
Crystallizer: A Hybrid Path Analysis Framework to Aid in
Uncovering Deserialization Vulnerabilities

Prashast Srivastava
Purdue University

United States

Flavio Toffalini
EPFL

Switzerland

Kostyantyn Vorobyov
Oracle Labs
Australia

François Gauthier
Oracle Labs
Australia

Antonio Bianchi
Purdue University

United States

Mathias Payer
EPFL

Switzerland

ABSTRACT

Applications use serialization and deserialization to exchange data.

Serialization allows developers to exchange messages or perform

remote method invocation in distributed applications. However, the

application logic itself is responsible for security. Adversaries may

abuse bugs in the deserialization logic to forcibly invoke attacker-

controlled methods by crafting malicious bytestreams (payloads).

Crystallizer presents a novel hybrid framework to automati-

cally uncover deserialization vulnerabilities by combining static and

dynamic analyses. Our intuition is to first over-approximate possi-

ble payloads through static analysis (to constrain the search space).

Then, we use dynamic analysis to instantiate concrete payloads as

a proof-of-concept of a vulnerability (giving the analyst concrete

examples of possible attacks). Our proof-of-concept focuses on Java

deserialization as the imminent domain of such attacks.

We evaluate our prototype on seven popular Java libraries against

state-of-the-art frameworks for uncovering gadget chains. In con-

trast to existing tools, we uncovered 41 previously unknown ex-

ploitable chains. Furthermore, we show the real-world security

impact of Crystallizer by using it to synthesize gadget chains to

mount RCE and DoS attacks on three popular Java applications. We

have responsibly disclosed all newly discovered vulnerabilities.

CCS CONCEPTS

• Security and privacy→ Software and application security.

KEYWORDS

Deserialization vulnerabiltiies, Java, hybrid analysis

ACM Reference Format:

Prashast Srivastava, Flavio Toffalini, Kostyantyn Vorobyov, François Gau-

thier, Antonio Bianchi, and Mathias Payer. 2023. Crystallizer: A Hybrid

Path Analysis Framework to Aid in Uncovering Deserialization Vulnera-

bilities. In Proceedings of the 31st ACM Joint European Software Engineering

Conference and Symposium on the Foundations of Software Engineering (ES-

EC/FSE ’23), December 3–9, 2023, San Francisco, CA, USA. ACM, New York,

NY, USA, 12 pages. https://doi.org/10.1145/3611643.3616313

ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0327-0/23/12.
https://doi.org/10.1145/3611643.3616313

1 INTRODUCTION

Serialization is a key feature in modern languages (e.g., Java, C#, or

PHP) that enables cross-platform communication, remote method

invocations, and object persistence. Serialization converts object

graphs into bytestreams. Symmetrically to serialization, deserial-

ization rebuilds the original object graph from the bytestream. By

default, deserialization ensures that the deserialized objects are

valid but it does not enforce security constraints. Security (both

during and after deserialization) is the sole responsibility of the

application logic. Incomplete security checks allow attackers to

bend the control-flow/data-flow of a program. These attacks can hi-

jack the deserialization process, granting the attacker remote code

execution (RCE), denial of service (DoS), or information persistence

capabilities such as Arbitrary File Writes (AFW). Deserialization

vulnerabilities have shown catastrophic security impact [24]. E.g.,

the Equifax data breach [16] was caused by a deserialization vul-

nerability enabling RCE in the [36]. More recently, the Log4Shell

vulnerability in the widely used Log4j2 library can be exploited

in newer versions of the JDK that were previously thought safe by

leveraging deserialization-based attack vectors [28].

Payloads for deserialization attacks are composed of nested ob-

jects that, when deserialized, force the application to invoke an

attacker-controlled sequence of methods, also called a gadget chain.

The last gadget of the chain is usually called sink and may invoke

system functions, e.g., Runtime.exec() with attacker-specified ar-

guments, allowing the attacker to execute arbitrary system com-

mands. The gadgets in the deserialization domain are conceptually

similar to gadgets in Return-Oriented Programming (ROP) [48, 51]

for binary exploitation: small pieces of code in the vulnerable pro-

gram that are stitched together by an attacker. However, deserial-

ization gadgets do not operate at the machine code level, instead,

they bend the serialization logic to express malicious actions.

Attack chains heavily depend on the application logic. Therefore,

finding such gadget combinations that bypass the application logic

is crucial to fix vulnerabilities. As of now, discovering deserializa-

tion vulnerabilities is predominantly manual and requires solving

three main challenges:

C1. Sink Gadgets Identification: New sink gadgets that are use-

ful to the attacker are currently identified through heuristics, e.g.,

marking calls to Runtime.exec(). However, we observe this ap-

proach overlooks non-trivial sinks and inhibits discovering other

interesting types of attacks (e.g., DoS).

This work is licensed under a Creative Commons Attribution 4.0 Interna-

tional License.

1586

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://doi.org/10.1145/3611643.3616313
https://doi.org/10.1145/3611643.3616313
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3611643.3616313&domain=pdf&date_stamp=2023-11-30


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Prashast Srivastava, Flavio Toffalini, Kostyantyn Vorobyov, François Gauthier, Antonio Bianchi, and Mathias Payer

C2. Large State Space: The search space for gadget chains in

current applications is massive with thousands of gadget combina-

tions. This makes finding a gadget chain that can be used to mount

a deserialization attack is akin to finding a needle in a haystack.

C3. Complex Payload Creation:Deserialization payloads require

careful instantiation of classes and arguments that obey the execu-

tion constraints of the gadget chain. Consequently, valid bytestream

creation becomes exceedingly complex due to the large number of

possible combinations that nested objects can assume.

To overcome the aforementioned challenges, we design Crys-

tallizer: a hybrid framework that combines static and dynamic

analysis to synthesize concrete payloads for gadget chains and find

deserialization vulnerabilities automatically. First, our framework

identifies new sink gadgets in an application. Then, it uses static

analysis to construct a gadget graph: a data structure that encodes

all possible gadget chains within a target software (up to a certain

length). This greatly reduces the explorable state space for gadget

chains. Crystallizer creates payloads as bytestreams out of the

reduced state space dynamically. Our framework synthesizes pay-

loads in a chain-aware manner: it keeps track of the execution chain

order and performs a best-effort approach to create well-formed ar-

guments for each of the gadgets while obeying language semantics.

We implement our proof-of-concept tool for Java as it is widely

adopted as the backbone for software development [9, 50].

We evaluate Crystallizer on seven libraries and three applica-

tions. Across the seven libraries, it finds 41 new chains in addition

to seven previously known gadget chains [22]. This demonstrates

Crystallizer’s ability to find both existing and new gadget chains

automatically. Furthermore, we compare Crystallizer against two

state-of-the-art tools [26, 47] for finding Java-based deserialization

vulnerabilities and showcase that Crystallizer drastically out-

performs existing state-of-the-art in terms of finding exploitable

gadget chains. Finally, we showcase the real-world security impact

of Crystallizer by synthesizing payloads that we use to demon-

strate DoS and RCE attacks on three popular Java applications. The

corresponding proof-of-concept exploits were responsibly disclosed.

In summary, this paper makes the following contributions:

• We perform a systematic analysis of how deserialization

vulnerabilities manifest themselves in the form of gadget

chains, including challenges to uncover them automatically.

• We present Crystallizer, a hybrid framework to automati-

cally uncover deserialization vulnerabilities by crafting pay-

loads that exercise gadget chains in the target.

• We evaluate it against seven libraries and find 41 new chains

in addition to seven previously known chains.

• Crystallizer outperforms state-of-the-art tools for finding

Java-based deserialization vulnerabilities and demonstrate

real-world security impact by using it to mount DoS and

RCE attacks on three popular real-world applications.

• All our evaluation artifacts along with the source code of

our framework are made available at https://github.com/

HexHive/Crystallizer.

2 DESERIALIZATION ATTACKS

We discuss the basics of Java serialization. Then, we establish termi-

nology relevant to deserialization attacks and showcase an example

attack on a popular Java-based library Apache Commons Collec-

tions [1]. Finally, we discuss domain-specific challenges.

2.1 Serialization and Deserialization

Serialization is the action of transforming objects into a bytestream.

Deserialization later rebuilds the objects from the received stream.

Serialization for Java employs the Serializable interface [38].

Serialized objects of classes that implement this interface can be

created using the writeObject method provided by the JDK [40].

The method encodes the object’s fields into a bytestream to, e.g.,

send it across the network or store it into a file. On the other end,

the method readObject [39] deserializes the byte stream and re-

builds the original object automatically. Note that the deserialized

object’s class must be in the classpath [42], otherwise deserializa-

tion fails. Java allows specifying custom serialization and deserial-

ization routines to instruct the receiver application about custom

data processing, i.e., post-processing data while filling an object’s

fields. As these mechanisms allow great flexibility, they also leave

a large exploitable attack surface.

2.2 Payload Formalization

Let us establish terminology relevant to deserialization attacks. A

gadget is any invoked method during deserialization. It forms the

basic building block for an attack. A gadget chain corresponds to a

sequence of method invocations triggered upon deserialization of

a payload. Payload refers to a bytestream corresponding to a set of

serialized nested objects. A payload that exploits a deserialization

vulnerability forces the application to call an attacker-specified

gadget chain which can be used to mount an attack, e.g., RCE. In

general, a deserialization attack is possible because the deserializa-

tion process automatically rebuilds the received object from the

attacker-specified bytestream and, in doing so, potentially enables

attacker-specified code to be executed.

Gadgets fall into three categories [35]: (i) Trigger Gadgets are

the first elements invoked during deserialization and serve as the

attack’s entry points. In Java, such gadgets are usually classes that

override specific magic methods (e.g., readObject()). Custom dese-

rialization routines operate on data that may be attacker-controlled

allowing the trigger gadgets to kickstart a chain, (ii) Link Gadgets

orchestrate the flow of attacker-controlled data from a trigger to a

sink gadget, and (iii) Sink Gadgets launch the attack by running

attacker-specified malicious actions.

Our Gadget Graph represents an over-approximation of all the

possible gadgets chains in a program. Hence, a payload exercises

only a specific path in the graph between the trigger gadget and the

sink gadget. Since gadgets are the methods executed through the

standard deserialization process, we model the gadget graph as a

subcomponent of the application callgraphwhose nodes are marked

as gadgets (trigger, link, or sink). §3.1 describes our approach to

extracting the gadget graph.

2.3 Payload Example

We present a known deserialization attack on Apache Commons

Collections library explaining: (i) execution flow of a gadget chain

vulnerable to a deserialization attack, and (ii) the creation of a

payload that exercises this vulnerable chain.

1587

https://github.com/HexHive/Crystallizer
https://github.com/HexHive/Crystallizer


Crystallizer: A Hybrid Path Analysis Framework to Aid in Uncovering Deserialization Vulnerabilities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

 BadAttributeValueExpException {
 
   void readObject(ObjectInputStream ois) { // trigger gadget
     Object valObj = ois.readField("val");

  valObj.toString();  // valObj instance of TiedMapEntry
   }

}

 TiedMapEntry {

   String toString() { // link gadget
  this.getValue();

   }

   Object getValue() { // link gadget
  // this.map instance of LazyMap
  // this.key instance of String ("foo")
  this.map.get(this.key);                              

   }

}

 LazyMap {
   Object get(Object key) { // sink gadget
     // the transformer triggers a command

  Object val = this.factory.transform(this.key);
   }
 }

 // An application invokes .readObject() 
 // to deserialize the byte stream ois
 BadAttributeValueExpException.readObject(ois);

➊

➋

➌

➍

➎

Figure 1: A simplified example for the gadget chain executed

upon the payload (Listing 1) being deserialized.

Figure 1 shows the vulnerable gadget chain. The readObject()

( 1 ) method of the BadAttributeValueExpException class is ex-

ecuted first, making it the trigger gadget. This gadget rebuilds

the object (instance of BadAttributeValueExpException) from

the bytestream and invokes a toString() method on one of its

field members (val). The object valObj is an instance of the class

TiedMapEntry, then its toString()method is called ( 2 ) which in

turn calls its getValue() method. The getValue() method retries

a key from a map ( 3 ). If the map is an instance of LazyMap, it will

try to build an item corresponding to the key parameter “foo” ( 4 )

by using a Transformer class whose object can be instantiated in

such a way that the item building performs RCE ( 5 ). Since exe-

cuting the gadget get() method inside the LazyMap can lead to

RCE [32], we categorize it as a sink gadget. The gadgets belonging

to TiedMapEntry are referred to as link gadgets since they chain

the invocation from the trigger gadget to the sink gadget.

The gadget chain highlights two key observations: (i) the gadget

chain is a subgraph of the application callgraph, and (ii) exercising

this gadget chain requires a bytestream that is crafted from a set of

nested objects in such a way that the above gadget chain is invoked.

The payload that exercises the above-mentioned gadget chain

to achieve RCE is shown in Listing 1. The first step is to instantiate

a Transformer that executes exec("/bin/bash") (Line 8). The

Transformer is then used to instantiate a LazyMap object (Line 12).

The LazyMap automatically instantiates any missing entry using

the Transformer class instance; thus invoking exec(). We then

use the LazyMap to build a TiedMapEntry (Line 14) and bind it to a

BadAttributeValueExpException instance (Line 17). Specifically,

this class overrides the readObject() method and acts as our trig-

ger gadget. val is the final payload which is serialized (Line 21) to

a bytestream, ready to be sent to a vulnerable application.

1 // command to execute

2 final String[] execArgs = { "/bin/bash" };

3

4 // Preparing object for Transformer which

5 // is used inside the sink gadget to grant RCE to an attacker

6 final Transformer[] transformers = new Transformer[] {

7 new InvokerTransformer("exec", new Class[]

8 { String.class }, execArgs), /*...*/ };

9

10 final Map innerMap = new HashMap();

11 // Preparing object for LazyMap which acts as the sink gadget

12 final Map lazyMap = new LazyMap(innerMap, transformers);

13 // Prepraring object corresponding to a link gadget

14 TiedMapEntry entry = new TiedMapEntry(lazyMap, "foo");

15

16 // Preparing object corresponding to the trigger gadget

17 BadAttributeValueExpException val = new BadAttributeValueExpException(val);

18

19 ObjectOutputStream os = new ObjectOutputStream(new

FileOutputStream("payload.bin"));↩→

20 // Writing the object into serialized bytestream (payload)

21 os.writeObject(val);

Listing 1: Simplified Java code creating the payload targeting

Apache Commons Collection. Figure 1 describes the observed

control flow execution upon deserializing this payload.

2.4 Challenges

Recalling the example in Listing 1, we identify threemain challenges

for automating chain creation: sink gadget identification, large state

space, and complex payload generation.

C1 Sink Gadgets Identification.While trigger gadgets are easy

to locate (i.e., they are overrides of known magic methods such as

readObject()), link gadgets are generic nodes in a gadget graph.

Identifying sink gadgets requires non-trivial code knowledge. Pre-

vious works use heuristics [26] to locate the usage of specific func-

tions (e.g., Runtime.exec()). However, we observe that they over-

look a large group of alternate sinks. Therefore, we adopt a broader

definition: a gadget is considered a sink if it may operate on objects

of any type. We identify such gadgets by checking if they may use

objects of type Object [41]. Since Object corresponds to the root

of the class object hierarchy, a gadget operating on this type can

operate on objects of any class. We chose this definition because

(i) it may result in a higher chance of manipulating the gadget to

perform attacker-specified functionality, and (ii) it allows Crystal-

lizer to target and find a wide spectrum of threats (e.g., logic-based

DoS chains) that were missed by previous works.

C2 Large State Space. To estimate the explorable state space of

gadget chains, we conduct a preliminary analysis in Apache Com-

mons Collections. First, we extract a callgraph through Soot [52]

and then build a gadget graph on top of it (see §3.1). The callgraph

consists of 2, 009 gadgets and 38, 579 edges. Our analysis reduces

this large space to 295 gadgets and 2, 168 edges in our gadget graph.

Even within a gadget graph, the number of candidate chains to

be explored is still large, thus necessitating automated exploration.

We quantified candidate gadget chains in this gadget graph from

trigger to sink gadgets using a Djikstra-like algorithm [23]. To

keep the analysis concise, we upper-bound the maximum length

of discovered candidate chains. For a maximum path length of 5,

there are 25, 866 candidate chains to be explored.

C3 Complex Payload Generation. Payloads are composed of

well-formed objects that obey the execution constraints of the gad-

get chain. In Listing 1, a LazyMap object requires instances of Map

1588



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Prashast Srivastava, Flavio Toffalini, Kostyantyn Vorobyov, François Gauthier, Antonio Bianchi, and Mathias Payer

and Transformer to be passed to its constructor (Line 14). More-

over, we need to obey the language semantics and pass objects as

arguments that implement the respective Map and Transformer

interfaces. Next, as we create the object for the predecessor gadget

(TiedMap), we must ensure that the previously created object for

LazyMap is correctly passed as an argument. Therefore, building

concrete payloads that exercise gadget chains is challenging because

it requires: (i) inference of correct parameters and (ii) instantiation

of valid connections between objects.

3 CRYSTALLIZER DESIGN

Crystallizer is a hybrid path analysis framework to automatically

uncover deserialization vulnerabilities by finding gadget chains

in targets. Given a gadget graph, our intuition is to automatically

identify the sink gadgets and then find possible paths leading to

sinks that can be instantiated as a set of connected objects (§2.3).

Crystallizer produces payloads as long as there exists a se-

quence of gadgets that reach a sink. Crystallizer takes informa-

tion about trigger gadgets and a target as input, then it outputs

concrete payloads that execute the gadget chain, demonstrating

potentially exploitable gadget chains. Developers can use this infor-

mation to patch deserialization bugs; attackers can use adjust the

parameters to fine-tune the execution of the chain. Figure 2 shows

an overview of Crystallizer’s three components: Static Analysis

Module ( 1 in Figure 2), Sink Identification ( 2 in Figure 2), and

the Probabilistic Concretization phase ( 3 in Figure 2).

3.1 Static Analysis Module

This module takes a library and information about trigger gadgets

as input and produces a gadget graph. The information provided

about trigger gadgets is in the form of methods invoked by a trigger

gadget. Crystallizer uses this information to automatically infer

which methods in a library can be used as entry points. Looking

at our example in §2.3, all toString methods present in the target

library are treated as entry points into the target library. Leveraging

this abstracted view of the trigger gadgets is in line with prior works

for automated discovery of deserialization attacks [11, 47].

We build the gadget graph in four steps. (i) We extract an over-

approximated callgraph using Class Hierarchy Analysis (CHA) [18]

from the target software using the entry points described above,

(ii) In the callgraph, we select all classes that implement the Se-

rializable interface directly or through one of their ancestors

(§2.1), and mark all their methods as gadgets, (iii) We use the trigger

gadget information to mark the entry points in the gadget graph

accordingly, while we mark all the other nodes as link gadgets, and

(iv) Finally, we discard all nodes that are unreachable from trigger

gadgets. The gadget graph produced by this module has only the

entry points and link gadgets marked, while we mark the sinks in

this gadget graph with the help of the Sink Identification module.

3.2 Sink Identification

Starting from the Static Analysis Module’s gadget graph, we infer

which gadgets can be used as sinks. Here, we describe the sink def-

inition in §2.4: gadgets that use arbitrary class objects. Our module

enables Crystallizer to identify sinks for RCE, DoS, or AFW. We

finally mark the sink gadgets in the gadget graph accordingly.

To infer sink gadgets, Crystallizer performs a two-step process.

First, it dynamically infers candidate gadgets that may use arbitrary

objects. Second, a set of static filters validates if the candidate gad-

gets use arbitrary objects. The candidate gadgets not filtered out

are flagged as sink gadgets. The dynamic inference gives initial evi-

dence of whether a gadget may perform malicious actions and the

static inference incorporates access patterns to increase precision.

Dynamic Inference. Crystallizer flags gadgets that may use

an arbitrary object either as one of its declaring classes’ fields or

as a method parameter passed to the gadget itself. It performs this

dynamic inference with the help of a honeypot class—a serializable

class that raises an exception when instantiated. Crystallizer ran-

domly picks one of the reachable gadgets from the gadget graph

and flags it as a candidate for static filtering if it can instantiate an

object of the honeypot class into (i) one of the field members of

the declaring class, or (ii) one of the method parameters can be in-

stantiated with the honeypot class. Crystallizer flags a candidate

gadget, if one of the previous two conditions is fulfilled. Crystal-

lizer also logs the argument type through which the honeypot

class was instantiated (referred to as the tainted argument type).

This information is used during the static filtering phase for making

Crystallizer more precise in identifying sink gadgets.

Static Filtering. The flagged candidates must pass a set of static

filters. These static filters are necessary to weed out gadgets that do

not use tainted arguments. The filters are based on the characteris-

tics of known sinks. We use the argument type instead of the actual

argument through which the honeypot class was instantiated for

filtering since there can exist multiple arguments (field members or

method parameters) of the same type. If a candidate gadget passes

through any of the static filters then it is flagged as a sink gadget.

In case a field member was used to load in the honeypot class, we

apply a set of three filters: (i) We flag gadgets that directly refer to a

field having the same type as the tainted argument. (ii) We extend

the previous analysis to all reachable methods using a field with the

same tainted argument type. (iii) We also flag gadgets that indirectly

use the tainted argument. We identify indirect usage by checking if

the tainted argument is cast to another type in the class constructor

and then see usage for this new type in the gadget. However, in

case the argument is loaded in through a method parameter then

we flag the gadget if any of the method parameters corresponding

to the tainted argument were used in a method invocation.

3.3 Probabilistic Concretization

Leveraging the gadget graph, we propose a probabilistic method to

generate payloads that trigger deserialization vulnerabilities. We

achieve this goal by using three modules. First, we use a Candi-

date Chain Extractor module to find a gadget chain that connects

a trigger and a sink. Second, we feed the candidate chains to a

Dynamic Analysis Module, which attempts to create a payload for

the corresponding chains. Finally, we submit the payload to the

Deserialization Probing module that deserializes the payload and

returns feedback to the Dynamic Analysis Module. The feedback

can be adjusted according to the threat model and recognize chains

exhibiting the intended behavior. Specifically, we show how adopt-

ing different heuristics enables us to identify RCE, AFW, or DoS

1589



Crystallizer: A Hybrid Path Analysis Framework to Aid in Uncovering Deserialization Vulnerabilities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Static Analysis 
Module

Payload Feedback

Deserialization 
Vulnerability

➊

Probabilistic Concretization

Deserialization 
Probing

Dynamic Analysis 
Module

Candidate Chains 
Extraction

library
Trigger 

Gadgets

➌

Gadget Graph

Gadget Graph Legend:

Trigger SinkLink

Sink 
Identification

➋
Gadget Graph

Figure 2: Architectural overview of Crystallizer.

chains. Crystallizer adopts a dynamic approach to concretiza-

tion to ensure that it only reports chains for which it can create

payloads that exercise them. This is in stark contrast to purely

static approaches that are plagued with false positives, i.e., report-

ing chains that cannot really be exercised due to not taking into

consideration the execution constraints of the chain or the language

semantics (discussed in §5.3)

Candidate Chain Extractor. This module uses a Djikstra-like

algorithm [23] to identify candidate gadget chains that map paths

from entry points to sink gadgets. We further define a threshold to

upper-bound the length of candidate chains. Without this threshold,

the state space of candidate gadget chains would become intractable

for an exhaustive exploration. In our experiments, we set a threshold

of up to five gadgets as inspired by known exploitable gadget chains.

Dynamic Analysis Module. A gadget chain is fully concretized

if there exists an input payload that exercises the gadget chain

when passed to a deserialization entry point. To concretize a gadget

chain, we instantiate objects for each of the gadgets in the chain. The

objects must provide two prerequisites: language-specific (in our

case Java): create well-formed for declaring classes of the gadgets,

and chain-specific: instantiate the objects in such a way that the

execution flows successfully from one gadget to another.

Based on the insight described above, we present our concretiza-

tion methodology for gadget chains in Algorithm 1. The procedure

takes as input a candidate gadget chain and outputs a payload

that can be tested by the Deserialization Probing module. The con-

cretization process instantiates the nodes in reverse order, i.e., from

sink to target (Line 4). We adopt this strategy to fulfill the chain-

specific prerequisite described previously. Furthermore, this allows

the algorithm to terminate early if no objects can be instantiated.

To satisfy chain-specific prerequisites, Crystallizer uses an

object cache to store previously instantiated objects. When a node is

passed to the ObjectFactory for instantiation (Line 11), it checks if

the object cache contains an object of the same type, or can be cast

into, the requested node. If these conditions are met, we distinguish

two cases. (i) The object has the same type as the requested node.

Thus, we reuse it as is (Line 15). (ii) The object can be cast into

the requested node type. Thus, we randomly create a new object

or return the existing one from the cache (Line 17). We perform

this action randomly instead of in a guided manner since reason-

ing about the semantics is more expensive than just exercising all

possible combinations. If the object cache does not contain suitable

objects, then we instantiate a new node (Line 20) by satisfying

Algorithm 1 Dynamic Analysis Module

Input: Candidate Gadget Chain G
Output: Payload for concretized gadget chain P
1: procedure ConcretizeChain(� )
2: >1 942C�02ℎ4 ← ∅
3: A4E�C4A0C>A ← �.=>34B.A4E�C4A0C>A ( )
4: while A4E�C4A0C>A .ℎ0B%A4E8>DB ( ) do
5: =>34 ← A4E�C4A0C>A .?A4E8>DB ( )
6: >1 942C ← $1 942C�02C>A~ (=>34, >1 942C�02ℎ4 )
7: >1 942C�02ℎ4.?DC (>1 942C )
8: end while
9: return % ← >1 942C�02ℎ4.64C)>?#>34 ( )
10: end procedure
11: procedure ObjectFactory(=>34, >1 942C�02ℎ4)
12: 2;B ← =>34.64C�42;0A8=6�;0BB ( )
13: if >1 942C�02ℎ4.8B%A4�=BC0=C80C43 (=>34 ) then
14: if >1 942C�02ℎ4.ℎ0B�G02C) ~?4 (=>34 ) then
15: <DBC'4CDA= (>1 942C�02ℎ4,=>34 )
16: else
17: <0~'4CDA= (>1 942C�02ℎ4,=>34 )
18: end if
19: end if
20: 2;B$1 9 ← 2;B.?82:�>=BCAD2C>A ( ) .8=BC0=C80C4 ( ) ;
21: return 2;B$1 9
22: end procedure

the language-specific prerequisites. For primitive data types, we

use a pre-defined finite set created from commonly-used values in

known vulnerabilities sourced from Ysoserial [22]. For user-defined

data types, we instantiate using a randomly chosen constructor

synthesizing the required parameters recursively if necessary.

Deserialization Probing. Once a payload is successfully instan-

tiated, we submit it to the Deserialization Probing to test if the

payload expresses the intended behavior, i.e., RCE, AFW, or DoS.

We use different feedback according to the attack we detect. For

RCE and AFW, Crystallizer reports a payload if it can execute

each gadget in the chain from the trigger to the sink. To track gadget

chain execution, we use method-level coverage feedback. However,

to transform the chain in a concrete exploit, human assistance is

needed to fine-tune the concretized payload (discussed in §5.1). For

the DoS chains, instead, we are interested in payloads that keep the

CPU busy for a long time, therefore, we consider the deserialization

execution time as feedback. Specifically, we consider possible DoS

chains that require time more than a given threshold to be executed

(5s in our experiments). In contrast to RCE/AFW payloads, no hu-

man intervention is needed since the synthesized payload by itself

exhibits the intended behavior.

We, on purpose, use the same sink gadgets for RCE, AFW and

DoS chains. Our intuition is that a sink operating on arbitrary

classes can be easily tuned to express different attacks by combining

heuristics and different feedback.

1590



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Prashast Srivastava, Flavio Toffalini, Kostyantyn Vorobyov, François Gauthier, Antonio Bianchi, and Mathias Payer

4 IMPLEMENTATION

Here, we describe the static analyzer, Dazzer—our Probabilistic

Concretization tool built on top of Jazzer [12], and the method-level

instrumentation.

Static analyzer.We develop our static analyzer on top of Soot

version 4.2.1 [44]. Soot is the standard tool for analyzing Java byte-

code and provides built-in analysis for callgraph and class hierar-

chy [18]. Our analyzer consists of 1.1K Java LoC.

Dazzer. To assist the object creation, we develop Dazzer. Our

tool aids the payload synthesis in Dynamic Analysis Module (§3.3)

and the identification of sink gadgets in Sink Identification (§3.2).

Dazzer extends Jazzer, which is originally designed to fuzz methods

in isolation by creating concrete arguments for them. In contrast,

Dazzer is designed to perform effective gadget chain concretization

which requires adopting unique and generalized strategies for ob-

ject creation. We devise the three strategies based on our analysis

of numerous previously known deserialization-based vulnerabil-

ities and deriving commonalities in terms of how they manifest

themselves. First, we make the object creation chain aware by in-

troducing the concept of a probabilistic object cache. Second, in

addition to regular instantiation, Dazzer employs reflection-based

strategies to force object creation if no public constructors are avail-

able, which we employ during payload creation of a gadget chain.

Finally, we improve the capabilities of the object creation module

to handle the generation of “generic objects” of type Object [41].

Jazzer only returns null objects when requested objects of type Ob-

ject. In contrast, Dazzer not only returns commonly-used objects

in chain executions such as strings and hashmaps but more impor-

tantly extends it to use the object cache which was instrumental

in helping Crystallizer to concretize gadget chains. Overall, we

added 2K Java LoC on top of the original Jazzer.

Method-level Feedback.Crystallizer creates an instrumented

version of the target library by adding method-level coverage feed-

back at the bytecode level. We use Soot to insert instrumentation

at the start of each method to log its execution. We use this feed-

back during Probabilistic Concretization for identifying concretized

gadget chains(§3.3). The method-level feedback and deserialization

tracing support were implemented in 470 Java LoC.

5 EVALUATION

Our evaluation of Crystallizer revolves around five research ques-

tions.

RQ1: Can Crystallizer find deserialization vulnerabilities in pre-

viously well-tested libraries? (§5.1)

RQ2: How does Crystallizer perform against state-of-the-art

tools? (§5.2)

RQ3: How do Crystallizer’s components influence the gadget

chain discovery? (§5.3)

RQ4: What sinks does Crystallizer find? (§5.4)

RQ5: Can Crystallizer detect novel deserialization vulnerabili-

ties in enterprise software? (§5.5)

Environment. We evaluate Crystallizer on seven popular

Java-based libraries (Table 1) and three popular enterprise applica-

tions (§5.5). These cover a diverse range of functionality and have

Table 1: Evaluation Benchmarks paired with their ground

truth chains.

Benchmark Version(s) Description GT Vuln

Apache Commons Collections (ACC 3.1) 3.1 Data Structure Manipulation [32]

Apache Commons Collections (ACC 4.0) 4.0 Data Structure Manipulation [33]

Aspectjweaver 1.9.2 Language Feature Extension [27]

Beanshell 2.05b Embeddable interpreter [34]

Beanutils 1.9.2 Utility Library [20]

Groovy 2.3.9 Object-oriented Language [21]

Vaadin 7.7.14 Web Application Development [31]

been previously well-tested for deserialization vulnerabilities. More-

over, we compare Crystallizer against two related tools: Gadget

Inspector [26] and Rasheed et al. tool [47]. We evaluate on an Intel

Xeon E5-2450 2.1GHz processor with 47G RAM running Ubuntu

20.04.Crystallizer is configured to be run in single-threadedmode

and was compiled with javac version 11.0.11.

5.1 RQ1: Library-based evaluation

We assess the effectiveness of Crystallizer at uncovering deseri-

alization vulnerabilities by running it on the previously well-tested

seven libraries described in Table 1. To run Crystallizer on these

libraries, we follow the methodology in Figure 2.

First, Crystallizer creates gadget graphs as a part of the Static

Analysis Module. We provide information about a known trigger

gadget (sourced from Ysoserial [22]) for each of the libraries to

Crystallizer (§3.1). Crystallizer employs four unique methods

(toString, compare, hashCode, invoke) to automatically identify

entry points into the library. Table 2 details the size of the graphs

for each target library as well as the time taken to create them

along with the number of entry points used. After the gadget graph

is created, we perform Sink Identification for which we allocate a

time budget of one hour since it is a dynamic process.

In the Probabilistic Concretization phase, Crystallizer identi-

fies candidate gadget chains and then attempts to concretize them.

We allocate a time budget of up to 24 hours for this phase. Table 3

provides an overview of this phase. Across all seven libraries, Crys-

tallizer concretizes 837 gadget chains. We manually deemed 604

chains as being interesting, i.e., the sink gadgets in these chains

perform semantic functionality that could be potentially exploitable.

From these 604 chains, 48were manually validated to be exploitable.

The sink gadgets in interesting chains perform a wide range of

potentially exploitable semantic functionality. Certain sink gadgets

perform traditionally vulnerable functionality like using reflection

to invoke arbitrary methods or writing arbitrary bytestreams to

files. However, there is also a subset of sinks that are performing

functionality that would not be categorized as traditionally vulner-

able but when coupled with other primitives provided by the target,

they become exploitable. A representative example of such a sink is

LazyMap.get() (shown in Figure 1). This sink gadget allows using

classes called Transformers that allow transformations to be per-

formed on the key that is being inserted into the map. It is possible

to use a set of Transformers which when executed mount an RCE

attack. Crystallizer owing to its Sink Identification can identify

not only the LazyMap.get() method but also all Transformers

that are instrumental in mounting the RCE attack.

1591



Crystallizer: A Hybrid Path Analysis Framework to Aid in Uncovering Deserialization Vulnerabilities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

27.84% of the concretized chains are not deemed interesting

since the sinks do not perform exploitable functionality. This in-

cluded functionality such as wrapping objects into containers like

hashmaps. These sinks are flagged because our current methodol-

ogy for Sink Identification only infers whether a sink gadget may

operate on potentially attacker-controlled objects but does not rea-

son about the semantic functionality performed on such objects.

We plan to integrate this semantic functionality reasoning as a part

of future work to make our Sink Identification more precise.

To assess the exploitability of the gadget chains concretized by

Crystallizer, we manually see if the payload for a concretized

gadget chain showcasing a potential deserialization vulnerability

that can be tweaked to mount an exploit. The exploitability is

assessed with the help of a synthetic application that deserializes

user-provided data and has the vulnerable library on its application

classpath. This methodology is in line with the approach adopted

by Park et al. [46] to perform their library-based evaluation. Using

the methodology outlined above, we confirm exploitablity of 48

chains concretized by Crystallizer by successfully mounting RCE

attacks for six out of the seven libraries and an Arbitrary File Write

attack for the remaining library (Aspectjweaver).

The amount of manual effort required to convert a payload syn-

thesized by Crystallizer into a working payload varies. The pay-

loads synthesized for Vaadin, Beanutils, and ACC4.0 by Crystal-

lizer did not require any further manual tweaking to mount an ex-

ploit. For Aspectjweaver and Groovy, we perform minimal tweak-

ing where only the String parameters used in the sink gadget are

adjusted to mount the exploit. The remaining two libraries, ACC3.1

and Beanshell require additional reasoning about the library se-

mantics to convert the synthesized payload by Crystallizer into a

payload that mounts an exploit. Specifically, we have to infer what

primitives provided by the library could be used as parameters in

the sink gadget to call exec() with an attacker-controlled string.

§6 provides a detailed discussion of manual effort.

Finally, we perform a deeper analysis of the chains that are

concretized by Crystallizer. The first observation is that Crystal-

lizer successfully discovers the seven known ground truth chains

(listed in Table 1) across all our evaluation targets. In addition to

finding these ground truth chains, Crystallizer concretizes new

gadget chains as well. Figure 3 shows the time taken by Crystal-

lizer to create payloads for exploitable gadget chains.

Table 4 summarizes our findings with respect to the novel chains

uncovered: Crystallizer automatically concretizes up to 17 previ-

ously undiscovered chains per library, that are composed of up to six

gadgets. We quantify the complexity of the novel chains by measur-

ing the unique classes they are composed of. Intuitively, the more

unique instantiated classes a chain contains, the more language and

chain-specific prerequisites Crystallizer fulfills (§3.3). Our results

show the novel chains are more complex than the ground truth ones,

containing twice as many unique classes. We present an example

of a novel gadget chain in Listing 2. As demonstrated, through its

automated reasoning about gadget chains, Crystallizer uncovers

gadget chains corresponding to complex paths.

Takeaway: Crystallizer can both synthesize payloads for pre-

viously known chains in libraries, as well as create concrete pay-

loads for novel gadget chains in well-tested libraries in an efficient

manner.

Table 2: Gadget graph size of the target libraries and the

time taken by Crystallizer to create it along with the

number of entry points used to create the graph.

Benchmark
# Entry Gadget Graph

Time (s)
Points #gadgets #edges

ACC 3.1 41 295 2,168 73
ACC 4.0 12 573 4,069 40
Aspectjweaver 174 440 3,108 112
Beanshell 8 357 1,882 86
Beanutils 13 73 490 80
Groovy 1,170 110 271 113
Vaadin 34 2,119 8,378 153
Average 207 567 2,909 94

Table 3: Candidate chains explored by Crystallizer along

with chains that were successfully concretized, chains that

were deemed to be interesting, and chains that were

manually validated to be exploitable.

Benchmark Gadget Chains

Candidates Concretized Interesting
Confirmed
Exploitable

ACC 3.1 25,866 689 479 7
ACC 4.0 2,23,367 4 4 4
Aspectjweaver 794 74 74 17
Beanshell 915 6 4 1
Beanutils 629 32 32 16
Groovy 1,146 7 3 1
Vaadin 31,095 25 8 2

Average 40,544 120 86 7

Table 4: Novel gadget chains found by Crystallizer along

with their average gadget frequency and a comparison of

the unique classes present in the discovered ground truth

chain and the novel chains.

Benchmark
#Novel Avg Unique Classes
Chains Gadgets #Known #Novel

ACC 3.1 6 5 2 4
ACC 4.0 3 4 2 4
Aspectjweaver 16 6 3 5
Beanshell 0 — 1 —
Beanutils 15 4 1 3
Groovy 0 — 1 —
Vaadin 1 3 2 3
Average 6 4 2 4

1 // trigger

2 BadAttributeValueExpException.readObject();

3 // links

4 TiedMapEntry.toString();

5 TiedMapEntry.getValue();

6 SingletonMap.get();

7 SingletonMap.isEqualKey();

8 FastArrayList.equals();

9 // sink

10 LazyMap.get();

Listing 2: A simplified example of a gadget chain correspond-

ing to a novel path found by Crystallizer.

1592



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Prashast Srivastava, Flavio Toffalini, Kostyantyn Vorobyov, François Gauthier, Antonio Bianchi, and Mathias Payer

0.016 0.062 0.250 1.000 4.000 16.000
Time (h)

2

4

6

8

10

12

14

16
Co

nf
irm

ed
 E

xp
lo

ita
bl

e 
Ch

ai
ns

ACC 3.1
Vaadin

Aspectjweaver
ACC 4.0

Beanutils
Groovy

Beanshell

Figure 3: Time required by Crystallizer to discover the

exploitable gadget chains.

5.2 RQ2: Comparison against state-of-the-art
tools

We compare Crystallizer against two state-of-the-art tools for

finding Java-based deserialization vulnerabilities:

(i) Gadget Inspector [26] is a pure static analysis tool that, given

a library as input, uses a set of heuristics to report potential gadget

chains. This tool does not create concrete payloads.

(ii) Rasheed et al. [47] employ heap abstractions [29] to identify

gadget chains corresponding to deserialization-based vulnerabili-

ties. This tool creates concrete payloads, similar to Crystallizer.

Crystallizer v/s Gadget Inspector. We compare Crystal-

lizer against Gadget Inspector by running both tools on the library

dataset specified in Table 1 and evaluate the reported gadget chains.

For this experiment, we run Crystallizer end-to-end on the li-

braries (illustrated in Figure 2). Furthermore, we configure both

tools to uncover gadget chains corresponding to attack patterns that

have been previously found in these libraries (RCE in all libraries

except for aspectjweaver, in which an Arbitrary File Write (AFW)

exists). The reason behind this configuration is two-fold. First, this

configuration ensures feature parity with Gadget Inspector, since

the latter cannot detect DoS chains like Crystallizer. Second,

it allows us to use known chains from available datasets [22] to

validate false negatives, i.e., exploitable chains that exist but are

undiscovered. For Crystallizer, we execute the Sink Identification

for 1-hour and Probabilistic Concretization for 24 hours. Gadget

Inspector terminates in a few minutes.

Table 5 shows our finding. Crystallizer uses its hybrid analysis

methodology to find confirmed exploitable chains for mounting

the targeted attack in all libraries in our dataset. Specifically, Crys-

tallizer finds previously known exploitable chains in addition to

previously unknown ones. Conversely, Gadget Inspector discovers

only one exploitable chain for the ACC 3.1 library and misses the

previously known exploitable chains in the remaining six libraries.

We investigate the exploration methodology adopted by Gadget

Inspector to understand why it does not find the previously known

exploitable chains. One of the reasons was that, as a part of its

exploration methodology, once it deems a gadget as explored based

on its set of employed heuristics, it does not try to uncover any

chains further using the same gadget. This strategy prevents Gadget

Inspector from reporting certain gadget chains. We find a concrete

Table 5: Comparison of Gadget Inspector against Crystal-

lizer in terms of gadget chains reported for libraries and

the ones which were confirmed to be exploitable.

Benchmark
Gadget Inspector Crystallizer

Reported Exploitable Concretized Exploitable

ACC 3.1 2 1 689 7
ACC 4.0 3 0 4 4
Aspectjweaver 3 0 74 17
Beanshell 0 0 4 1
Beanutils 0 0 32 16
Groovy 2 0 7 1
Vaadin 3 0 25 2
Average 1.9 0.1 120 6.9

example of this in Vaadin. This shows the importance of exercising

and exploring alternative paths while performing gadget chain

discovery, as done by Crystallizer.

We investigate if we can create exploitable payloads for any

of the chains reported by Gadget Inspector. First, three chains re-

ported by Gadget Inspector in three out of the 7 libraries (ACC 3.1,

Aspectjweaver, and ACC 4.0) are not exploitable due to incorrect

reasoning about Java language semantics. For example, in some

chains, Gadget Inspector incorrectly assumes that class members

declared as transient [8] are attacker-controlled. Second, since

Gadget Inspector is a static tool, it does not give any guarantees

about whether it is possible to create a concrete payload. This dras-

tically inhibited the ability to build exploitable payloads for the

remaining eight out of the 13 reported chains. As an example, all

the three reported chains in Vaadin use a gadget that required an

HTTP servlet session to be setup upon instantiation and hence

was beyond the scope of our assessment since the chain relied on

external factors. In contrast, Crystallizer does not face such issues

since the dynamic approach of Crystallizer ensures a chain is

paired with concrete payloads.

Crystallizer v/s Rasheed et al. Here, we compare Crystal-

lizer against the results presented in the paper by Rasheed et al.

Ideally, we would perform a comparative evaluation similar to Gad-

get Inspector, but were unable to do so. Specifically, it failed while

running the path analysis algorithm on our evaluation dataset.

Consequently, we compare against their reported results for ACC

3.1 and ACC 4.0 since these are the only two libraries in their

dataset for which they were able to create a concrete payload.

For each of these libraries, their tool only found one path corre-

sponding to a known ground truth chain for which they manually

created a concrete payload. In contrast, Crystallizer not only

concretized payloads to the two ground truth chains but also nine

new gadget chains (shown in Table 5). This drastic performance

difference can be attributed to our hybrid analysis methodology.

Instead of relying on heavyweight value-flow analysis to build heap

access paths, which can be prone to imprecision, our use of light-

weight static analysis to build the gadget graph coupled with our

dynamic analysis module that performs path concretization allows

us to uncover and concretize more gadget chains.

Takeaway: Crystallizer is more effective at uncovering and

creating concrete payloads for gadget chains than the existing state-

of-the-art tools using its hybrid analysis methodology.

1593



Crystallizer: A Hybrid Path Analysis Framework to Aid in Uncovering Deserialization Vulnerabilities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

Table 6: Comparison of Crystallizer againstCrystallizer-

NG in terms of gadget chains reported for libraries and the

ones which were confirmed to be exploitable.

Benchmark
Crystallizer-NG Crystallizer

Reported Exploitable Concretized Exploitable

ACC 3.1 4 0 689 7
ACC 4.0 0 0 4 4
Aspectjweaver 0 0 74 17
Beanshell 6 1 6 1
Beanutils 1 1 32 16
Groovy 9 1 7 1
Vaadin 20 0 25 2
Average 5.7 0.4 120 6.9

5.3 RQ3: Comparative Performance Evaluation

Since Crystallizer employs a hybrid path analysis methodology,

we evaluate the relative importance of its static and dynamic com-

ponents. We create a variant of Crystallizer that attempts to

synthesize concrete payloads for a gadget chain without a gadget

graph (Crystallizer-NG). However, we equip Crystallizer-NG

with the knowledge of trigger gadgets and serializable gadgets to

create a stronger baseline for comparison. Given this knowledge,

Crystallizer-NG uses the same Probabilistic Concretization mod-

ule as used in Crystallizer and attempts to uncover exploitable

gadget chains by creating concrete payloads for them.

This approach is an appropriate evaluation candidate since turn-

ing off any of the other components would create variants that have

a weaker capability set: (i) disabling Sink Identification would create

a variant that marks all gadgets as sinks leading to a path explosion

problem making the results meaningless, (ii) replacing our path

concretization module with a vanilla fuzzer would also be weaker

since it would not know how to generate objects. By comparing

Crystallizer against Crystallizer-NG, we can get an accurate

estimate of the benefits of building a gadget graph and using it to

uncover gadget chains. Similar to our evaluation of Crystallizer,

we deploy Crystallizer-NG on seven target libraries for 24 hours.

Table 6 presents an overview of the results. First, Crystallizer

is 21.1x and 17.3x more performant on average than Crystallizer-

NG in concretizing gadget chains and uncovering exploitable chains

respectively. Second, as evident, the three exploitable gadget chains

that Crystallizer-NG uncovers are in three libraries (Beanshell,

Beanutils, and Groovy) each of which are (i) previously known,

and (ii) simplest to construct requiring only one class to be instanti-

ated correctly. In addition to previously known ones, Crystallizer

can uncover novel gadget chains that are exploitable and drastically

more complex (as shown previously in Table 4).

Takeaway: With the help of a gadget graph, Crystallizer

reduces the state space that it explores creating 21.1Xmore concrete

payloads for gadget chains and finding 17.3Xmore exploitable ones.

5.4 RQ4: Sink Identification Evaluation

We perform an in-depth analysis of the sinks detected with our

framework as a part of the library-based evaluation(§5.1). We also

evaluate the efficacy of the static filters used by Crystallizer at

improving the precision of Sink Identification (discussed in §3.2).

Table 7: “Pre-filtering” refers to the set of sink gadgets flagged

by Sink Identification’s oracle. “Post-filtering” shows the

number of remaining sink gadgets after applying the static

filters. These are the sinks that Crystallizer tries to con-

cretize paths to. “% reduction” refers to the difference be-

tween the number of pre- and post-filtered sinks.

Benchmark
Pre-filtering Post-filtering % reduction

(Sinks) (Sinks) (Sinks)

ACC 3.1 403 148 63.3
ACC 4.0 647 221 65.8
Aspectjweaver 72 11 84.7
Beanshell 116 83 28.4
Beanutils 44 5 88.6
Groovy 152 36 76.3
Vaadin 681 326 52.1
Average 302 119 65.6

1 // previous gadgets

2 ...

3 // sink

4 FastArrayList.equals();

5 // JDK method

6 java.util.AbstractMap.equals();

7 // link

8 LazyMap.get();

Listing 3: A simplified chain showing how an exploitable pay-

load was created by creating a route through a JDK function.

We detect two new sinks in ACC 3.1 that led to six new ex-

ploitable chains missed by Gadget Inspector. For one of the ex-

ploitable chains, Crystallizer marked FastArrayList.equals()

as a sink and created a concrete payload to reach this sink from

a trigger gadget. Upon tinkering with this payload, we noticed

that if FastArrayList were to be instantiated with a LazyMap,

we manually found a way to exercise known dangerous function-

ality (factory.transform) by routing it through a JDK function

(AbstractMap.equals) as shown in Listing 3. This particular chain

was not reported by Gadget Inspector, because according to its anal-

ysis, it did not infer that FastArrayList.equals() could be routed

to dangerous functionality which as we showed is not the case. This

example shows our approach can find non-trivial sinks.

Filters are useful when performing sink identification We evalu-

ate the effectiveness of static filters inmaking the Sink Identification

more precise. Specifically, the filters ensure the tainted arguments

that can be attacker-controlled are used by the gadget under con-

sideration (discussed in § 3.2). Precision while performing Sink

Identification is important since it directly impacts the number of

gadget chains explored. The results of this evaluation are presented

in Table 7. We see that the filtering is highly effective in drastically

reducing the state space to be explored by removing 66% of the

sinks that are not using the tainted argument.

Takeaway: The Sink Identification is suitable for discovering

non-trivial sink gadgets and the static filters it employs are effective

at filtering false positive candidate sink gadgets.

5.5 RQ5: Crystallizer in-the-wild

To showcase the effectiveness of Crystallizer at finding deseri-

alization vulnerabilities in the wild, we deploy it on two popular

1594



ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Prashast Srivastava, Flavio Toffalini, Kostyantyn Vorobyov, François Gauthier, Antonio Bianchi, and Mathias Payer

1 // trigger

2 BadAttributeValueExpException.readObject();

3 // links

4 TiedMapEntry.toString();

5 TiedMapEntry.getValue();

6 LazyMap.get();

7 ClosureTransformer.transform();

8 // sink

9 WhileClosure.execute();

10 // links

11 TruePredicate.evaluate();

12 NOPClosure.execute();

Listing 4: Gadget chain showcasing DoS behavior.

Apache applications: Pulsar [6] and Kafka [4] and mount two

novel attacks. Specifically, we mount a RCE attack against Pulsar

and a DoS attack against Kafka. These vulnerabilities are responsi-

bly disclosed and acknowledged by the maintainers. Furthermore,

to show generalizability, Crystallizer rediscovers a previously

known RCE vulnerability (CVE-2020-2555) [37] in a vulnerable

version of the Oracle Coherence library [43].

Kafka. Kafka is a framework that enables building data process-

ing pipelines [7]. It provides the ability to capture data from varying

sources which in turn can then be stored and processed. Kafka uses

entities called connectors that move data in and out of Kafka as

serialized bytestreams [14]. Consequently, the deserialization of

untrusted data that may be attacker-controlled opens up Kafka to

attacks mounted using deserialization-based vulnerabilities.

Kafka uses Java-based serialization and deserialization to store

and retrieve data from a file on a local file system. Since the file that

it uses for storage could be manipulated by an attacker, it employs

a filtering-based mechanism to prevent deserialization of a set of

specific classes [2]. The primary insight we had from the denylist

is that it did not prevent deserialization of all classes belonging to

known gadget chains but only classes that were instrumental in

mounting known attacks for RCE specifically.

Based on the above insight, we deploy Crystallizer to synthe-

size gadget chains to mount DoS attacks instead. Crystallizer

found a chain in the Apache Commons Collections library that

exhibits DoS behavior. Specifically, Crystallizer synthesized a

chain that upon deserialization performs the semantic action of

executing an infinite loop (while(1)). The gadgets employed in

the chain are shown in Listing 4. Evidently, none of the gadgets

used in the chain are a part of the denylist employed by Kafka. This

in turn allowed us to mount a DoS attack on the latest release of

Kafka (as of February 2023) with the help of this chain.

Pulsar. Pulsar provides a framework for server-to-server mes-

saging. As a part of its messaging subsystem, it provides extended

functionality using light-weight processes to process messages.

These compute processes allow for employing Java-based serial-

ization and deserialization for message handling [3]. Processing

messages that point to untrusted data makes Pulsar prone to dese-

rialization attacks. There is no serialization filtering performed by

the deserialization API used by Pulsar [5]. Therefore, it is possible

to mount a deserialization-based attack using any of the classes

present in the application’s classpath. For Pulsar (v2.2.0), we no-

ticed that the classpath includes the Commons Collections library.

1 // trigger

2 BadAttributeValueExpException.readObject();

3 // links

4 LimitFilter.toString();

5 ChainedExtractor.extract();

6 // sink

7 ReflectionExtractor.extract();

Listing 5: Vulnerable gadget chain in Coherence uncovered

and concretized by Crystallizer

Crystallizer discovered a gadget chain in this library with which

we mounted an RCE attack against Pulsar.

Coherence. Coherence is an in-memory data storage that allows

fast access to key-value data. It is integrated as part of Oracle

Weblogic which is a popular application server. Weblogic interfaces

with user-provided data, so a vulnerability found in this library

allows mounting an attack through the Weblogic server.

Owing to the large size and the underlying complexity of the

Coherence library (13M), the initial gadget graph constructed by

Crystallizer is large containing 19,734 gadgets and 143,357

edges. Crystallizer then runs the sink identification phase over

this gadget graph for one hour. At the end of this phase, it identifies

57 potential sinks and 103,598 candidate gadget chains for con-

cretization. From these candidate chains, it concretizes 19 unique

chains over five days across 20 campaigns. From these 19 unique

chains, one is manually validated to be a previously known vulner-

ability in the Coherence library (CVE-2020-2555) [37]. In addition,

seven of these chains are confirmed to be alternative paths to the

same vulnerable sink including more complex paths as well. Finally,

the remaining 11 are paths concretized to three unique sinks that

we deemed as not performing interesting semantic functionality.

The chain concretized by Crystallizer is presented in Listing 5.

Crystallizer identifies ReflectionExtractor.extract as a sink

since it has a reference to an array of type java.lang.Object

which is instantiated with our honeypot class during its declaring

class instantiation. The payload which Crystallizer constructs to

concretize the candidate chain is presented in Listing 6. Crystal-

lizer by use of its chain concretization strategy augmented with

an object cache (Algorithm 1) enables it to concretize this chain

without manual adjustment. Specifically, while invoking the setter

methods for LimitFilter, instead of generating a new object, it

retrieves an object (cObj) from its object cache (cObj). Additionally,

Crystallizer did not instantiate a ReflectionExtractor object

explicitly since it inferred how to build it indirectly by instantiating

a ChainedExtractor object with a String.

Takeaway: Crystallizer effectively leverages the complete

application classpath to launch attacks against real-world enterprise

applications even in the presence of specific bypass protections.

6 DISCUSSION

The manual effort required to analyze concretized chains by Crys-

tallizer is lower than expected. The reason is that we can reuse

knowledge across chains in the form of the unique sinks that they

target. For Aspectjweaver (§ 5.1), instead of analyzing 74 con-

cretized chains, we only had to examine 2 sinks manually. This

strategy works because the exploitability of a concretized gadget

chain hinges on whether the sink gadget can be repurposed to

1595



Crystallizer: A Hybrid Path Analysis Framework to Aid in Uncovering Deserialization Vulnerabilities ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA

1 ChainedExtractor cObj = new ChainedExtractor("execute");

2 LimitFilter lObj = new LimitFilter();

3 lObj.setBottomAnchor(cObj);

4 lObj.setComparator(cObj);

5

6 // Preparing object corresponding to the trigger gadget

7 BadAttributeValueExpException val = new BadAttributeValueExpException(lObj);

8

9 ObjectOutputStream os = new ObjectOutputStream(new

FileOutputStream("payload.bin"));↩→

10 // Writing the object into serialized bytestream (payload)

11 os.writeObject(val);

.

Listing 6: Simplified Java code showcasing the payload cre-

ated by Crystallizer which uncovers the deserialization

vulnerability in Coherence

mount an attack. Once the exploitation strategy for a sink is figured

out, this information can then be reused in all the other concretized

chains that are targeting the same sink. On average, it took an ex-

perienced Java developer with knowledge of deserialization attacks

less than 5 minutes per chain to validate their exploitability once

the conditions for exploitation were identified.

The hybrid analysis methodology adopted by Crystallizer can

suffer from false negatives, i.e., not creating payloads for certain

vulnerable chains that exist in a target. These false negatives may

creep in from two main sources. First, bounded search up to a user-

configurable maximum length inherently misses longer gadget

chains. However, this can be addressed by increasing the maximum

path length and allocating more computation time. Second, the

capability of Crystallizer to concretize a gadget chain depends on

the concretization module capabilities in solving chain constraints.

In some instances (as shown for Vaadin), these constraints may

correspond to the setup of the environment. We plan to investigate

the concretization of such chains as a part of future work.

Uncovering a deserialization vulnerability in an application re-

quires not only the presence of a vulnerable gadget chain but also

an entry point where the application is deserializing untrusted data.

We acknowledge that in the context of discovering vulnerabilities

in an application, Crystallizer is semi-automated. While it can

find vulnerable gadget chains automatically, it still requires a user

to identify an end-point in the application deserializing data where

the payload can be delivered. However, in the context of libraries,

Crystallizer can automatically create payloads that trigger the

vulnerability. While exploiting this vulnerability, requires an ap-

plication to be using that library, it does not change the fact that

the vulnerability in the library still exists. This view is in line with

prior responses from library developers [13].

7 RELATED WORK

Rasheed et al. [47] leverage partial instantiation of gadget chains by

relying on heap abstraction, and using a fixed set of sinks. Similar

hybrid approaches were proposed by Cao et al (ODDFUZZ [10]

and GCMiner [11]) to identify deserialization vulnerabilities in

Java applications. A key difference with these works is that they

require a pre-defined set of sinks as compared to Crystallizer,

which automatically identifies sinks. Specifically, certain chains like

those exhibiting DoS (Listing 4) or using unconventional sinks for

RCE (Listing 3) cannot be found by ODDFuzz and GCMiner. The

corresponding sinks for these chains are not treated as security-

sensitive based on their predefined list. Unfortunately, at the time

of writing, ODDFUZZ is not open-sourced and we were unable to

reproduce results from GCMiner.

Pacheco et al. propose automatic techniques to instantiate ob-

jects [45] which can benefit Crystallizer in its object instantiation.

We plan to explore them as future work. Gauthier et al. [25] pro-

pose an active mitigation to recognize malicious chains through

Markov-basedmodeling, whileCrystallizer is a testing tool to find

deserialization vulnerabilities. Cristalli et al. [15] discussed other

dynamic mitigation policies. Regarding DoS, Dietrech et al. [19]

manually create a payload that, upon deserialization, triggers large

call trees recursively leading to resource exhaustion. In contrast,

Crystallizer automatically discovers DoS-like gadget chains.

Deserialization attacks also impact other languages like PHP and

.NET. Dahse et al. [17] employ a static analysis-based method to

detect PHP object injection (POI) chains, and Park et al. [46] extend

POI construction with an automatic exploit generation technique,

both yielding impressive outcomes. However, these approaches

are closely tied to PHP and, rely on predefined sinks. In contrast,

Crystallizer identifies sinks automatically. Moreover, Java’s static

typing imposes more stringent constraints on gadget chain con-

cretization compared to PHP’s dynamic typing. Shcherbakov et

al. [49] uncover .NET-based deserialization vulnerabilities. by lever-

aging known vulnerable chains. In contrast Crystallizer’s focus

is new gadget chains. ObjectMap [30] is designed to identify de-

serialization errors in PHP and Java applications. It identifies the

entry points of an HTTP request, then probes different inputs until

a deserialization error arises. ObjectMap, however, explores mali-

cious input without modeling the input spaces as a gadget graph

nor including the notion of source/sink gadgets.

8 CONCLUSION

Deserialization vulnerabilities are common in complex distributed

applications. We introduce a hybrid approach to automatically dis-

cover such deserialization vulnerabilities, highlighting incomplete

checks when objects are deserialized in target applications. Our

method uses static analysis to identify candidate gadget chains

and dynamic analysis to generate concrete payloads to exercise

gadget chains showing proof of a deserialization vulnerability.Crys-

tallizer outperforms existing state-of-the-art tools in uncovering

Java-based deserialization vulnerabilities and is shown capable of

mounting attacks on popular real-world applications.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their precise and detailed

feedback and Chibin Zhang for his help with analyzing related work.

This project has received funding from the European Research

Council (ERC) under the European Union’s Horizon 2020 research

and innovation program (grant agreement No. 850868), AFRL under

FA8655-20-1-7048, SNSF under PCEGP2_186974, and a generous

gift from Oracle Labs.

REFERENCES
[1] Apache. 2022. Apache Commons Collections Library. https://commons.apache.

org/index.html.

1596

https://commons.apache.org/index.html
https://commons.apache.org/index.html


ESEC/FSE ’23, December 3–9, 2023, San Francisco, CA, USA Prashast Srivastava, Flavio Toffalini, Kostyantyn Vorobyov, François Gauthier, Antonio Bianchi, and Mathias Payer

[2] Apache. 2022. Denylist for Java-based deserialization. https:
//github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/
org/apache/kafka/connect/util/SafeObjectInputStream.java.

[3] Apache. 2022. Java deserialization in Apache Pulsar. https://pulsar.apache.org/
docs/v2.0.1-incubating/functions/api/#java-serde.

[4] Apache. 2022. Kafka—Distributed event streaming platform. https://github.com/
apache/kafka.

[5] Apache. 2022. Lack of serialization filtering in Apache Pulsar.
https://github.com/apache/pulsar/blob/master/pulsar-functions/api-
java/src/main/java/org/apache/pulsar/functions/api/utils/JavaSerDe.java.

[6] Apache. 2022. Pulsar—Distributed pub-sub messaging platform. https://github.
com/apache/pulsar.

[7] AWS. 2022. What is Kafka? https://aws.amazon.com/msk/what-is-kafka.
[8] Baldeung. 2022. transient keyword in Java. https://www.baeldung.com/java-

transient-keyword.
[9] Alexander Belokrylov. 2022. Java—popular enterprise coding language.

https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-
java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages.

[10] S. Cao, B. He, X. Sun, Y. Ouyang, C. Zhang, X. Wu, T. Su, L. Bo, B. Li, C. Ma, J. Li,
and T. Wei. 2023. ODDFuzz: Discovering Java Deserialization Vulnerabilities via
Structure-Aware Directed Greybox Fuzzing. In 2023 IEEE Symposium on Security
and Privacy (SP). IEEE Computer Society.

[11] Sicong Cao, Xiaobing Sun, Xiaoxue Wu, Lili Bo, Bin Li, Rongxin Wu, Wei Liu,
Biao He, Yu Ouyang, and Jiajia Li. 2023. Improving Java Deserialization Gadget
Chain Mining via Overriding-Guided Object Generation. In Proceedings of the
45th International Conference on Software Engineering (ICSE ’23).

[12] CodeIntelligenceTesting. 2022. Jazzer — AutoFuzz mode. https://www.code-
intelligence.com/blog/autofuzz.

[13] Apache Commons Collections. 2023. Apache Commons Collections secu-
rity report. https://commons.apache.org/proper/commons-collections/security-
reports.html.

[14] Confluent. 2022. Kafka connectors serialization. https://www.confluent.io/blog/
kafka-connect-deep-dive-converters-serialization-explained/.

[15] Stefano Cristalli, Edoardo Vignati, Danilo Bruschi, and Andrea Lanzi. 2018.
Trusted Execution Path for Protecting Java Applications Against Deserialization
of Untrusted Data. In Research in Attacks, Intrusions, and Defenses, Michael Bailey,
Thorsten Holz, Manolis Stamatogiannakis, and Sotiris Ioannidis (Eds.). Springer
International Publishing, Cham, 445–464.

[16] CyNation. 2017. Equifax Data Breach. https://cynation.com/the-equifax-data-
breach/.

[17] Johannes Dahse, Nikolai Krein, and Thorsten Holz. 2014. Code Reuse Attacks in
PHP: Automated POP Chain Generation. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security (Scottsdale, Arizona, USA)
(CCS ’14). Association for Computing Machinery, New York, NY, USA, 42–53.
https://doi.org/10.1145/2660267.2660363

[18] Jeffrey Dean, David Grove, and Craig Chambers. 1995. Optimization of object-
oriented programs using static class hierarchy analysis. In European Conference
on Object-Oriented Programming. Springer, 77–101.

[19] Jens Dietrich, Kamil Jezek, Shawn Rasheed, Amjed Tahir, and Alex Potanin. 2017.
Evil pickles: DoS attacks based on object-graph engineering. In 31st European
Conference on Object-Oriented Programming (ECOOP 2017). Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik.

[20] Frohoff. 2018. Beanutils GT chain. https://github.com/frohoff/ysoserial/blob/
master/src/main/java/ysoserial/payloads/CommonsBeanutils1.java.

[21] Frohoff. 2018. Groovy GT chain. https://github.com/frohoff/ysoserial/blob/
master/src/main/java/ysoserial/payloads/Groovy1.java.

[22] Chris Frohoff. 2022. ysoerial : A collection of known gadget chains found in
java-based software. https://github.com/frohoff/ysoserial.

[23] Andrew Gainer-Dewar. 2022. Djikstra-like path enumeration algorithm for
directed graphs. https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/alg/
shortestpath/AllDirectedPaths.html.

[24] Carlos Cardoso Galhardo, Peter Mell, Irena Bojanova, and Assane Gueye. 2020.
Measurements of the most significant software security weaknesses. In Annual
Computer Security Applications Conference. 154–164.

[25] François Gauthier and Sora Bae. 2022. Runtime Prevention of Deserialization
Attacks. In Proceedings of the ACM/IEEE 44th International Conference on Software
Engineering: New Ideas and Emerging Results (ICSE-NIER ’22).

[26] Ian Haken. 2021. Gadget Inspector: Static discovery of gadget chains. https:
//github.com/JackOfMostTrades/gadgetinspector.

[27] Jang. 2021. AspectJWeaver GT chain. https://github.com/frohoff/ysoserial/blob/
master/src/main/java/ysoserial/payloads/AspectJWeaver.java.

[28] JFrog. 2022. Log4Shell vulnerability mounted using java deserializa-
tion. https://jfrog.com/blog/log4shell-0-day-vulnerability-all-you-need-to-
know/#appendix-b.

[29] Vini Kanvar and Uday P. Khedker. 2016. Heap Abstractions for Static Analysis.
ACM Comput. Surv. (2016).

[30] Nikolaos Koutroumpouchos, Georgios Lavdanis, Eleni Veroni, Christoforos Ntan-
togian, and Christos Xenakis. 2019. ObjectMap: Detecting insecure object de-
serialization. In Proceedings of the 23rd Pan-Hellenic Conference on Informatics.
67–72.

[31] Kullrich. 2018. Vaadin GT chain. https://github.com/frohoff/ysoserial/blob/
master/src/main/java/ysoserial/payloads/Vaadin1.java.

[32] Kaiser Mathias and Jasinner. 2019. Apache Commons Collections GT
chain. https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/
payloads/CommonsCollections5.java.

[33] Kaiser Mathias and Jasinner. 2019. Apache Commons Collections GT
chain. https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/
payloads/CommonsCollections2.java.

[34] Alvaro Munoz and Schneider. 2018. Beanshell GT chain. https:
//github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/
BeanShell1.java.

[35] Alvaro Munoz and Christian Schneider. 2016. Serial Killer: Silently Pwning
Your Java Endpoints. https://paper.bobylive.com/Security/asd-f03-serial-killer-
silently-pwning-your-java-endpoints.pdf.

[36] NVD. 2017. Apache Struts RCE vulnerability. https://nvd.nist.gov/vuln/detail/cve-
2017-9805.

[37] NVD. 2023. CVE-2020-2555. https://nvd.nist.gov/vuln/detail/CVE-2020-2555.
[38] Oracle. 2021. Interface Serializable. https://docs.oracle.com/javase/7/docs/api/

java/io/Serializable.html.
[39] Oracle. 2022. Java Deserialization using readObject. https://docs.oracle.com/

javase/7/docs/api/java/io/ObjectInputStream.html#readObject().
[40] Oracle. 2022. Java Serialization using writeObject. https://docs.oracle.com/javase/

7/docs/api/java/io/ObjectOutputStream.html#writeObject().
[41] Oracle. 2022. Object class in Java. https://docs.oracle.com/javase/8/docs/api/java/

lang/Object.html.
[42] Oracle. 2023. classpath in Java. https://docs.oracle.com/javase/tutorial/essential/

environment/paths.html.
[43] Oracle. 2023. Coherence library. https://www.oracle.com/java/coherence/.
[44] Soot Oss. 2022. Soot. https://github.com/soot-oss/soot.
[45] Carlos Pacheco and Michael D Ernst. 2007. Randoop: feedback-directed random

testing for Java. In Companion to the 22nd ACM SIGPLAN conference on Object-
oriented programming systems and applications companion. 815–816.

[46] Sunnyeo Park, Daejun Kim, Suman Jana, and Sooel Son. 2022. {FUGIO}: Au-
tomatic Exploit Generation for {PHP} Object Injection Vulnerabilities. In 31st
USENIX Security Symposium (USENIX Security 22). 197–214.

[47] Shawn Rasheed and Jens Dietrich. 2020. A Hybrid Analysis to Detect Java
Serialisation Vulnerabilities. In Proceedings of the 35th IEEE/ACM International
Conference on Automated Software Engineering (Virtual Event, Australia) (ASE
’20). Association for Computing Machinery, New York, NY, USA, 1209–1213.
https://doi.org/10.1145/3324884.3418931

[48] Hovav Shacham. 2007. The Geometry of Innocent Flesh on the Bone: Return-into-
libcWithout Function Calls (on the x86). In Proceedings of the 14th ACMConference
on Computer and Communications Security (Alexandria, Virginia, USA) (CCS ’07).
ACM, New York, NY, USA, 552–561. https://doi.org/10.1145/1315245.1315313

[49] Mikhail Shcherbakov and Musard Balliu. 2021. Serialdetector: Principled and
practical exploration of object injection vulnerabilities for the web. In Network
and Distributed Systems Security (NDSS) Symposium 202121-24 February 2021.

[50] TIOBE. 2022. Popular programming languages for development. https://www.
tiobe.com/tiobe-index/.

[51] Flavio Toffalini, Mariano Graziano, Mauro Conti, and Jianying Zhou. 2021.
SnakeGX: a sneaky attack against SGX Enclaves. In International Conference
on Applied Cryptography and Network Security. Springer, Cham, 333–362.

[52] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick Lam, and
Vijay Sundaresan. 2010. Soot: A Java bytecode optimization framework. In
CASCON First Decade High Impact Papers. 214–224.

Received 2023-02-02; accepted 2023-07-27

1597

https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/util/SafeObjectInputStream.java
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/util/SafeObjectInputStream.java
https://github.com/apache/kafka/blob/trunk/connect/runtime/src/main/java/org/apache/kafka/connect/util/SafeObjectInputStream.java
https://pulsar.apache.org/docs/v2.0.1-incubating/functions/api/#java-serde
https://pulsar.apache.org/docs/v2.0.1-incubating/functions/api/#java-serde
https://github.com/apache/kafka
https://github.com/apache/kafka
https://github.com/apache/pulsar/blob/master/pulsar-functions/api-java/src/main/java/org/apache/pulsar/functions/api/utils/JavaSerDe.java
https://github.com/apache/pulsar/blob/master/pulsar-functions/api-java/src/main/java/org/apache/pulsar/functions/api/utils/JavaSerDe.java
https://github.com/apache/pulsar
https://github.com/apache/pulsar
https://aws.amazon.com/msk/what-is-kafka
https://www.baeldung.com/java-transient-keyword
https://www.baeldung.com/java-transient-keyword
https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages
https://www.forbes.com/sites/forbestechcouncil/2022/04/06/why-and-how-java-continues-to-be-one-of-the-most-popular-enterprise-coding-languages
https://www.code-intelligence.com/blog/autofuzz
https://www.code-intelligence.com/blog/autofuzz
https://commons.apache.org/proper/commons-collections/security-reports.html
https://commons.apache.org/proper/commons-collections/security-reports.html
https://www.confluent.io/blog/kafka-connect-deep-dive-converters-serialization-explained/
https://www.confluent.io/blog/kafka-connect-deep-dive-converters-serialization-explained/
https://cynation.com/the-equifax-data-breach/
https://cynation.com/the-equifax-data-breach/
https://doi.org/10.1145/2660267.2660363
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsBeanutils1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsBeanutils1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Groovy1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Groovy1.java
https://github.com/frohoff/ysoserial
https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/alg/shortestpath/AllDirectedPaths.html
https://jgrapht.org/javadoc/org.jgrapht.core/org/jgrapht/alg/shortestpath/AllDirectedPaths.html
https://github.com/JackOfMostTrades/gadgetinspector
https://github.com/JackOfMostTrades/gadgetinspector
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/AspectJWeaver.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/AspectJWeaver.java
https://jfrog.com/blog/log4shell-0-day-vulnerability-all-you-need-to-know/#appendix-b
https://jfrog.com/blog/log4shell-0-day-vulnerability-all-you-need-to-know/#appendix-b
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Vaadin1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/Vaadin1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections5.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections2.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/CommonsCollections2.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/BeanShell1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/BeanShell1.java
https://github.com/frohoff/ysoserial/blob/master/src/main/java/ysoserial/payloads/BeanShell1.java
https://paper.bobylive.com/Security/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://paper.bobylive.com/Security/asd-f03-serial-killer-silently-pwning-your-java-endpoints.pdf
https://nvd.nist.gov/vuln/detail/cve-2017-9805
https://nvd.nist.gov/vuln/detail/cve-2017-9805
https://nvd.nist.gov/vuln/detail/CVE-2020-2555
https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/7/docs/api/java/io/Serializable.html
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html#readObject()
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectInputStream.html#readObject()
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectOutputStream.html#writeObject()
https://docs.oracle.com/javase/7/docs/api/java/io/ObjectOutputStream.html#writeObject()
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/8/docs/api/java/lang/Object.html
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
https://docs.oracle.com/javase/tutorial/essential/environment/paths.html
https://www.oracle.com/java/coherence/
https://github.com/soot-oss/soot
https://doi.org/10.1145/3324884.3418931
https://doi.org/10.1145/1315245.1315313
https://www.tiobe.com/tiobe-index/
https://www.tiobe.com/tiobe-index/

	Abstract
	1 Introduction
	2 Deserialization Attacks
	2.1 Serialization and Deserialization
	2.2 Payload Formalization
	2.3 Payload Example
	2.4 Challenges

	3 Crystallizer Design
	3.1 Static Analysis Module
	3.2 Sink Identification
	3.3 Probabilistic Concretization

	4 Implementation
	5 Evaluation
	5.1 RQ1: Library-based evaluation
	5.2 RQ2: Comparison against state-of-the-art tools
	5.3 RQ3: Comparative Performance Evaluation
	5.4 RQ4: Sink Identification Evaluation
	5.5 RQ5: Crystallizer in-the-wild

	6 Discussion
	7 Related Work
	8 Conclusion
	References

