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ABSTRACT

Random test case generation, or fuzzing, is a viable means for un-

covering compiler bugs. Unfortunately, compiler fuzzing can be

time-consuming and inefficient with purely randomly generated

test cases due to the complexity of modern compilers. We present

ComFuzz, a focused compiler fuzzing framework. ComFuzz aims to

improve compiler fuzzing efficiency by focusing on testing compo-

nents and language features that are likely to trigger compiler bugs.

Our key insight is human developers tend to make common and

repeat errors across compiler implementations; hence, we can lever-

age the previously reported buggy-exposing test cases of a program-

ming language to test a new compiler implementation. To this end,

ComFuzz employs deep learning to learn a test program generator

from open-source projects hosted on GitHub. With the machine-

generated test programs in place, ComFuzz then leverages a set

of carefully designed mutation rules to improve the coverage and

bug-exposing capabilities of the test cases. We evaluate ComFuzz

on 11 compilers for JS and Java programming languages. Within

260 hours of automated testing runs, we discovered 33 unique bugs

across nine compilers, of which 29 have been confirmed and 22,

including an API documentation defect, have already been fixed by

the developers. We also compared ComFuzz to eight prior fuzzers

on four evaluation metrics. In a 24-hour comparative test, ComFuzz

uncovers at least 1.5×more bugs than the state-of-the-art baselines.

CCS CONCEPTS

· Software and its engineering→ Software testing and de-

bugging; Compilers; · Computing methodologies→ Artificial

intelligence.
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1 INTRODUCTION

Compilers play a key role in software development [37]. Most appli-

cation developers treat compilers as black boxes and have to trust

the compiler-generated code. However, modern compilers are intri-

cate software systems with large codebases consisting of hundreds

of thousands of lines, and like many large-scale software projects,

compiler bugs are inevitable and often manifest in the deployment

environment [78]. Unfortunately, detecting compiler bugs can be

challenging, yet their presence can significantly impede software

development, leading to runtime crashes and even catastrophic

consequences when applications are deployed [70, 78].

Automated test code generation technique - or fuzzing - has been

a well-established and effective way to detect compiler bugs [24].

Compiler fuzzing techniques include generation-based [29, 85, 87]

and mutation-based [25, 26, 50, 88] methods, which are typically

used with differential testing [77, 91]. This is achieved by executing

a randomly generated test program on multiple compiler test beds

and observing the outputs of the compiler and executable binary. An

anomalous behavior like compiler crashing, freezing, compilation

timeout, or a binary execution result that deviates from the majority

of the outputs indicates a potential compiler bug.

A fundamental challenge for fuzzing techniques is generating

test cases that can quickly expose buggy behaviors [16]. Exist-

ing approaches typically employ a generation or mutation-based

approach. Generation-based techniques construct test cases by us-

ing either manually designed grammar rules [44, 85], generation

templates [89], or by restructuring code snippets extracted from

a program seeds pool [40, 65]. In contrast, mutation-driven tech-

niques leverage pre-designed rules to synthesize test cases [83].
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These fuzzing techniques have proven useful; however, they have

a fundamental limitation when applied to compilers with a large

code base. These techniques often rely on random test generation to

achieve coverage, which is unlikely to be effective due to the uneven

distribution of software bugs across components [78]. In practice, it

is common for a few modules to account for most bugs [55]. Conse-

quently, a random test generation approach may disproportionately

allocate testing efforts to modules less prone to bugs. Therefore, a

more efficient and effective strategy for compiler fuzzing should

direct fuzzing efforts toward modules more likely to contain bugs.

By focusing on these specific modules, we can maximize the impact

of our testing efforts and increase the chances of uncovering critical

vulnerabilities within a given test time budget.

We present ComFuzz, a new compiler fuzzing framework that

combines generative and mutational techniques while improving

the compiler testing efficiency. Unlike previous approaches that rely

on random test case generation for achieving coverage, which is

challenging in the context of compiler testing [29, 36, 88], ComFuzz

is specifically designed to target compiler components that are more

likely to contain bugs. To achieve this, ComFuzz leverages historical

test programs obtained from Proofs-of-Concept (PoCs) of Common

Vulnerabilities and Exposures (CVEs) and compiler test suites. Our

generative approach is motivated by two key observations: bugs

are prevalent in a small fraction of code within software [55, 78],

and the fixing of historical defects often introduces new bugs [55].

Instead of solely using historical test cases as seed programs with a

random mutation strategy to test compiler components uniformly,

ComFuzz conducts intensive fuzzing tests on modules that have

previously exhibited bugs. These targeted modules are known to be

error-prone and can potentially contain bugs introduced by fixes.

To reduce the developer’s efforts in building the test program

generator, we harness the potential of deep-learning-based genera-

tive techniques [71]. Particularly, we employ a Transformer-based

model [71] to infer features and constructs of the target program-

ming language. To create test inputs (programs in our case), we use

the historical code as seed input for our trained model, which then

produces new test programs. Since these programs are derived from

bug-exposing test cases, they are apt to embody specific features

like standard library calls or language constructs while exhibiting

new behaviors introduced by the program generator. Therefore,

these generated programs can effectively guide the fuzzing efforts

toward testing the error-prone components of the compiler.

Our approach is among the recent efforts of synthesizing test

programs by reassembling the code ingredients extracted from the

historical test cases [50, 91]. However, existing approaches failed to

conduct high-intensity testing for a buggy compiler component due

to the randomness of the assembled test cases. Our key conceptual

insight is that there can be residual bugs in previously buggy mod-

ules, and we can leverage a set of bug-guided mutators to find these

residual bugs. For example, to find residual API misuse bugs, we

defined SIM, a mutator that replaces the original API with another

similar API to expose more residual bugs. During each testing itera-

tion, a bug-guided mutator is selected to mutate a test program that

has been shown to expose anomalous compiler behaviors. We also

designed five general-purpose mutators to improve the diversity

of the generated test cases. We use general-purpose mutators to

create new test codes in cases where the developed test programs

fail to expose bugs or cannot improve the code coverage.

We evaluated ComFuzz on 11 JavaScript (JS) and Java compilers.

In 260 hours of automated testing runs, ComFuzz reported a total of

33 unique bugs across nine tested compilers, covering 26 previously

unknown bugs. Of the 33 submitted bugs, 29 have been confirmed,

and 22 bugs ś including an OpenJ9 document bug ś have been fixed

by developers. Our extensive evaluations show that ComFuzz is

highly effective in generating bug-exposing test cases. Compared to

eight state-of-the-art (SOTA) fuzzers [25, 27, 40, 50, 65, 86, 89, 91],

ComFuzz uncovers at least 1.5× more bugs than prior methods.

In summary, this paper makes the following contributions:

• We propose a new compiler fuzzing technique by combining the

historical test programs and bug-guided mutators, which can

quickly cover the defective compiler components and achieve

focused intensive testing;

• We present an extensible test generation scheme that can be

easily ported to test compilers for other programming languages;

• We evaluated the effectiveness of ComFuzz by comparing it with

SOTA fuzzers that utilize historical test cases for software testing.

2 BACKGROUND AND MOTIVATION

2.1 Compiler Testing and Challenges
Prior work for compiler testing includes generation-based [14, 33,

49, 85] and mutation-guided [22, 80, 84, 88] methods. While promis-

ing, prior methods still suffer from the following two challenges:

1) How to generate bug-exposing test cases that can quickly cover

the defective component of a compiler? Although many methods

have been devoted to generating valid test cases [14, 49, 53, 59, 89],

all of them are randomly generated so that they fail to quickly

locate the buggy components of a compiler during the early testing

phase. Furthermore, a recent study stated that bugs in software

do not conform to a uniform distribution, and only 40% of code

will have bugs [55]. This means randomly synthesized test cases

in prior work may be wasting most of the time testing the benign

compiler modules. Even if a test case triggers a compiler bug, prior

work cannot continuously test the buggy compiler module in adja-

cent iterative tests, which is bound to decrease testing efficiency.

Thus, another challenge is how to conduct focused and high-intensive

testing for a buggy compiler component in adjacent testing iterations.

Recent studies indicate that one major cause of bugs is the in-

complete or incorrect repair of historical bugs [55, 91]. Meanwhile,

bugs that are the same or similar to the historical ones often arise

during software evolution [31, 39, 82]. Furthermore, recent work

has shown that using historical test programs as seed test programs

can improve fuzzing efficiency [40, 44, 50, 65, 91]. Inspired by these

studies, we derived two key intuitions: (1) historical test programs

(e.g., test suites or PoCs) can be used to generate bug-exposing tests

for quickly covering buggy compiler components, and (2) buggy

compiler components can be continuously and intensively tested

by mutating the generated bug-exposing tests. These intuitions

help to address the two challenges above and motivate our work.

Unlike prior work, our work aims to balance reusing existing

code fragments from historical programs and exploring new pro-

gram states to identify bugs. The key questions are: (1) how to obtain

high-quality seeds and (2) how to leverage historical programs for
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1 public class JVMTest {

2 /*--COMFUZZ -generated args via bug -guided mutators --*/

3 static int i = 999374098;

4 static int limit = 0;

5 static int[] arr = { -1 };

6 int[] test2(int i, int limit , int[] arr) {

7 /*--COMFUZZ -generated code segment via DL -model --*/

8 while (i++ != 0) {

9 if (arr[arr.length - 1] >= limit)

10 break; }

11 return arr; }

12 public static void main(String [] args) throws Exception{

13 new JVMTest.test2(i, limit , arr); }}

Figure 1: A ComFuzz-generated test case, obtained from a

historical test case and exposed a new bug of OpenJ9.

exploring new program states. Our approach differs from other

DL-based methods by reusing historical tests as the model seed in-

put for test program generation. We extract randomly cut-out code

blocks to create a high-quality initial pool of seed programs. We

then combine a generation model with carefully designed mutators

to explore new program states and expose bugs.

2.2 Motivation Example

Figure 1 shows a bug-exposing test case generated by ComFuzz

during iterative testing, which uncovers a new performance bug of

OpenJ9. For this test case, OpenJ9 fails to enable JIT optimization for

the main loop in lines 8ś10. Specifically, this while-loop appears at

the entry of the test2 function. It has a walk.bytecodePCOffset

of 0 in OpenJ9, which disables the JIT optimization of OpenJ9,

leading to significant performance degradation. Specifically, OpenJ9

takes over 60 seconds to execute the test program, while other JVM

engines like HotSpot take 7 milliseconds. This performance bug

was fixed by the OpenJ9 developers.

ComFuzz generates this bug-exposing test program by setting

the appropriate variables (lines 3ś5) to manifest the performance

bug. These variables are generated using our bug-guided mutator,

whereas the code block (test2 function in lines 6ś11) is created

from a historical bug-exposing test case [8].

ComFuzz achieves this by first building a DL-based program

generator. Then, the learned generator is applied to produce new

test cases by taking as input a randomly chosen seed generation

header (e.g., line 6). Unlike prior work [29, 86], our seed genera-

tion headers are extracted from the historical test programs, e.g.,

JDK test suites and PoCs collected from CVE. Our goal is to fo-

cus on compiler components that are likely to contain bugs. The

bug-triggering variables, e.g., limit = 0 at line 4, are critical for

manifesting this performance bug as using a small value makes

the performance difference negligible. To generate such variables,

we study the historical test cases to design BOUN, one of our five

bug-guided mutators. Finally, ComFuzz assembles the generated

program, the bug-triggering variable declaration statements, and

the necessary startup function into a complete, executable test case.

2.3 Automated Program Generation

The rapid advances in deep learning (DL) promote the automated

program modeling methods [11, 19, 93], which have been widely

used in program-related tasks, such as code optimization [30, 64, 87],

program generation [47], and vulnerability detection [52, 82]. Since

no expert knowledge is required, many DL-based compiler fuzzers

have been proposed for automated test program generation [29,

34, 41, 57]. Newer approaches [50, 86] subsequently employ more

powerful neural networks to further improve the correctness of the

generated test cases. Inspired by prior work, we use an advanced

neural network to model programs, aiming to automatically gen-

erate test cases. Unlike existing DL-based fuzzers that randomly

create test cases, we feed historical tests into the model to generate

bug-exposing test cases, achieving a better bug-exposing ability.

3 OUR APPROACH

Figure 2 provides ComFuzz overview, which uses historical pro-

grams and bug-guidedmutators for focused compiler testing. To this

end, we establish a test program generator based on a pre-trained

model [71] (Section 3.1). The built generator is used to generate bug-

exposing test cases by feeding it with the historical test programs

(Section 3.2). The generated test cases are applied to test target

compilers through differential testing (Section 3.3), which keeps the

interesting test cases that discover new compiler branches or trigger

inconsistent differential outcomes and apply them to focused and

guided tests using bug-guided mutators (Section 3.4).

3.1 Program Generator Construction

Most existing compiler testing approaches utilize domain-specific

language models (e.g., grammar or template-based generators) to

generate test programs. These methods require expert knowledge to

design the grammatical rules or the generation templates, making

these approaches hard to extend for new programming languages.

Instead, our program generator is built upon a Transformer-based

model [71], which is easy to generalize to other programming lan-

guages by feeding it with the target training samples.

Data collection and preprocessing. Since our program gener-

ator is built by fine-tuning a pre-trained model, the fine-tuning

process requires massive training samples. To collect enough sam-

ples, we respectively scraped the top 10k open-source JS and Java

projects ranked by stars hosted on GitHub. For each project, we

extracted function-level code snippets as training samples. Specifi-

cally, our approach first removes all comments. Then, we extract the

function-level code segments from the programs using parsers (i.e.,

Esprima [2] for JS and JavaParser [75] for Java). To improve the

correctness of extracted code snippets, we also extract the expected

global variables and insert them into the body of the code segments.

Finally, we utilize syntax analysis tools (e.g., JSHint [1] for JS and

JavaCompiler [4] for Java) to ensure the syntax correctness of the

code segments and store them in a codebase.

Language model. Our language model is constructed based on a

Transformer-based neural network [71]. It is essentially an encoder-

decoder natural language generation model with a multi-head at-

tention mechanism. Both the encoder and decoder are composed

of a stack of six identical blocks. Specifically, an encoder block

consists of a multi-head self-attention layer and a position-wise

fully connected feed-forward layer. A decoder block consists of an

encoder block and a multi-head attention layer. For each network

layer, we employ a residual connection and a normalization layer.

Fine-tuning. The pre-trained model is refined using collected train-

ing programs. During the fine-tuning phase, we encode each train-

ing sample as a suitable vector for input into neural networks. To
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Figure 2: Overview of ComFuzz, which combines historical test cases and bug-guided mutators for focused intensive fuzzing.

do so, we employ Byte Pair Encoding (BPE) [74], a subword-based

tokenization algorithm. BPE constructs a vocabulary dictionary by

iteratively merging the most frequent pairs of characters or charac-

ter sequences in a given corpus into subwords. This process ensures

that each vocabulary item is represented as a subword based on

its frequency in the training set. Using BPE, we create a vocab-

ulary that captures common subword units in the corpus. When

processing a training sample, we map each subword to an integer

by referencing the vocabulary dictionary. This mapping allows us

to transform the training sample (i.e., a code snippet in this work)

into a sequence of integers. By collecting all the integer values asso-

ciated with the subwords in the sample, we obtain a representation

vector that effectively encodes the sample’s information.

Given an inputting vector 𝑣 , which is first fed into the pre-trained

model to obtain the activation value of the last transformer block

𝑏𝑚
𝑙
. Then, it is passed through a classification layer to predict the

next token. The process can be represented as follows:

𝑃 (𝑦 |𝑣1, ..., 𝑣𝑚) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑏𝑚
𝑙
𝑊𝑦) (1)

where softmax represents the classification layer, 𝑦 is the predicted

token, and𝑊𝑦 is the weight matrix. Since the pre-trained model has

billions of parameters, the former layers are language-independent

features. Thus, the fine-tuning process only trains the last few

layers. This is done by updating the weights of the last few layers

while keeping others unchanged during fine-tuning. The objective

is to maximize the following function:

L =

∑︁

𝑣,𝑦

𝑙𝑜𝑔𝑃 (𝑦 |𝑣1, ..., 𝑣𝑚) (2)

To accelerate model convergence, we fine-tuned our language

model using the Adam optimizer [46] for 200 epochs. Re-training

took around 40 hours using three NVIDIA GTX 3080Ti GPUs,

which was a one-off cost. The hyperparameters we used include:

temperature=0.75, response length=500, Top P=9, and oth-

ers are default. Once trained, our language model can continuously

generate test programs by feeding the seed generation headers.

3.2 Test Case Generation

Figure 1 shows that a test case contains three ingredients: (1) a

main function (lines 12ś13), (2) a test program (lines 6ś11), and (3)

its arguments (lines 3-5). We synthesized test programs by feeding

the generation headers into a refined language model.

Generation header extraction. We feed the generation model

with a seed code input (generation header) extracted from a histori-

cal test program (e.g., łint[] test2(int i, int limit, int[]

arr)ž in Figure 1). As the seed input determines the starting point

of a test program, a good generation header plays an important role

in generating bug-exposing programs. To obtain high-quality gen-

eration headers, we first collected as many historical test programs

as possible. For Java, we collected the historical test programs from

the test suites of HotSpot, OpenJ9, Kona, and GraalVM. For JS, we

obtained the test programs from Test-262 [10], an official JavaScript

language conformance test suite. All PoCs are collected from the

CVE database. We then extract all function-level code blocks for

each gathered historical test program by parsing it into an AST.

The generation headers are extracted by randomly cutting off the

former lines of the function-level code block. Note that we also

collect 20k ordinary generation headers that are extracted from

open-source projects for each programming language in order to

increase the diversity of generated test cases.

Test program generation. The test program is synthesized by

feeding the generation model with a randomly chosen seed genera-

tion header. During testing, the generation model first randomly

selects a generation header from the seed pool, and it then yields the

probabilistic vector of the next token (e.g., a subword-based token

encoded by BPE). Differ from natural language generation tasks

that output the token with the highest probability, we employ a

Markov chain Monte Carlo (MCMC) algorithm [32], a probabilistic

sampling scheme where a token with a higher prediction proba-

bility is more likely to be chosen to sample the next token. This

process can improve the diversity of the generated test programs.

Next, the generated token is appended to the original generation

header, which is fed to the generation network to produce the next

token repeatedly. This synthesized process terminates when the

generation network produces the termination symbol ł<EOF>ž or

a bracket ‘}’ that indicates the end of a program method or exceeds

the maximum token length 𝜖 . Here 𝜖 is set to be 6,000.

Arguments generation. In compiler testing, a high-quality test

case not only contains a bug-exposing test program but also con-

tains the arguments expected by the test program. To synthesize the

desired arguments, we designed several heuristic rules for all basic

data types, e.g., Integer, Double, String, Array, Object, etc. For Java,

the variable type is determined according to the parameter type;

for JS, the argument types are inferred using an existing work [86].

3.3 Differential Testing

We employ the established differential testing mechanism [61] to

expose compiler bugs. A majority voting scheme is utilized to cap-

ture the anomalous compiler behaviors which are yielded by the

minority compilers. The anomalous compilations need to be further

confirmed manually after filtering duplicate miscompilations.

Anomalous compiler behaviors. A compiler typically consists

of three components: a parser that checks if a program is correctly
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potential bug. Our current do not consider łWrong Resultž and łTimeoutž at the parsing and optimization stages because it is

hard to establish an oracle for the intermediate results and attribute timeout to intermediate compilation stages, respectively.

coded without syntax and semantic errors; an optimizer that aims

at optimizing code at a high-level intermediate representation (IR),

and a generator (also known as backend) which is responsible for

translating the IR into binary code. Thus, the incorrect implementa-

tion of any of the aforementioned three components may produce

an anomalous behavior, indicating a possible compiler bug. This

happens when the outcome for a given test input compiled using a

compiler differs from the outcome from most of the tested compil-

ers for the same input, e.g., wrong result, exception, timeout, and

crash. These anomalies can manifest at various stages, including

parsing, optimizing, and runtime. However, ComFuzz does not de-

tect łWrong Resultsž and łTimeoutž at the parsing and optimization

stages because (1) the intermediate outcome during parsing and

optimization is typically implementation-dependent, and (2) it is

hard to attribute compilation timeout to individual stages since we

treat the tested compiler as a black box. Figure 3 shows seven po-

tential outcomes when executing a test case. All outcomes (except

for the łPassž) represent anomalous behaviors that necessitate sub-

sequent manual analysis. A łPassž outcome signifies that all tested

compilers yield identical outcomes without any abnormal behavior.

As this outcome aligns with the expected result, it is disregarded.

Suppose the test case does not trigger any anomalous outcomes

during the parsing and optimization phases, the compiler backend

proceeds to translate the optimized code into machine instructions

to be executed on the tested platform. However, when executing the

compiled binary, there are potential scenarios where four distinct

anomalous behaviors may arise during runtime. Firstly, a łWrong

Resultž occurs when the binary produces an output that deviates

from the outputs generated by most tested compilers. This discrep-

ancy indicates an inconsistency or error within the compiled binary.

Secondly, an łExceptionž is encountered when the execution of the

binary results in a thrown exception, while the execution given

by other compilers does not exhibit this behavior. This points to-

wards an exception-handling flaw. Thirdly, a łTimeoutž occurs if a

program fails to terminate within the specified time limit, while bi-

naries generated by other compilers terminate before the time limit.

This usually indicates an optimization bug, leading to prolonged

execution times. Lastly, a łCrashž can manifest if the binary itself

or the compiler (e.g., for interpret execution mode) crashes during

execution. This occurrence suggests a potential compiler bug.

Identifying anomalous behaviors. Among six types of anoma-

lous behaviors, Crash and Timeout are of immediate interest, in-

dicating the erroneous compiler implementation. Following the

practices in prior work [25, 40], we set the timeout threshold for

runtime execution to 30 seconds. We consider an erroneous behav-

ior occurs when any binary given by a compiler has an execution

time exceeding 30 seconds, whereas binaries generated by other

Exception in thread “main” java.lang.StringIndexOutOfBoundsException: String index out of range: 1

at java.lang.AbstractStringBuilder.deleteCharAt(AbstractStringBuilder.java:824)

at java.lang.StringBuilder.deleteCharAt(StringBuilder.java:253)

……

Exception in thread “main” java.lang.StringIndexOutOfBoundsException: index 1, length 1

at java.base/java.lang.String.checkIndex(String.java:3278)

at java.base/java.lang.AbstractStringBuilder.deleteCharAt(AbstractStringBuilder.java:916)

at java.base/java.lang.StringBuilder.deleteCharAt(StringBuilder.java:297)

……

HotSpot

OpenJ9

Figure 4: Differentiated anomalous behaviors that HotSpot

and OpenJ9 threw, which indicate the same JVM exception.

compilers for the same input complete their execution within 30

seconds. In our evaluation, we do not encounter any false positives

when using this threshold, so we do not find it beneficial to increase

the threshold. For the other four anomalous behaviors, a majority

voting scheme is applied to identify if a compiler contains potential

defeats by comparing the compilation and execution results.

Since all compilers may not have the same error or exception

messages, directly comparing their outcomes can result in a high

false positive rate. Figure 4 shows one of such examples, where

both HotSpot and OpenJ9 threw an Out-of-Bounds exception with

the same language semantics but different messages (highlighted

with a dark background). If we were to compare the contents di-

rectly, this would mistakenly be categorized as two distinct types of

differential behavior. We propose using a key information extractor

to minimize false positives. The extractor first eliminates compiler-

specific implementations, such as the location or variable-related

information from the stack trace generated by the target compilers.

It then extracts the essential information, such as the exception

type and affected APIs (highlighted in bold red font in Figure 4), and

stores them in an unordered list for each compiler output. Lists with

the same elements indicate the same anomalous compiler behavior.

In addition, the extracted key information is also used to filter

out duplicate mis-compilations. Specifically, we extended the tree-

based classifier proposed by Comfort [86] to build our filter. Unlike

Comfort, which consists of three decision layers, our augmented

filter adds a new layer at the second layer of Comfort. The decision

nodes in the new layer correspond to standard exit codes (also

known as return codes) that are returned by the operating system.

3.4 Mutation for Focused Testing

Test case mutation is a powerful way to improve code coverage.

Prior mutational approaches [50, 88] randomly choose pre-designed

operators to mutate the interesting test cases, incurring extraor-

dinarily costly and time-consuming testing. This is because the

random mutants fail to focus on testing a specific compiler compo-

nent in successive fuzzing. To do so, we designed several bug-guided

mutators to generate new bug-exposing test cases by mutating the

interesting test case that has triggered the anomalous behaviors.
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Algorithm 1Mutator Scheduling Policy

Input:

𝑡𝑝𝑟𝑜𝑔 // A test program needed to be mutated

𝑂𝑀 // The collection of bug-guided mutators

𝐺𝑀 // The collection of general-purpose mutators

Output: 𝑃𝑛𝑒𝑤 // A list that stores the mutated test programs

1: Let𝑂𝑀 ← {ł𝑆𝐼𝑀”, ł𝑉𝑈𝐿”, ł𝐼𝑁𝑆𝐿”, ł𝑆𝑁𝐼𝑃”, ł𝐵𝑂𝑈𝑁 ”} ;

2: Let𝐺𝑀 ← {ł𝑅𝐸𝑃𝑂”, ł𝐺𝐸𝑁𝑃”, ł𝐶𝑂𝑁𝐹 ”, ł𝐼𝑁𝑆𝐶”, ł𝐷𝐸𝐿”} ;

3: Let 𝑃𝑛𝑒𝑤 ,𝑀 be the empty lists

4: 𝑡𝑎𝑠𝑡 ← 𝑝𝑎𝑟𝑠𝑖𝑛𝑔𝑇𝑜𝐴𝑆𝑇 (𝑡𝑝𝑟𝑜𝑔 ) ;

5: if 𝑡𝑝𝑟𝑜𝑔 is an interesting test case then

6: 𝑀 ← 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝑀𝑢𝑡𝑎𝑡𝑜𝑟𝑠 (𝑡𝑎𝑠𝑡 ,𝑂𝑀 ) ;

7: else

8: 𝑀 ← 𝑖𝑑𝑒𝑛𝑡𝑖 𝑓 𝑦𝑀𝑢𝑡𝑎𝑡𝑜𝑟𝑠 (𝑡𝑎𝑠𝑡 ,𝐺𝑀 ) ;

9: end if

10: 𝑚 ← 𝑠𝑒𝑙𝑒𝑐𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑀𝑢𝑡𝑎𝑡𝑜𝑟𝑠 (𝑀 ) ;

11: 𝑡𝑛𝑒𝑤 ←𝑚𝑢𝑡𝑎𝑡𝑖𝑜𝑛 (𝑡𝑝𝑟𝑜𝑔,𝑚) ;

12: 𝑃𝑛𝑒𝑤 .𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡𝑛𝑒𝑤 ) ;

13: return 𝑃𝑛𝑒𝑤 ;

Mutation operators.We designed ten kinds of mutation operators,

including five bug-guided and five general-purpose mutators. All

our mutators can be found at [7]. To obtain a set of bug-guided mu-

tators for finding residual bugs, we refer to the existing literature on

frequently-occurring bugs [12, 50, 73]. This leads to five bug-guided

mutators representing five common classes of bugs (i.e., API misuse,

security, performance, incomplete bug fixes, and missing boundary

check). The bug-guided mutators aim to produce new bug-exposing

test programs based on interesting test cases for focused testing,

whereas the general-purpose mutators are applied to improve the

diversity of the mutant programs to avoid convergence during the

testing process. We describe bug-guided mutators below:

• Similar API Replacement (SIM): Replace an original API call

with one that has similar semantics or the same return values.

This mutator is inspired by prior work on API misuse [12].

• Vulnerability Rules (VUL): Mutate the target test case with

vulnerability rules manually designed according to PoCs.

• Insert Loop Statement (INSL): Insert Loop Statement (e.g., for,

while) into the target test program. This is motivated by a prior

empirical study on performance issues [73].

• Snippet Replacement (SNIP): Replace a basic code block with

a structurally-similar one. This is inspired by prior work [50] that

observed that more than 95% of code fragments overlap between

the historical test programs due to incomplete bug fixes.

• Boundary Values (BOUN): Generate boundary values (e.g., 0,

OXFF, NULL) for arguments passed to the function calls.

Given an interesting test case, mutator SIM is responsible for

replacing an existing API with a new one with similar functions

or the same types of return values. For example, the Java func-

tion lastIndexOf(String str) will be replaced with the simi-

lar method lastIndexOf(String str, Int fromIndex). Such

mutation is able to reach deeper code branches of the method

lastIndexOf() and continuously test the String Class of JVM.

For the JS language, there are also many similar-semantic function

calls, such as String() v.s. toString(). Similar APIs are automati-

cally collected using a script to parse the language specification doc-

ument. VUL aims at mutating the test case by using pre-designed

vulnerability patterns. Specifically, we implemented three patterns

that cover three types of vulnerabilities, including CWE-1321, CWE-

915, and CWE-843. We chose them because they are the top-3 most

severe vulnerabilities (we count the severity by calculating the num-

ber of relevant CVEs labeled as HIGH or CRITICAL to the total num-

ber of CVEs). The first pattern is about prototype pollution vulnera-

bility, which is achieved bymodifying the prototype chain attributes

through __proto__ or Object.setPrototypeOf and declaring a

new object accordingly. The second pattern is related to the remote

code execution vulnerability, which applies the getter/setter or

__defineGetter__() and __defineSetter__() to modify the at-

tributes of the target objects. The third pattern about type confusion

vulnerability replaces a function call with multiple calls, meanwhile

changing the object type. The test cases that conform to any one of

the vulnerability rules will be mutated. We would like to note that

the above two mutators SIM and VUL are language-specific, and

they need to mutate the interesting test cases according to the pro-

gram context of a specific programming language. This, we think,

is inevitable due to the nature of different programming languages.

INSL operator inserts the loop statement, e.g., for or while,

into the test case to enrich the control dependencies of the mutant

program. This operator creates a hot code region to activate the

just-in-time compilation module of tested compilers for exploring

the performance issue. The SNIP operator replaces a basic code

block in the original test program with a similar one. To do so, we

first extract the code blocks from gathered programs, and each code

block is a complete fragment (e.g., if statements) that is recorded

with a block assembly constraint, which is represented as a tu-

ple: <pre-constraint,post-constraint>. Differ from pre/post-

condition in Hoare logic [42], the pre-constraint marks its re-

quired variables or statements, and the post-constraint labels

the return values that are required to be defined to execute the

code block without a runtime error. The collected code blocks with

their block assembly constraint are stored in a JSON file. The SNIP

operator will first select the code blocks with expected block assem-

bly constraint from the JSON file and then randomly selects a code

block to replace the original one. This aims to cover deep branches

for tested components. The last operator BOUN is to generate the

boundary values for the test case. For the Java test program, we

defined 23 boundary values such as 0, 1, -1, NaN, NULL, 0xFFF, and

Undefined, etc., which are from the historical test cases that ex-

posed compiler defects or vulnerabilities. For the JS program, we

utilize Comfort [86] to generate the boundary values according to

the ECMA-262 specification. This operation can continuously test

an API and cover its deeper code branches.

To increase the diversity of the test cases, we also designed five

general-purpose mutation operators. They are described as follows:

• Replace Operator (REPO): Randomly replace a binary or a

unary operator with another corresponding one. e.g., replace ł--ž

with ł++ž, or replace ł+ž with ł-ž.

• Generate Parameters (GENP): Randomly generate parameters

with primary and reference types.

• Change Control Flow (CONF): Change the control flow by

replacing a conditional statement, e.g., replace if with switch.

• Insert Conditional Statement (INSC): Insert conditional state-

ments (e.g., if...else) into the original test case.
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Table 1: Target compilers we have tested.

Category Compilers Versions Build No. Release Date

V8 v9.9.1 8a05d7a Dec. 2021

v1.11.24 a75335b Dec. 2020
ChakraCore

v1.13.0.0-beta 418a27c Jun. 2022

SpiderMonkey C96.0 fd8da16 Jan. 2022

JavaScriptCore v286936 - Dec. 2021

GraalJS v21.3.0 ede7e2b Oct. 2021

JerryScript v3.0.0 6fe763f1 Sep.2022

Hermes v0.10.0 7d3e091 Aug. 2022

JS

QuickJS v2021-03-27 b5e6289 Mar. 2021

v8u332-b02 1e4e4ae Feb. 2022
OpenJ9

v11.0.15+1 c902226 Feb. 2022

V8.0.332 e1f6c13 Feb. 2022
HotSpot

V11.0.14 b8cdf1a Jan. 2022

JVM

GraalVM v22.0.0.2 bd6570e Jan. 2022

Total 11 14 14 -

• Delete Code Snippet (DEL): Randomly delete a basic code block

from the original test case.

The general-purpose mutators change the data and control de-

pendencies that significantly deviate from the original programs

to guide towards testing more uncovered compiler components.

Specifically, mutators REPO and GENP change the data dependen-

cies while CONF and INSC alter the control dependencies. The

mutator DEL can change both the data and control dependencies.

Mutator scheduling policy. Algorithm 1 presents our mutation

scheduler. The scheduler takes in the mutators and the test program

required to be mutated, producing a list of new mutated test cases.

Given a test program 𝑡𝑝𝑟𝑜𝑔 , our scheduler first determines if it is an

interesting test program. Here the interesting test programs refer

to those that have ever triggered anomalous compiler behaviors or

discovered the new branches of the tested compilers. Our insight

is using both code coverage and anomalous compiler behaviors as

guidance can help to discover more new code branches. If 𝑡𝑝𝑟𝑜𝑔 is

an interesting test case, the scheduler then identifies which bug-

guided mutators are suitable for mutating (lines 5ś6); otherwise,

the apposite general-purpose mutators will be chosen (lines 7ś8).

To determine𝑀 , we first parse 𝑡𝑝𝑟𝑜𝑔 into an AST (line 4) and search

the potential mutation positions by traversing the parsed AST. A

mutation position essentially refers to an AST node whose context

program conforms to the pattern of any of our ten mutators. For

example, the test2 function in Figure 1 expects two parameters of

type integer, which can be generated by the bug-guided mutator

BOUN. Note that the mutator determination process may produce

multiple mutators. The scheduler will randomly choose no more

than𝑀.𝑀𝐴𝑋 mutators to generate new test programs (lines 10ś12).

4 EXPERIMENTAL SETUP

Target Compilers. We apply ComFuzz to test JS and JVM com-

pilers. Table 1 lists the tested compilers and the versions used.

Specifically, we apply ComFuzz to 8 JS and 3 JVM compilers us-

ing their latest trunk branches. In total, we have tested 14 target

compiler-version configurations.

Table 2: Statistics for exposed bugs per target compiler.

Compiler #Submitted #Confirmed #Fixed of #Conf.

ChakraCore 5 4 4

SpiderMonkey 2 1 1

GraalJS 3 3 3

JerryScript 4 3 1

Hermes 3 3 1

QuickJS 1 0 0

OpenJ9 12 12 10

HotSpot 2 2 1

GraalVM 1 1 1

Total 33 29 22

Competitive Baselines.We choose eight prior methods, covering

both generation- and mutation-based fuzzers for compiler testing.

Specifically, we compareComFuzzwith four fine generative fuzzers:

Comfort [86] and PolyGlot [27] for the JS engine; JavaTailor [91]

and JAttack [89], the latest two test program synthesizers for JVM

testing. We also compare ComFuzz with four mutational fuzzers:

CodeAlchemist [40], DIE [65], and Montage [50] for JS engines as

they represent the SOTA methods; and Classming [25] for JVM.

Implementation and Evaluation Platforms. Our program gen-

erator is built upon a Transformer architecture [71] in PyTorch

v1.11.0. Our mutators are implemented in JS and Java. The differ-

ential testing engine is written in Python. Our evaluation platform

is a multi-core server with a 3.6GHz 8-core (16 threads) Intel Core i7

CPU, four NVIDIA GTX 3080Ti GPUs, and 64GB of RAM, running

Ubuntu 18.04 operating system with Linux kernel 4.15. All DNN

models run on the native hardware using GPUs.

5 EXPERIMENTAL RESULTS

5.1 Bug Summary

This subsection exhibits the number of identified bugs and presents

their various summary statistics for the purpose of evaluating the

ability of ComFuzz to discover previously unknown bugs. The

experiment started with testing JS engines first in November 2021

and then extending our testing framework to JVM in April 2022.

The total testing time is about 260 hours on approximately 400k

test cases for JS and 200k test cases for Java that are generated

from around 20k historical test programs.

Number of Bugs. Table 2 gives the distribution of the ComFuzz-

exposed bugs according to the tested compilers. ComFuzz discov-

ered bugs in all the tested compilers except for V8 and JavaScript-

Core. Among the confirmed bugs, we found a total of three unique

bugs exposed by the same test cases. Listing 3 shows one of these

bugs. This implies that bugs are prevalent in different compilers.

Overall, as of February 2023, we have reported 33 unique bugs. To

date, 29 bugs have been confirmed, of which 22 have been fixed

by the developers. For the remaining four reported JS bugs, two

bugs were rejected due to the special design of the compiler; the

other two bugs are waiting to be verified. In addition to the above

four bugs, three more bugs were silently fixed in the beta version

of the tested compilers after submitting our bug reports. In total,

ComFuzz exposed 26 out of 33 bugs that were previously unknown.
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Figure 5: #Confirmed bugs per compiler component.

It is worth mentioning that for OpenJ9, ComFuzz found 12 bugs,

far more than the number of bugs exposed in other compilers. This

is mainly because OpenJ9 introduces many optimization schemes

that are prone to defects due to incorrect implementation. Here five

such bugs were found by ComFuzz in the optimizer of OpenJ9.

Affected compiler components. As discussed in Section 3.3, a

compiler is composed of a parser, an optimizer, and a backend.

Each of the three components inevitably has defects due to wrong

implementations. To assess how ComFuzz performs in covering

these three components, we grouped the ComFuzz-discovered bugs

into three categories: Parser, Optimizer, and Backend, according

to the phase where the bug is caused. Figure 5 gives the number

of confirmed bugs discovered by ComFuzz for each component.

Note that the OpenJ9 document bug (see Listing 4) is excluded from

Figure 5. For JS engines, ComFuzz exposed around 4ś5 bugs in

the three components, indicating that bugs are prevalent in dif-

ferent components of a compiler. For JVM, the most error-prone

component is Optimizer, which has exposed 6 bugs, followed by

the Backend and Parser. Overall, bugs in Optimizer are prevalent

- 6 JVM and 4 JS bugs belong to this group. According to the devel-

opers’ feedback, this is often due to erroneous implementation of

the optimization schemes. This is in line with the current research

trend that mainstream compiler vendors are striving to enhance

the optimization level and depth.

5.2 Ablation Study

Recall that ComFuzz consists of three components: (1) a generation

model that leverages the historical test programs (see Section 3.2);

(2) the bug-guided or (3) general-purpose mutators that mutate in-

teresting test cases (see Section 3.4). To illustrate how they perform

in bug-exposing capability, we evaluate their effects in ComFuzz

with an ablation study. In ComFuzz-M and ComFuzz-A, we re-

moved the mutation and generation part and kept other modules

unchanged, respectively. Likewise, in ComFuzz-G and ComFuzz-P,

we respectively remove the general-purpose mutators and bug-

guided mutators and keep other components. We compared Com-

Fuzz with all four variants with a test time budget of 48 hours. All

the variants are evaluated using the same seed programs to avoid

the test bias caused by the randomness of the test case generator.

Figure 6 reports the number of bugs discovered by each imple-

mentation variant. ComFuzz-M discovered four bugs for JS and

five bugs for JVM, respectively. This confirms that our generation

model is effective in generating bug-exposing test cases. Further-

more, ComFuzz-A respectively exposed five and six bugs for JS

and JVM, indicating the effectiveness of our mutation strategy alone.

By augmenting the generation model with bug-guided mutators,

ComFuzz-G improves ComFuzz-M by exposing four more bugs.

Likewise, comparing ComFuzz-Pwith ComFuzz-M, we can see that

with general-purpose mutators, ComFuzz-P discovered two more
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Figure 6: #Confirmed bugs found by ComFuzz variants.

bugs, suggesting a better bug-exposing capability. This indicates

the usefulness of our bug-guided and general-purpose mutators in

augmenting our generation model for exposing compiler bugs. The

ablation study also shows that compared to its variants, ComFuzz

achieves the best performance by giving at least 1.5× improvements

in bug detection. This indicates the effectiveness of ComFuzz in

combining the generative and mutational techniques.

5.3 Bug Examples

ComFuzz is capable of finding diverse kinds of bugs on tested

compilers according to the historical test programs and bug-guided

mutators. To provide a convincing glimpse of the diversity of the

exposed bugs, we give four ComFuzz-generated test cases that

expose the JS and JVM compiler bugs.

1 public c l a s s JVMTest {
2 public s t a t i c void main ( S t r i n g [ ] a r g s ) throws

Excep t i on {
3 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r ( ) ;
4 sb . append ( 'J' ) ;
5 sb . d e l e t eCha rA t ( 1 ) ;
6 System . out . p r i n t l n ( sb . t o S t r i n g ( ) ) ; } }

Listing 1: OpenJ9 for JDK 8 fails to throw an OutOfBound

exception for this test code.

OpenJ9 Parser bug. The bug-exposing test code in Listing 1 is a

program that throws an OutOfBounds exception because it deletes

an element that does not exist at line 5. When executing this test

code, OpenJ9 for JDK 8 fails to throw an exception. The root cause is

that OpenJ9 incorrectly returns the boundary valuewhen calling the

inner function StringBuilder delete (int start, int end).

This bug-exposing test code is mutated via our bug-guided mutator

SIM (see Section 3.4) by replacing the delete() function with the

deleteCharAt() function. This bug was quickly confirmed and

added to the repair list for the next release version.

1 public c l a s s JVMTest {
2 s t a t i c void foo ( ) {
3 I n t e g e r i = 1 0 0 ;
4 do {
5 return ;
6 } while ( i ++ < 10 ) ; }
7 public s t a t i c void main ( S t r i n g [ ] a r g s ) {
8 foo ( ) ; } }

Listing 2: HotSpot for JDK 8 throws an AssertionError

exception while the code is correct.

HotSpot Backend bug. The tested HotSpot for JDK 8 threw an

AssertionError exception when executing the test case shown in

Listing 2. As the test code is syntactically correct, HotSpot should

compile the code successfully and transform the test code into a

bytecode. The root cause of this bug is that the HotSpot backend

incorrectly maps flat do...while loop statements into the bytecode.
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ComFuzz produces this bug-exposing test program by applying the

bug-guided mutator INSL to insert the do...while loop statement

into the body of the foo function at lines 4-6. The bug has been

confirmed and assigned for repair.

1 var foo = function ( t 1 ) {
2 t 1 . s o r t ( function ( a , b ) {
3 return a − b ; } ) ;
4 p r i n t ( t 1 ) ; }
5 var Paramete r1 = [ 'a' , 'b' ] ;
6 foo ( Paramete r1 ) ;

Listing 3: It triggers an optimizer bug of SpiderMonkey.

SpiderMonkey Optimizer bug. This test program in Listing 3

contains a sort function that invokes an inline comparison function

(at line 2), which is synthesized via replacing the original body of

the foo function with sort function call1 by using our bug-guided

mutator SNIP (Section 3.4). The correct outputs of this test program

should be ła, bž because the JS specification, ECMA-262 states that

the sort function should return the original array t1 (Here is ła,

bž) when the value of the statement a-b in the inline comparison

function equals NAN. While SpiderMonkey yields łb, až, the wrong

results. The root cause is that SpiderMonkey misused a specific

optimization scheme for the comparison function instead of actually

calling the comparator function, leading to an incorrect result. This

bug is immediately verified and classified as P1 priority - the most

urgent level that should be fixed soon, as Bugzilla states. Moreover,

a similar test case also exposed a confirmed bug of JerryScript.

1 public c l a s s JVMTest {
2 boolean t e s t L a t i n 1 ( ) {
3 try {
4 S t r i n g B u i l d e r sb = new S t r i n g B u i l d e r ( ) ;
5 System . out . p r i n t l n ( sb . c a p a c i t y ( ) ) ;
6 sb . en su r eCapa c i t y ( I n t e g e r .MAX_VALUE/ 2+ 1 ) ;
7 } catch ( OutOfMemoryError oom ) {
8 oom . p r i n t S t a c kT r a c e ( ) ; }
9 return true ; }
10 public s t a t i c void main ( S t r i n g [ ] a r g s ) throws

Excep t i on {
11 new JVMTest ( ) . t e s t L a t i n 1 ( ) ; } }

Listing 4: The test program that revealed the incomplete

documentation problem in OpenJ9.

Incomplete OpenJ9 documentation. The ComFuzz-generated

test program presented in Listing 4 triggered an anomalous behavior

of OpenJ9 for JDK 11 (i.e., catching an OOM exception). Such behavior

is expected because the -XX:+CompactStrings option responsible

for causing this exception is disabled by default in OpenJ9 for JDK

11, while it is enabled in HotSopt and OpenJ9 for JDK 8. During

the manual analysis, we found that the OpenJ9 documentation had

no description for this option. We have reported this defect to the

developer, and it was fixed quickly after reporting.

5.4 Evaluation of Differential Testing

To quantify the role of our differential testing module, we count the

number of confirmed bugs exposed by ComFuzz and divide them

into either crash (bugs that lead to a runtime crash) or inconsistency

1The sort function is originated from the link [9].

Table 3: The number of ComFuzz-uncovered bugs found by

execution crashes or differential testing.

Compilers #Crash #Inconsistency Ratio of Inconsis.

JS 3 15 83.3%

JVM 2 13 86.7%

Total 5 28 84.8%
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Figure 7: How the false negative rate (FNR) and false positive

rate (FPR) change as we increase the testing time.

(bugs discovered by differential testing). As shown in Table 3, ap-

proximately 85% of the bugs were uncovered due to inconsistency,

showing the importance of employing differential testing.

Recall that our differential testing methodology incorporates a

filtering mechanism designed to duplicate mis-compilation behav-

iors. We consider two metrics to assess the filter’s effectiveness: the

false positive rate (FPR) and the false negative rate (FNR). In this

context, a false positive refers to the number of cases mistakenly

classified as bugs, while a false negative represents the number of

actual inconsistent results that were erroneously filtered. Figure 7

shows how FNR and FPR change throughout the testing process.We

observe that throughout the entire testing period, the FPR remains

consistently low (below 10%). As the testing progresses, we see a

gradual decrease in the FNR of our filtering mechanism, showing its

increasing efficiency in accurately identifying inconsistent results.

5.5 Compare to Prior Compiler Fuzzers

We use the following metrics to compare ComFuzz against eight

baselines [25, 27, 40, 50, 65, 86, 89, 91] introduced in Section 4:

Bug exposing capability. This metric quantifies the number of

anomalous compiler behaviors. Note that we have checked and

removed all the duplicate anomalous behaviors; hence, each of

them indicates a potential compiler bug that needs to be verified

by developers. For a fair comparison, we tested each fuzzer for

24 hours of consecutive testing runs using the ComFuzz’s seed

programs and seed programs from the baselines, respectively.

Syntax passing rate. It measures the ratio of the generated test

cases that are syntactically correct. For each fuzzer, we leverage

50k-generated test cases to compute the syntax passing rate.

Code coverage. We use three widely used coverage criteria: state-

ment coverage, function coverage, and branch coverage for the

comparison. To collect the coverage information, we use Gcov [3]

and Lcov [5] for JVM, and llvm-cov [6] for JS engine, the code

profiling tools for instrumenting C code in JS and JVM compilers.

Throughput. Following the practices in [13, 92], we compute

the fuzzing throughput by measuring the number of test cases

processed per minute. This is computed by applying each fuzzer to

the same 10k test cases using their default settings.
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Figure 8: Anomalous behaviors found by different fuzzers.
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Figure 9: Comparison results of syntax passing rate.

5.5.1 Bug-exposing capability. Figure 8 shows that ComFuzz ex-

posed more unique anomalous behaviors than other individual

fuzzers, either using ComFuzz’s or baselines’ seed programs. With

ComFuzz’s seed programs, ComFuzz discovered 16 anomalous be-

haviors for target JS engines, achieving an average improvement of

270% than the number of anomalous behaviors discovered by other

fuzzers. For JVM, ComFuzz found a total of 13 anomalous behaviors,

1.5× over the number of anomalous behaviors found by JavaTailor.

Among all 29 anomalous behaviors discovered byComFuzz, 15 were

found by the test cases generated from historical test programs, and

6 were discovered by our bug-guided mutators. Likewise, ComFuzz

exposed a total of 14 anomalous behaviors with baselines’ seed

programs, also achieving a 1.5× more than that of other baselines.

This demonstrates ComFuzz’s bug-exposing capability.

5.5.2 Syntax passing rate. Figure 9 shows how many automatically

generated test programs can pass the syntax checks. ComFuzz gives

an average passing rate of 82%, achieving a 10% improvement over

most alternative methods. Among the syntactically incorrect test

cases generated by ComFuzz, nearly 90% of them were created by

general-purpose mutators, which are error-prone as they randomly

mutate the test cases without any syntax guidance. In contrast,

JAttack and JavaTailor applied well-designed grammatical rules to

synthesize test cases, reaching higher passing rates of 100% and

98.4%, respectively. However, the grammatical rules limit their bug-

exposing abilities. As we show in Section 5.5.1, ComFuzz discovered

at least 1.5× more anomalous behaviors than any of the baselines.

5.5.3 Code coverage. Figure 10 presents the comparison results of

code coverage, where ComFuzz gives the best statement and branch

coverage compared to all evaluated fuzzers. The results demonstrate

that using historical test programs for generating test cases is more

helpful in covering deeper code of the tested compiler. For the

JS engine, Montage and CodeAlChemist achieve higher function

coverage than ComFuzz. The reason is that their seed programs

covermore JS functions, but they give a lower statement and branch

coverage than ComFuzz due to the low syntax passing rate of their

generated tests. This also illustrates Montage and CodeAlChemist

have lower bug-exposing capabilities than ComFuzz.

5.5.4 Throughput. Table 4 compares the fuzzing throughput com-

puted as the number of test cases processed per minute. We ran
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Figure 10: Compared results of code coverage.

all fuzzers with the same 10k test cases and then calculated the

throughput. Compared to other fuzzers, Classming takes the longest

time to fuzz a test case. The generation time accounts for a much

larger part of this, as Classming needs to get the scope of the live

code by executing test cases (both origin and mutate programs). As

for ComFuzz, it generates test cases with large loops when using

INSL mutator, leading to a long run time in the total test and a

lower throughput than other baselines. Nonetheless, the fuzzing

throughput of ComFuzz is comparable to other fuzzers.

6 DISCUSSIONS AND THREATS TO VALIDITY

Our work focuses on the context of compiler testing by combining

historical test cases and bug-guided mutation rules. ComFuzz pro-

vides a focused and efficient compiler fuzzing framework, achieving

a higher bug-exposing capability than SOTA solutions. We em-

phasize that ComFuzz is not designed to replace existing fuzzers.

Instead, we aim to generate bug-exposing test cases for quickly

discovering buggy compiler behaviors. Hence, we employ a DL-

based model to learn a test program generator from historical test

cases. Unlike JAttack, our program generator cannot guarantee the

correct syntax of all synthesized test cases due to the usage of prob-

abilistic prediction mechanisms during the sampling process. Still,

the efficiency in generating syntactically valid programs would

remain largely unchanged compared to JAttack. In the future, we

will try to employ more powerful neural networks with a larger

number of training samples. Unlike existing fuzzers, our work does

not pursue full code coverage for the tested compiler. In contrast,

we focus on covering the buggy compiler components via a set of

carefully designed bug-guided mutators.

Threats.Our experiments may not generalize beyond the evaluated

fuzzers and languages beyond Java and JS. We mitigate this by

evaluating eight SOTAs. Porting our technique to a new program

language would require the DL-based test program generator on

new historical test cases collected for the targeting language, re-

design some of the mutation rules and key information extractor for

differential testing but the model training can be largely automated.

7 RELATED WORK

Generative fuzzers. Generation-based testing often utilizes sto-

chastic grammar rules [14, 15, 33, 35, 49, 58, 59] or generation tem-

plates [20, 21, 45] to synthesize tests. The representative methods

are EdSketch [45] and jsfunfuzz [72]. EdSketch is an open-source

template-based JVM fuzzer that uses hand-written generation tem-

plates to synthesize Java programs. Similarly, jsfunfuzz employs

pre-defined context-free grammars to generate JS test cases. Sub-

sequent studies have proposed increasingly complex grammar and

templates to improve the syntactic or semantic passing rates of

generated test programs [62, 63, 76]. JAttack [89] provides cus-

tomized generation templates where developers can encapsulate
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Table 4: Fuzzing throughput (#test cases/minute).

Fuzzers (JS) Throughput Fuzzers (JVM) Throughput

ComFuzz 15.58 ComFuzz 17.00

Comfort 9.58 Classming 2.19

Montage 24.39 JavaTailor 18.07

CodeAlchemist 29.85 JAttack 20.91

DIE 19.35

POLYGLOT 10.45

the expected code features for JVM testing. SPE [90] introduces a

syntactic template that consists of a skeletal program and variables

set. It generates random equivalent C programs by enumerating

the combinations of the skeletal program and the variables. CL-

Smith [53], the extended method of CSmith [85], added multiple

generation options to generate OpenCL kernels for covering more

compiler features. However, these approaches pursue full coverage

of target compilers, leading to an inefficient bug-revealing ability.

By contrast, ComFuzz is devoted to quickly exposing the buggy

compiler component by generating bug-revealing test cases based

on historical test programs. We are the first to do so.

Mutational fuzzers. Mutational testing aims to improve the code

coverage for target compilers, which is achieved by reassembling

or modifying a set of seed programs [22, 23, 44, 80, 84]. EMI [48]

and its subsequent works [28, 54, 56] are among the representa-

tive mutation-based fuzzers. They generate semantic-equivalent

test cases by performing equivalent mutations. LangFuzz [44] uses

and recombines code fragments that previously exposed bugs to

generate random JS programs. SYMFUZZ [22] mutates parent test

programs based on the optimal mutation ratio that is determined

by white-box symbolic analysis. IFuzzer [81] utilizes genetic pro-

gramming techniques to generate unusual input code fragments

for testing JS engines. CodeAlChemist [40] and its improvement

work DIE [65] breaks the historical JS PoCs into code segments and

reassembles these segments into new test programs. Classming [25]

mutates the parent test cases by introducing a live bytecode mu-

tation technique for JVM testing. Differ from the aforementioned

fuzzers, ComFuzz utilizes the bug-guided mutators to generate

new test cases by mutating the parent bug-revealing test programs,

which can cover the deeper code branches and implement highly-

intensive testing for the buggy compiler component. This mutation

insight could be valuable for mutation-guided compiler testing.

Guided compiler testing. Since random test case generationmeth-

ods for compiler testing are blind and time-consuming, recent stud-

ies have proposed a set of guided fuzzers. AFL [88] is the first

coverage-guided testing framework, and it employs compile-time

instrumentation and genetic algorithms to assist in generating ran-

dom test cases for covering more code branches. The subsequent

works [17, 38, 51, 60, 66, 69, 84] further improve code coverage

for domain-specific testing by mutating the seed programs. Poloto

et al. [67] proposed an interpreter-guided unit testing solution on

the JIT compiler. It employs concolic testing to explore all possible

execution paths and the corresponding values of an interpreter and

uses these concrete values to implement differential unit testing on

multiple JIT compilers. Classfuzz [26] is a coverage-guided method

on JVM compilers, it employs MCMC sampling to guide mutator

selection. Confuzzion [18] introduces a mutational feedback-guided

fuzzer on JVM for exposing the type of confusion vulnerabilities. It

uses historical execution information to randomly select mutation

methods to generate new test cases. JavaTailor [91] is a closely

related work that produces randomly generated tests by mutat-

ing historical test programs. The key difference is that ComFuzz-

generated test cases are bug-directed that can perform focused and

highly intensive testing for a buggy compiler component, leading

to more effective testing than other guided fuzzers.

DL-based testing. To reduce human involvement, deep-learning

models have been used to generate test cases. DeepSmith [29] and

Learn&fuzz [34] start with the recurrent neural network (RNN)

to generate test code, opening the DL-based testing trend. The

subsequent work [50, 57, 86] explored different deep learning archi-

tectures, e.g., LSTM [43], Seq2Seq [79], and GPT-2 [68], to improve

the syntactic passing rate of the generated test codes. Inspired by

existing methods, ComFuzz also uses the deep learning model for

test code generation, but it focuses on a directed generation by

feeding the neural network with historical test cases.

8 CONCLUSIONS

We have presented ComFuzz, a fuzzing framework for detecting

compiler bugs. ComFuzz leverages historical bug-exposing test

programs to generate test cases. This strategy increases the test

coverage of compiler components that are likely to contain bugs.

Rather than solely depending on past test cases and applying ran-

dom mutations across all compiler components, ComFuzz focuses

in on modules previously known for bugs. Such modules have been

historically prone to errors and can potentially contain bugs intro-

duced by fixes. A unique feature of ComFuzz is its use of bug-driven

mutators to uncover these residual bugs. To further enrich our test-

ing diversity, we incorporated five multipurpose mutators designed

to produce new test cases when existing ones fall short in revealing

bugs or enhancing code coverage.

We evaluate ComFuzz on 11 distinct compilers, covering both JS

and Java. In 260 testing hours, it unveiled 33 distinct bugs in nine of

those compilers. Of these detected issues, 29 were verified, with 22

being rectified by the developers. Compared to eight prior fuzzers,

ComFuzz uncovers at least 1.5× more bugs than its counterparts.
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The data and code associated with this paper are openly available

at https://github.com/NWU-NISL-Fuzzing/COMFUZZ.
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