haq, Sujit Gujar, Pan Hui, and Xiaojuan Ma. 2022.
More Gami�cation Is Not Always Better: A Case Study of Promotional Gami�ca-
tion in a Question Answering Website. Proc. of the Human-Computer Interaction
(2022).

[51] Hideaki Hata, Taiki Todo, Saya Onoue, and Kenichi Matsumoto. 2015. Charac-
teristics of sustainable oss projects: A theoretical and empirical study. In Proc.
Workshop Cooperative and Human Aspects of Software Engineering (CHASE).
IEEE.

[52] Hao He, Haonan Su, Wenxin Xiao, Runzhi He, and Minghui Zhou. 2022. GFI-bot:
automated good �rst issue recommendation on GitHub. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE). ACM, 1751–1755.

[53] A Healy and J Pate. 2009. Asymmetry and incomplete information in an experi-
mental volunteer’s dilemma. In Int’l Congress on Modelling and Simulation.

[54] Johannes Henkel and Amer Diwan. 2005. CatchUp! Capturing and replaying
refactorings to support API evolution. In Proc. Int’l Conf. Software Engineering
(ICSE). 274–283.

[55] Qiaona Hong, Sunghun Kim, Shing Chi Cheung, and Christian Bird. 2011. Un-
derstanding a developer social network and its evolution. In Proc. Int’l Conf.
Software Maintenance (ICSM). IEEE, 323–332.

[56] Yuekai Huang, Junjie Wang, Song Wang, Zhe Liu, Dandan Wang, and Qing
Wang. 2021. Characterizing and Predicting Good First Issues. In Proc. Int’l Symp.
Empirical Software Engineering and Measurement (ESEM). 1–12.

[57] Giuseppe Ia�aldano, Igor Steinmacher, Fabio Calefato, Marco Gerosa, and Filippo
Lanubile. 2019. Why do developers take breaks from contributing to OSS
projects? A preliminary analysis. arXiv preprint arXiv:1903.09528 (2019).

[58] Daniel Izquierdo-Cortazar, Gregorio Robles, Felipe Ortega, and Jesus M
Gonzalez-Barahona. 2009. Using software archaeology to measure knowledge
loss in software projects due to developer turnover. In Proc. Hawaii Int’l Conf.
System Sciences (HICSS). IEEE, 1–10.

[59] Anita Kopányi-Peuker. 2019. Yes, I’ll do it: A large-scale experiment on the
volunteer’s dilemma. Journal of Behavioral and Experimental Economics 80
(2019), 211–218.

[60] Raula Gaikovina Kula, Daniel M German, Ali Ouni, Takashi Ishio, and Katsuro
Inoue. 2018. Do developers update their library dependencies? Empirical
Software Engineering 23, 1 (2018), 384–417.

[61] Piergiorgio Ladisa, Henrik Plate, Matias Martinez, and Olivier Barais. 2022.
Taxonomy of attacks on open-source software supply chains. arXiv preprint
arXiv:2204.04008 (2022).

[62] Enrique Larios Vargas, Maurício Aniche, Christoph Treude, Magiel Bruntink,
and Georgios Gousios. 2020. Selecting third-party libraries: The practitioners’
perspective. In Proc. Int’l Symposium Foundations of Software Engineering (FSE).
ACM, 245–256.

[63] Meir M Lehman. 1980. Programs, life cycles, and laws of software evolution.
Proc. IEEE 68, 9 (1980), 1060–1076.

[64] Manny M Lehman. 1996. Laws of software evolution revisited. In European
Workshop on Software Process Technology. Springer, 108–124.

[65] Shmuel Leshem and Avraham Tabbach. 2016. Solving the Volunteer’s Dilemma:
The E�ciency of Rewards Versus Punishments. American Law and Econ. Rev.
(2016).

[66] Sarah Lewis. 2015. Qualitative inquiry and research design: Choosing among
�ve approaches. Health promotion practice 16, 4 (2015), 473–475.

[67] Bin Lin, Gregorio Robles, and Alexander Serebrenik. 2017. Developer turnover in
global, industrial open source projects: Insights from applying survival analysis.
In Proc. Int’l Conf. Global Software Engineering (ICGSE). IEEE, 66–75.

[68] Yvonna S Lincoln and Egon G Guba. 1985. Naturalistic inquiry. sage.
[69] Shakun D Mago and Jennifer Pate. 2022. Greed and fear: Competitive and

charitable priming in a threshold volunteer’s dilemma. Economic Inquiry (2022).
[70] Bernd Marcus and Astrid Schütz. 2005. Who are the people reluctant to partici-

pate in research? Personality correlates of four di�erent types of nonresponse
as inferred from self-and observer ratings. Journal of personality (2005).

[71] Matthew B Miles, A Michael Huberman, and Johnny Saldana. 2014. Fundamen-
tals of Qualitative Data Analysis. Sage Los Angeles, CA.

[72] Courtney Miller, Sophie Cohen, Daniel Klug, Bogdan Vasilescu, and Christian
KaUstner. 2022. “Did you miss my comment or what?” Understanding toxicity
in open source discussions. In Proc. Int’l Conf. Software Engineering (ICSE).

[73] Courtney Miller, David Gray Widder, Christian Kästner, and Bogdan Vasilescu.
2019. Why do people give up �ossing? a study of contributor disengagement in
open source. In IFIP International Conference on Open Source Systems.

1292

https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exploring-the-dependencies-of-a-repository
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exploring-the-dependencies-of-a-repository
https://docs.github.com/en/code-security/supply-chain-security/understanding-your-software-supply-chain/exploring-the-dependencies-of-a-repository

“We Feel Like We’re Winging It:” A Study on Navigating Open-Source Dependency Abandonment ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

[74] Suhaib Mujahid, Rabe Abdalkareem, and Emad Shihab. 2022. What are the
characteristics of highly-selected packages? A case study on the npm ecosystem.
arXiv preprint arXiv:2204.04562 (2022).

[75] Suhaib Mujahid, Diego Elias Costa, Rabe Abdalkareem, Emad Shihab, Mo-
hamed Aymen Saied, and Bram Adams. 2021. Toward using package centrality
trend to identify packages in decline. IEEE Transactions on Engineering Mgmt.
(2021).

[76] Mathieu Nassif and Martin P Robillard. 2017. Revisiting turnover-induced
knowledge loss in software projects. In Proc. Int’l Conf. Software Maintenance
and Evolution (ICSME). IEEE, 261–272.

[77] Lorelli S Nowell, Jill M Norris, Deborah E White, and Nancy J Moules. 2017.
Thematic analysis: Striving to meet the trustworthiness criteria. International
journal of qualitative methods 16, 1 (2017), 1609406917733847.

[78] npm Docs. 2022. npm-deprecate. https://docs.npmjs.com/cli/v6/commands/
npm-deprecate#synopsis. Accessed: 2022-07-07.

[79] npm Inc. 2018. This year in JavaScript: 2018 in review and npm’s predictions for
2019. https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-
and-npms-predictions-for-2019-3a3d7e5298ef. Accessed: 2022-08-19.

[80] Rick Ossendrijver, Stephan Schroevers, and Clemens Grelck. 2022. Towards
automated library migrations with error prone and refaster. In Proc. Symp.
Applied Computing (SAC). 1598–1606.

[81] David Lorge Parnas. 1994. Software aging. In Proc. Int’l Conf. Software Engineer-
ing (ICSE).

[82] Je� H Perkins. 2005. Automatically generating refactorings to support API
evolution. In Proc. Workshop on Program Analysis for Software Tools and Engi-
neering.

[83] Gustavo Pinto, Igor Steinmacher, and Marco Aurélio Gerosa. 2016. More com-
mon than you think: An in-depth study of casual contributors. In Proc. Int’l
Conf. Software Analysis, Evolution, and Reengineering (SANER). IEEE.

[84] Gauthami Polasani. 2022. Announcing the private beta of FOSSA Risk Intelli-
gence. https://fossa.com/blog/announcing-private-beta-risk-intelligence/.

[85] Gede Artha Azriadi Prana et al. 2021. Out of sight, out of mind? How vulnerable
dependencies a�ect open-source projects. Empirical Software Engineering (2021).

[86] Huilian Sophie Qiu et al. 2019. Going farther together: The impact of social
capital on sustained participation in open source. In Proc. Int’l Conf. Software
Engineering (ICSE). IEEE, 688–699.

[87] Huilian Sophie Qiu, Yucen Lily Li, Susmita Padala, Anita Sarma, and Bogdan
Vasilescu. 2019. The signals that potential contributors look for when choosing
open-source projects. Proc. of the ACM on Human-Computer Interaction (2019).

[88] Peter C Rigby, Yue Cai Zhu, Samuel M Donadelli, and Audris Mockus. 2016.
Quantifying and mitigating turnover-induced knowledge loss: case studies of
Chrome and a project at Avaya. In Proc. Int’l Conf. Software Engineering (ICSE).

[89] Romain Robbes, Mircea Lungu, and David Röthlisberger. 2012. How do devel-
opers react to API deprecation? The case of a Smalltalk ecosystem. In Proc. Int’l
Symposium Foundations of Software Engineering (FSE). 1–11.

[90] Steven G Rogelberg et al. 2003. Pro�ling active and passive nonrespondents to
an organizational survey. Jrnl. of Applied Psych. (2003).

[91] Stephen R. Schach, Bo Jin, David R. Wright, Gillian Z. Heller, and A. Je�erson
O�utt. 2002. Maintainability of the Linux kernel. IEE Proceedings-Software
(2002).

[92] Naomichi Shimada, Tao Xiao, Hideaki Hata, Christoph Treude, and Kenichi
Matsumoto. 2022. GitHub Sponsors: exploring a new way to contribute to open
source. In Proc. Int’l Conf. Software Engineering (ICSE). ACM, 1058–1069.

[93] Vandana Singh, Brice Bongiovanni, and William Brandon. 2022. Codes of
conduct in Open Source Software—for warm and fuzzy feelings or equality in
community? Software Quality Journal 30, 2 (2022), 581–620.

[94] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles.
2015. Social barriers faced by newcomers placing their �rst contribution in
open source software projects. In Proc. Conf. Computer Supported Cooperative

Work (CSCW). 1379–1392.
[95] Igor Steinmacher, Tayana Uchoa Conte, Christoph Treude, and Marco Aurélio

Gerosa. 2016. Overcoming open source project entry barriers with a portal for
newcomers. In Proc. Int’l Conf. Software Engineering (ICSE).

[96] Igor Steinmacher, Marco Aurelio Graciotto Silva, Marco Aurelio Gerosa, and
David Redmiles. 2015. A systematic literature review on the barriers faced by
newcomers to open source software projects. Information and Software Tech.
(2015).

[97] Igor Steinmacher, Christoph Treude, and Marco Aurelio Gerosa. 2018. Let me in:
Guidelines for the successful onboarding of newcomers to open source projects.
IEEE Software 36, 4 (2018), 41–49.

[98] Cedric Teyton, Jean-Remy Falleri, and Xavier Blanc. 2012. Mining library
migration graphs. In Conf. on Reverse Engineering. IEEE, 289–298.

[99] Cédric Teyton, Jean-Rémy Falleri, Marc Palyart, and Xavier Blanc. 2014. A study
of library migrations in java. Journal of Software: Evolution and Process (2014).

[100] Martin Thoma. 2021. Dependency vendoring. https://medium.com/plain-and-
simple/dependency-vendoring-dd765be75655. Accessed: 2022-08-04.

[101] Parastou Tourani, Bram Adams, and Alexander Serebrenik. 2017. Code of
conduct in open source projects. In Proc. Int’l Conf. Software Analysis, Evolution,
and Reengineering (SANER). IEEE, 24–33.

[102] Asher Trockman, Shurui Zhou, Christian Kästner, and Bogdan Vasilescu. 2018.
Adding sparkle to social coding: an empirical study of repository badges in the
npm ecosystem. In Proc. Int’l Conf. Software Engineering (ICSE). 511–522.

[103] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. In�uence of social and
technical factors for evaluating contribution in GitHub. In Proc. Int’l Conf. Soft-
ware Engineering (ICSE).

[104] Jason Tsay, Laura Dabbish, and James Herbsleb. 2014. Let’s talk about it: eval-
uating contributions through discussion in GitHub. In Proc. Int’l Symposium
Foundations of Software Engineering (FSE). 144–154.

[105] Marat Valiev, Bogdan Vasilescu, and James Herbsleb. 2018. Ecosystem-level
determinants of sustained activity in open-source projects: A case study of
the PyPI ecosystem. In Proc. Europ. Software Engineering Conf./Foundations of
Software Engineering (ESEC/FSE). 644–655.

[106] Georg Von Krogh, Sebastian Spaeth, and Karim Lakhani. 2003. Community,
joining, and specialization in open source software innovation: a case study.
Research Policy (2003).

[107] Wikipedia. 2022. Volunteer’s Dilemma. https://en.wikipedia.org/wiki/Volunteer’
s_dilemma. Accessed: 2022-09-11.

[108] Ling Wu, Qian Wu, Guangtai Liang, Qianxiang Wang, and Zhi Jin. 2015. Trans-
forming code with compositional mappings for API-library switching. In Conf.
Computer Software and Applications, Vol. 2. IEEE, 316–325.

[109] Wenxin Xiao et al. 2022. Recommending good �rst issues in GitHub OSS projects.
In Proc. Int’l Conf. Software Engineering (ICSE).

[110] Liguo Yu, Stephen R Schach, and Kai Chen. 2005. Measuring the maintainability
of open-source software. In Empirical Software Engineering. IEEE.

[111] Nusrat Zahan et al. 2022. What are weak links in the NPM supply chain?. In Proc.
Int’l Conf. Software Engineering: Software Engineering in Practice (ICSE-SEIP).

[112] Xunhui Zhang et al. 2022. Who, what, why and how? towards the monetary
incentive in crowd collaboration: A case study of GiHhub’s sponsor mechanism.
In Proc. Conf. Human Factors in Computing Systems (CHI). ACM, 1–18.

[113] Minghui Zhou and Audris Mockus. 2014. Who will stay in the FLOSS com-
munity? Modeling participant’s initial behavior. IEEE Trans. Softw. Eng. (TSE)
(2014).

[114] Yuming Zhou and Baowen Xu. 2008. Predicting the maintainability of open
source software using design metrics. Wuhan University Jrnl. of Natural Sciences
(2008).

Received 2023-02-02; accepted 2023-07-27

1293

https://docs.npmjs.com/cli/v6/commands/npm-deprecate#synopsis
https://docs.npmjs.com/cli/v6/commands/npm-deprecate#synopsis
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://medium.com/npm-inc/this-year-in-javascript-2018-in-review-and-npms-predictions-for-2019-3a3d7e5298ef
https://fossa.com/blog/announcing-private-beta-risk-intelligence/
https://medium.com/plain-and-simple/dependency-vendoring-dd765be75655
https://medium.com/plain-and-simple/dependency-vendoring-dd765be75655
https://en.wikipedia.org/wiki/Volunteer's_dilemma
https://en.wikipedia.org/wiki/Volunteer's_dilemma

	Abstract
	1 Introduction
	2 Related Work
	3 Research Design
	3.1 Identifying and Recruiting Participants
	3.2 Interview Protocol
	3.3 Data Collection and Analysis
	3.4 Validity Check
	3.5 Limitations

	4 Impacts of Abandonment
	5 Identifying Abandonment
	6 Preparing for and Addressing Abandonment
	6.1 Considerations Before Adoption
	6.2 Preparations Once Adopted
	6.3 Solutions to Abandonment

	7 Discussion: Towards More Sustainable Use of Open Source
	7.1 The Cost of Dependency Abandonment
	7.2 Aspirational Cost Reduction Strategies
	7.3 The Volunteer's Dilemma and Reducing Community Effort

	8 Conclusion
	9 Data Availability
	Acknowledgments
	References

