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ABSTRACT
Deep learning (DL) applications, built upon a heterogeneous and
complex DL stack (e.g., Nvidia GPU, Linux, CUDA driver, Python
runtime, and TensorFlow), are subject to software and hardware de-
pendencies across the DL stack. One challenge in dependency man-
agement across the entire engineering lifecycle is posed by the asyn-
chronous and radical evolution and the complex version constraints
among dependencies. Developers may introduce dependency bugs
(DBs) in selecting, using andmaintaining dependencies. However, the
characteristics of DBs in DL stack is still under-investigated, hin-
dering practical solutions to dependency management in DL stack.

To bridge this gap, this paper presents the first comprehensive
study to characterize symptoms, root causes and fix patterns of
DBs across the whole DL stack with 446 DBs collected from Stack-
Overflow posts and GitHub issues. For each DB, we first investigate
the symptom as well as the lifecycle stage and dependency where
the symptom is exposed. Then, we analyze the root cause as well
as the lifecycle stage and dependency where the root cause is intro-
duced. Finally, we explore the fix pattern and the knowledge sources
that are used to fix it. Our findings from this study shed light on
practical implications on dependency management.

CCS CONCEPTS
• Software and its engineering→ Software libraries and repos-
itories.
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1 INTRODUCTION
The significant breakthroughs in deep learning (DL) have brought
great success to many DL-enabled applications, e.g., machine trans-
lation [30], medical diagnosis [43], voice assistants [21] and au-
tonomous vehicles [12]. Such DL applications are built upon a het-
erogeneous and complex DL stack, including hardware (e.g., Nvidia
GPU), OS (e.g., Linux), drivers (e.g., CUDA and cuDNN), runtime (e.g.,
Python) and libraries (e.g., TensorFlow). In other words, engineering
DL applications requires software and hardware in the DL stack as
prerequisite dependencies. One common challenge in engineering
DL applications is dependency management across the DL stack [4,
13, 74], i.e., to properly manage versions and configurations of the
software and hardware dependencies in the entire DL stack.

Motivation. Dependency management is challenging for three
main reasons. First, software and hardware dependencies are complex,
and evolve quickly in an asynchronous and radical way. Dependency
complexity originates from two sources, i.e., deep stack and rich ven-
dors. For example, many vendors provide DL libraries, e.g., Google’s
TensorFlow, Facebook’s PyTorch andMicrosoft’s CNTK. Besides, de-
pendency evolution is performed at the vendor’s own pace and may
introduce incompatible changes. For example, themicro-architecture
of Nvidia GPU has evolved several generations over the years, from
old versions such as Tesla to new versions such as Ampere. In the
meantime, CUDA has evolved from version 1.0 to 11.6 to support
different GPUs distinguished by compute capability, which ranges
from 1.0 to 9.0. Therefore, developers may miss some dependen-
cies and build an incomplete stack, or have troubles in selecting,
updating and migrating dependency versions.

Second, software and hardware dependencies need to satisfy com-
plex version constraints to work together properly. For example, each
TensorFlow version onlyworks compatibly with certain cuDNN ver-
sions, CUDA versions and Nvidia GPU versions. A developer set up
an environment with TensorFlow gpu version 1.2.0rc0, Python 3.5.2,
CUDA 8.0.61, cuDNN 8.0 and a GPU card with compute capabil-
ity 2.1 onWindows 7 [52]. The setup failed to recognize a valid GPU
card as this TensorFlow version required a GPU card with com-
pute capability 3.0 or higher. These version constraints are scat-
tered across documentations of software and hardware. Therefore,
developers may build an incompatible stack, or introduce incompati-
bilities when updating versions or deploying to a new environment.

Third, each dependency versionmay contain bugs or need proper con-
figuration.While dependency version constraints are satisfied, there
might be bugs in specific versions under certain circumstances. For
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example, a developer created a Seq2Seq model using TensorFlow 1.5
but encountered an error [57]. It was caused by a bug only in Ten-
sorFlow 1.5, and could be alleviated by upgrading to 1.6 or down-
grading to 1.4. In addition, there might be misconfigurations during
the installation of dependencies. For example, some kernel modules
are required to be signed on Secure Boot enabled systems when the
Nvidia driver is installed. However, this may cause unknown errors
raised from CUDA [51], which could be fixed by disabling Secure
Boot. Therefore, developers might use a buggy dependency ver-
sion or misconfigure a dependency version.

In summary, developers may introduce various dependency man-
agement problems in selecting, using andmaintaining dependencies
in the DL stack during the entire engineering lifecycle (i.e., envi-
ronment setup, development, deployment and maintenance). We
refer to these problems as dependency bugs (DBs).

Literature.On the one hand, a lot of advances have beenmade to
investigate DBs in different ecosystems, e.g., Java [23, 65], C/C++ [31],
JavaScript [44], Python [40, 64], Go [63], andDebian and RedHat [6].
They only consider DBs at the homogeneous library layer. However,
DBs in the DL ecosystem are different because they can occur across
all the heterogeneous layers in the DL stack. On the other hand, a lot
of efforts have been made to investigate characteristics (e.g, symp-
toms, root causes and fix patterns) of general bugs [25, 27, 28, 42, 76]
and specific bugs [10, 14, 62, 73, 75] in DL applications. However,
these studies are not specifically designed for DBs, and thus only
uncover partial characteristics of DBs in DL stack. Therefore, al-
though it is necessary to understand the characteristics of DBs in
DL stack, no systematic study exists yet.

Our Study. To bridge this gap, we present the first comprehen-
sive study to characterize DBs in DL stack. An overview of our study
is presented in Fig. 1. After introducing the DL stack (see Sec. 2), we
first collect 446 DBs from StackOverflow posts and GitHub issues,
and then analyze these DBs to answer three RQs (see Sec. 3).

• RQ1 Symptom: What are the symptoms of DBs? At which
lifecycle stages and dependencies are they exposed?

• RQ2 Root Cause:What are the root causes of DBs? At which
lifecycle stages and dependencies are they introduced?

• RQ3 Fix Pattern: What are the fix patterns of DBs? Which
knowledge sources are used to fix DBs?

Through these research questions, we aim to provide useful
findings for developers and researchers (see Sec. 4, 5 and 6). For
example, 38.8% of the DBs manifest DL specific errors or anom-
alies in software and hardware dependencies, behavior, model and
data, mostly leading to crashes. Violation of constraints among soft-
ware and hardware dependencies causes 79.8% of the DBs. Develop-
ment is the most bug-affecting lifecycle stage, which exposes 51.8%
of the DBs, while environment setup is the most bug-prone lifecycle
stage, which introduces 90.8% of the DBs. 227 (50.9%) of the DBs
are not introduced and exposed in the same dependency. Changing
dependency version and adding dependency are the most com-
mon fix patterns, which are leveraged to fix 70.0% and 11.9% of the
DBs. Source code, documentation, issue tracker and other online
resource are important knowledge sources of fixing DBs.

Our findings provide practical implications for developers and
researchers on dependency management across the entire engi-
neering lifecycle (see Sec. 7), e.g., construct dependency knowledge

graph for the entire DL stack, recommend dependencies in the en-
tire DL stack, detect, localize and fix dependency bugs, and upgrade
and migrate dependencies. To demonstrate the usefulness of our
implications, we design a prototype of DB detection and fixing.

In summary, our work makes the following contributions.

• We conduct the first comprehensive study to explore symptoms,
root causes and fix patterns of 446 DBs in DL stack.

• We provide implications for developers and researchers on de-
pendency management in engineering DL applications.

2 DEEP LEARNING STACK
Developers need to set up aDL environment before developing or de-
ploying DL applications. The setup process often involves the fol-
lowing steps. First, developers need to choose a physical machine
with GPUs and operating system installed. Besides, developers can
use a virtual machine on the physical machine, or choose a virtual
machine on the cloud supported by cloud service providers (e.g.,
Amazon SageMaker). Second, to fully empower upper libraries and
DL applications, developers need to install the corresponding GPU
drivers and GPU-accelerated SDKs (e.g., CUDA and cuDNN). Third,
developers need to select a runtime environment based on the pro-
gramming language that DL applications are developed with (e.g.,
Python and Java). Forth, a number of libraries should be leveraged
to boost the development of DL applications from different perspec-
tives. Finally, developers could develop and deploy DL applications
on top of the software and hardware dependencies.

This setup process is complicated by involving a wide scope of
software and hardware dependencies. To reduce the complexity and
provide a complete solution, a DL stack is proposed by organizing
dependencies into layers. For example, Patterson shows a generic
program stack consisting of modeling code, framework, storage, dri-
ver, operating system and hardware [2]. By following the setup pro-
cess and referencing the DL stack at Patterson Consulting [2], In-
tel [26], Huawei [24] and Nvidia [1], we summarize a DL stack in
Fig. 1. It consists of five layers. From top to bottom, they are Appli-
cation, Library, Runtime and Driver, OS/Container, and Hardware.

Specifically, the Application layer contains DL applications from
various domains, e.g., autonomous driving. The Library layer con-
tains the dependencies the upper-layer DL applications directly
or transitively depend on. It covers a wide range of libraries, in-
cluding frameworks (e.g., TensorFlow, PyTorch and CNTK) which
provide abstraction and generic functionality implementation for
DL algorithms, front-end libraries providing high-level abstraction
or language bindings (e.g., Keras, ktrain and NeuPy), and other li-
braries in the ecosystem. The Runtime layer includes interpreters for
dynamically typed languages (e.g., Python and JavaScript) and vir-
tual machines for statically typed languages (e.g., Java and .Net). The
Driver layer contains the dependencies for interacting with GPUs,
including GPU drivers, computing platforms and GPU-accelerated
SDKs (e.g., Nvidia GPU driver, CUDA and cuDNN). The Library
layer can directly interact with the Runtime and Driver layer, and
thus they are put at the same layer. The OS/Container layer contains
operating systems, containers and other virtual environments (e.g.,
Ubuntu, Windows, macOS, Docker, and Amazon SageMaker). The
Hardware layer contains fundamental hardware like CPU, GPU,
mobile chips, and vendor-specific chips (e.g., Google’s TPU).
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Figure 1: An Overview of Our Empirical Study on Dependency Bugs in DL Stack

3 EMPIRICAL STUDY METHODOLOGY
Wefirst introduce the design of our empirical study, and then present
our process of data collection and data labeling.

3.1 Study Design
Our symptom analysis in RQ1 aims to characterize the observable
consequences of DBs, which is helpful to assess impacts and provide
insights for DB diagnosis and detection.Moreover, it aims to identify
the lifecycle stage and dependency where the symptom is exposed,
which is helpful to guide both developers and researchers to focus
more effort on these bug-affecting stages and dependencies so as to
achieve the most benefit for DB diagnosis and detection.

Our root cause analysis in RQ2 seeks to understand the funda-
mental nature of DBs, which is helpful to provide insights for DB de-
tection and localization. Further, it seeks to locate the lifecycle stage
and dependency where the root cause is introduced, which is help-
ful to guide both developers and researchers to spend more effort on
these bug-prone stages and dependencies in order to achieve the
most benefit for DB avoidance, detection and localization.

Our fix pattern analysis inRQ3 attempts to characterize the fixes
of DBs, which is helpful to provide insights for DB fixing. Moreover,
it explores the distribution of fix patterns for root causes as well as
the knowledge sources that are used to fix DBs, which is helpful
for both developers and researchers to achieve DB fixing in a more
automated and effective fashion.

Comparison to DBs in Other Domains. Unlike general pro-
gramming, DBs in deep learning exhibits a higher prevalence of low-
level issues, e.g., driver configuration problems. To the best of our
knowledge, there is no literature on DBs in high-performance com-
puting or platform-specific binaries, which also encounter configu-
ration problems that may be as prevalent as those found in deep
learning. The existing literature covers a range of topics related to
dependencies, including empirical studies on dependency smells [11,
29], dependency conflicts [6, 23, 44, 63–67] and dependency-related
build failures [8, 36, 38, 40, 70]. During the analysis of RQ1, RQ2
and RQ3, we compare the symptoms, root causes and fix patterns
and discuss the differences from existing literature.

3.2 Data Collection
To obtain a comprehensive understanding of DBs, we collect rel-
evant posts on StackOverflow and relevant issues on GitHub. We
selected StackOverflow and GitHub because i) they are popular

sites containing a wide range of problems raised by world-wide
developers in real-life development activities; and ii) they have a
high potential to contain problems about the dependencies in the
entire DL stack due to their diversity.

3.2.1 Collecting SO Posts. Our collection of SO posts has two steps.
Step 1: Dependency Tag Selection. Developers often attach

several tags to a post to indicate the topics or concepts related to the
question. Therefore, tags can be used to select the posts that are rel-
evant to dependency problems in DL stack, and we need to deter-
mine a set of tags that have a high coverage of the dependencies in
DL stack. To this end, we first collected all the 21,978,327 posts from
Stack Exchange Data Dump on December 20, 2021. Then, for each
post with an accepted answer, we iterated its tag list, and searched
for tags that co-occurred with the tag “deep learning” or “neural net-
work”. In this way, we obtained an initial set of 1,576 tags.We did not
directly use the tag “deep learning” or “neural network” to select
posts as it may miss posts that were not tagged with “deep learning”
and “neural network” but with other dependency related tags.

Next, two of the authors independently determinedwhether each
of the 1,576 tags was related to the dependencies in DL stack by read-
ing the excerpt provided by StackOverflow and online materials ob-
tained by search engines.We used Cohen’s Kappa coefficient tomea-
sure agreement, and it reached 0.906. A third author was involved
to resolve disagreements. Finally, we obtained 57 Library tags, 3Dri-
ver tags, 59 Runtime tags, 23OS/Container tags and 14Hardware tags.

Moreover, we conducted a comprehensive analysis of these 156
tags on significance and relevance scores, following previous work
[3, 7]. Out of these tags, 106 of them have non-zero scores in terms
of both significance and relevance, while the remaining 50 tags
have zero scores. These tags exhibit an average significance score
of 0.040 and an average relevance score of 0.018. Compared with
the thresholds used in previous work [3, 7], our results suggest that
our set of DL stack tags is significant and relevant.

Step 2: Dependency Post Selection.We picked dependency-
related posts in two steps. First, we chose from the 21,978,327 posts
the ones whose tags contained one of the 57 Library tags and 3 Dri-
ver tags, or contained the tag “deep learning” or “neural network” as
well as one of the 59 Runtime tags, 23OS/Container tags and 14Hard-
ware tags. As Runtime, OS/Container and Hardware tags often have
a weaker correlation with DL than Library and Driver tags, here we
enforced their co-occurrence with either “deep learning” or “neural
network” to reduce noisy posts. This led to 66,422 posts.
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Second, to focus on high-quality posts, we removed 7,301 posts that
did not have an accepted answer and 35,327 posts that did not
contain dependency version information. The information of de-
pendency versions was considered as important to determine root
causes and fix patterns of DBs. We used regular expression match-
ing to check the existence of version information. This restricted
our selection to 3,814 posts.

3.2.2 Collecting GitHub Issues. Our collection of GitHub issues
consists of two steps.

Step 1: GitHub Repsitory Selection. To obtain dependency-
related issues, we need to select a set of repositories across the DL
stack. However, GitHub mainly hosts repositories at the Application
and Library layer. Therefore, we first searched the 57 Library tags in
GitHub, which linked to 30 GitHub repositories. The repository size
is smaller than the tag size as i) some tags share the same repository;
ii) some repositories are archived; and iii) some libraries are not
hosted on GitHub. Then, we selected the top 10 repositories in the
Application layer by querying GitHub using “deep learning”.

Step 2: Dependency Issue Collection. We collected closed
issues in the 40 selected repositories using GitHub API, which
led to 154,299 issues. Similar to dependency post selection, we used
regular expression matching to check the existence of version infor-
mation in issues, which resulted in 37,795 issues. As the issue size
is still large, we randomly sampled 1,763 issues with a confidence
level of 99% and a margin of error of 3%.

3.2.3 DB Identification. We manually verified the 3,814 posts and
1,763 issues to reduce noise that was not about DBs in DL stack. In
particular, two of the authors independently investigated each post
and issue to identify DBs. The Cohen’s Kappa coefficient was 0.0.909.
A third author was involved to resolve disagreements. Finally, we
identified 446 DBs. 326 are from posts, and 120 are from issues.

3.3 Data Labeling
To answer the three research questions, wemanually labeled each of
the 446 DBs with respect to eight aspects, i.e., symptom, exposing
stage and dependency, root cause, introducing stage and depen-
dency, fix pattern, and knowledge source for fixing.

In particular, two of the authors first randomly sampled 100 DBs
for a pilot labeling, following an open coding procedure [47]. They
separately read all contents of a post or issue (including title, ques-
tion/issue description, comments, answers, commits and reference
links mentioned during discussion) and relied on search engines
to carefully label DBs. Basically, the symptom of a DB was deter-
mined by analyzing the question/issue description. The root cause,
fix pattern and knowledge source for fixing of a DB were inferred
from the question/issue description, the fixing commit or the ac-
cepted answer. The exposing stage and dependency of a DBwere de-
termined by analyzing where its symptom was exhibited, while the
introducing stage and dependency of a DB were determined by ana-
lyzing where its root cause was located. A group discussion was con-
ducted to summarize the initial taxonomies.

Then, two of the authors independently labeled all the 446 posts
based on the initial taxonomies, and finally reached Cohen’s Kappa
coefficients of 0.967, 0.938, 0.930, 0.840, 0.870, 0.887, 0.813 and 0.858
for the eight aspects. A third author resolved disagreements in pilot

DB Symptom

Syntactic Error (226)
DL Specific 

Error/Anomaly (173)

Warning (6)Termination (20)
Performance 
Anomaly (21)

Behavior Anomaly (23)

Data Anomaly (10)

Software 
Error/Anomaly (108)

Model Error (18)

Long Execution 
Time (10) Memory Anomaly (9) Processor Anomaly (2)

Hardware 
Error/Anomaly (14)

Figure 2: Taxonomy of DB Symptoms

and final labeling. The manual effort, involved in our data collection
and labeling, required eight person-months.

4 RQ1: SYMPTOM ANALYSIS
We present the taxonomy of DB symptoms, and explore the stages
and dependencies where symptoms are exposed.

4.1 Symptom Taxonomy
The taxonomy of DB symptoms is reported in Fig. 2. It is orga-
nized into five inner categories (i.e. Syntactic Error, DL Specific Er-
ror/Anomaly, Performance Anomaly, Termination and Warning) and
eight leaf categories. The number in parentheses is the number of
DBs exhibiting the corresponding symptom.

Syntactic Error. 226 (50.7%) of the DBs exhibit general syntactic
errors that are similar to those in traditional programs. It is the most
common symptom. Specifically, 114 (25.6%) of the DBs manifest
Element Not Found errors; i.e., the used syntactic elements like mod-
ule, class, function, key and attribute cannot be retrieved. Further,
36 (8.1%) of the DBs exhibit Type Mismatch errors; i.e., the variable
type is inconsistent with the one that is expected. In addition, 25
(5.6%) and 18 (4.0%) of the DBs result in Illegal Value and Illegal
Argument errors respectively, where a variable receives an illegal
value, and a function call receives an illegal argument. Moreover,
13 (2.9%) of the DBs report Undefined Variable errors, denoting that
the variable is not defined or initialized. Besides, some infrequent
errors (e.g., compilation errors) are included in the Others category,
which account for 20 (4.5%) of the DBs.

DL Specific Error/Anomaly. 173 (38.8%) of the DBs exhibit DL
specific errors or anomalies. It is the secondmost common symptom,
and is divided into five leaf categories. Software Error/Anomalymeans
errors or anomalies raised by software dependencies, accounting for
108 (24.2%) of theDBs. There are four cases. (1) 18 (4.0%) of theDBs ex-
hibit software internal errors, indicated by an error message that
contains the software name, e.g., CUDA_ERROR_UNKNOWN. (2)
59 (13.2%) of the DBs report that required software dependencies
cannot be found. (3) 11 (2.5%) of the DBs manifest dependency
initialization failures, indicating that required dependencies are
not properly set up. (4) 20 (4.5%) of the DBs report that required
software dependency versions do not match.

Moreover, Hardware Error/Anomaly denotes errors or anomalies
raised by hardware dependencies; e.g., the GPU card is not correctly
connected. It accounts for 14 (3.1%) of the DBs. Further, 23 (5.2%) of
the DBsmanifest Behavior Anomaly, e.g., abnormal accuracymetrics
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and unexpected return values of APIs. In addition, 18 (4.0%) of the
DBs exhibitModel Error, which is indicated by an error message that
contains model elements, e.g., computation operator missing, model
save/load failure, tensor conversion error, and layer unrecognized.
Besides, 10 (2.2%) of the DBs manifest Data Anomaly, reporting that
input data has abnormal values or mismatched property (e.g., size).

PerformanceAnomaly. 21 (4.7%) of the DBsmanifest abnormal
performance with respect to execution time, memory usage and pro-
cessor usage. Specifically, 10 (2.2%) of the DBs exhibit Long Execu-
tion Time; i.e., a program takes a long time to initialize or execute
DL tasks, or even hangs in the middle of the execution. Further, 9
(2.0%) of the DBs causeMemory Anomaly, including abnormal mem-
ory utilization, memory leak, or even out of memory errors. Besides,
two DBs result in Processor Anomaly (i.e., high GPU utilization).

Termination. 20 (4.5%) of the DBs caused the program directly
terminated without any informative error code or error message.
For example, it only reports a segmentation fault, or it simply re-
ports that the task is killed or canceled.

Warning. 6 (1.3%) of the DBs show warning messages, including
warnings about function change, version compatibility, and seman-
tic mismatch in API arguments. For example, a version compatibility
warning reveals that the installed version violates the working ver-
sion requirements. These warnings forecast the potential DBs due
to using versions with changed elements.

Comparison toDBs inOtherDomains.Compared to previous
work, distinct symptoms of the DBs in our study are highlighted in
dotted rectangles in Fig. 2, which include Hardware Error/Anomaly,
Model Error,Data Anomaly and Performance Anomaly. They account
for 63 (14.1%) of the 446 DBs. These differences owe to the fact that
previous work is focused on DBs raised in homogeneous depen-
dencies in the Application and Library layer in traditional software
applications, while DBs across heterogeneous dependencies are not
studied. Our study investigates DBs across the whole DL stack to
collect symptoms revealed not only in dependencies within one
layer but also in dependencies across layers.

Summary.General syntactic errors and DL specific errors and
anomalies are the most common symptoms, which account for
89.4% of the DBs and mostly cause crashes. Besides, 4.7% of the
DBs slow executions down or consume high resources. These
wide-ranging impacts motivate the importance of DBs.

4.2 Exposing Stage and Dependency
We identify the stage and dependency where the symptom of
each DB is exposed, and analyze DB distribution over them.

Exposing Stage Analysis.We classify the entire lifecycle of en-
gineeringDL applications into four stages, i.e., environment setup, de-
velopment, deployment, and maintenance. We report the DB distri-
bution over the exposing stages in the right part of Fig. 3. Develop-
ment is the most bug-affecting stage, where 231 (51.8%) of the DBs
are exposed. This indicates that although the setup process of DL
stack is presumably finished, more than half of the DBs will not
occur until DL application development. Environment setup is the
second most bug-affecting stage, where 168 (37.7%) of the DBs are
exposed. It indicates that the setup of a feasible DL stack is not
easy. Apart from the two dominating stages, deployment exposes 14

Figure 3: Exposing Dependency vs. Exposing Stage

(3.1%) and maintenance exposes 11 (2.5%) of the DBs, which are rel-
atively smaller than in environment setup and development. The
remaining 22 (4.9%) DBs have no clear indication about the exposing
stage, and thus are included in the Unknown category.

Summary. The most bug-affecting stages are development
and environment setup, exposing 51.8% and 37.7% of the DBs.

Exposing Dependency Analysis. We show the DB distribu-
tion over the exposing dependencies in the left part of Fig. 3,
which is organized by the layer hierarchy in DL stack (see Sec.
2) with dominating dependencies separately highlighted. The Li-
brary layer is the most bug-affecting layer, where 383 (85.9%) of
the DBs are exposed. Specifically, Keras, TensorFlow and PyTorch
in the Library layer expose 65 (14.6%), 212 (47.5%) and 29 (6.5%) of
the DBs respectively, which are the most bug-affecting libraries.
This is reasonable as they are currently the most popular DL frame-
works. The Application layer exposes 15 (3.4%) of the DBs, while
the Driver layer exposes 14 (3.1%) of the DBs. CUDA and cuDNN
both expose 6 (1.3%) of the DBs. Besides, there are at most 23 (5.2%)
of the DBs that are exposed at the dependencies at the Runtime,
OS/Container or Hardware layer.

The Sankey diagram in Fig. 3 illustrates where the DBs exposed
in a dependency are exposed across the lifecycle stages. The width
of the flow is proportional to the number of DBs. Generally, a DB can
be exposed at any dependency at any layer in DL stack at any stage
of the engineering lifecycle. This indicates the complexity of DBs.

Summary. Library, Application and Driver are the most bug-
affecting stack layers. Keras, TensorFlow and PyTorch are the
most bug-affecting libraries.

5 RQ2: ROOT CAUSE ANALYSIS
We report the taxonomy of DB root causes, and analyze the stages
and dependencies where root causes are introduced.

5.1 Root Cause Taxonomy
The taxonomy of DB root causes is shown in Fig. 4. We first classify
the root causes based on the criterion that whether a DB is caused
by one dependency (i.e., Intra-Dependency Cause) or by constraints
among dependencies across DL stack (i.e., Inter-Dependency Cause).
Then, we summarize six leaf categories.
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Intra-DependencyCause. 90 (20.2%) of theDBs are caused solely
by one dependency itself, and are divided into two leaf categories.
Particularly, 53 (11.9%) of the DBs are caused by Buggy Software Ver-
sion; i.e., a DB is caused by triggering bugs in software dependencies
in DL stack. Moreover, 37 (8.3%) of the DBs are caused by Unsuc-
cessful Installation of dependencies. There are two cases. (1) De-
pendency installation does not complete. For example, a developer
found that therewas no file named cudnn64_6.dll, whichwas caused
by the missed installation of cuDNN on his/her machine [50]. (2) De-
pendency installation completes, but lacks proper path configura-
tion (e.g., missing path configuration or configuring incorrect path).

Inter-Dependency Cause. 356 (79.8%) of the DBs are caused by
constraints among software and hardware dependencies across DL
stack; i.e., multiple dependencies have to be considered together to
have a feasible DL stack, otherwise, DBs might be introduced. It is
divided into four leaf categories. Specifically, 312 (70.0%) of the DBs
are caused by Incompatible Software Version, which is the most com-
mon root cause. An incompatible software version is introduced if it
violates the version constraint that has to be satisfied for it toworkwith
other dependencies. For 58 of the 312 DBs, detailed API-level incom-
patibility information is provided in the post/issue, and we classify
the incompatibility based on API changes [9], i.e., API removal,
API addition, API replacement, API movement, API parameter list
change, API renaming, and API behavior change. API addition,
API behavior change and API removal are the most common root
causes of API incompatibility, which respectively account for at
least 20 (4.5%), 13 (2.9%) and 11 (2.5%) of the DBs. API replacement,
API parameter list change, API movement and API renaming re-
spectively cause at least 4, 4, 3 and 3 DBs. For the 177 of the 311
DBs, we can only distinguish whether they are caused by backward
incompatibility (for 101 (22.6%) of the DBs) or forward incompati-
bility (for 76 (17.0%) of the DBs). For the remaining 77 of the 311
DBs, we can only determine they are caused by incompatibility due
to the limited information in the posts/issues.

29 (6.5%) of theDBs are caused byMismatched Software; i.e., while
different software can provide similar functionalities, only some of
them can work with the other dependencies in DL stack, but others
are regarded asmismatched. Specifically, 15 of the DBs are caused by
selectingwrong software as dependency. For example, the DL frame-
work Keras and the tf.kerasmodule introduced in TensorFlow 1.10
provide similar APIs, but Keras does not support TensorFlow 2.0. In
that sense, if TensorFlow 2.0 is used in DL stack, Keras would be mis-
matched and thus cannot be used [53]. Further, 11 of theDBs are caused
by choosing wrong software distribution. For example, the official
pre-built TensorFlow 2.0 requires CUDA Toolkit 10.0. Developers
have to re-build TensorFlow 2.0 with CUDA Toolkit 10.1 to work
with CUDA Toolkit 10.1. Thus, using pre-built TensorFlow 2.0 with

Figure 5: Introducing Dependency vs. Introducing Stage

CUDA Toolkit 10.1 could cause a DB [55]. Further, 3 of the DBs are
caused by selecting multiple conflicting software. For example, load-
ing both TensorFlow and TensorFlow-gpu [49] would cause a DB.

13 (2.9%) of the DBs are caused by Mismatched Hardware; i.e.,
the hardware does not meet requirements of dependencies in upper
stack layers. For example, TensorFlow 1.6 used AVX feature of CPUs,
which is supported by Sandy Bridge or newer CPU architectures.
Hence, using TensorFlowwith non-AVXCPUswould cause aDB [48].

2 (0.4%) of the DBs are caused by Disabled OS Privilege; i.e., per-
missions required by software dependencies are not allowed from
the OS or container. For example, System Integrity Protection (SIP)
is enabled on MacOS 10.11 to prevent unauthorized code execution,
but SIP prevents a path variable from being overridden, causing
dependencies not found [54].

Comparison toDBs inOtherDomains.Compared to previous
work, distinct root causes of the DBs in our study are highlighted in
dotted rectangles in Fig. 4, which includeMismatched Hardware and
Disabled OS Privilege. They account for 15 (3.4%) of the 446 DBs. It is
worth mentioning that although most root causes are shared with
previous work, the dependencies that cause DBs can be different
(see Sec. 5.2) as our study further considers the Runtime, Driver,
OS/Container and Hardware layers.

Summary. Violation of constraints among dependencies in
DL stack causes 79.8% of the DBs, where incompatible soft-
ware version is the major root cause. Moreover, bugs in soft-
ware dependencies cause 11.9% of the DBs.

5.2 Introducing Stage and Dependency
We locate the stage and dependencywhere the root cause of eachDB
is introduced, and analyze DB distribution over them.

Introducing Stage Analysis. The taxonomy of stages is the
same to the one in Sec. 4.2. We show the DB distribution over the in-
troducing stages in the right part of Fig. 5. Environment setup is the
most bug-prone stage, where 405 (90.8%) of the DBs are introduced,
while no DB is introduced in development because the DL stack
is already determined in environment setup. It indicates that the
setup of a feasible DL stack is important but challenging. Besides,
deployment and maintenance introduce 9 (2.0%) and 10 (3.2%) of the
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DBs. The remaining 22 (4.9%) DBs have no clear indication about
the introducing stage, and thus are put in the Unknown category.

Summary. The most bug-prone stage is environment setup,
which introduces 90.8% of the DBs.

Introducing Dependency Analysis. For the DBs caused by
inter-dependency causes, their root causes can be introduced by any
of the involved dependencies. For example, a DB is caused by ver-
sion constraint violation between TensorFlow and CUDA, and
then both TensorFlow and CUDA can be the introducing depen-
dency of this DB. If there is no clear indication about the introducing
dependency in the posts/issues, we consider all involved depen-
dencies as the introducing dependencies; otherwise, we use the
introducing dependency that is decided in the posts/issues. It is
worth mentioning that the introducing dependency of 114 DBs are
only mentioned in the answers of the posts/issues, indicating that
questioners are not aware of the introducing dependency. In 258 of
the DBs, questioners only mention the dependency list to provide
more detail, but there is no clue indicating that they are aware of the
introducing dependency. In 74 of the DBs, questioners indicate as-
sumptions on the introducing dependency. Specifically, of the 356
DBs that are caused by inter-dependency causes, 336 DBs have their
introducing dependencies clearly indicated in the posts/issues.

We show the DB distribution over the introducing dependencies
in the left part of Fig. 5, which is organized in the same way in Fig. 3.
No DB is introduced in the Application layer as it is the client of
dependencies. The Library andDriver layers are themost bug-prone
layers, respectively introducing 301 (67.5%) and 94 (21.1%) of theDBs.
The number is larger than the summation of DBs in all libraries
or drivers because a DB can have multiple introducing dependen-
cies. Specifically, Keras, TensorFlow and PyTorch introduce the
most bugs in the Library layer, introducing 52 (11.7%), 179 (40.1%)
and 21 (4.7%) of the DBs. CUDA and cuDNN introduce the most
bugs in the Driver layer, introducing 57 (12.8%) and 49 (11.0%) of
the DBs. There are at most 48 (10.8) of the DBs introduced at the
dependencies at the Runtime, OS/Container or Hardware layer.

Besides, the Sankey diagram in Fig. 5 shows where the DBs
introduced in a dependency are introduced across the lifecycle
stages. Generally, a DB can be introduced at any dependency at
any layer (except for Application) at any lifecycle stage (except for
development). It reveals the complexity of DB localization.

Summary. Library and Driver are the most bug-prone stack
layers, which introduce 301 (67.5%) and 94 (21.1%) of the DBs.
Keras, TensorFlow and PyTorch introduce the most bugs in
the Library layer, while CUDA and cuDNN introduce the most
bugs in the Driver layer.

5.3 Introducing and Exposing Dependency
We further analyzewhere theDBs introduced in a dependency are ex-
posed across the dependencies inDL stack. Overall, 227 (50.9%) of the
DBs are not introduced and exposed in the same dependency. For ex-
ample, 33 (7.4%) of the DBs introduced in TensorFlow are exposed in
Keras, and 60 (13.5%) of theDBs introduced in CUDA and cuDNN are ex-
posed in TensorFlow. At the stack layer level, 162 (36.3%) of the DBs

are not introduced and exposed at the same stack layer. For ex-
ample, 12 (2.7%) of the DBs introduced at the Hardware layer are
exposed at the Library layer. These results indicate that DB local-
ization need systematic knowledge of the entire DL stack.

Summary. 227 (50.9%) of the DBs are not introduced and
exposed in the same dependency, and 162 (36.3%) of the DBs
are not introduced and exposed at the same layer.

6 RQ3: FIX PATTERN ANALYSIS
We present the taxonomy of DB fix patterns, and report their dis-
tribution for root causes and the knowledge source of fixing.

6.1 Fix Pattern Taxonomy
The taxonomy of DB fix patterns is listed in Fig. 6. It is grouped into
four inner categories (i.e., Change Application Code, Change Depen-
dency, Change DL Stack and Change Environment) and 15 leaf cate-
gories. A DB can be fixed by applying multiple fix patterns. Hence,
the summation of the number of DBs in Fig. 6 is larger than 446.

Change Application Code. 62 (13.9%) of the DBs are fixed via
changing the application code although their root causes are not in-
troduced by the application. Specifically, Fixing API Usage is used to
fix 43 (9.6%) of the DBs; i.e., the library API usage has to be changed
with the incompatible library version evolution. Moreover, Adding
Missing Code Logic is utilized to fix 8 (1.8%) of the DBs. In such cases,
some library APIs are removed or the behavior of some library APIs
is changed, and hence developers have to implement the code logic
of these library APIs by themselves at the application code level. Fur-
ther, Reformatting Data is used to fix 7 (1.6%) of the DBs for making
the data format compatible with the changed library APIs. Besides,
Changing Hyper-Parameter (e.g., batch size and learning rate) is
used to fix 4 (0.9%) of the DBs, because the constraints on hyper-
parameters are changed with library version evolution.

Change Dependency. This is the most common fix pattern,
which is leveraged to fix 407 (91.3%) of the DBs. In particular,
Changing Dependency Version is used to fix 312 (70.0%) of the DBs,
indicating that it is the most common pattern to fix DBs. Of these
312 DBs, upgrading dependency version is used in the fix of 188
DBs, and downgrading dependency version is used in the fix of 122
DBs. In 22 of the DBs, dependency version is changed but there
is no clear indication in the posts/issues to determine upgrade or
downgrade. Further, Adding Dependency is used to fix 53 (11.9%)
of the DBs where some required dependencies are missing or not
successfully installed. Moreover, Re-building Dependency is used to
fix 30 (6.7%) of the DBs. In such cases, the source code of depen-
dencies is re-built with other required dependencies to properly
work with them, or the source code of dependencies is first changed
(e.g., to fix bugs or to remove incompatibilities) and then re-built,
potentially because of the huge maintenance effort in changing de-
pendency versions. In addition, Changing Dependency Configuration
is leveraged to fix 9 (2.0%) of the DBs, e.g., disabling SIP in MacOS.
Besides, Removing Dependency is applied to fix 3 (0.7%) of the DBs
in order to remove conflicted dependencies.

Change DL Stack. 30 (6.7%) of the DBs are fixed by changing
the DL stack; i.e., some dependencies are switched to alternatives,
and the DL stack becomes fundamentally different. It is divided into
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Figure 6: Taxonomy of DB Fix Patterns

three leaf categories, i.e., Switching Software (libraries, drivers and
runtimes), Switching Hardware and Switching OS, accounting for
17 (3.8%), 6 (1.8%) and 7 (1.6%) of the DBs. For example, a developer
switched OS to Ubuntu to support distributed TensorFlow [56].

Change Environment. 41 (9.2%) of the DBs are fixed by chang-
ing the environment where libraries, drivers and runtimes can be
found. Specifically, Fixing Path Variable is used to fix 19 (4.3%) of the
DBs; i.e., the path variable is fixed to point to the correct directory
that contains the required dependencies. Besides, Clearing Environ-
ment and Creating Environment are used to respectively fix 15 (3.4%)
and 7 (1.6%) of the DBs. In these cases, the virtual environment (i.e.,
a directory that contains a specific collection of installed packages)
of package managers (e.g., pip and conda) is cleared or created.

Notice that 389 (87.2%) of the DBs can be fixed by applying one
fix pattern, while 73 (16.4%), 20 (4.5%) and 3 (0.7%) of the DBs can
be fixed by combining two, three and four fix patterns at the same
time. The summation here is larger than 446 as 37 DBs can be fixed
by different combinations of fix patterns.

Comparison to DBs in Other Domains. Compared to previ-
ous work, distinct fix patterns of the DBs in our study are high-
lighted in dotted rectangles in Fig. 6, which include Reformat Data,
Change Hyper-Parameter, Switch Hardware, Switch OS, and Change
Dependency Configuration. They are used to fix 32 (7.2%) of the 446
DBs. Moreover, multiple fix patterns need to be combined to fix
some DBs in DL stack, which is not the case in fixing dependency
conflicts [6, 23, 44, 63–67] where only one fix pattern is needed.

Summary. The most common fix pattern is to change depen-
dency versions, which is used to fix 70.0% of the DBs. Adding
dependency is the second most common pattern, which is
leveraged to fix 11.9% of the DBs. 21.5% of the DBs can be
fixed by combining multiple fix patterns.

6.2 Distribution of Fix Patterns for Root Causes
We report the distribution of fix patterns for root causes in Fig. 7,
where each cell denotes the number of DBs that are caused by a par-
ticular root cause and fixed by a particular fix pattern. Specifically,
except for Switching Software, all fix patterns are utilized in fixing
DBs that are caused by Incompatible Software Version for at least
once. While Fixing API Usage and Changing Dependency Version are
the two major fix patterns, there exist diverse ways to fix the most
common root cause Incompatible Software Version. The challenge is
to decide which fix pattern to use given a DB context.
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Figure 7: Distribution of Fix Patterns for Root Causes

Further, Changing Dependency Version is used in mitigating five
root causes, and is involved in the fix for 312 (70.0%) of the DBs. It
has a strong correlation to the root causes Buggy Software Version
and Incompatible Software Version. While the fix pattern itself is very
simple, the key challenge is to determine which dependency ver-
sion to use for addressing a DB. Besides, Adding Dependency, Re-
building Dependency and Clearing Environment are the other three
fix patterns spanning at least four root causes. Notice that Adding
Dependency is the accompanied fix pattern for fixing DBs caused by
Incompatible Software Version. For example, upgrading dependency
version solves an Incompatible Software Version, but this upgraded
dependency version may further depend on a new dependency.

Summary. Incompatible Software Version can be fixed by di-
verse patterns, whereas Fixing API Usage and Changing De-
pendency Version are the two major fix patterns. Changing
Dependency Version is also the major fix pattern for Buggy
Software Version.

6.3 Knowledge Source of DB Fixing
To fix a DB, developers usually rely on knowledge about DL stack,
e.g., dependency version constraints and dependency bugs. To char-
acterize how fixes of DBs are derived, we investigate the knowledge
sources that are used to fix DBs. We identify five knowledge sources.
Multiple knowledge sources can be used in fixing one DB, and hence
the summation of the number of DBs below is larger than 446.

Library Source Code. 52 (11.7%) of the DBs are fixed after dig-
ging into the source code of libraries. The source code of libraries is a
good knowledge source to know library version evolution, e.g., how a
libraryAPI is renamed, and how a libraryAPI’s code logic is changed.
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Dependency Documentation. 76 (17.0%) of the DBs are fixed
after looking into dependency documentation. Documentation of
libraries, drivers and hardware often provide informative knowl-
edge about dependency’s installation requirements and version con-
straints. For example, TensorFlow documentation lists both the
hardware requirements and software requirements [60].

Issue Tracker. 23 (5.2%) of the DBs are fixed after being aware of
the dependency bugs. Such bugs are tracked on issue trackers with
their symptoms and affected versions described.

Other Online Resource. 22 (4.9%) of the DBs are fixed by ref-
erencing other online resources, e.g., mailing lists, StackOverflow
posts and technical blogs.

Unknown. For 309 (69.3%) of the DBs, there is no clear indication
about the used knowledge source in the posts/issues, and thus we in-
clude them into the Unknown category. However, such posts/issues
themselves become a knowledge source.

Summary. Library source code, dependency documentation,
issue tracker, and other online resource are important knowl-
edge sources that are directly leveraged to fix DBs.

7 IMPLICATION, APPLICATION AND THREAT
We discuss the implications of our study, demonstrate an applica-
tion, and analyze the threats to our study.

7.1 Implication to Developers and Researchers
Application Developers. Our study uncovers the common DB
symptoms that developers should be aware of when engineering
DL applications for detecting potential DBs as early as possible. Our
study also identifies the common root causes and fix patterns of DBs
that could be useful for application developers to diagnose, localize
and fix DBs. Our study also shows the most bug-introducing and
bug-affecting dependencies where application developers should
pay more attention when installing, using or maintaining them
so that most DBs could be avoided or detected at the first place.
Moreover, our findings provide some engineering suggestions. Ap-
plication developers should be trained to have a comprehensive un-
derstanding of the DL stack, as our study reports that a DB could be
introduced or exposed across the entire DL stack and engineering
lifecycle. In this way, application developers are equipped with
the sufficient knowledge to deal with DBs. Appilcation developers
should carefully look into dependency documentation to learn ver-
sion constraints, and be aware of the bugs andAPI changes in library
version evolution. In this way, DBs caused by the most common
root causes (i.e., Buggy Software Version and Incompatible Software
Version) might be effectively reduced.

Library Developers. Our study reveals that around half of the
DBs are not introduced and exposed in the same dependency. This
requires library developers towrite informative errormessages in ex-
posing dependencies to help indicate the root causes in introducing
dependencies. In addition, our study identifies Incompatible Soft-
ware Version as the common root cause and Change Dependency
Version as the common fix pattern for DBs. This highlights the im-
portance of providing precise version constraints by library devel-
opers to allow application developers to follow and thus prevent DB
occurrences. Furthermore, if library developers integrate certain

version constraint checking in dependency installation scripts and
provide potential version constraint violation hints for application
developers, it would eliminate DBs at the first place.

Researchers. Our findings provide future research implications
in four directions. First, a dependency knowledge graph for the entire
DL stack is needed to provide fundamental knowledge for the ease of
dependency management.As uncovered by our root cause analysis, a
diversity of dependency knowledge is involved in DBs, e.g., version
constraints among software and hardware dependencies, bugs in
dependencies, and API changes in version evolution. However, such
knowledge is scattered across different sources, e.g., documentation,
issue tracker and source code, as revealed by our investigation of the
knowledge source of DB fixing. Online resources like StackOverflow
posts and GitHub issues also provide practical solutions to fix DBs.
Hence, the main challenges to construct the knowledge graph are
that i) designing a high-level schema to fuse various knowledge
into a graph, ii) leveraging various techniques like natural lan-
guage processing and program analysis to automatically extract
knowledge from different sources and keep them up-to-date; and iii)
developing graph analysis techniques for various dependency man-
agement tasks. This knowledge graph serves as the foundation of
the following three research directions. Along this direction, Ye et al.
[72] and Cheng et al. [15] construct a knowledge graph for the Li-
brary and Runtime layers for general Python programs, but fail to
support lower layers in the DL stack.

Second, dependency recommendation techniques are needed. Our
introducing stage analysis reveals that environment setup is themost
bug-prone stage which introduces 90.8% of the DBs. Therefore, de-
velopers often face difficulties in setting up a feasible DL stack. Fur-
ther, our root cause analysis shows that 70.0% of the DBs are caused
by Incompatible Software Version, although dependency documenta-
tion provides prerequisite information about setting up dependen-
cies and their version constraints. Therefore, developers might not
always refer to the documentation. In that sense, dependency recom-
mendation techniques become useful for developers to ease the setup
of a feasible DL stack; i.e., given some dependencies installed, they
recommend other dependencies to form a complete DL stack. For ex-
ample, given the available hardware and OS, they suggest required
dependencies in Driver, Runtime and Library layers.

Third, DB detection, localization and fixing techniques are needed.
Our study indicates that 90.8% of the DBs are introduced in environ-
ment setup, while only 37.7% of the DBs are exposed in environment
setup. Thus, it may indicate that many DBs stay undetected until
later lifecycle stages. To detect or localize DBs as early as possi-
ble, one possible remedy is to identify the dependencies currently
adopted in the DL stack, and then check against our dependency
knowledge graph to detect potential dependency constraint vio-
lations. Here the challenge is to automatically identify all hetero-
geneous dependencies as well as their versions across the entire
DL stack. Along this direction, Tan et al. [58] proposed a technique
to identify homogeneous dependencies at the Application and Li-
brary layer. Moreover, as many DBs are caused by software bugs
or API incompatibilities, fine-grained call graph analysis is needed
to accurately detect and localize DBs, i.e., to decide whether such
bugs or incompatible APIs are in the execution path and thus can
be triggered. Besides, our study indicates that questioners are of-
ten unaware of the introducing dependencies of the DBs, which
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calls for automated DB localization techniques. Once a DB is local-
ized, automated fixing techniques can use the fix patterns derived
from our study to fix it. However, the challenge is to decide which
fix pattern or combination of fix patterns is applicable and how a
fix pattern is instantiated. A way is to use search-based approach
by applying fix patterns to generate potential fixes and using the
dependency knowledge graph to decide the fix fitness.

Fourth, dependency upgrading andmigration techniques are needed.
Our introducing stage analysis uncovers that some DBs are intro-
duced in deployment and maintenance. More specifically, DL stack
in deployment environment can be different from the one in devel-
opment environment. Hence, dependency migration techniques are
needed to check whether dependencies in development environ-
ment can be replaced with the ones in deployment environment.
Besides, dependency versions can be upgraded for the benefit of
fixed bugs and improved features. However, it may also introduce
incompatibilities. Therefore, dependency upgrading techniques are
needed to analyze API changes and assess the risk in terms of po-
tential DBs and the effort in terms of potential code adaptation.

7.2 Application for Usefulness Demonstration
To demonstrate the usefulness of our implications, we design a
prototype to automatically detect and fix DBs.

Prototype Design. Our prototype has one knowledge base, i.e.,
dependency constraint knowledge, and two components, i.e., DB de-
tection and DB fixing. To collect dependency constraint knowledge,
we target at the documentations of TensorFlow, Pytorch and Keras
as i) they expose and introduce the most DBs at the Library layer;
and ii) their documentations often list requirements for dependen-
cies at lower layers, e.g., Python at the Runtime layer, CUDA and
cuDNN at theDriver layer, Linux at theOS/Container layer. We then
manually extract dependency constraints from their online docu-
mentations via reading installation guides of each version, where
they are either described in natural language or illustrated with a ta-
ble. Each dependency constraint is denoted as a tuple ⟨𝑑𝑒𝑝𝑎, 𝑑𝑒𝑝𝑏 , 𝑣𝑎,
𝑣𝑏1, 𝑣𝑏2 ⟩ where version 𝑣𝑎 of dependency 𝑑𝑒𝑝𝑎 depends on 𝑑𝑒𝑝𝑏 un-
der the condition that the version of 𝑑𝑒𝑝𝑏 is within the range of 𝑣𝑏1
and 𝑣𝑏2 . 𝑣𝑏2 can be null to represent an opening scope. Overall, we
collect 588 dependency constraints in 3 days.

Our prototype takes aDocker image as an input, and detects whether
it contains a DB. If yes, it also tries to fix it. To detect DBs, we first
need to identify dependencies used in the DL stack. To this end,
we support two package managers, i.e., PyPI and Conda, at the Li-
brary layer. We obtain the virtual environment location of PyPI
virtualenv by “find / | grep bin/activate”, or the environment names
of Conda by “conda env list”. Then, we activate the corresponding en-
vironments by “source <path>/bin/activate” or “conda activate <en-
vname>”, where we retrieve the whole list of dependency versions
under each environment. For the Runtime layer, we identify Python
runtime in PATH (“echo $PATH” ), where there exists an executable
named “python” or “python3”. For the Driver layer, we use “nvcc
–version” to identify installed version of CUDA and “which nvcc”
to identify installed path of CUDA. Under “<cuda_path>/lib64”, we
find the cuDNN version by checking if there exists a dynamic link-
ing library of cuDNN (i.e., cudnn.so.<version>). For the OS/Container
layer, we use “uname -a”, “cat /etc/centos-release”, “lsb_release -a”,

etc. to identify hosting OS. We do not identify hardware versions
as the Docker image does not contain hardware information.

Then, we search the identified dependency versions of each envi-
ronment for a combination of dependencies ⟨𝑑𝑒𝑝𝑎, 𝑑𝑒𝑝𝑏 , 𝑣𝑎, 𝑣𝑏⟩ that
violates a dependency constraint ⟨𝑑𝑒𝑝𝑎, 𝑑𝑒𝑝𝑏 , 𝑣𝑎, 𝑣𝑏1, 𝑣𝑏2⟩, which is
regarded as a DB. We first anchor 𝑑𝑒𝑝𝑎 at version 𝑣𝑎 and change
𝑑𝑒𝑝𝑏 ’s version indicated in version constraint from 𝑣𝑏1 to 𝑣𝑏2. Mean-
while, as 𝑑𝑒𝑝𝑏 ’s version changes, we also change 𝑑𝑒𝑝𝑐 ’s version to
satisfy version constraint in ⟨𝑑𝑒𝑝𝑏 , 𝑑𝑒𝑝𝑐 , 𝑣𝑏 , 𝑣𝑐1, 𝑣𝑐2⟩ if needed. The
process is conducted recursively. If there is no satisfied version com-
binations, we anchor𝑑𝑒𝑝𝑎 ’s version into a newer version of 𝑣𝑎 using
our knowledge base and repeat the above process. Once a satisfied
version is found, we change the dependency version by running
uninstall and install script to fix the DB.

Comparison with Related Tools. We find and review three
closely related tools. DockerizeMe [22] is a tool to infer the depen-
dencies needed to execute a Python code snippet without import
error. The inference is based on a knowledge base which contains
packages, their versions and resources, and the relationships be-
tween them. The knowledge base is built by applying static and
dynamic analysis to top ten thousand Python packages on PyPI and
applying association rule mining to public GitHub Python projects.
PyEGo [72] extends the knowledge base of DockerizeMe by further
including Python interpreters and system libraries, and achieves a
better accuracy on inferring compatible dependencies. DockerizeMe
and PyEGo mainly support packages installed by commands of pip
and apt. Different from DockerizeMe and PyEGo, our prototype
extracts dependencies and version constraints knowledge from of-
ficial documentation, and supports package installation commands
beyond pip and apt. While further work is needed to automate the
knowledge extraction, our approach can offer more generalizability
across different types of dependencies at different DL stack layers.

Different from the knowledge-based inference in DockerizeMe
and PyEGo, PyDFix [40] takes a trial and error approach, i.e., it first
identifies dependency errors and possible dependencies causing
the errors from build log, and then iteratively re-runs the build with
intermediate patches until the error disappears. Differently, our pro-
totype does not rely on error logs since not all DBs indicate explicit
error logs or reveal dependency names in their error logs.

Effectiveness Evaluation. To evaluate our prototype, we re-
produce DBs from our study and export them as Docker images.
We randomly sample 80 DBs from our study, and successfully re-
produce 18 DBs. The reasons of unsuccessful reproduction are two-
fold. First, the exposing or introducing dependency of DBs locates
in Hardware or OS/Container which does not match with our ma-
chines. Second, only part of theDL stack is revealed in the posts or is-
sues, and hence we fail to derive the full DL stack to reproduce DBs.

Our prototype successfully detects and fixes 8 of the 18DBs. Three
DBs caused byMismatched Software, two DBs caused by Buggy Soft-
ware Version and one DB caused by Unsuccessful Installation are not
detected as our prototype is focused on violated version constraints.
Of the twelve DBs caused by Incompatible Software Version, five DBs
are detected and fixed using version constraint between TensorFlow
and CUDA, two are detected and fixed using version constraint
between CUDA and cuDNN, and one is detected and fixed using
version constraint between TensorFlow and cuDNN. The other four
DBs are not detected because the root cause dependencies are not in
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Figure 8: Results of the Quality and Time of Fixing 8 DBs

our scope of dependency constraint knowledge acquisition. These
results demonstrate the potential of our prototype.

Moreover, we try to apply PyEGo and PyDFix to fix the 18 DBs.
Notice that DockerizeMe is not selected because PyEGo has achieved
better performance than it. We successfully run PyEGo against the
18 DBs. It successfully detects and fixes only one DB. It successfully
detects 11 DBs, but generates wrong version recommendation on all
of them. Besides, it fails to detect the rest 6 DBs. Unfortunately, we
fail to launch PyDFix due to the limited setup documentation. How-
ever, PyDFix relies on analyzing error logs to fix DBs. Consequently,
we can conclude that PyDFix are unable to fix at least 13 of the DBs
since these DBs produce normal outputs instead of error logs. These
results indicate the potential of our prototype.

Human Study.We observe from our effectiveness evaluation
that our prototype takes 2 seconds for the DBs that are not success-
fully fixed, and these DBs are even not detected by our prototype. In
other words, it takes negligible time for our prototype to determine
whether a given DB is out of the scope of our prototype. Therefore,
we are interested to investigate how much effort can be saved for
developers for the DBs that are in the scope of our prototype.

To this end, we conduct a human study with 8 participants to
manually fix the 8 DBs that can be automatically fixed by our proto-
type. The participants are recruited voluntarily at our college who
are familiar with Linux shell and packages, and has sufficient back-
ground in deep learning. Four participants have worked on at least
one or two research projects that employ DL techniques, and the
other four participants have hands-on experience with open source
DL projects. The tasks are 8 reproduced DBs in a Docker envi-
ronment where the error trace of each DB could be invoked via a
command (i.e., python script.py). The participants are told that the
error is caused by a DB and they are required to locate and fix the
DBs with their expertise and any online resources. The order of the
tasks are randomized for each participant to avoid bias.

We use two indicators to compare participants’ manual fixes and
our automated fixes. The first indicator is the quality of the fix in
each task. We use 2 to indicate a successful and perfect fix, 1 to
indicate a successful but imperfect fix, and 0 to indicate an unsuc-
cessful fix. The success of the fix is judged by the dismissing of the
DB’s errors when re-launching scripts. The perfection and imper-
fection of the fix is judged by two of the authors on whether the fix
steps would have any side effect. After the discussion and mutual
agreement from two of the authors, a final quality is resolved. The
second indicator is the consumed time on finishing each task.

Fig. 8 shows the result of fix quality and time. In terms of quality,
all 8 participants obtain full score in 3 DBs. The rest 5 DBs are not

fixed successfully and perfectly by all. 19 participant-DB pairs are
not fully scored. Specifically, we assign 1 to 17 participant-DB pairs.
Of these 17 participant-DB pairs, 2 participant-DB pairs fix a DB by
using soft links to redirect the incorrect dependency into a correct
dependency and 3 participant-DB pairs fix a DB by replacing dy-
namic linked libraries (i.e., change a correct dependency’s file name
into the original one using mv). They are imperfect because such
tricks are unstable and confuse other users. The rest 12 participant-
DB pairs freshly reinstall TensorFlow using an up-to-dated version.
We assign them to 1 because setting up a new environment carries
the risk of disrupting the initial environment, making it impractical
when there aremultiple users and applications. We also assign 0 to 2
participant-DB pairs. They fail to fix as it still has the reported error.
In terms of time, none of the manual fix from 64 participant-DB
pairs surpasses our prototype. The manual fix takes averagely 8.8
times longer than our prototype. Generally, our prototype achieves
a higher quality of 2 against the human group with a score of 1.4,
and costs averagely 109.2 seconds against the human group with
averagely 963.0 seconds. Therefore, our prototype can be useful for
developers to provide high quality fix and greatly saving fixing time.

8 RELATEDWORK
Dependency Bugs. Dependency bugs have been explored for dif-
ferent ecosystems, e.g., Debian and Red Hat [6], JavaScript [44], Java
[23, 38, 65–67], Python [40, 64], C/C++ [31] and Go [63]. To the best
of our knowledge, our work is the first to systematically investigate
dependency bugs in DL ecosystem.

Deep Learning Bugs. Empirical studies have been conducted to
characterize bugs inDL systems. Some are focused on a general scope
of bugs [25, 27, 28, 42, 76], and others are focused on a specific type
of bugs [10, 14, 62, 73, 75]. These studies uncover partial character-
istics of dependency bugs in DL stack. There lacks a comprehensive
study to characterize dependency bugs in DL stack, and our work
fills this gap. Several advances have also been made to detect DL
bugs, e.g., numerical bugs [68, 71, 77] and shape bugs [32, 33, 61, 69].
However, little attention has been received to detecting dependency
bugs in DL stack, and our work sheds light on it.

Empirical Studies about DL.Many studies have empirically in-
vestigated various aspects in developing, deploying andmaintaining
DL systems [4, 5, 13, 16–18, 37, 39, 41, 45, 46, 59, 74] and DL frame-
works [19, 20, 34, 35, 58, 78]. These studies motivate the importance
of dependency management. For example, incompatible depen-
dency installation or environment setup is recognized as a common
challenge [4, 13, 74]. However, they lack an in-depth analysis of
the characteristics. Our work is inspired by them to systematically
characterize dependency bugs across the DL stack.

9 CONCLUSIONS
We have conducted the first comprehensive study to characterize
DBs across the entire DL stack. We provide useful findings to raise
the awareness of DBs in DL stack in the DL community, and provide
actionable implications for developers and researches.

10 DATA AVAILABILITY
The data of our study is available at https://dl-dep.github.io.
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