
Semantic Debugging

Martin Eberlein
Humboldt-Universität zu Berlin

Berlin, Germany
martin.eberlein@hu-berlin.de

Marius Smytzek
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

marius.smytzek@cispa.de

Dominic Steinhöfel
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

dominic.steinhoefel@cispa.de

Lars Grunske
Humboldt-Universität zu Berlin

Berlin, Germany
grunske@hu-berlin.de

Andreas Zeller
CISPA Helmholtz Center for

Information Security
Saarbrücken, Germany

zeller@cispa.de

ABSTRACT

Why does my program fail? We present a novel and general tech-
nique to automatically determine failure causes and conditions,
using logical properties over input elements: “The program fails if
and only if int(⟨length⟩) > len(⟨payload⟩) holds—that is, the given
⟨length⟩ is larger than the ⟨payload⟩ length.” Our AVICENNA pro-
totype uses modern techniques for inferring properties of passing
and failing inputs and validating and refining hypotheses by having
a constraint solver generate supporting test cases to obtain such
diagnoses. As a result, AVICENNA produces crisp and expressive
diagnoses even for complex failure conditions, considerably im-
proving over the state of the art with diagnoses close to those of
human experts.

CCS CONCEPTS

• Software and its engineering→ Software testing and debug-

ging; • Theory of computation → Grammars and context-free

languages; Oracles and decision trees; Active learning.

KEYWORDS

program behavior, debugging, behavior explanation, testing

ACM Reference Format:

Martin Eberlein,Marius Smytzek, Dominic Steinhöfel, Lars Grunske, andAn-
dreas Zeller. 2023. Semantic Debugging. In Proceedings of the 31st ACM Joint

European Software Engineering Conference and Symposium on the Foun-

dations of Software Engineering (ESEC/FSE ’23), December 3–9, 2023, San

Francisco, CA, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3611643.3616296

1 INTRODUCTION

When software fails, one needs to debug it—find the error in the
code that causes the failure and fix it. Before digging into the code,
however, one must first identify the circumstances under which
the failure occurs. Such circumstances give important hints on

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616296

⟨heartbeat-request ⟩ ::= 0x1 ⟨length⟩ ⟨payload ⟩ ⟨padding⟩

⟨heartbeat-response⟩ ::= 0x2 ⟨length⟩ ⟨payload ⟩ ⟨padding⟩

⟨length⟩ ::= ⟨int ⟩

⟨payload ⟩ ::= n | ⟨byte⟩ ⟨payload ⟩

⟨padding⟩ ::= n | ⟨byte⟩ ⟨padding⟩

Figure 1: Syntax of TLS Heartbeat exchanges

the failure cause, and thus how and where to fix the bug; provide
insights into how severe the problem is; and help producing exact

fixes, preventing patches that only fix a part of the problem.
Let us illustrate the role of failure circumstances referring to the

well-knownHeartbleed problem. In versions between 2012 and 2014,
TLS servers were vulnerable to the Heartbleed attack, in which an
attacker could extract internal memory contents from a server. The
attack was based on the TLS Heartbeat protocol, in which a client
checks whether a server is still alive by sending it some payload
string and expecting the same payload to be returned.

The elements of a Heartbeat client request and server response
are shown in Figure 1. The client sends a 0x1 byte, followed by the
length of the payload, and then the payload itself; extra padding
bytes are used to extend the request to the data frame length. The
server responds with a 0x2 byte, followed by the same payload,
indicating that it has received the request.

The Heartbleed attack now consisted of having the declared

payload length differ from the actual payload length. After send-
ing a ⟨length⟩ value of, say, 4,000, and a five-character payload of
"Hello", the server would reply with "Hello"—but followed by an-
other 3,995 bytes that would happen to reside in its memory behind
the payload string. Such “over-read” bytes can contain arbitrary
information about the server state, including sensitive information
such as unencrypted passwords and certificates.

Heartbleed was found by fuzzing TLS servers in 2014 [27]. Indeed,
simply feeding the grammar from Figure 1 into any grammar-based
fuzzer (e.g., [2, 6, 11, 12, 21, 38, 44, 45]) immediately produces a
request where ⟨length⟩ and the length of the ⟨payload⟩ differ, say

⟨attack-request ⟩ ::= 0x1 0x0123 "hello" 0x0 . . .

Sending ⟨attack-request⟩ to a server with a memory sanitizer
enabled would instantly reveal the invalid memory access. The
vulnerability has been present since 2012, and administrators all
over the world rushed to patch and update the server software.

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

438

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-4268-7632
https://orcid.org/0000-0002-4899-9031
https://orcid.org/0000-0003-4439-7129
https://orcid.org/0000-0002-8747-3745
https://orcid.org/0000-0003-4719-8803
https://doi.org/10.1145/3611643.3616296
https://doi.org/10.1145/3611643.3616296
https://doi.org/10.1145/3611643.3616296
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616296&domain=pdf&date_stamp=2023-11-30

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Martin Eberlein, Marius Smytzek, Dominic Steinhöfel, Lars Grunske, and Andreas Zeller

Failing
Program Inputs

in2

Determine Relevant
Input Elements

Learn failure-related
Patterns

Failure
Circumstances

Negate ConstraintsGenerate New Inputs
to Refine Theory

Input Grammar

Pattern CatalogueMachine Learning

ISLa +
Z3 SMT Solver

AVICENNA

in1

1 2

34

out

Figure 2: How AVICENNA works. Starting with an input grammar (in1) and a failing input (in2), AVICENNA automatically

determines the failure circumstances. Then, AVICENNA iteratively refines its failure hypothesis through repeated experiments.

To learn the failure-inducing input constraints, AVICENNA leverages both generative models and predictive models to satisfy

constraints over grammar elements and to detect relations of input elements, respectively. Ultimately, AVICENNA obtains a

theory of the failure circumstances (out) that explains and predicts when the behavior in question occurs.

To fix the problem, we need to know the exact circumstances

under which the problem occurs—in our case, something along
the lines of “The given payload length is different from the ac-
tual payload length”—such that we can characterize, locate, and
fix the failure. Recently, two novel approaches for obtaining such
circumstances automatically have been presented:

• ALHAZEN by Kampmann et al. [20] uses repeated experi-
ments to determine whether specific properties of input el-
ements correlate with failure. The set of properties is fixed
to existence, length, maximal code point, and numeric inter-
pretation, and ALHAZEN can do a good job if a conjunction
of individual properties causes a failure. ALHAZEN, however,
does not check for relationships between properties, such
as ⟨length⟩ and the length of ⟨payload⟩. The failure circum-
stances produced by ALHAZEN therefore only relate to the
⟨payload⟩ length in isolation:

len
(

⟨payload⟩
)

≤ 16357 (1)

While Equation (1) (“The failure occurs if the ⟨payload⟩ has
less than 16,357 characters”) is a correct necessary condition
(if ⟨payload⟩ is longer, the data frame becomes invalid), it is
not sufficient for the failure to occur. Nor does it give hints
on how to fix the failure.

• ISLearn described by Steinhöfel and Zeller [39] learns se-
mantic properties over input elements that hold for all inputs
observed. For this purpose, it checks inputs for patterns of
these properties that match all observed inputs. In our ex-
ample, the pattern

int
(

$1
)

> len
(

$2
)

(2)

instantiated with $1 = ⟨length⟩ and $2 = ⟨payload⟩ applies
to all failing Heartbleed inputs and would be returned by

ISLearn as a common input property:

int
(

⟨length⟩
)

> len
(

⟨payload⟩
)

(3)

Equation (3) precisely captures the failure circumstances.
However, it is buried in hundreds1 of additional coinciden-
tal instantiations that also hold for the given failing inputs,
such as len

(

⟨padding⟩
)

> len
(

⟨payload⟩
)

or len
(

⟨padding⟩
)

> int
(

⟨length⟩
)

. In contrast to ALHAZEN, ISLearn has no
mechanism to refine diagnoses through experiments.

In this paper, we present AVICENNA2, a precise, general, and ex-
tensible approach to determine failure circumstances automatically
(Figure 2). AVICENNA builds on the idea that one can decompose the
input into individual elements using a grammar and that properties
of these input elements can precisely capture failure circumstances.
In addition, AVICENNA makes three novel contributions, extending
the state of the art:

Quickly determining relevant elements. To narrow down the
search space in the (potentially large) set of input elements,
AVICENNA uses Shapley values [26], a mechanism used to
explain AI decisions, to determine which input elements and

derived properties contribute most to the occurrence of failures.

Only these are considered for deriving failure hypotheses,
allowing for efficient use even of complex patterns.
In our example, AVICENNA quickly determines that ⟨length⟩
and len

(

⟨payload⟩
)

contribute most to failure occurrence.
⟨payload⟩ by itself contributes little (other than for its length),
⟨padding⟩ not at all. To the best of our knowledge, AVICENNA

1450 in our experiments; see Table 4.
2Ibn Sı̄nā (Latinized as Avicenna; 980–1037) was one of the most significant physicians,
astronomers, philosophers, and writers of the Islamic Golden Age. He was one of
the earliest proponents of the scientific method of experimentation: In his “Book
of Healing” (Kitāb al-Shifā) on science and philosophy, he explained that the ideal
situation is when one finds that a “relation holds between the terms, which would
allow for absolute, universal certainty.” [48]

439

Semantic Debugging ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

is the first debugging approach to determine the relevance of

input elements for the failure using techniques from explain-

able AI.

Reasoning over passing and failing runs. AVICENNAmakes use
of ISLearn to infer failure-inducing patterns. AVICENNA, how-
ever, makes use of both passing and failing inputs and thus
learns input properties that hold for failing runs, but not for
passing runs. Hence, coincidental input properties that hold
for all inputs are eliminated in the first place, narrowing
down the set of candidate properties towards those related
to failures, including Equation (3). To the best of our knowl-
edge, AVICENNA is the first debugging approach to detect

arbitrary failure-related patterns in inputs.

Logical refinement. To further assess diagnosis candidates, AVI-
CENNA uses the ALHAZEN approach to generate additional

test cases. But while the ALHAZEN generator is limited to its
four hard-coded input properties, AVICENNA makes use of
the ISLa constraint language and solver [39], allowing to ex-
press and solve even complex conditions over input elements.
This way, AVICENNA can generate hundreds of test inputs
satisfying the candidate diagnoses learned by ISLearn. Only
Equation (3) reliably produces inputs that cause the failure
and is therefore retained; the other “coincidental” properties
do not and are thus eliminated.
To the best of our knowledge, AVICENNA is the first debug-
ging approach to determine diagnoses by logical reasoning

and experimentation over input elements. We therefore call
AVICENNA a semantic debugging approach in contrast to lex-

ical/syntactical approaches like input reduction [13, 40, 42]
and ML-based approaches like ALHAZEN.

The Heartbleed failure circumstance as isolated by AVICENNA and
validated by hundreds of test inputs thus reads:

int
(

⟨length⟩
)

> len
(

⟨payload⟩
)

(4)

This failure circumstance is 100% precise—the Heartbleed failure (as
a memory overread) occurs if and only if this condition is met. It
could also be used by an input sanitizer to precisely predict and pre-
vent Heartbleed attacks. This is in contrast to ALHAZEN’s diagnosis
in Equation (1), which cannot separate attacks from legitimate re-
quests, and the ISLearn diagnosis, embedding the correct property
in a myriad of coincidental properties.

With this single failure condition and the test cases, AVICENNA

(1) provides important hints on the nature of the problem;
(2) makes sure that any fix will be well-tested and validated;
(3) supplies a condition for input checkers to detect attacks;
(4) ensures a great start for locating and fixing the fault.

To achieve all this, AVICENNA leverages recent advances in input
specification, input generation, and input inference—notably, the
ISLa language and input generator [39], which generates inputs
satisfying constraints over grammar elements, and the ISLearn in-
put invariant learner [39], which detects ISLa properties in given
inputs. But while ISLa and ISLearn were designed to produce seman-
tically valid inputs, AVICENNA shows that they also enable powerful
automated debugging approaches. In our evaluation, AVICENNA de-
termines crisp failure conditions that are much shorter yet more

precise than ALHAZEN or ISLearn, closely matching diagnoses col-
lected from human experts. AVICENNA and all experimental data is
available as open source (Section 8).

2 BACKGROUND AND RELATED WORK

Automated debugging collectively refers to localization [19, 24, 29,
31, 46, 49, 53], understanding [13, 17, 20, 22, 23, 35, 39, 40, 42, 52],
explaining [20, 39], and fixing [14, 25, 28, 36, 50] a faulty system.
Automated tools that guide developers toward correcting erroneous
program behavior can significantly reduce the cost of software
development and improve the overall quality of the software.

2.1 Program Slicing

One of the first seminal automated debugging techniques is program
slicing, introduced byWeiser [46]. A slice is the set of program state-
ments that can be influenced from a given statement (forward slice)
or that may have influenced a specific statement (backward slice):
“The NULL value in Line 20 comes from Line 18, which executed
because of the condition in Line 10.” In debugging, a backward slice
from a failing statement helps narrow down possible causes in the
program code—also by eliminating those parts that could not have
contributed to the failure. Program slices, however, explain failures
in terms of program code—not as (input) circumstances that exist
independently of statements and variables.

2.2 Statistical Debugging

Statistical debugging techniques [19, 24, 53] identify execution fea-
tures that correlate with failure, such as individual code lines mostly
executed in failing runs: “Lines 10, 11, and 50 are executed only in
failing runs.” The resulting statistical models thus expose relation-
ships between specific program behavior and eventual success or
failure. However, there may be multiple execution features corre-
lating with failures, and then the developer must determine which
of these may be in error. Also, to prevent overfitting, statistical
debugging may need comprehensive sets of passing and failing runs,
which may not exist in practice.

2.3 Delta Debugging

Automated debugging techniques can be made much more precise
if they can generate additional inputs to narrow down possible
failure causes. One seminal example of such experimental tech-
niques is Delta Debugging [52], a strategy to effectively reduce
failure-inducing inputs: “The failing input can be reduced to the
two characters ‘.’ and ‘x’.” Delta Debugging assumes an automated

test that determines whether a (reduced) input still produces the
failure and whose outcome thus guides the reduction process. In
contrast to the above techniques, its result does not refer to the
code but, instead, a reduced input that still reproduces the failure.

2.4 Leveraging Input Syntax

Knowing the input structure can make experimental debugging
techniques far more efficient and also provide better diagnoses.
To describe input languages, Context-Free Grammars (CFGs) are
the most popular formalism, well-studied in theoretical computer
science, compiler design, and linguistics [18]. Using input grammars,

440

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Martin Eberlein, Marius Smytzek, Dominic Steinhöfel, Lars Grunske, and Andreas Zeller

one can extend reduction to structured inputs with Perses [40], C-
reduce [35], HDD [17] and HDDr [23, 42]. All these are significantly
faster (and often more precise) than lexical Delta Debugging.

While the above approaches still reduce a given failing input
into a shorter failing input, the DDSET algorithm [13] aims to find a
pattern that characterizes the failure. In the pattern, nonterminals

describe sequences that can take any value as defined by the gram-
mar, thus abstracting over specific contents: “The failure occurs for
any input of the form ⟨expr⟩ * ⟨expr⟩”.

2.5 Learning Relevant Input Properties

ALHAZEN [20] requires a set of labeled inputs to determine the cir-
cumstances of a program’s failure automatically. It uses a grammar
to parse the inputs into individual syntactical features, such as the
length of an element or the presence of specific elements. To form
the first debugging hypotheses, ALHAZEN needs at least one initial
failing input. This hypothesis is shaped by first deconstructing the
initial inputs into features with the help of the grammar and utiliz-
ing these features to learn a decision tree. Next, ALHAZEN uses the
tree to learn associations between the input features and program
failure. Then, ALHAZEN attempts to refine the first hypothesis in
an iterative process: The decision tree—representing the current
explanatory theory—and the grammar are used to construct new
inputs to probe the program. These new samples can then be con-
sidered to refine the hypothesis in the decision tree.

Eventually, ALHAZEN presents its final theory relating input fea-
tures with the faulty program behavior: “The failure occurs when-
ever the length of the ⟨command-line⟩ element exceeds 264”. This
way, ALHAZEN extends the state of the art beyond DDSET, not only
generalizing the syntactic parts of the input but also determining
which input features contribute to the failure.

2.6 Dynamic Invariants

During debugging, having a specification of the correct behavior of
the program is beneficial. If such a specification is formal, automated
debugging techniques can leverage it to guide the process. Formally
specified pre- and postconditions as well as data invariants can
significantly reduce debugging effort—if one knows, for instance,
that during an execution, the precondition of some function was
satisfied, but not its postcondition, then we can narrow down the
search to the execution of said function.

After all, how can we obtain such specifications? One seminal
work in specification mining is the DAIKON dynamic invariant de-
tector [8], which takes a set of (passing) runs and for all function
arguments and returns, determines from a pattern library whether
there are specific properties that hold for these arguments and
returns. If a function y = sqrt(x), for instance, is always called
with positive values of x, it can deduce the invariants x > 0, y > 0,
and even x = y ∗ y. Today’s program synthesis techniques [16]
extend over DAIKON by synthesizing complex formulas that capture
relationships between input and output variables.

However, one downside of all such dynamic techniques is that
the mined specifications may overfit to the given runs. Assuming
that x = 0 is a valid argument for sqrt(x), for instance, the above
invariants overspecialize. Only if DAIKON and the like see an in-
vocation sqrt(0) will we get the correct invariants x ≥ 0 and

y ≥ 0. One may attempt to mitigate this problem by generating test

inputs. Still, then we run into the problem of potentially violating
the very preconditions we want to mine in the first place: From
an invocation of sqrt(-1), DAIKON and the like may have lots of
undefined behavior from which to learn.

2.7 Input Invariants

Recently, the concepts of specifying and learning invariants were
extended to the system level, which allows expressing pre- and
postconditions over system inputs. The ISLa language [39] com-
bines a context-free grammar with constraints as predicates over
nonterminals. Given the grammar in Figure 1, for instance, the
ISLa constraint “int

(

⟨length⟩
)

= len
(

⟨payload⟩
)

” expresses that the
⟨length⟩ field should hold the length of the ⟨payload⟩ field. This way,
ISLa leverages the simplicity of CFGs while significantly extending
their expressiveness.

The ISLa tool allows to produce valid inputs that satisfy the given
constraints (using an SMT solver). It can also check given inputs
against an ISLa specification;mutate inputs while maintaining valid-
ity; and repair inputs to make them valid. The constraint language
allows addressing grammar elements with universal and existential
quantifiers, relating their positions with structural predicates, and
constraining their values using SMT-LIB formulas, making ISLa a
robust system for test generation and black-box fuzzing.

2.8 Learning Input Constraints

Along with ISLa [39], the authors also describe ISLearn, a pattern-
based approach for mining constraints from existing inputs. ISLearn
follows the DAIKON approach, using a configurable catalog of com-
mon constraint patterns. It instantiates these over all inputs and
input elements, retaining those candidates that hold for all given
inputs: “In all inputs seen, len

(

⟨payload⟩
)

≤ 16357 holds.”
In contrast to DAIKON and like dynamic specification miners,

however, ISLearn can make use of generated inputs in the first place,
leveraging ISLa as a producer. Hence, even given only a partial spec-
ification (say, only the grammar), one can first run ISLa to produce

a myriad of inputs and then have ISLearn infer the constraints only
from the valid inputs that are accepted by the program under test.
This pipeline of test generation and specification mining works at
the system level because programs are expected to explicitly reject

invalid inputs (which specification mining can then ignore)—an
assumption that does not hold at the unit level. So far, neither ISLa
nor ISLearn has been used for debugging purposes.

3 APPROACH

In this section, we present AVICENNA, our precise, general, and ex-
tensible approach to determine failure circumstances automatically.
The key idea is to leverage both generative and predictive models to
satisfy constraints over grammar elements and to detect arbitrary
(subject to the catalog patterns) relations of input elements. For
this, AVICENNA makes use of four building blocks:

• ISLa’s specification language allows AVICENNA to express
even complex failure circumstances as predicates over input
elements.

• The ISLearn tool allows AVICENNA to learn input properties
that are common across all failing inputs.

441

Semantic Debugging ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

• The ISLa tool allows AVICENNA to produce valid inputs—
notably inputs that fulfill potential failure-inducing proper-
ties, thus allowing for systematic experimentation.

• Finally, AVICENNA follows ALHAZEN in using a feedback loop
to narrow down failure causes with systematic experiments.

The combination of learning and generating techniques enables AVI-
CENNA to produce a precise predicate that pinpoints the circumstances

under which a program fails.

AVICENNA starts with a program, a grammar for the input for-
mat, and a set of initial inputs (Figure 2 8=1 & 8=2). To locate and
determine the root causes of a program’s crash, AVICENNA requires
at least one failing input. AVICENNA will automatically generate ad-
ditional failing inputs to strengthen its hypothesized diagnosis. The
grammar allows us to associate syntactical features and semantic
properties with the observed program behavior.

To detect arbitrary failure-related explanations of the failure
circumstances, we proceed in four steps:

(1) We determine the most relevant input elements of the pro-
gram’s failure (Section 3.1).

(2) We instantiate patterns that capture arbitrary relations of
the observed failure (Section 3.2).

(3) We produce new inputs to refine and strengthen our hypoth-
esis (Section 3.3), and

(4) We repeat this procedure until a stopping criterion is met
(Section 3.4).

3.1 Determining Relevant Input Properties

In contrast to approaches like ALHAZEN, AVICENNA checks passing
and failing inputs for patterns over input elements and properties.
We use these patterns to capture arbitrary relations between input
elements and the circumstance of the program’s failure. AVICENNA
retains those patterns that apply to all or at least the majority of
failing inputs, yet not to the passing inputs, and thus makes a di-
agnosis candidate. However, instantiating dozens of patterns with
hundreds of input elements and derived values means checking
many combinations. Thus, to narrow the search space and the num-
ber of possible pattern matches, AVICENNA automatically focuses
only on the failure-inducing inputs’ essential characteristics. Our
tool achieves this by training amachine-learningmodel and explain-
ing its decisions with Shapley values. This mechanism allows us to
determine which input elements and derived properties contribute
most to a machine learning model’s prediction, i.e., the failure of a
program. Only those that contribute most are considered during
pattern instantiation, allowing for the efficient use even of complex
patterns (Figure 2, Activity 1).

AVICENNA starts by decomposing each input into its syntactical
constituents based on the grammar. The resulting feature vectors
and the information if the input is failure-inducing are then used to
train a machine learning model. The model eventually associates
the program’s failure with the occurrence of specific derivation
sequences, particularly non-terminals. To determine the features
that contribute most to the failure in question, AVICENNA employs
SHAP [26], a game-theoretic approach explaining the output of a
machine learning model based on Shapley values from coalitional
game theory. The goal of SHAP is to interpret the model’s outcome

by computing the contribution of each feature to the final predic-
tion. The final SHAP-value for a feature represents how much the
model’s prediction changes when we observe that feature. Using
these values as an indicator of non-terminals that contribute most
to the occurrence of a failure allows us to exclude irrelevant char-
acteristics. This procedure gives us a tremendous advantage over
state-of-the-art approaches like ISLearn.

Returning to our example, AVICENNA can quickly determine that
⟨length⟩ and ⟨payload⟩ contribute most to the failure occurrence.
⟨payload⟩, ⟨int⟩, and ⟨byte⟩ by themselves contribute little (other
than for its length), ⟨padding⟩ not at all.

3.2 Learning Failure Constraints with Pattern
Matching

AVICENNA learns failure-related constraints via pattern matching.

Steinhöfel et al. [39] showed that input invariants can be mined
from existing inputs. Building upon their original pattern-based
learner ISLearn, we derive complex semantic constraints that cap-
ture the observed failure. We reduce the computational complexity
of the pattern matcher by only considering the most relevant in-
put elements for the instantiation of pattern candidates, such as
⟨length⟩ and ⟨payload⟩.

Figure 2 shows that the learning and candidate generation phase
(Activity 2) instantiates selected patterns from a provided pattern

catalog based on the given initial inputs. In the first step, the pattern-
matcher instantiates non-terminal placeholders in quantifiers and
matches expression placeholder arguments, e.g., len($1) > num($8)

with ⟨length⟩ or ⟨payload⟩. This pattern states that the failure oc-
curs whenever the length of the matched non-terminal is larger
than some number $8 . The candidates after each instantiation phase
are approximately filtered using an ISLearn checker for schematic
formulas. Whenever most failure-inducing inputs satisfy an instan-
tiated pattern, AVICENNA retains that pattern.

Let us reconsider our initialHeartbleed example. Using AVICENNA,
a first failure diagnosis based on the initial inputs may be similar
to the following simple constraint:

len
(

⟨payload⟩
)

> 6 (5)

This constraint states that whenever the ⟨payload⟩ of a request is
larger than 6 characters, the program failure occurs. At this early
stage, the pattern int

(

⟨length⟩
)

> len
(

⟨payload⟩
)

and the above
constraint are equivalent regarding their capabilities to partition
the initial inputs into passing and failing ones. To improve this
initial diagnosis and learn the best failure-related constraint, we
need to conduct more experiments—with more inputs.

3.3 Validating Hypotheses through Experiments

The failure-related constraints computed initially may be far from
perfect. Because of the limited set of initial inputs, AVICENNA can
only make basic observations, often resulting in extreme overfitting
to the given inputs. To refine or refute the initial candidates, we
generate new inputs to strengthen the learned constraints. AVICENNA
generates new inputs according to the most promising extracted
failure hypotheses, i.e., constraints that best separate failing from
passing inputs. Using the extracted hypotheses allows us to ef-
ficiently guide the generation process and focus on the relevant

442

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Martin Eberlein, Marius Smytzek, Dominic Steinhöfel, Lars Grunske, and Andreas Zeller

aspects of the failing inputs. AVICENNA is based on the scientific
method: It tries to refute the initial diagnosis hypothesis by actively

generating new inputs that satisfy the constraints but do not result
in the program’s failure.

To this end, AVICENNA additionally negates the candidate con-
straints to (i) explore the boundaries of the input elements, (ii) ex-
pand the set of relevant input properties, and (iii) refine the sur-
roundings of the input elements. For instance, if both the presence
and the absence of the input element ⟨padding⟩ result in the failure
of the program, then the relevance of ⟨padding⟩ is diminished (Fig-
ure 2, Activity 3). Thus, we generate additional inputs both from
the original and negated constraints and assign them to the cate-
gories failing and passing based on the program’s behavior under
test. Note that we do not refine the current set of constraints by
direct manipulations. Instead, we refine our data set of passing and
failing inputs, which allows us to (i) concretize the set of relevant
input elements and (ii) infer more precise instantiations in the next
inference step.

To efficiently produce new inputs satisfying constraints, we use
the recently introduced ISLa fuzzer [39] (Figure 2, Activity 4). ISLa
not only allows us to produce new inputs but also to validate com-
plex constraints.

In our running example, we strengthen our initial hypothesis by
deriving and adding the following negated constraint:

len
(

⟨payload⟩
)

≤ 6 (6)

Hence, with the help of ISLa, AVICENNA will now produce inputs
that will have a payload of either less or euqal than 6 (for passing
inputs) or more than 6 (for failing inputs) characters. However, as
the length of the ⟨payload⟩ is only failure-inducing in combination
with the stated ⟨length⟩ value, AVICENNA quickly generates inputs
that do not satisfy the initial failing diagnosis.

3.4 Refining Hypotheses in a Feedback Loop

To refine the initial diagnosis (failure-related constraints), we repeat
the procedure of determining the most relevant input elements,
learning constraints, and generating additional inputs. By learning
and generating inputs alternately, we can infer, verify, and generalize
relations between input elements and properties. Most notably,
by also considering the negation of the constraints, we generate
adversarial inputs to falsify our candidate constraints possibly. After
only three iterations of the feedback loop, AVICENNA derives the
correct failure constraint for the Heartbleed example:

int
(

⟨length⟩
)

> len
(

⟨payload⟩
)

(7)

In general, the ideal instantiation will always be among the
possible candidate instantiations from the beginning (if it could be
derived from AVICENNA’s patterns). It will receive a significantly
better ranking with the generation of additional test inputs.

4 IMPLEMENTATION

AVICENNA, with the determination of the relevant input elements
and the feedback loop, is implemented in Python. We use the latest
versions of ISLa and ISLearn to generate and instantiate new failing
patterns. In addition, to reduce the computational complexity of the
pattern matcher, we pass ISLearn a set of non-terminals that should
not be considered during the pattern instantiation. We obtain this

Table 1: Subjects and Grammars

Subject Grammar Subject Grammar

Heartbleed Figure 1 Pysnooper.1 custom
Calculator calculator [20] Pysnooper.2 custom
Genson JSON [30] Cookiecutter.1 custom
find.07b941b1 find [20] Cookiecutter.2 custom
find.091557f6 find [20] Cookiecutter.3 custom
find.dbcb10e9 find [20] FastAPI.1 custom
find.ff248a20 find [20] FastAPI.2 custom
grep.3220317a grep [20] FastAPI.3 custom
grep.3c3bdace grep [20] FastAPI.4 custom
grep.5fa8c7c9 grep [20] youtube-dl.1 custom
grep.7aa698d3 grep [20] youtube-dl.2 custom
grep.c96b0f2c grep [20] youtube-dl.3 custom

exclusion set by determining the most relevant input elements by
training a gradient boosting tree based on the XGBoost (Extreme
Gradient Boosting) framework [5], an optimized distributed gradi-
ent boosting library. Then, we use the SHAP library [26], providing
a fast implementation supporting XGBoost to extract the failure-
inducing input elements. We consider both the presence and the
absence of input elements as necessary. Furthermore, we use the
grammar-based fuzzer from the Fuzzing Book [51]. AVICENNA and
all experimental data is available as open source (Section 8).

5 EVALUATION

Let us assess how well AVICENNA fares—both in comparison to
human diagnoses, as well as in comparison to the state of the art.
We address the following research questions:

RQ1) How does AVICENNA compare against diagnoses provided by
human experts?

RQ2) How does AVICENNA compare against ALHAZEN in terms of
diagnosis complexity and accuracy?

RQ3) How does AVICENNA compare against ISLearn in terms of
diagnosis complexity?

5.1 Evaluation Setup

5.1.1 Evaluation Subjects. To examine the effectiveness of AVI-

CENNA, we evaluate our tool’s diagnoses on a set of test subjects
similar to those initially covered by Kampmann et al. with ALHAZEN.
In total, we evaluate 24 bugs from nine different projects of different
complexity, namely the Heartbeat protocol, a custom calculator, the
Genson JSON parser [4], the command line utils grep and find from
DBGBench [3], and Pysnooper [33], Cookiecutter [15], FastAPI [34]
and youtube-dl [1] selected from the Tests4Py Benchmark [37].
Tests4Py leverages the bugs present in BugsInPy [47] and extends
them with the capability to verify inputs on a system level, which
makes it ideal for evaluating AVICENNA. Moreover, each subject of
Tests4Py comes with a grammar specifying the input format we
can leverage. If a subject of Tests4Py does not provide a CLI for
directly accessing the program, Tests4Py already provides a harness
as access for execution. DBGBench provides the means to compile
and execute old versions of grep and find and document the bugs
in those old versions. For the calculator, grep, and find, we used the

443

Semantic Debugging ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

grammar provided by ALHAZEN. For Genson, we adapted the gram-
mar found in the GitHub repository for ANTLR grammars [30].
The handwritten grammars for grep and find describe complete
shell commands consisting of an input, a list of environment vari-
ables, and an invocation of the respective command line utility. The
subjects, bugs, and used grammar are described in Table 1.

5.1.2 Data Sets. To answer RQ2 (similar to the evaluation of AL-
HAZEN), we require sets of test inputs to evaluate the prediction
capabilities of AVICENNA’s and ALHAZEN’s failure diagnosis. To gen-
erate these validation inputs, we use the k-path coverage guided,
grammar-aware mutation fuzzer provided by ISLearn. With the
fuzzer, we automatically generate 100 unique validation inputs for
each subject—50 passing and 50 failure-inducing test cases. How-
ever, as the failure conditions for the find bugs are incredibly narrow,
we could not obtain 50 failing inputs within one hour. Thus, we
reduced the validation set for the find subjects to 20 passing and
20 failing inputs. We measure the respective predictive power of
the failure diagnoses based on these validation inputs.

In contrast to the ALHAZEN evaluation, we evaluate AVICENNA’s
performance with an initial input corpus of two inputs only—one
bug-triggering and one passing input. This decision follows the
idea that we want to know if our extended learning process and
the feedback loop can generate meaningful additional inputs and
thus improve its accuracy and precision. The two initial inputs,
one passing and one bug-triggering, were provided by ALHAZEN,
DBGBench, and Tests4Py.

5.1.3 Research Protocol. To answer the research questions, we pro-
ceeded as follows: (i) First, we started AVICENNA for each subject
with the respective grammar and the two provided initial inputs.
(ii) Then we performed at most 20 iterations of the learning and
refinement process. We stopped if we did not generate new inputs
in an iteration or AVICENNA could not finish the 20 iterations within
one hour. For RQ1, we analyzed AVICENNA’s failure diagnoses for
Heartbleed and the DBGBench subjects. We compare the individual
failure conditions of each diagnosis to the bug report provided by
experts. We excluded the Calculator, Genson, and Tests4Py subjects
as we do not have an expert diagnosis for these bugs. All of AVI-
CENNA’s diagnoses, along with details of the respective failures, are
available as part of the AVICENNA experimental data (Section 8).

To answerRQ2, we compared the predictive power ofAVICENNA’s
diagnoses to ALHAZEN and proceeded as follows: (i) First, we gen-
erated the evaluation data sets with the mutation fuzzer. (ii) Then,
we ran AVICENNA and ALHAZEN with the same starting conditions
(i.e., with the same grammar and initial inputs). (iii) Finally, we
measure the performance of the final diagnosis for each subject and
approach. With the same starting conditions, rerunning AVICENNA

and ALHAZEN did not change their diagnoses. Finally, to answer
RQ3, we assessed AVICENNA’s feedback loop and its performance
effects over ISLearn. We compare the number of returned failure
diagnoses to answer this research question.

5.2 RQ1: AVICENNA vs. Human Diagnoses

Let us start with our first research question, pitching AVICENNA

against human experts. For a substantial subset of bugs in our
evaluation setup, we have diagnoses by human experts available

collected in the DBGBench study [3], in which practitioners would
debug real-world bug reports for the find and grep utilities. As
part of their task, these practitioners were asked to determine the
exact circumstances under which the bug would occur as part of a
simplified bug report—the exact problem that AVICENNA is set to
address. In our evaluation, we could thus compare the expert bug
reports with the AVICENNA diagnoses and assess whether AVICENNA
would produce too much, too little, or even misleading information.

Table 2 relates theAVICENNA diagnoses (using ISLa syntax) against
the summaries provided by human experts. Fragments marked in
bold relate to concepts referred to in both the AVICENNA diagnoses
and the expert diagnosis; matching concepts are shown in the same
color and linked with a line. Fragments marked with italics relate
to unmatched concepts and thus indicate failure conditions missed
by AVICENNA.

Evenwithout complete knowledge of ISLa, the fact that almost all
concepts of expert diagnoses exist in the AVICENNA diagnoses and
vice versa is striking. Although independently obtained, the natural
language diagnoses read as translations of the formal AVICENNA
diagnoses, whereas the AVICENNA diagnoses read as a formalization
of the natural language diagnoses. In almost all cases, the semantics
are identical.

Failure circumstances as produced by AVICENNA are very close to

those determined by human experts.

AVICENNA took about 30 minutes on a regular PC to produce
a diagnosis for find and grep; this is slightly slower than it took
the DBGBench participants to debug things [3]. However, in the
DBGBench study [3], only 58% of patches were correct in the sense
that they addressed all failure circumstances. We conjecture that if
developers are aware of the exact bug circumstances (as AVICENNA
provides them) and able to test their fixes automatically (for in-
stance, by having ISLa produce test cases from the diagnoses), the
quality of fixes may very much increase.

5.3 RQ2: AVICENNA vs. ALHAZEN

Let us now compare AVICENNA against state-of-the-art tools. AL-
HAZEN [20] pioneered the concept of automatically determining
failure circumstances, leveraging and producing decision trees that
express failure conditions. We first compare the complexity of di-
agnoses produced by AVICENNA and ALHAZEN, respectively. From
Table 2, we already have seen that a typical AVICENNA diagnosis
contains 2–3 conditions, each referring to one property of an input
element; the average number of conditions across our entire set
of subjects is 2.25, which is not the case for ALHAZEN diagnoses,
though. As listed in [20, Table 6], the average ALHAZEN decision
tree has 19.48 nodes, each one expressing a condition over input
elements. We, therefore, conjecture that the AVICENNA diagnoses
are much crisper.

AVICENNA diagnoses are only 1/8 as long as ALHAZEN diagnoses.

However, a shorter (and thus more general) failure condition
might also result in less accuracy, possibly flagging inputs as failure-
inducing that are not. We, therefore, evaluate the accuracy of AVI-
CENNA vs. ALHAZEN. For each subject, test input, and tool, we assess
whether the tool flags the input as failure-inducing and how that

444

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Martin Eberlein, Marius Smytzek, Dominic Steinhöfel, Lars Grunske, and Andreas Zeller

Table 2: AVICENNA diagnoses vs. human diagnoses

Bug AVICENNA diagnosis (using ISLa syntax [39]) Expert Bug Description

Heartbleed str.to.int(<length>) > str.len(<payload>)

“Attackers can send Heartbeat requests with the value of

the length field greater than the actual length of the

payload” [10]

grep.7aa698d3
exists <utf8> in <lc_all>:

<utf8> = "UTF-8" and

exists <ignore_case> in <general_options>:

<ignore_case> = "-i"

“If grep conducts a case-insensitive search (-i) on an input
that contains multibyte characters and the locale is UTF8,
then grep prints a match of incorrect length.” [3]

grep.5fa8c7c9

exists <patterns> in <command>:

<patterns> = "''" and

exists <utf8> in <lc_all>:

inside(<utf8>, <lc_all>) and

exists <fixed_string> in <cmd_1>:

inside(<fixed_string>, <cmd_1>)

“Searching with grep -F for an empty string in a multibyte

locals [sic] would freeze grep.” [3]

(Note: ⟨fixed_string⟩ expands to -F and –fixed-strings)

grep.c96b0f2c

exists <regex_> in <patterns>:

<regex_> = "^$" and

(exists <ignore_case> in <matching_control>:

inside(<ignore_case>, <matching_control>) or

exists <line_no> in <output_line_prefix_control>:

inside(<line_no>, <output_line_prefix_control>))

“Options -i and -n will not work when applied to an empty

line” [3] [in a UTF-8 locale]

(Note: ⟨ignore_case⟩ expands to -i and –ignore-case; ⟨line_-
no⟩ expands to -n and –line-number)

grep.3c3bdace
exists <extended_regex> in <matcher_selection>:

inside(<extended_regex>, <matcher_selection>) and

exists <repetition> in <patterns>:

<repetition> = "*"

“Core dump with pattern '(^|␣)*(|$)'” [3] [and -E option]

(Note: ⟨extended_regex ⟩ expands to -E and
–extended-regexp)

grep.3220317a
exists <bracket_expr> in <first_expression>:

inside(<bracket_expr>, <first_expression>) and

exists <utf_characters> in <bracket_char>:

inside(<utf_characters>, <bracket_char>)

“Segmentation fault onmultibyte character classes” [3]

(Note: ⟨bracket_expr ⟩ expands to [...] in a regular expres-
sion; ⟨utf_characters⟩ occur within ⟨bracket_char ⟩, i.e. the
characters within ⟨bracket_expr ⟩)

find.07b941b1
exists <match_opts> in <find_expression>:

<match_opts> = "-regex " and

exists <character_expr_no_minus> in <first_expression>:

<character_expr_no_minus> = "."

“find segfaults when using -regex, for instance
./find -regex '.*'” [3]

find.091557f6
exists <file_properties> in <find_expression>:

<file_properties> = "-type f" and

exists <directory_name> in <starting_dir_list>:

inside(<directory_name>, <starting_dir_list>)

“assertion failure on symbolic link loop: Let’s say we acci-
dentally create a symlink loop $ mkdir tmp; cd tmp and
$ ln -s a b; ln -s b a and use find to find files and follow
symlinks inside the tmp-folder: ../find -L -type f” [3]

find.dbcb10e9
exists <digit> in <last_modified>:

inside(<digit>, <last_modified>) and

exists <numeric_arg> in <find_command>:

inside(<numeric_arg>, <find_command>)

“-mtime produces segmentation fault, e.g., ./find

-mtime 2” [3]

(Note: ⟨last_modified ⟩ expands to -mtime)

find.ff248a20
exists <ln_file> in <ln>:

<ln_file> = "al_ln -s . link" and

exists <find_expression_or_empty> in <command>:

<find_expression_or_empty> = " -follow"

“infinite loop with -follow; e.g., $ mkdir testingfindagain;

ln -s . testingfindagain/symlink;

./find testingfindagain -follow” [3]

For details on all DBGBench bugs (including expert bug descriptions), visit https://dbgbench.github.io/.
For the Heartbleed description, see https://www.synopsys.com/blogs/software-security/heartbleed-bug/.

445

https://dbgbench.github.io/
https://www.synopsys.com/blogs/software-security/heartbleed-bug/

Semantic Debugging ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 3: Precision and recall of the produced failure condi-

tions: AVICENNA vs. ALHAZEN

Subject
AVICENNA ALHAZEN

Precision Recall Precision Recall

Heartbleed 100% 100% 11% 10%
Calculator 100% 100% 100% 100%
Genson 100% 100% 100% 74%
find.07b941b1 80% 100% 100% 85%
find.091557f6 47% 40% 31% 25%
find.dbcb10e9 93% 70% 95% 90%
find.ff248a20 83% 75% 83% 100%
grep.3220317a 77% 100% 72% 56%
grep.3c3bdace 77% 100% 74% 56%
grep.5fa8c7c9 96% 92% 94% 58%
grep.7aa698d3 64% 28% 18% 12%
grep.c96b0f2c 73% 96% 91% 86%
Pysnooper.1 100% 100% 100% 100%
Pysnooper.2 100% 100% 100% 100%
Cookiecutter.1 78% 94% 13% 15%
Cookiecutter.2 88% 90% 88% 83%
Cookiecutter.3 100% 100% 11% 24%
FastAPI.1 100% 100% 100% 100%
FastAPI.2 100% 100% 100% 100%
FastAPI.3 69% 90% 69% 78%
FastAPI.4 100% 100% 40% 31%
youtube-dl.1 88% 98% 14% 65%
youtube-dl.2 98% 100% 11% 66%
youtube-dl.3 94% 100% 66% 92%

Average 88% 91% 66% 67%

classification compares against the ground truth given by the re-
spective program and oracle. A high precision means that outputs
flagged as failure-inducing actually induce failures; a high recall

means that inputs that induce failures are identified as such. Our
results are detailed in Table 3. We see that despite having shorter
(and more general) failure conditions, the precision of AVICENNA is
at least on par with the state-of-the-art ALHAZEN.

The average precision of AVICENNA diagnoses is on par with

ALHAZEN diagnoses.

In a debugging context, however, precision is not that important,
as false positives can easily be identified by them not causing a
failure. Of much larger interest are the false negatives, as they indi-
cate that the diagnosis may miss some failure conditions, which in
turn may lead to incomplete fixes. This is actually where AVICENNA

surpasses ALHAZEN in 22 of the 24 subjects, leveraging its capability
to identify more general failure circumstances.

The average recall of AVICENNA diagnoses surpasses the recall of

ALHAZEN diagnoses.

Generally speaking, the ALHAZEN diagnoses follow the original
failure-inducing input much closer than the more general AVICENNA
diagnoses, which is a reasonable approach. Diagnoses of previous
techniques like syntactic input reduction also stay close to the origi-
nal failing input, still providing benefits for programmers. However,
AVICENNA does a better job in exploring the surroundings of the
original failing test case, thus inferring generalizations that state-
of-the-art approaches like ALHAZENmiss. With this in mind, we see
that ALHAZEN archives slightly better results for find.dbcb10e9 and

AVICENNA

ALHAZEN

grep.7aa698d3

grep.7aa698d3

Figure 3:AVICENNA vs.ALHAZEN: Diagnoses for grep.7aa698d3.

find.ff248a20. We argue that this is due to their extremely narrow
failing conditions. Consequently, the validation set is similar to the
original failing input; thus, overspecializing to the failure-inducing
inputs is beneficial for ALHAZEN’s prediction — even though the
diagnoses are not as general as those produced by AVICENNA. This
property is even further highlighted if we take a closer look at, for
instance, the diagnoses for grep.7aa698d3. We show the differences
by translating the decision tree [20, Figure 9] produced by ALHAZEN

to an equivalent ISLa formula (Figure 3).
By comparing this diagnosis to AVICENNA and the expert diag-

nosis (Table 2), we quickly realize that the produced formula, and
thus the equivalent decision tree, not only overspecializes to the
failure-inducing inputs but is also more complex than the expla-
nation produced by AVICENNA. Even with the shorter diagnosis,
AVICENNA captures the circumstances of the failure better by not
overspecializing to the single Unicode character “U+0130”.

5.4 RQ3: AVICENNA vs. ISLearn

In the last part of our evaluation, we pitch AVICENNA against ISLearn,
the input invariant learner [39]. As discussed earlier, AVICENNA
makes extensive use of ISLearn, gradually refining the detected
input invariants in a feedback loop. Is this feedback loop necessary,
and does AVICENNA improve over ISLearn? To answer this question,
we compared the number of invariants produced by ISLearn to the
number of invariants obtained at the end of an AVICENNA run. For
ISLearn, we only considered invariants with recall and specificity
estimates of 100%: From ISLearn’s point of view, all reported in-
variants have an equivalent quality. Table 4 summarizes our results.
We see that running ISLearn on its own is not a viable alternative,
producing hundreds to tens of thousands of invariants. Additionally,
ISLearn was not able to produce any invariants for Cookiecutter
within one hour (n/a). AVICENNA can reduce this number—to a single
invariant in all cases—solely by refining these invariants through
additional experiments.

The AVICENNA feedback loop is crucial for providing

crisp failure circumstances.

446

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Martin Eberlein, Marius Smytzek, Dominic Steinhöfel, Lars Grunske, and Andreas Zeller

Table 4: # Invariants produced by AVICENNA vs. ISLearn

Subject AVICENNA ISLearn Subject AVICENNA ISLearn

HeartBleed 1 451 Pysnooper.1 1 194
Calculator 1 39 Pysnooper.2 1 8844
Genson 1 777 Cookiecutter.1 1 n/a
find.07b941b1 1 1006 Cookiecutter.2 1 n/a
find.091557f6 1 361 Cookiecutter.3 1 n/a
find.dbcb10e9 1 69 FastAPI.1 1 247
find.ff248a20 1 620 FastAPI.2 1 346
grep.3220317a 1 475 FastAPI.3 1 607
grep.3c3bdace 1 4 FastAPI.4 1 711
grep.5fa8c7c9 1 54 youtube-dl.1 1 245
grep.7aa698d3 1 26,711 youtube-dl.2 1 3
grep.c96b0f2c 1 456 youtube-dl.3 1 4427

5.5 Threats to Validity

Our evaluation has the following threats to validity:

Internal Validity. The threats to internal validity relate to the cor-
rectness of AVICENNA’s implementation and the correctness
of our experiments. AVICENNA has 4,000 lines of code in total,
and formally proving its correctness would be cumbersome
at least. However, the results in Table 2 strongly suggest,
based on face validity, that AVICENNA operates as intended.
Concerning our experiments, we can rule out major mistakes
due to the tuning of parameters since AVICENNA does not
rely on tuning parameters. Additionally, we performed the
experiments with realistic settings; more precisely, we set
the upper bound for the number of AVICENNA iterations to
20 and used a one-hour time limit for the experiments to
show the practical value of AVICENNA.

External Validity. The threats to external validity are mainly re-
lated to the selection of the programs and bugs in our study.
We have used DBGBench [3], a common debugging bench-
mark, and Tests4Py [37], a benchmark comprised of many
different projects, as sources of programs and real bugs. The
Heartbleed, Calculator, and Genson subjects show that AVI-
CENNA can produce a diagnosis for authentic bugs. Conse-
quently, we would argue that the results of our study are
transferable and generalizable to other programs and bugs.

6 LIMITATIONS

Despite its advances, AVICENNA is not a perfect diagnosis tool, as
there are fundamental limitations. To illustrate the challenge, let us
have a look at the grep.7aa698d3 bug, for which AVICENNA misses
the fact that the input “contains multibyte characters” (Table 2).

If grep conducts a case-insensitive search (-i) on an input con-
taining multibyte characters and the locale is UTF8, then grep
prints a match of incorrect length. When conducting the case-
insensitive search, EXECUTE_FCT first converts the input to lower-
case (search.c:388). The length of the match is computed for the
match in the lower-case input (search.c:555). However, a multi-
byte character can take 1 byte less in lower-case: The lengths
of the normal-case and lower-case inputs differ. The computed
match_size value could be half the expected value (grep.c:1081–
1085); the match in the normal-case input is printed with incorrect
length (grep.c:1091).

A perfect failure condition would thus read

len
(

utf-8
(

upper
(

⟨arg⟩
))

)

> len
(

utf-8
(

lower
(

⟨arg⟩
))

)

(8)

which, in contrast to the actual AVICENNA diagnosis (Table 2) would
be 100% accurate.

Why can AVICENNA not synthesize such a diagnosis? The prob-
lem is twofold. First, AVICENNA needs an appropriate vocabulary
even to express the failure conditions —in our case, functions like
“utf-8” and “upper”. Second, we are facing a combinatorial complex-

ity problem, as there can be an arbitrary number of combinations
of predicates, functions, operators, and nonterminals to consider
when deriving a diagnosis. Eventually, the problem can be framed as
a program synthesis problem—we want a formula (or program) that
exactly predicts when an input causes a failure, which, of course,
resembles the halting problem and thus is undecidable in general.

However, an undecidable problem may still be solvable under
specific (often common) conditions; our results illustrate this. Pos-
sible ways to obtain even more comprehensive diagnoses include:

Domain-specific vocabularies. Adding catalogs with domain-
or program-specific patterns, predicates, and functionswould
allow AVICENNA to detect these failure conditions in the first
place. If a significant portion of grep bugs, for instance, were
related to UTF-8 handling, then adding an appropriate vocab-
ulary would allow AVICENNA to detect and express related
failure causes.

Program analysis. Static and dynamic program analysis could re-
veal important functions and properties directing the search
toward a meaningful diagnosis. In grep.7aa698d3, for in-
stance, a data flow analysis could reveal that the input is
subject to UTF-8 and case transformations, thus guiding the
search to vocabularies related to these properties.

Documentation. The grep documentation relates the -i option
to case sensitivity, which in conjunction with the current
AVICENNA diagnosis (Table 2) could again guide the search.

Expert interaction. Guidance such as above could also be pro-
vided by a human expert, starting with the initial AVICENNA
diagnosis and giving hints on where to search further.

Program synthesis. Finally, program synthesis could provide fur-
ther inspiration to synthesize higher-order combinators [9],
recursive functions [32], or even relational queries [41, 43].
In the extreme, a tool like AVICENNA would thus not only
produce a single predicate but synthesize a program that
would precisely characterize and predict failure conditions.

7 CONCLUSION AND FUTUREWORK

With AVICENNA, we introduce a technique to fully automatically

determine failure circumstances, expressed as logical properties over
input elements. The approach is general and uses an extensible
vocabulary, a powerful constraint solver, and a refinement loop to
conduct additional experiments, resulting in crisp and to-the-point
diagnoses, matching the precision of human experts. Furthermore,
by formulating the failure diagnosis problem as finding a predicate
over input elements, AVICENNA opens up a wealth of future research
opportunities. Notably, each of the diagnoses can be instantiated
into a myriad of test cases for exploring the surroundings of a bug,

447

Semantic Debugging ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

validating fixes, and preventing regressions. All this is good news
for the future of automated debugging.

Besides general improvements regarding performance and gen-
erality, our future work will focus on the following topics:

Location conditions. Besides failure vs. success, AVICENNA can
determine the circumstances of arbitrary execution predi-

cates—for instance, the (input) circumstances under which
a particular location is reached, which not only helps with
understanding code. Notably, solving the circumstances of
a code location ! yields inputs that specifically target !—a
great feature for test generators.

Resource consumption. Another interesting class of execution
predicates to apply AVICENNA on are non-functional prop-
erties such as resource consumption: Under which circum-
stances does this program require more than one GB of
memory? Or more than one second for a request? Extend-
ing AVICENNA with numerical approximation algorithms can
precisely narrow these circumstances.

Fault localization. AVICENNA diagnoses allow generating an un-
limited number of passing and failing runs; this should enable
a much more precise fault localization than with only a few
failing runs. We want to evaluate this.

Automated repair. The AVICENNA diagnoses provide important
hints on how to repair code automatically. We want to map

input elements to variables and relate their properties to syn-
thesize fixes that exactly capture failure conditions.

8 DATA-AVAILABILITY STATEMENT

Our evaluated AVICENNA artifact is publicly available [7]. The cur-
rent versions of our AVICENNA prototype can be downloaded from

https://github.com/martineberlein/avicenna

ACKNOWLEDGMENTS

This research was partially funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) – GR 3634/4-2
Emperor (261444241). M. Eberlein conducted this work during a
research visit at CISPA Helmholtz Center for Information Security.

REFERENCES
[1] Remita Amine. 2021. youtube-dl. https://github.com/ytdl-org/youtube-dl
[2] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. In 26th Annual Network and Distributed System Security
Symposium, NDSS 2019. The Internet Society. https://www.ndss-symposium.
org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/

[3] Marcel Böhme, Ezekiel Olamide Soremekun, Sudipta Chattopadhyay, Emamurho
Ugherughe, and Andreas Zeller. 2017. Where is the Bug and How is it Fixed?
An Experiment with Practitioners. In Proceedings of the 11th Joint meeting of the
European Software Engineering Conference and the ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE 2017). 1–11. https://dbgbench.
github.io/

[4] Eugen Cepoi. 2017. Genson. https://github.com/owlike/genson.
[5] Tianqi Chen and Carlos Guestrin. 2016. XGBoost: A Scalable Tree Boosting

System. In Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (San Francisco, California, USA) (KDD ’16).
ACM, New York, NY, USA, 785–794. https://doi.org/10.1145/2939672.2939785

[6] Martin Eberlein, Yannic Noller, Thomas Vogel, and Lars Grunske. 2020. Evo-
lutionary Grammar-Based Fuzzing. In Proceedings of the 12th Symposium on
Search-Based Software Engineering (SSBSE 2020).

[7] Martin Eberlein, Marius Smytzek, Dominic Steinhöfel, Lars Grunske, and Andreas
Zeller. 2023. AVICENNA. https://doi.org/10.1145/3580408

[8] Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. 2001. Dy-
namically Discovering Likely Program Invariants to Support Program Evolution.
IEEE Trans. Software Eng. 27, 2 (2001), 99–123. https://doi.org/10.1109/32.908957

[9] John K. Feser, Swarat Chaudhuri, and Isil Dillig. 2015. Synthesizing Data Structure
Transformations from Input-Output Examples. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (Portland, OR, USA)
(PLDI ’15). Association for Computing Machinery, New York, NY, USA, 229–239.
https://doi.org/10.1145/2737924.2737977

[10] Anil Gajawada. 2016. Heartbleed bug: How it works and how to avoid similar
bugs. https://www.synopsys.com/blogs/software-security/heartbleed-bug/

[11] Patrice Godefroid, Adam Kiezun, and Michael Y. Levin. 2008. Grammar-Based
Whitebox Fuzzing. In Proceedings of the 29th ACM SIGPLAN Conference on
Programming Language Design and Implementation (Tucson, AZ, USA) (PLDI
’08). Association for Computing Machinery, New York, NY, USA, 206–215.
https://doi.org/10.1145/1375581.1375607

[12] Patrice Godefroid, Hila Peleg, and Rishabh Singh. 2017. Learn&Fuzz: Machine
Learning for Input Fuzzing. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering (Urbana-Champaign, IL, USA)
(ASE 2017). IEEE Press, Piscataway, NJ, USA, 50–59. http://dl.acm.org/citation.
cfm?id=3155562.3155573

[13] Rahul Gopinath, Alexander Kampmann, Nikolas Havrikov, Ezekiel O. Soremekun,
and Andreas Zeller. 2020. Abstracting Failure-Inducing Inputs. In ACM Interna-
tional Symposium on Software Testing and Analysis (ISSTA) (Virtual Event). ACM,
237–248. https://doi.org/10.1145/3395363.3397349

[14] Claire Le Goues, ThanhVu Nguyen, Stephanie Forrest, and Westley Weimer. 2012.
GenProg: A Generic Method for Automatic Software Repair. IEEE Trans. Software
Eng. 38, 1 (2012), 54–72. https://doi.org/10.1109/TSE.2011.104

[15] Audrey Roy Greenfeld. 2022. Cookiecutter. https://github.com/cookiecutter/
cookiecutter

[16] Sumit Gulwani, Oleksandr Polozov, and Rishabh Singh. 2017. Program Synthesis.
Foundations and Trends in Programming Languages 4, 1-2 (2017), 1–119. https:
//doi.org/10.1561/2500000010

[17] Satia Herfert, Jibesh Patra, and Michael Pradel. 2017. Automatically reducing
tree-structured test inputs. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE 2017, Urbana, IL, USA, Oc-
tober 30 - November 03, 2017, Grigore Rosu, Massimiliano Di Penta, and Tien N.
Nguyen (Eds.). IEEE Computer Society, 861–871. https://doi.org/10.1109/ASE.
2017.8115697

[18] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. 2001. Introduction to
automata theory, languages, and computation. Acm Sigact News 32, 1 (2001),
60–65.

[19] James A. Jones and Mary Jean Harrold. 2005. Empirical Evaluation of the Taran-
tula Automatic Fault-Localization Technique. In Proceedings of the 20th IEEE/ACM
International Conference on Automated Software Engineering (Long Beach, CA,
USA) (ASE ’05). Association for Computing Machinery, New York, NY, USA,
273–282. https://doi.org/10.1145/1101908.1101949

[20] Alexander Kampmann, Nikolas Havrikov, Ezekiel Soremekun, and Andreas Zeller.
2020. When does my Program do this? Learning Circumstances of Software
Behavior. In Joint Meeting of the European Software Engineering Conference and the
ACM SIGSOFT Symposium on the Foundations of Software Engineering (ESEC/FSE).
https://doi.org/10.1145/3368089.3409687

[21] Fitsum Meshesha Kifetew, Roberto Tiella, and Paolo Tonella. 2017. Generating
valid grammar-based test inputs bymeans of genetic programming and annotated
grammars. Empirical Software Engineering 22, 2 (2017), 928–961. https://doi.org/
10.1007/s10664-015-9422-4

[22] Lukas Kirschner, Ezekiel O. Soremekun, and Andreas Zeller. 2020. Debugging
inputs. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul,
South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.).
ACM, 75–86. https://doi.org/10.1145/3377811.3380329

[23] Ákos Kiss, Renáta Hodován, and Tibor Gyimóthy. 2018. HDDr: a recursive
variant of the hierarchical Delta Debugging algorithm. In Proceedings of the 9th
ACM SIGSOFT International Workshop on Automating TEST Case Design, Selection,
and Evaluation, A-TEST@SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November
05, 2018, Wishnu Prasetya, Tanja E. J. Vos, and Sinem Getir (Eds.). ACM, 16–22.
https://doi.org/10.1145/3278186.3278189

[24] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan.
2005. Scalable Statistical Bug Isolation. In Proceedings of the 2005 ACM SIGPLAN
Conference on Programming Language Design and Implementation (Chicago, IL,
USA) (PLDI ’05). Association for Computing Machinery, New York, NY, USA,
15–26. https://doi.org/10.1145/1065010.1065014

[25] Fan Long and Martin Rinard. 2016. Automatic Patch Generation by Learning
Correct Code. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages (POPL) (St. Petersburg, FL, USA)
(POPL ’16). Association for Computing Machinery, New York, NY, USA, 298–312.
https://doi.org/10.1145/2837614.2837617

[26] Scott M. Lundberg and Su-In Lee. 2017. A Unified Approach to Interpreting
Model Predictions. In Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, December
4-9, 2017, Long Beach, CA, USA, Isabelle Guyon, Ulrike von Luxburg, Samy

448

https://github.com/martineberlein/avicenna
https://github.com/ytdl-org/youtube-dl
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://www.ndss-symposium.org/ndss-paper/nautilus-fishing-for-deep-bugs-with-grammars/
https://dbgbench.github.io/
https://dbgbench.github.io/
https://github.com/owlike/genson
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/3580408
https://doi.org/10.1109/32.908957
https://doi.org/10.1145/2737924.2737977
https://www.synopsys.com/blogs/software-security/heartbleed-bug/
https://doi.org/10.1145/1375581.1375607
http://dl.acm.org/citation.cfm?id=3155562.3155573
http://dl.acm.org/citation.cfm?id=3155562.3155573
https://doi.org/10.1145/3395363.3397349
https://doi.org/10.1109/TSE.2011.104
https://github.com/cookiecutter/cookiecutter
https://github.com/cookiecutter/cookiecutter
https://doi.org/10.1561/2500000010
https://doi.org/10.1561/2500000010
https://doi.org/10.1109/ASE.2017.8115697
https://doi.org/10.1109/ASE.2017.8115697
https://doi.org/10.1145/1101908.1101949
https://doi.org/10.1145/3368089.3409687
https://doi.org/10.1007/s10664-015-9422-4
https://doi.org/10.1007/s10664-015-9422-4
https://doi.org/10.1145/3377811.3380329
https://doi.org/10.1145/3278186.3278189
https://doi.org/10.1145/1065010.1065014
https://doi.org/10.1145/2837614.2837617

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Martin Eberlein, Marius Smytzek, Dominic Steinhöfel, Lars Grunske, and Andreas Zeller

Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman
Garnett (Eds.). 4765–4774. https://proceedings.neurips.cc/paper/2017/hash/
8a20a8621978632d76c43dfd28b67767-Abstract.html

[27] Eric Markowitz. 2014. Behind the Scenes: The Crazy 72 Hours Leading Up to the
Heartbleed Discovery. https://www.vocativ.com/tech/hacking/behind-scenes-
crazy-72-hours-leading-heartbleed-discovery/

[28] Sergey Mechtaev, Jooyong Yi, and Abhik Roychoudhury. 2016. Angelix: scalable
multiline program patch synthesis via symbolic analysis. In Proceedings of the
38th International Conference on Software Engineering, ICSE 2016, Austin, TX, USA,
May 14-22, 2016, Laura K. Dillon, Willem Visser, and Laurie A. Williams (Eds.).
ACM, 691–701. https://doi.org/10.1145/2884781.2884807

[29] Lee Naish, Hua Jie Lee, and Kotagiri Ramamohanarao. 2011. A model for spectra-
based software diagnosis. ACM Trans. Softw. Eng. Methodol. 20, 3 (2011), 11:1–
11:32. https://doi.org/10.1145/2000791.2000795

[30] Terence Parr. 2013. The Definitive ANTLR 4 Reference (2nd ed.). Pragmatic
Bookshelf.

[31] Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and improving fault
localization. In Proceedings of the 39th International Conference on Software Engi-
neering, ICSE 2017, Buenos Aires, Argentina, May 20-28, 2017, Sebastián Uchi-
tel, Alessandro Orso, and Martin P. Robillard (Eds.). IEEE / ACM, 609–620.
https://doi.org/10.1109/ICSE.2017.62

[32] Nadia Polikarpova, Ivan Kuraj, and Armando Solar-Lezama. 2016. Program
Synthesis from Polymorphic Refinement Types. In ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI) (Santa Barbara, CA,
USA) (PLDI ’16). Association for Computing Machinery, New York, NY, USA,
522–538. https://doi.org/10.1145/2908080.2908093

[33] Ram Rachum. 2019. PySnooper - Never use print for debugging again. https:
//github.com/cool-RR/pysnooper

[34] Sebastián Ramírez. 2018. FastAPI. https://github.com/tiangolo/fastapi
[35] John Regehr, Yang Chen, Pascal Cuoq, Eric Eide, Chucky Ellison, and Xuejun

Yang. 2012. Test-case reduction for C compiler bugs. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’12, Beijing, China
- June 11 - 16, 2012, Jan Vitek, Haibo Lin, and Frank Tip (Eds.). ACM, 335–346.
https://doi.org/10.1145/2254064.2254104

[36] Ridwan Salihin Shariffdeen, Yannic Noller, Lars Grunske, and Abhik Roychoud-
hury. 2021. Concolic program repair. In PLDI ’21: 42nd ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, Virtual
Event, Canada, June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM,
390–405. https://doi.org/10.1145/3453483.3454051

[37] Marius Smytzek, Martin Eberlein, Batuhan Serce, Lars Grunske, and Andreas
Zeller. 2023. Tests4Py: A Benchmark for System Testing. arXiv:2307.05147 [cs.SE]

[38] Ezekiel Soremekun, Esteban Pavese, Nikolas Havrikov, Lars Grunske, and An-
dreas Zeller. 2020. Inputs from Hell: Learning Input Distributions for Grammar-
Based Test Generation. IEEE Transactions on Software Engineering (2020).

[39] Dominic Steinhöfel and Andreas Zeller. 2022. Input Invariants. In Joint Meeting of
the European Software Engineering Conference and the ACM SIGSOFT Symposium
on the Foundations of Software Engineering (ESEC/FSE). https://publications.cispa.
saarland/3596/

[40] Chengnian Sun, Yuanbo Li, Qirun Zhang, Tianxiao Gu, and Zhendong Su. 2018.
Perses: syntax-guided program reduction. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June
03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark Harman
(Eds.). ACM, 361–371. https://doi.org/10.1145/3180155.3180236

[41] Aalok Thakkar, Aaditya Naik, Nathaniel Sands, Rajeev Alur, Mayur Naik, and
Mukund Raghothaman. 2021. Example-Guided Synthesis of Relational Queries. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI). Association for Computing Machinery, New York, NY, USA, 1110–1125.
https://doi.org/10.1145/3453483.3454098

[42] Dániel Vince, Renáta Hodován, Daniella Bársony, and Ákos Kiss. 2022. The effect
of hoisting on variants of Hierarchical Delta Debugging. Journal of Software:
Evolution and Process online first (2022). https://doi.org/10.1002/smr.2483

[43] Chenglong Wang, Alvin Cheung, and Rastislav Bodik. 2017. Synthesizing Highly
Expressive SQL Queries from Input-Output Examples. In ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI) (Barcelona,
Spain) (PLDI 2017). Association for Computing Machinery, New York, NY, USA,
452–466. https://doi.org/10.1145/3062341.3062365

[44] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2017. Skyfire: Data-Driven
Seed Generation for Fuzzing. In 2017 IEEE Symposium on Security and Privacy,
SP 2017, San Jose, CA, USA, May 22-26, 2017. IEEE Computer Society, 579–594.
https://doi.org/10.1109/SP.2017.23

[45] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2019. Superion: grammar-
aware greybox fuzzing. In Proceedings of the 41st International Conference on
Software Engineering, ICSE 2019. IEEE / ACM, 724–735. https://doi.org/10.1109/
ICSE.2019.00081

[46] Mark David Weiser. 1979. Program Slices: Formal, Psychological, and Practical
Investigations of an Automatic Program Abstraction Method. Ph.D. Dissertation.
USA. AAI8007856.

[47] Ratnadira Widyasari, Sheng Qin Sim, Camellia Lok, Haodi Qi, Jack Phan, Qijin
Tay, Constance Tan, Fiona Wee, Jodie Ethelda Tan, Yuheng Yieh, Brian Goh,
Ferdian Thung, Hong Jin Kang, Thong Hoang, David Lo, and Eng Lieh Ouh. 2020.
BugsInPy: a database of existing bugs in Python programs to enable controlled
testing and debugging studies. In ESEC/FSE ’20: 28th ACM Joint European Software
Engineering Conference and Symposium on the Foundations of Software Engineering,
Virtual Event, USA, November 8-13, 2020, Prem Devanbu, Myra B. Cohen, and
Thomas Zimmermann (Eds.). ACM, 1556–1560. https://doi.org/10.1145/3368089.
3417943

[48] Wikipedia. Accessed 2022-07-26. Avicenna. https://en.wikipedia.org/wiki/
Avicenna.

[49] W. Eric Wong, Ruizhi Gao, Yihao Li, Rui Abreu, and Franz Wotawa. 2016. A
Survey on Software Fault Localization. IEEE Trans. Software Eng. 42, 8 (2016),
707–740. https://doi.org/10.1109/TSE.2016.2521368

[50] Jifeng Xuan, Matias Martinez, Favio Demarco, Maxime Clement, Sebastian
R. Lamelas Marcote, Thomas Durieux, Daniel Le Berre, and Martin Monperrus.
2017. Nopol: Automatic Repair of Conditional Statement Bugs in Java Programs.
IEEE Trans. Software Eng. 43, 1 (2017), 34–55. https://doi.org/10.1109/TSE.2016.
2560811

[51] Andreas Zeller, Rahul Gopinath, Marcel Böhme, Gordon Fraser, and Christian
Holler. 2019. The Fuzzing Book. In The Fuzzing Book. Saarland University.
https://www.fuzzingbook.org/

[52] Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Software Eng. 28, 2 (2002), 183–200. https://doi.org/
10.1109/32.988498

[53] Alice Zheng, Michael Jordan, Ben Liblit, and Alex Aiken. 2003. Statistical Debug-
ging of Sampled Programs. In Advances in Neural Information Processing Systems,
S. Thrun, L. Saul, and B. Schölkopf (Eds.), Vol. 16. MIT Press. https://proceedings.
neurips.cc/paper/2003/file/0a65e195cb51418279b6fa8d96847a60-Paper.pdf

Received 2023-02-02; accepted 2023-07-27

449

https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html
https://www.vocativ.com/tech/hacking/behind-scenes-crazy-72-hours-leading-heartbleed-discovery/
https://www.vocativ.com/tech/hacking/behind-scenes-crazy-72-hours-leading-heartbleed-discovery/
https://doi.org/10.1145/2884781.2884807
https://doi.org/10.1145/2000791.2000795
https://doi.org/10.1109/ICSE.2017.62
https://doi.org/10.1145/2908080.2908093
https://github.com/cool-RR/pysnooper
https://github.com/cool-RR/pysnooper
https://github.com/tiangolo/fastapi
https://doi.org/10.1145/2254064.2254104
https://doi.org/10.1145/3453483.3454051
https://arxiv.org/abs/2307.05147
https://publications.cispa.saarland/3596/
https://publications.cispa.saarland/3596/
https://doi.org/10.1145/3180155.3180236
https://doi.org/10.1145/3453483.3454098
https://doi.org/10.1002/smr.2483
https://doi.org/10.1145/3062341.3062365
https://doi.org/10.1109/SP.2017.23
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1109/ICSE.2019.00081
https://doi.org/10.1145/3368089.3417943
https://doi.org/10.1145/3368089.3417943
https://en.wikipedia.org/wiki/Avicenna
https://en.wikipedia.org/wiki/Avicenna
https://doi.org/10.1109/TSE.2016.2521368
https://doi.org/10.1109/TSE.2016.2560811
https://doi.org/10.1109/TSE.2016.2560811
https://www.fuzzingbook.org/
https://doi.org/10.1109/32.988498
https://doi.org/10.1109/32.988498
https://proceedings.neurips.cc/paper/2003/file/0a65e195cb51418279b6fa8d96847a60-Paper.pdf
https://proceedings.neurips.cc/paper/2003/file/0a65e195cb51418279b6fa8d96847a60-Paper.pdf

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Program Slicing
	2.2 Statistical Debugging
	2.3 Delta Debugging
	2.4 Leveraging Input Syntax
	2.5 Learning Relevant Input Properties
	2.6 Dynamic Invariants
	2.7 Input Invariants
	2.8 Learning Input Constraints

	3 Approach
	3.1 Determining Relevant Input Properties
	3.2 Learning Failure Constraints with Pattern Matching
	3.3 Validating Hypotheses through Experiments
	3.4 Refining Hypotheses in a Feedback Loop

	4 Implementation
	5 Evaluation
	5.1 Evaluation Setup
	5.2 RQ1: AVICENNA vs. Human Diagnoses
	5.3 RQ2: AVICENNA vs. ALHAZEN
	5.4 RQ3: AVICENNA vs. ISLearn
	5.5 Threats to Validity

	6 Limitations
	7 Conclusion and Future Work
	8 Data-Availability Statement
	Acknowledgments
	References

