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ABSTRACT

Testing with randomly generated inputs (fuzzing) has gained sig-

nificant traction due to its capacity to expose program vulnerabili-

ties automatically. Fuzz testing campaigns generate large amounts

of data, making them ideal for the application of machine learn-

ing (ML). Neural program smoothing, a specific family of ML-guided

fuzzers, aims to use a neural network as a smooth approximation

of the program target for new test case generation.

In this paper, we conduct the most extensive evaluation of neu-

ral program smoothing (NPS) fuzzers against standard gray-box

fuzzers (>11 CPU years and >5.5 GPU years), and make the fol-

lowing contributions: (1) We find that the original performance

claims for NPS fuzzers do not hold; a gap we relate to fundamen-

tal, implementation, and experimental limitations of prior works.

(2) We contribute the first in-depth analysis of the contribution

of machine learning and gradient-based mutations in NPS. (3) We

implement Neuzz++, which shows that addressing the practical

limitations of NPS fuzzers improves performance, but that standard

gray-box fuzzers almost always surpass NPS-based fuzzers. (4) As a

consequence, we propose new guidelines targeted at benchmarking

fuzzing based on machine learning, and present MLFuzz, a platform

with GPU access for easy and reproducible evaluation of ML-based

fuzzers. Neuzz++, MLFuzz, and all our data are public.

CCS CONCEPTS

• Security and privacy → Software security engineering; • Soft-

ware and its engineering → Software testing and debugging; •

Computing methodologies→ Neural networks.
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1 INTRODUCTION

In recent years, fuzzing—testing programs with millions of random,

automatically generated inputs—has become one of the preferred

methods for finding bugs and vulnerabilities in software, mainly

due to its speed, low setup efforts, and successful application in

the industry. Google’s OSSFuzz initiative [23], for instance, has

revealed thousands of bugs in open-source software.

Fueled by success stories of practical fuzzing, researchers are

constantly seeking ways to make fuzzers more efficient [28]. The

most popular approach is still coverage-guided fuzzing: generate

new test cases from prior ones using an evolutionary search that

optimizes code coverage through a fitness function. Techniques

used to enhance fuzzers include concolic execution [40, 48], or

static analysis [47]. Along them, machine learning methods have

increasingly been applied to different parts of the fuzzing loop in

academic research [7, 12, 16, 19, 35].

Fuzz testing generates significant amounts of data which make

a welcome input for machine learning. Moreover, obtaining labels

through feedback from the fuzzer or the program is most often fast

and cheap. Constructing a dataset for training machine learning

models is thus relatively straightforward in fuzzing. However, de-

spite their increased traction in the research community in the past

decade, ML-based fuzzers are not widely used in practice [33].

Recently, neural program smoothing [38, 39, 46] has been pro-

posed to approximate the tested program with a neural network.

The trained model learns to predict coverage from test cases, be-

ing additionally smooth and differentiable. These properties allow

computing gradients, which cannot readily be done on programs

directly. Test cases are mutated into new ones based on the pre-

dictions of the neural network using gradient descent. The use

of gradients allows to steer the mutations in the most relevant

directions, which have higher chances of reaching new coverage.

Despite promising significant performance gains, both in terms of

code coverage and number of bugs found, these methods are not

currently used by practitioners for testing real software.

Motivated by the applicability of neural program smoothing to

real-world fuzzing, we provide a systematic and thorough analysis

of NPS-guided fuzzing methods with the following contributions:

(1) We provide a critical analysis of NPS-guided fuzzing, un-

covering fundamental, conceptual and practical limitations

that were previously ignored. We show that neural network

performance does not translate to improved coverage, as the

model fails to capture rare edge coverage.

(2) We compare multiple NPS-guided fuzzers in an extensive

benchmark against AFL, AFL++, and the recent HavocMAB

on 23 target programs. NPS-guided fuzzers underperform re-

garding code coverage and bug finding, which is at odds with

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.
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the results from the original papers. We explain this perfor-

mance gap by outdated or incorrect experimental practices

in prior work.

(3) We reimplement Neuzz as a custom mutator for AFL++ and

show that fixing practical limitations of NPS significantly

improves fuzzing performance. Nevertheless, we find that

neural program smoothing methods are outperformed by

state-of-the-art gray-box fuzzers, despite their use of addi-

tional computation resources.

(4) Based on our findings, we propose better-suited guidelines

for evaluating ML-enhanced fuzzing, and present MLFuzz,

the first fuzzing benchmarking framework with GPU sup-

port dedicated to ML-based fuzzing. MLFuzz allows for easy,

reproducible evaluation of fuzzers with or without machine

learning, similar to standard practices used by FuzzBench [33].

The remainder of the paper is structured as follows. Section 2

introduces prior work on coverage guided fuzzing and neural pro-

gram smoothing, before tackling our main analysis on limitations

of neural program smoothing in Section 3. Section 4 presents our

implementation of NPS fuzzing and the benchmarking platform.

Section 5 covers experiments, followed by new experimental guide-

lines in Section 6.We conclude this work in Section 7. All our results

and code are publicly available (Section 8).

2 BACKGROUND

Coverage-guided fuzzing. Coverage-guided fuzzers explore the

input space of a program starting from a few sample inputs called

seeds. They mutate the seeds into new test cases based on a fitness

criterion, which rewards reaching new code coverage obtained by

gray-box access through binary instrumentation. Test cases that

increase coverage are kept in the corpus to be evolved further. Over

time, the input corpus and the total code coverage grow. During

execution, the fuzzer checks the target program for unwanted be-

havior, notably crashes and hangs. Popular coverage-guided fuzzers

are American Fuzzy Lop (AFL) [49], its successor AFL++ [18], and

libFuzzer [30]. Alongside basic mutations, most gray-box fuzzers

use the havoc mutation strategy, where a fixed number of randomly

chosen atomic mutations are chained to a more complex muta-

tion [18]. Motivated by the success of havoc in modern fuzzers,

HavocMAB [45] was designed to implement the havoc strategy as a

two-layer multi-armed bandit [4]. Despite the trivial reward func-

tion used by the bandit, HavocMAB claims to significantly improve

code coverage over random havoc in extensive benchmarks.

Fuzzing with machine learning. ML has been applied to vari-

ous tasks in the fuzzing loop. Neural byte sieve [35] experiments

with multiple types of recurrent neural networks that learn to

predict optimal locations in the input files to perform mutations.

Angora [12] uses byte-level taint tracking and gradient descent

to mutate test cases towards new coverage. FuzzerGym [16] and

Böttinger et al. [7] formulate fuzzing as a reinforcement learning

problem that optimizes coverage. In parallel to mutation gener-

ation, machine learning is naturally fit for generating test cases

directly. Skyfire [42] learns probabilistic grammars for seed genera-

tion. Learn&Fuzz [19] uses a sequence-to-sequence model [41] to

implicitly learn a grammar to produce new test cases. GANFuzz [25]

uses generative adversarial networks (GANs) [20] to do the same for
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Figure 1: Neural program smoothing for fuzzing.

protocols. DeepFuzz [29] learns to generate valid C programs based

on a sequence-to-sequence model for compiler fuzz testing. The

application of ML to fuzzing is covered more extensively in [36, 44].

Neural program smoothing. Program smoothing [10, 11] was

initially introduced as a way to facilitate program analysis and

overcome the challenges introduced by program discontinuities.

Among the uses of machine learning in fuzzing, neural program

smoothing is one of the most recent and popular methods, due to

its great performance in the original studies. Neuzz [39] trains a

neural network to serve as a smooth approximation of the original

program in terms of code coverage (Figure 1). First, all test cases (2)

from the corpus (1) are executed on the instrumented program (3)

to obtain their individual code coverage (4), i.e. edge coverage from

afl-showmap. The respective pairs of test case and coverage are

then used to train a neural network (5), which learns to predict the

coverage for each test case. Being smooth and differentiable, the

neural network can be used for computing gradients, the values

of derivatives of the program w.r.t. its inputs. These indicate the

direction and rate of fastest increase in the function value and can

be used to flip specific edges in the bitmap from zero to one (6).

Each gradient corresponds to one byte in the input. The locations

with the highest gradient values are mutated (7) to propose new test

cases (8) that should reach the targeted regions of the code. This

idea is inspired by adversarial examples, more precisely FGSM [21],

where a change in the input in the direction of the sign of the

gradient is sufficient to change the model outcome.

MTFuzz [38] extends Neuzz with multitask learning [8]: the neu-

ral network is trained against three types of code coverage instead

of only edge coverage. Context-sensitive coverage [12, 43] distin-

guishes between distinct caller locations for the same covered edge,

while approach-sensitive coverage [2] introduces a third possible

value in the coverage bitmap reflecting when an edge was nearly

covered because the execution has reached a neighboring edge. The

three types of coverage help learn a joint embedding that is used to

determine interesting bytes for mutation in the test case. The bytes

are ranked using a saliency score, which is computed as the sum of

gradients for that byte in the learned embedding space. Each “hot

byte” is mutated by trying out all possible values, without further

relying on the gradients.
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PreFuzz [46] attempts to solve some limitations of Neuzz and

MTFuzz by extending Neuzz in two ways. The program instrumen-

tation is changed to include all neighboring edges of covered ones

in the bitmap. This information is used to probabilistically choose

which edge to target next for coverage, with the end goal of en-

couraging diversity in edge exploration. Additionally, the success

of havoc mutations [18] is leveraged: after the standard Neuzz mu-

tation, havoc is applied probabilistically to pre-defined segments of

bytes in the test case, according to their gradient value.

3 ANALYZING NEURAL PROGRAM
SMOOTHING

In this section, we provide our main analysis of neural program

smoothing, covering both the concepts behind NPS, as well as

existing fuzzer implementations. We tackle three orthogonal per-

spectives: (i) conceptual or fundamental, (ii) implementation and

usability, and (iii) experimental considerations.

3.1 Conceptual Limitations

(C1) Approximation errors of the neural network. Being an

empirical process, neural network training can suffer from errors

introduced in the training process by, e.g., limited training data

and training time, or sensitivity to hyperparameters. Even in the

ideal case, being a smooth approximation, the NPS model will always

differ from the actual program exactly at the most interesting points,

i.e., discontinuities, branches, and jumps. This approximation error

is intrinsic to a smoothing approach and, at the same time, what

allows NPS methods to use gradients and numeric optimization

towards producing new inputs.

(C2) Capacity to reach targeted edges. Arguably, the most

salient research question to elucidate about neural program smooth-

ing is whether the gradient-guided mutation can indeed reach the

targeted edges. As NPS is based on multiple components (Figure 1),

the overall performance of the fuzzer critically depends on the

effectiveness of its individual components:

(1) The prediction accuracy of the neural network (5);

(2) The capacity of the gradient-based mutations (7) to achieve

the expected new coverage on the target program.

The experiments we perform later in the paper show that the

machine learning component as used by neural program smoothing

has impaired performance. To the best of our knowledge, prior NPS

studies have not assessed what the model was learning and whether

it was reaching its objective.

(C3) Incomplete coverage bitmaps. Another central limi-

tation of neural program smoothing that we uncover relates to

the incompleteness of the coverage bitmaps that the neural net-

work receives. All NPS fuzzers retrieve covered edges through

afl-showmap, which only reports the edge IDs that are reached.

When the coverage information from all seeds is put together for

the overall bitmap used for training the neural network, it thus only

contains edges that were reached at least once by any of the seeds.

As such, unseen edges are not part of the bitmap and cannot be

explicitly targeted and discovered by the model. In practice, if the

neural network does discover new edges, it is rather inadvertently

due to randomness. While having access to only an incomplete

coverage bitmap is a conceptual limitation, it can be addressed on

an implementation level. It is sufficient to change the instrumenta-

tion of the program to include uncovered edges to overcome this

issue. Among existing NPS fuzzers, PreFuzz is the only one that

considers information about neighbors of reached edges in the cov-

erage bitmap, albeit not motivated by the limitation we uncover.

Their goal is rather to be able to choose the next edge to target in a

probabilistic fashion, depending on the degree of coverage of each

edge and its neighbors.

The fundamental limitations uncovered in this section, while

some easier to solve than others, are what we see as main obstacle in

the adoption of NPS-based fuzzing in practice. As will be confirmed

in Section 5, the experiments are consistent with these limitations.

3.2 Implementation and Usability Limitations

We now turn to practical aspects that make existing approaches

to neural program smoothing inconvenient to use, such that an

independent evaluation requires major effort and code rewriting.

(I1) Use of outdated components. Existing implementations

of neural program smoothing [38, 39, 46], alongwithHavocMAB [45]

are implemented as extensions of AFL instead of using the more re-

cent, more performant AFL++ as base. Moreover, their dependency

on outdated Python, TensorFlow and PyTorch versions impacts

usability. For the purpose of experiments, we have patched the code

and updated the dependencies of all these fuzzers, as even for the

most recent ones, some of their used libraries were already not

available at the time of their publication.

(I2) Difficulty in building targets. Prior NPS studies provided

the binaries used in their own research, ensuring reproducibility.

However, for a fuzzer to be practical, it is advisable to rather pro-

vide instructions on how to build new programs for its use. This

is especially important when the fuzzer uses custom target instru-

mentation. MTFuzz [38], for instance, compiles a target program in

five different ways due to the introduction of three additional types

of instrumentation. For this reason, we exclude MTFuzz from our

empirical study as not being practical for real-world fuzzing. More-

over, we argue that the three types of coverage used by MTFuzz

are to a large extent redundant (conceptual limitation) and could

be grouped into a unified coverage, thus reducing the build effort

for this fuzzer.

(I3) Use of magic numbers. The magic numbers programming

antipattern [31] is frequently encountered in the implementations

of neural program smoothing-based fuzzers. These values and other

algorithmic changes are not mentioned in the original papers where

eachNPS fuzzer is introduced. It is thus difficult to establishwhether

the performance of each method is strictly linked to its proposed al-

gorithm or rather to the implementation tweaks. E.g., the maximum

number of mutation guiding gradients per seed is set to 500; this

value is not a parameter of the algorithm presented in the paper.

Our findings above show that the effort to set up existing NPS

fuzzers and build targets for them is significantly higher than for

standard gray-box fuzzers, such as AFL and its variants, or libFuzzer.

3.3 Evaluation Limitations

In this section, we highlight flaws and limitations of previous ex-

perimental evaluations of NPS fuzzers and HavocMAB, which have

led to unrealistic performance claims.
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(E1) Experimental protocol. The more recent NPS publica-

tions [38, 46] lack of comparisons with recent gray-box fuzzers, such

as AFL++ and libFuzzer—fuzzers that were available and confirmed

as state-of-the-art long before their publication. HavocMAB [45] has

included Neuzz and MTFuzz in their evaluation alongside AFL++.

However, we find that they use the same binary target for both

AFL and AFL++, instead of building the program separately for

AFL++. AFL++ runs on AFL instrumented binaries, but not effi-

ciently. Moreover, the size of the coverage bitmap is usually larger

for AFL++ than with AFL instrumentation; hence, code coverage

as measured by the fuzzers is not directly comparable. This makes

the conclusions in the HavocMAB evaluation [45] questionable.

(E2) Fuzzer configuration for speed. We note that prior

studies benchmarking NPS methods compile their targets using

afl-gcc, which results in slower targets and thus impacts fuzzing

speed. The AFL++ documentation recommends using preferably

afl-clang-fast or afl-clang-lto [17]. Additionally, AFL-based

fuzzers have multiple options for transferring fuzz data to the pro-

gram. The most basic is to have AFL write test cases to file, and

the target program executed with command line options to pro-

cess the file as input. The more sophisticated and recommended

persistent mode uses a fuzzing harness that repeatedly fetches fuzz

data from AFL via shared memory and executes the function with

the test data as input without restarting the whole program. “All

professional fuzzing uses this mode”, according to the AFL++ man-

ual [5]. Depending on the target, the persistent mode can increase

the throughput by 2–20× [18]. Previous neural smoothing papers

seem to run all experiments by feeding inputs via files, which

should considerably slow down all fuzzers. This is consistent with

their results, where the more modern AFL++ consistently performs

worse than AFL in the HavocMAB study [45], and the targets are

printed with command line arguments in the original Neuzz pa-

per [39]. We conjecture that this tips the scale in favor of ML-based

fuzzers, which are themselves orders of magnitude slower than

modern fuzzers [16]. This statement is validated experimentally in

Section 5.7.

4 IMPLEMENTING NEUZZ++ AND MLFUZZ

In this section, we introduceNeuzz++, our implementation of neural

program smoothing that aims to solve some limitations identified in

Section 3, as well as the new experimental platform for evaluating

ML-based fuzzers.

Neuzz++. We implement a variation of Neuzz as a custom muta-

tor for AFL++, which we name Neuzz++ (see Figure 2). This allows

our method to leverage most AFL++ features, like its standard muta-

tions and power schedule. More importantly, it allows for machine

learning-produced test cases and randomly mutated ones to evolve

from each other. We choose AFL++ as base for our implementation

for its state-of-the-art performance, thus addressing Issue I1. Being

a custommutator, Neuzz++ is modular, easy to build, and integrated

with a default AFL++ installation.

In practice, Neuzz++ consists of two parts: the main AFL++ pro-

cess with the custom mutator implemented in C, and a Python

extension that is called for machine learning operations. The two

processes communicate using named pipes. We set a minimum

requirement of) test cases in the corpus for the custom mutator to

AFL

Gradient-guided

Fuzzing

Existing NPS-guided

Fuzzers
Neuzz++

AFL++

Gradient-guided

Custom 

Mutator

AFL++

Mutations

Mutation 

Scheduler

1 hour

23 hours

24 hours

Figure 2: Operation mode of previous NPS-guided fuzzers

and our Neuzz++.

run. These are used to train the neural network for the first time; the

model is retrained at most every hour if at least ten new test cases

have been added to the corpus1. This allows to refine the model

over time with new coverage information from recent test cases.

In practice, we use ) = 200; this value is tuned experimentally and

aims to strike the balance across all targets between fuzzing with

machine learning as early as possible, while waiting for enough data

to be available for model training. Intuitively, a larger dataset pro-

duces a better performing model. afl-showmap is used to extract

the coverage bitmap. We introduce a coverage caching mechanism

for model retraining which ensures that coverage is computed only

for new test cases that were produced since last model training.

Each time the C custom mutator is called by AFL++, it waits for

the Python component to compute and send the gradients of the

test case. Based on these, the mutations are computed by the C

mutator and returned to AFL++. In contrast to Neuzz, the gradients

are not precomputed per test case, they are not saved to disk, the

neural network is kept in memory, and the gradients are computed

only on demand. These optimizations minimize the time spent on

ML-related computations, keeping more time for fuzzing.

The neural network is a multi-layer perceptron (MLP) with the

same structure as Neuzz (one hidden layer, 4096 neurons). As shown

in the PreFuzz paper [46], we also found that different neural net-

work architectures do not improve fuzzing performance. In contrast

to NPS fuzzers, we keep 10% of the test cases as validation set for

evaluating the performance of the model. We use the Adam opti-

mizer [26], a learning rate of 10−4, and cosine decay with restarts.

It is easy to parallelize model training and the main AFL++ rou-

tine for improved fuzzing effectiveness when testing real targets.

However, for experimental evaluation, we choose to have AFL++

wait for the neural network to train, similarly to previous imple-

mentations of neural program smoothing fuzzers. This allows for

fair experimental comparison and computation resource allocation.

The original Neuzz implementation applies four different muta-

tion patterns on each byte selected according to the highest ranking

gradients: incrementing the byte value until 255, decrementing the

byte value down to 0, inserting a randomly sized chunk at the byte

location, and deleting a randomly sized chunk starting at the given

byte location. We apply the same mutation pattern for Neuzz++.

1Neuzz and PreFuzz solve this issue by running AFL for the first hour of fuzzing, then
use the collected data for model training (Figure 2).
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MLFuzz. MLFuzz serves as a benchmarking framework for build-

ing test targets, running fuzzing trials in an isolated environment,

and analyzing the findings. Its main features are:

• Test targets from Google Fuzzer Test Suite [22] are com-

piled with the recommended and most recent compiler of

the appropriate fuzzer; the build scripts are made available

(addressing Issue I2 and issue E2).

• Targets are compiled with AddressSanitizer [37] to detect

memory errors.

• Six fuzzers are currently included in MLFuzz: AFL v2.57b,

AFL++ v3.15a, HavocMAB, Neuzz, PreFuzz and our Neuzz++.

• The implementation is containerized via Docker [32]. Python

dependency specification is handled via virtual environ-

ments and Poetry [15].

• Each fuzzing trial runs on one dedicated CPU and optionally

one GPU for fuzzers that support it.

• All supported fuzzers have been modified to accept seeding

of their random number generator for reproducible results.

• For all fuzzers, coverage is measured by replaying the corpus

at the end of a run. We use binaries instrumented with AFL

to ensure we do not disadvantage the AFL-based fuzzers,

and afl-showmap from AFL++, since it has a larger bitmap

with less hash collisions.

• Test cases are transmitted to fuzzers via shared memory,

with the option to switch to slow transmission of test cases

via the file system (addresses Issue E2).

5 EXPERIMENTS

This section introduces our experiments and practical analysis,

complementing the main findings from previous sections. After

presenting our setup (Section 5.1), we assess the performance of

the components of NPS-based fuzzers in Section 5.2. We compare

our Neuzz++ to prior neural program smoothing fuzzers and stan-

dard gray-box fuzzers in an extensive benchmark in Section 5.3.

Sections 5.4 to 5.6 explore the added benefit of machine learning to

NPS fuzzers, while Section 5.7 sheds light on experimental protocol

differences with previous NPS publications and their impact on

fuzzing results. Finally, we report bugs found in Section 5.8.

5.1 Experimental Setup

All experiments are performed on a server running Ubuntu 20.04

with four Nvidia Titan Xp GPUs. Our study includes the six fuzzers

fromMLFuzz: AFL andAFL++ as standard gray-box fuzzers, HavocMAB

as recent fuzzer claiming state-of-the-art performance, and NPS

fuzzers Neuzz, PreFuzz, and our own Neuzz++. We use the origi-

nal implementation and parameters provided by the authors for

all baselines, except when stated otherwise. We patch the code of

Neuzz and PreFuzz to port them to Python 3.8.1, CUDA 11.5, Tensor-

Flow 2.9.1 [1] and PyTorch 1.4 [34], as the original implementations

are based on outdated libraries that are not available anymore or

incompatible with our hardware.

We choose Google Fuzzer Test Suite [22] and FuzzBench [33] as

standard, extensive benchmarks for our experimental evaluation.

Wemake use of 23 targets, summarized in Table 1. These are selected

for being accessible, having dependencies available on Ubuntu 20.04,

and being non-trivial to cover through fuzz testing. Note that we

Table 1: Target programs from Google Fuzzer Test Suite [22]

and FuzzBench [33].

Target Format Seedsa LOCb

Source: Fuzzer Test Suite

boringssl-2016-02-12 SSL private key 107 102793

freetype2-2017 TTF, OTF, WOFF 2 95576c

guetzli-2017-3-30 JPEG 2 6045

harfbuzz-1.3.2 TTF, OTF, TTC 58 21413

json-2017-02-12 JSON 1 23328

lcms-2017-03-21 ICC profile 1 33920

libarchive-2017-01-04 archive formats 1 141563

libjpeg-turbo-07-2017 JPEG 1 35922

libpng-1.2.56 PNG 1 24621

libxml2-v2.9.2 XML 0 203166

openssl-1.0.2d DER certificate 0 262547

pcre2-10.00 PERL regex 0 67333

proj4-2017-08-14 custom 44 6156

re2-2014-12-09 custom 0 21398

sqlite-2016-11-14 custom 0 122271

vorbis-2017-12-11 OGG 1 17584

woff2-2016-05-06 WOFF 62 2948

Source: FuzzBench

bloaty ELF, Mach-O, etc. 94 690642

curl comms. formats 41 153882

libpcap PCAP 1287 56663

openh264 H.264 174 97352

stb image formats 467 71707

zlib zlib compressed 1 30860
aTargets that do not have seeds use the default from Fuzzbench.
bRetrieved with cloc [14].

only include targets from FuzzBench if they are not already included

in Fuzzer Test Suite. All results are reported for 24 hours of fuzzing.

We repeat each experiment 30 times to account for randomness,

unless stated otherwise. Each standard gray-box fuzzer is bound to

one CPU core, while NPS fuzzers are allotted one CPU and one GPU

per trial. The main metrics used for evaluation are code coverage

and number of bugs found. For code coverage, we use edge coverage

as defined by the AFL family of fuzzers. However, we emphasize

that AFL and AFL++ compute edge coverage differently. In order to

avoid the measuring errors introduced when ignoring this aspect,

we count coverage by replaying the corpus using afl-showmap

from AFL++ on the same binary, independently of which fuzzer

was used in the experiment. The setup we use fixes all experimental

limitations we highlighted in Section 3.3 (Issues E1 and E2).

5.2 Performance of Machine Learning Models

Wenow investigate the quality of coverage predictions by the neural

network and gradient-based mutations, in relation to concerns

about the fundamental principle of neural program smoothing

(Section 3.1). We tackle the following questions:

• Can the neural network learn to predict edge coverage?

• Can gradient-based mutations reach targeted edges?

To this end, we propose quantitative and qualitative analyses of

the performance of the neural network in neural program smooth-

ing fuzzers. Without loss of generality, we investigate these based

on Neuzz++ as a proxy for all neural program smoothing fuzzers
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Figure 3: Predicted and actual edge coverage on libpng for the entire corpus. Top: ML-predicted coverage (pink) is trivial and

almost constant over test cases. When each edge is targeted by mutations, predicted coverage (orange) increases for certain

edges, but many code edges remain unattainable. Bottom: Coverage extracted with afl-showmap shows that all edges present

have been covered at least once by the corpus.

Table 2: Dataset properties and neural network evaluation.

Target %covered edges Acc Prec Recall F1 PR-AUC

bloaty 17.1% 0.53 0.17 0.18 0.17 0.15

boringssl 19.3% 0.90 0.18 0.17 0.17 0.20

curl 15.2% 0.89 0.15 0.15 0.15 0.23

freetype2 8.6% 0.89 0.09 0.09 0.09 0.10

guetzli 18.5% 0.84 0.18 0.18 0.18 0.19

harfbuzz 6.9% 0.93 0.07 0.07 0.07 0.07

json 12.7% 0.88 0.11 0.08 0.09 0.10

lcms 20.9% 0.84 0.19 0.19 0.19 0.21

libarchive 6.9% 0.94 0.07 0.06 0.06 0.07

libjpeg 17.8% 0.84 0.17 0.09 0.17 0.18

libpcap 6.4% 0.92 0.06 0.06 0.06 0.07

libpng 28.8% 0.86 0.28 0.27 0.27 0.29

libxml2 10.5% 0.92 0.10 0.09 0.09 0.11

openh264 21.4% 0.81 0.22 0.30 0.21 0.22

openssl 31.2% 0.79 0.30 0.30 0.29 0.31

pcre2 4.3% 0.96 0.04 0.03 0.03 0.04

proj4 8.2% 0.95 0.08 0.07 0.07 0.08

re2 16.2% 0.87 0.15 0.13 0.13 0.16

sqlite 16.3% 0.91 0.12 0.12 0.12 0.17

stb 6.0% 0.92 0.06 0.05 0.05 0.06

vorbis 29.6% 0.81 0.30 0.30 0.30 0.30

woff2 22.8% 0.85 0.22 0.22 0.21 0.13

zlib 16.1% 0.85 0.14 0.10 0.11 0.16

included in our study. As all these methods use the same neural

network architecture, loss function, method of training, etc., it is to

be expected that their models will achieve the same performance

when trained on the same dataset. The results of the analyses can

be summarized as follows and are detailed subsequently:

• Table 2 quantifies the model performance for all targets in

terms of standard machine learning metrics;

• Figure 3 provides a qualitative analysis of model predictions

for a given target, opposing them to correct labels.

• Lastly, Figure 3 also assesses the capacity of the neural net-

work to reach edges through gradient-based mutations.

ML performance metrics. To assess one factor of difficulty of

the machine learning task, we evaluate dataset imbalance for the

training corpus. This measures the percentage of the positive class

(covered edges, in our case the minority) in the coverage bitmap of

the training set. Recall that the bitmap is produced by afl-showmap

and accounts for the coverage obtained by the corpus before train-

ing; the coverage was not necessarily achieved based on a neural

network, but rather by AFL++ mutations. Note that this value is

averaged across test cases and edges; rare edges might have much

smaller coverage ratios, resulting in more difficulty in training an

accurate model for those edges. When facing class imbalance, the

model tends to prefer the majority class, thus making wrong pre-

dictions. For this reason, the performance of the neural network is

assessed using precision, recall, F1-score, and precision-recall (PR)

trade-off as performance metrics for the neural network. Accu-

racy is also computed for completeness, but keep in mind that

this metric is misleading for imbalanced datasets2. We measure

the area-under-the-curve (AUC) of the PR metric to evaluate all

the operational points of the neural network. Similar to accuracy,

PR-AUC saturates at one, but is more sensitive to wrong predic-

tions in the positive class. The learning setup of neural program

smoothing is a multi-label binary classification task, i.e., for each

2One can trivially predict all-zeros (no coverage) and obtain very high accuracy.

138



Revisiting Neural Program Smoothing for Fuzzing ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

test case, multiple binary predictions are made, one per edge; in

consequence, the metrics are computed for each edge in the bitmap

independently, then averaged over all edges, and finally averaged

over trial repetitions.

Table 2 reports the model performance metrics, along with the

percentage of the positive class in the dataset as imbalance metric.

All model metrics are computed on a 10% holdout set of test cases

that were not used for training. As Neuzz++ retrains the model

multiple times, all measurements are performed on the last trained

neural network using the state of the corpus at that time. The

precision, recall, F1-score, and PR-AUC values in Table 2 indicate

that the neural network has low performance. These metrics are

particularly low when the class imbalance is stronger, i.e., for small

values of “%covered edges”. The dataset imbalance is quite extreme

for seven targets, where the positive class represents less than 10%

of the dataset, making predictions particularly difficult.

To provide an intuition into what the neural network learns,

we design a qualitative evaluation of its predicted coverage. This

experiment uses the target libpng and the test cases generated in

a 24-hours run of Neuzz++. Figure 3 shows two coverage plots

for this target for the entire corpus, where each “column” in the

plot represents one test case, while each “row” is a program edge.

We compare the coverage predicted by a trained ML model for

the same test cases and edges (Figure 3 top) to the true coverage

extracted with afl-showmap (bottom). The bottom plot is the cov-

erage bitmap extracted with afl-showmap for the corpus and used

for model training by Neuzz, PreFuzz, and Neuzz++. A reduction

(deduplication) operation is applied to it, which for libpng reduces

the number of edges from 900 to the 293 present in the plot; this

operation also explains any visual artifacts present in the image,

as the edges are reordered. The pink areas of the two plots differ

significantly, with the model predictions being almost constant over

all test cases: the model only predicts trivial coverage and fails to

capture rare edges. While this is a consequence of the difficulty

of the machine learning tasks (small dataset, class imbalance, too

few samples w.r.t. the size of the test cases and bitmaps, see Ta-

ble 2), it results in large approximation errors in the neural network,

as outlined in Issue C1. Moreover, recall that Neuzz, PreFuzz and

Neuzz++ use the sameMLmodel type and structure, with minor dif-

ferences in the training procedure and similar model performance.

Our findings thus extend to all NPS methods.

Finally, we investigate the effectiveness of gradient-based mu-

tations as essential component of NPS fuzzers. In the same setup

on libpng from the previous section, we apply Neuzz++ mutations

to the corpus generated by a 24-hours fuzzing run as follows. For

each edge in the bitmap, we consider the case when it is explicitly

targeted and generate all mutations with a maximum number of

iterations in the mutation strategy. Figure 3 (top) plots the predicted

coverage for each test case and edge before the mutations, as well

as the increment of coverage after mutation. Each edge (row) is

considered covered by one test case (column) if at least one of the

few thousand mutations generated to target it reaches the code

location. The results represent coverage estimated by the MLmodel,

not run on the program. However, the coverage the model predicts

is an optimistic estimate of the one actually achieved on the target,

as the model dictated the mutations. Note that the mutations are

generated in the same way for Neuzz, PreFuzz and Neuzz++; our

analysis thus applies to all methods and targets.

Figure 3 (top) indicates that some locations are more readily

reachable through mutations. The harder to reach edges overall

match the rarer edges of the corpus, as measured by afl-showmap

in the bottom plot. Most importantly, none of the edges targeted

or covered by the mutations in the top plot represent new coverage.

Recall that, by NPS methods’ design, a code edge is only present in

the bitmap only if it has already been covered by the initial corpus

used for training (Issue C3). This becomes evident in the bottom

plot of Figure 3: all edges have been covered by at least one test

case. As will be shown later, this fundamental flaw of NPS methods

translates to a limited practical capacity of reaching new coverage.

The model predicts trivial edge coverage (Issue C1), and

gradient mutations cannot target new edges (Issue C3).

5.3 Comparing Code Coverage

We present the main experiment comparing the achieved code

coverage of available neural program smoothing approaches to

AFL, AFL++ and the recent HavocMAB in Table 3 (average coverage)

and Figure 4 (coverage over time). This experiment alone requires

a total computation time of over 11 CPU years and 5.5 GPU years.

Overall, AFL++ obtains the best performance on ten targets,

followed by HavocMAB with eight targets, and Neuzz++ on par

with AFL, winning two targets each. In view of AFL++ performance

w.r.t. AFL, it is clear that not including AFL++ as a baseline in all

prior neural program smoothing works leads to overly optimistic

conclusions about their capacities. After AFL++, HavocMAB is the

second most performant fuzzer in terms of code coverage. However,

we find that it does not reach the expected ranking advertised in

the HavocMAB paper [45].

We observe that Neuzz and PreFuzz are never in the top two

fuzzers. Moreover, although they were designed to improve AFL

performance, their coverage is in most cases lower than that of

AFL. AFL wins on 20 out of 23 targets over Neuzz, and 18 out of 23

over PreFuzz. PreFuzz outperforms Neuzz on most targets, however

this difference is significant only on six targets (see confidence

intervals in Figure 4). This finding is also at odds with original

PreFuzz results [46], where the performance gap is significantly

wider. Section 5.7 is dedicated to further explaining the difference

in performance with the initial papers. Neuzz++ obtains higher

coverage than Neuzz and PreFuzz on 21 programs, proving that our

improvements over these methods are effective.

Targets libarchive, libxml2, proj4, and woff2 exhibit the most

variability among fuzzers. Neuzz and PreFuzz exhibit large standard

deviation on woff2, where coverage varies depending if the fuzzers

reach plateau or not. For the other targets, it seems AFL-based

fuzzers do not perform as well as AFL++-based ones.

Overall, AFL++ achieves the highest code coverage. Among

NPS fuzzers, Neuzz++ achieves the highest code coverage.
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Table 3: Average edge coverage and standard deviation over 30 runs.

Best value in bold, second best underlined.

Target AFL AFL++ HavocMAB Neuzz PreFuzz Neuzz++

bloaty 14220±49 15607±100 15240±194 12518±790 12936±319 15296±196

boringssl 2936±34 2940±34 2956±1 2863±14 2867±21 2930±32

curl 13002±1103 13398±1376 14121±324 8999±211 9048±218 11260±1401

freetype2 10722±126 11090±104 11408±95 8569±281 8870±386 10960±138

guetzli 7306±21 6772±9 7398±29 7099±26 7141±45 6702±7

harfbuzz 12056±137 11887±137 11953±146 10672±110 10875±102 11654±65

json 2033±5 2018±11 2036±0 1974±79 1970±86 2032±12

lcms 2483±198 1904±441 2423±277 1593±372 1876±433 1809±455

libarchive 3708±383 5281±207 4970±153 3729±289 3718±225 5246±204

libjpeg 2685±82 3058±161 2980±192 2647±5 2664±60 2892±189

libpcap 2203±219 3733±115 2833±243 1859±358 1875±373 3529±155

libpng 1234±7 1235±3 1240±2 1220±6 1219±7 1241±3

libxml2 4857±286 9155±989 5416±273 4895±403 4853±271 7306±1191

openh264 13381±341 15234±15 14902±109 14135±241 14537±142 15126±80

openssl 1891±6 1899±1 1894±4 1878±7 1884±8 1886±8

pcre2 7797±142 7960±142 8076±98 7555±76 7575±77 7763±67

proj4 1837±1621 5585±101 4190±741 1526±514 1849±392 4550±78

re2 6680±52 6717±7 6777±26 6497±162 6547±110 6731±30

sqlite 2004±154 2123±12 2121±0 1982±158 2025±146 2125±16

stb 3305±109 3390±11 3413±20 3286±18 3315±14 3380±14

vorbis 2317±6 2348±4 2342±19 2186±29 2181±40 2311±38

woff2 3305±3 3472±34 3418±36 2080±667 1650±893 3062±530

zlib 615±12 623±6 620±5 592±10 595±12 620±3

Table 4: Average edge coverage of ML

component over 30 runs.

Neuzz PreFuzz Neuzz++

292±206 666±593 261±166

0±2 0±0 11±19

141±182 153±88 534±245

635±225 865±255 429±130

28±11 69±35 32±13

161±52 377±145 345±163

2±3 21±46 216±86

61±210 344±415 8±23

105±97 101±124 1136±206

4±5 6±6 103±35

43±27 59±41 1608±289

2±3 1±2 105±31

52±46 74±32 950±215

1846±290 2248±284 148±67

6±7 6±6 91±70

0±2 13±9 1396±160

186±242 145±204 197±82

25±93 24±75 660±209

0±0 0±0 94±129

122±77 150±82 77±13

186±21 186±42 16±11

5±16 14±49 39±21

9±9 10±8 24±14

5.4 Code Coverage from Machine Learning

After presenting total coverage for 24-hour runs in Table 3, we

now measure how much of the total coverage can be attributed

to the machine learning component for each NPS fuzzer. On one

hand, the goal is to discount the coverage produced strictly by AFL

in the first hour of Neuzz and PreFuzz runs (recall that they use

AFL for data collection, see Figure 2) and only measure the NPS

fuzzers’ contribution. On the other hand, we wish to do the same for

Neuzz++, and separate its contribution from that of the base fuzzer

AFL++. As Neuzz++ is a custommutator for AFL++, its seeds usually

alternate with regular AFL++ seeds. To this end, we measure edge

coverage by corpus replaying, this time only taking into account

the seeds obtained by Neuzz, PreFuzz and Neuzz++, respectively.

For Neuzz and PreFuzz, this is equivalent to excluding the first hour

of coverage, as done by the original authors. In practice, this will

include ML-based mutations, but also other hard-coded mutations

that the methods apply, such as havoc in the case of PreFuzz. Table 4

summarizes the comparison of edge coverage obtained by the ML

components of Neuzz, PreFuzz, and Neuzz++. Program names are

aligned with Table 3.

Neuzz++ obtains the highest coverage in 14 over 23 targets,

with values at least one order of magnitude higher than Neuzz

and PreFuzz. Nevertheless, even on targets where Neuzz++ does

not obtain the highest ML coverage (e.g., freetype2, harfbuzz), the

overall Neuzz++ edge coverage (Table 3) is higher than that of

Neuzz and PreFuzz, with the latter two obtaining lower coverage

than their base fuzzer AFL. The added value of Neuzz and PreFuzz

is low in nine, respectively five targets, with coverage close to zero.

In these cases, Neuzz and PreFuzz do not achieve (almost) any

coverage past the first hour of fuzzing with AFL (see also Figure 4).

This reinforces our previous conclusion that the time spent using

Neuzz and PreFuzzmight be better spent applying the AFL or AFL++

mutation strategy. Moreover, the Neuzz++ results suggest that it

might benefit from the alternation between ML-guided mutations

and standard AFL++ ones. We explore this last point with additional

analyses in Section 5.5.

For most programs, the time budget spent on Neuzz or

PreFuzz is better spent on standard gray-box fuzzing.

5.5 Quality of Machine Learning Test Cases

We now aim to assess the quality of the test cases found by the

machine learning component of Neuzz++. We do so with two anal-

yses: we investigate (i) the inclusion of ML-generated inputs in the

AFL++ power schedule for further mutation, and (ii) the rarity of

code edges found through machine learning-based mutations.

First, Table 5 presents statistics regarding ML-produced test

cases for each target averaged over all trials. The column “%ML

seeds” shows the overall percentage of inputs produced through

ML mutations. Out of these, “%MLcov+” discover new coverage

(relative percentage). Finally, “%derived” is the total percentage of

the corpus produced by direct mutations of ML-based inputs. We

find that the ratio of machine learning inputs varies significantly

across targets, representing up to a third of the corpus. ML test cases

seem to be most impactful for finding new coverage on programs

where they represent a low percentage of the corpus. On average,

each ML test case is mutated at least once successfully, generating

new test cases that are kept by Neuzz++ in the corpus.
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Figure 4: Average edge coverage over time with 95% confi-

dence interval.

Table 5: Statistics for ML-generated test cases of Neuzz++.

“%ML seeds” and “%derived” are computed over the total size

of the corpus. “%MLcov+” is relative to “%ML seeds”.

Target %ML seeds %MLcov+ %derived

bloaty 4.72% 28.3% 8.78%

boringssl 27.7% 3.3% 27.5%

curl 18.6% 26.1% 33.1%

freetype2 2.2% 31.9% 3.8%

guetzli 9.9% 9.8% 13.8%

harfbuzz 6.6% 30.2% 15.2%

json 13.7% 37.3% 25.4%

lcms 1.6% 57.1% 1.1%

libarchive 18.3% 30.2% 34.9%

libjpeg 11.8% 10.7% 15.9%

libpcap 13.8% 40.0% 20.8%

libpng 19.6% 13.8% 41.0%

libxml2 15.1% 23.9% 30.1%

openh264 10.2% 8.0% 8.5%

openssl 30.6% 5.6% 28.7%

pcre2 18.3% 17.4% 29.88%

proj4 5.5% 49.7% 7.4%

re2 23.3% 22.8% 34.7%

sqlite 8.1% 20.2% 6.2%

stb 14.8% 15.3% 19.9%

vorbis 6.0% 8.3% 7.9%

woff2 3.8% 19.8% 5.2%

zlib 16.9% 20.7% 18.1%

The second analysis studies whether NPS fuzzers explore code

areas that are harder to reach by standard fuzzers. In that case,

neural program smoothing fuzzers could be used in an ensemble

of diverse fuzzers, opening the path for all fuzzers to rare parts of

the code [13]. To measure the rarity of edges reached by Neuzz++,

we compare the edge IDs that Neuzz++ and AFL++ reach on each

program, all trials joint. The edge IDs are obtained by replaying all

the test cases with afl-showmap.

We summarize the results in Table 6 as follows: Neuzz++ (de-

noted N+) reveals less than 0.5% additional edges that AFL++ (de-

noted A+) in 16 out of 23 targets. Neuzz++ does not find any such ex-

clusive edges for eight programs; it is most successful on lcms, with

8.2% exclusive edges. On the other hand, AFL++ finds up to 16.4% ex-

clusive edges, lacking exclusive edges on only two programs (json

and sqlite). We can therefore conclude that NPS-guided fuzzers

explore essentially the same code areas as traditional fuzzers.

NPS fuzzers find less rare edges than gray-box fuzzers.

5.6 NPS-based Fuzzing without GPUs

Due to their increased performance for linear algebra and data

throughput, GPUs are the de facto standard for machine learning.

All NPS methods studied in this paper leverage GPU access to train

machine learning models and compute gradients for test case mu-

tations. In practice, this means that they use more computational

resources than state-of-the-art gray-box fuzzers, and that practi-

tioners are required to invest in additional hardware. In this section,

we wish to assess the performance of NPS methods in the absence

of GPUs. Model training with only CPU access should be slower,
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Table 6: Reached edges for AFL++ (A+) and Neuzz++ (N+).

Target A+ N+ A+ ∪ N+ A+ \ N+ N+ \ A+

bloaty 5131 4926 5139 213 8

boringssl 1210 1208 1210 2 0

curl 6862 6656 6899 243 37

freetype2 6555 6292 6575 283

guetzli 2645 2624 2655 31 10

harfbuzz 5438 5081 5440 359 2

json 2036 2036 2036 0 0

lcms 935 1010 1019 9 84

libarchive 3622 3223 3649 426 27

libjpeg-turbo 1565 1539 1565 26 0

libpcap 2869 2628 2901 273 32

libpng 621 616 621 5 0

libxml2 5401 4856 5410 554 9

openh264 5849 5840 5851 11 2

openssl 812 811 812 1 0

pcre2 5548 5355 5577 222 29

proj4 2802 2343 2803 460 1

re2 2391 2426 2440 14 49

sqlite 950 950 950 0 0

stb 2012 2014 2021 7 9

vorbis 1142 1100 1142 42 0

woff2 1254 1268 1270 2 16

zlib 337 333 337 4 0

Table 7: Average edge coverage of NPS fuzzers with and with-

out GPU access (10 runs).

Neuzz PreFuzz Neuzz++

Target CPU GPU CPU GPU CPU GPU

harfbuzz 10607 10677 10675 10897 11631 11664

libjpeg 2618 2647 2635 2688 2998 2892

sqlite 2017 1993 2049 2089 2121 2127

woff2 1919 1816 1702 954 3288 3389

but it should not impact the performance of the trained model. As

such, any loss in fuzzing performance comes from spending more

time training and less fuzzing. For this small experiment, we select

four targets that operate on a varied range of input formats for

diversity. We perform ten trials of all NPS fuzzers with and without

GPU access (Table 7).

Nine of twelve experiments obtain more code coverage when

training the model on GPU, which is to be expected. The exception

is PreFuzz on woff2, which is however aligned with this fuzzer’s

tendency of sometimes becoming stuck on this program (Table 3).

Overall, the fuzzing performance on GPU is marginally better, as

training times for NPS models are relatively short. The gap between

CPU and GPU seems tighter for Neuzz++, which we attribute to an

already optimized and short training procedure, which cannot be

much further improved by GPUs.

Using GPUs usually results in better coverage for

NPS fuzzers.

5.7 Impact of Test Case Transmission Method

In Issue E2, we underlined that NPS-guided fuzzers use files to trans-

fer test cases to the target program. We now show that test case

Table 8: Relative degradation of edge coverage not using per-

sistent mode (10 runs).

Target AFL AFL++ HavocMAB Neuzz PreFuzz Neuzz++

harfbuzz -8.9% -60.2% -2.9% -3.4% -2.6% -2.9%
libjpeg -2.8% -55.7% -5.9% -8.9% -7.7% -14.6%
sqlite 0.1% -57.4% -0.3% -4.9% -7.9% -1.7%
woff2 -34.5% -84.3% -40.4% -43.8% -46.8% -0.6%

transmission has a major impact on fuzzing performance for the

methods in [38, 39, 45, 46]. We note that AFL++ does not reach the

performance of its predecessor AFL by a margin in the HavocMAB

work [45]. This is inconsistent with several other large bench-

marks [3, 33], where AFL++ ranks among the top fuzzers. While

not using the persistence mode slows down all fuzzers, we expect

state-of-the-art gray-box fuzzers to be affected the most, i.e., they

would lose their competitive advantage of speed. This experiment

uses the same targets and setup as the previous section.

Table 8 presents the performance difference when the persis-

tence mode is not used. This setup reproduces both the protocol and

results from HavocMAB [45], the only paper that compares NPS-

guided fuzzers against AFL++. As expected, coverage decreases

when passing inputs through files and restarting the program for

each test case. Most interestingly, AFL++ shows the largest slow-

downwith a consistent coverage loss over 50%, while the AFL-based

fuzzers mainly show single-digit percentage degradation. Conse-

quently, not using the recommended persistence mode can distort

the ranking of fuzzers in a benchmark. In our opinion, this set-

ting does not yield a fair or practically relevant comparison. Worth

mentioning here is that Neuzz++ can compensate the performance

loss of its base fuzzer AFL++, obtaining more coverage in absolute

values. As conjectured, results indicate that NPS-guided fuzzers

suffer less under slow operation than other fuzzers. Despite that,

we are still not able to reproduce the performance of Neuzz and

PreFuzz against AFL reported in the original papers.

AFL++ is most slowed down when not using

the persistent mode.

5.8 Bugs Found

The main goal of fuzzing is to find as many unique bugs as possible.

The default coverage-based crash identification mechanism of AFL

and AFL++ tends to overcount unique bugs [27]. To improve this

behavior, we apply a more precise stack trace-based deduplication

algorithm. We therefore execute each reported crashing input on

the target within GNU debugger (GDB) and retrieve all stack frame

addresses when the error occurs. This list of addresses then serves

as a unique identifier of the triggered bug. Note that deduplication

based on stack traces is ineffective when stack overflow errors

occur, because the stack frames are then corrupted.

Table 9 contains the number of crashes with unique stack trace

signatures across all trials for each target that reported any crashes.

Neuzz and PreFuzz find the lowest number of crashing inputs (none

for most targets), followed by AFL, their base fuzzer; HavocMAB

significantly improves over AFL. AFL++ is most successful in re-

vealing crashes, with most bugs found and all targets covered. In

summary, all NPS-based fuzzers find fewer crashing inputs than

the fuzzer they are based upon.
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Table 9: Bugs found after stack trace deduplication.

Target AFL AFL++ HavocMAB Neuzz PreFuzz Neuzz++

bloaty 1 1 2 0 0 1
guetzli 8 264 5 0 0 170
harfbuzz 0 355 1 0 0 12
json 20 11 22 18 16 10
lcms 0 16 0 0 0 8
libarchive 0 1 0 0 0 0
libxml2 0 648 1 0 0 289
openssl 138 1324 409 37 40 721
pcre2 87 4174 262 40 35 1371
re2 0 172 1 0 0 2
vorbis 0 2 1 0 0 0
woff2 20 361 671 1 1 172

NPS-guided fuzzers find fewer bugs than standard fuzzers.

6 BENCHMARKING ML-BASED FUZZERS

Fuzzer evaluation is an open research topic abundently studied in

recent works [3, 6, 27, 33]. A common guideline is that each fuzzer

must be tested on multiple programs, using multiple repetitions to

account for randomness. The recommended number of repetitions

revolves around 10–20 trials. Besides the average performance,

indicators of variability (i.e., confidence intervals, statistical tests)

are necessary to assess the significance of the results. The main

goal of fuzzers is to find bugs, which suggests that unique bugs

found in fixed time should be the evaluation metric. However, since

bugs are rather rare, the performance of fuzzers is often measured

in code coverage over time. This may be justified by observations

that more code coverage correlates with more bugs found [6]. To

complement these principles, we propose the following practices

when evaluating novel machine learning-based fuzzing methods:

(1) Analyze each new component in the fuzzing loop. Both

performance evaluations and ablation studies of ML models

are critical. Metrics specific to the task solved should be used

(e.g., accuracy, or precision and recall for classification, mean

absolute error or mean squared error for regression, etc.).

These complement the view on the overall system perfor-

mance, i.e., coverage or bugs found in the case of fuzzing. ML

evaluation should employ a validation set distinct from the

training data to avoid an overly optimistic estimates [24].

(2) Use state-of-the-art fuzzers and configurations as base-

lines. Lacking strong baselines prevents one from claiming

novel state-of-the-art accomplishments in terms of code cov-

erage and bugs found. All fuzzers in an experiment should

be configured for performance (e.g., appropriate compiler,

compilation options, harness, input feeding mode). We also

recommend introducing new scientific or technical contri-

butions based on recent fuzzers and evaluation platforms, as

opposed to their older counterparts.

(3) Use comparable metrics for fuzzing performance. As

not all fuzzers measure the same type of coverage, we en-

courage the use of one common evaluation metric between

multiple fuzzers. In practice, this is easiest done by replaying

the corpus at the end of a fuzzing trial, as implemented by

FuzzBench [3, 33] and MLFuzz.

(4) Repeat trials often enough to account for variance. We

propose to use 30 trials for fuzzing evaluation, resulting in

tight confidence intervals. This sample size is commonly

used in statistics and deemed sufficient for the central limit

theorem [9] to hold. As shown in Figure 4, ML-based fuzzers

can have higher coverage variability than gray-box fuzzers,

thus requiring more trials for stable baselining.

(5) Ensure reproducible results by fixing and serializing

parameters.While it is difficult to control all sources of ran-

domness when training ML models on GPUs, it remains a

good practice in both machine learning and software testing

to control possible sources of randomness by seeding random

number generators and reusing the same seeds. Experimen-

tal configurations and, in the case of ML, hyperparameters

should be documented for reproducibility.

(6) Ensure usability of proposed fuzzers. It should be pos-

sible to run a newly proposed fuzzer on programs outside

the original publication study. Providing a containerized en-

vironment can sustainably decrease setup efforts. We also

support integration of new fuzzers with existing benchmark-

ing platforms, such as FuzzBench and now MLFuzz.

7 CONCLUSION AND CONSEQUENCES

Neural program smoothing for fuzzing neither reaches its adver-

tised performance, nor does it surpass older fuzzing techniques that

are still state-of-the-art. In our in-depth analysis of NPS fuzzers,

we analyzed conceptual limitations of previously published ap-

proaches, as well as implementation and evaluation issues. Our

comprehensive benchmark showed that NPS-guided fuzzers were

by far unable to reach their stated performance. Addressing the

implementation issues did not suffice to outperform state-of-the-art

gray-box fuzzers. The reason for the limited fuzzing performance

lies in the difficulty of the machine learning task, which yields

trivial models on the data available during fuzzing.

To guide future fuzzing research and practical validation, we

developed improved experimental guidelines targeting fuzzing with

machine learning. Our MLFuzz framework for ML-based fuzzers

includes patched and containerized versions of the investigated

fuzzers to help with additional benchmarking. We encourage re-

searchers to perform ablation studies and provide deeper insights

into the components they introduce in fuzzing.

While we highlight fundamental limitations of neural program

smoothing, whether and how much this technique can enhance

fuzzing remains an open topic for future research. We hope that this

work contributes to fair and comprehensive evaluations of future

fuzzers, be they ML-based or not.

8 DATA AVAILABILITY

The open-source implementation of Neuzz++ and MLFuzz, the

evaluation setup, and raw results are available at

https://github.com/boschresearch/mlfuzz

https://github.com/boschresearch/neuzzplusplus.
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