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ABSTRACT

Apart from forming the backbone of compiler optimization, static

data�ow analysis has been widely applied in a vast variety of appli-

cations, such as bug detection, privacy analysis, program compre-

hension, etc. Despite its importance, performing interprocedural

data�ow analysis on large-scale programs is well known to be

challenging. In this paper, we propose a novel distributed analysis

framework supporting the general interprocedural data�ow analy-

sis. Inspired by large-scale graph processing, we devise a dedicated

distributed worklist algorithm tailored for interprocedural data�ow

analysis. We implement the algorithm and develop a distributed

framework called BigData�ow running on a large-scale cluster. The

experimental results validate the promising performance of Big-

Data�ow – it can �nish analyzing the program of millions lines of

code in minutes. Compared with the state-of-the-art, BigData�ow

achieves much more analysis e�ciency.

CCS CONCEPTS

• Software and its engineering→ General programming lan-

guages; • Theory of computation→ Program analysis; • Com-

puting methodologies→ Distributed algorithms.
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1 INTRODUCTION

Data�ow analysis is a technique for statically gathering program

information at program points along the program’s control �ow.

Besides forming the backbone of compiler optimization, it has been

adopted in many other signi�cant application areas, including bug

detection [37, 45], security vulnerability discovery [22], privacy

analysis [3], program testing/debugging [43, 49], etc. In a data�ow

analysis, a separate data�ow fact is maintained at each program

point under the control �ow graph (CFG) representation. Based

on the e�ect of each statement, a transfer function is applied to

transform the data�ow fact accordingly along the CFG. The trans-

formation process is performed iteratively via a worklist algorithm

until a �xed point is reached [29], meaning that all the data�ow

facts are unchanged anymore.

Challenges. Despite its importance, performing interprocedural

data�ow analysis on large-scale systems code is well known to be

challenging. First, as modern real-world programs are usually of

large scale (like million lines of code), maintaining solutions at all

program points with limited memory can hardly be scalable. Even

worse, for certain analysis, the data�ow solution maintained at each

point itself is highly space-intensive. Although prior work attempts

to adopt sparse representations [7, 15, 33, 45], the huge memory

consumption still severely limits the scalability. As evidenced by

recent studies [41, 53], the analysis over sparse value-�ow graph

can easily exceed hundreds of Gigabytes, showing the memory

consumption a factual bottleneck. Second, the computation of �ow-

sensitive analysis requires updating the data�ow fact with respect
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to each statement along the CFG by performing the transfer func-

tion. The process is highly computation-intensive because: (1) the

amount of transfer function executed is at least linear in the number

of program statements, which is large-scale given the modern large-

size software under analysis; (2) the computation of each transfer

function is perhaps expensive as well. For instance, in the �ow-

sensitive pointer/alias analysis, the data�ow fact at each program

point should capture the alias information among all the variables

in the entire program. Updating variable relations by each transfer

function consumes high CPU cycles.

State-of-the-Art. To accelerate interprocedural data�ow analy-

sis, a few attempts to distribute/parallelize the computation have

been made. For distributed approaches, Garbervetsky et al. [10]

presented a distributed worklist algorithm on the basis of the actor

model. However as stated explicitly in their paper, it cannot support

the standard data�ow analysis due to the lack of �ow ordering be-

tween actors. Albarghouthi et al. [2] parallelized the demand-driven

top-down analyses based on MapReduce paradigm. They only tar-

geted veri�cation and software model checking without supporting

data�ow analysis. BigSpa [14, 51] supports the distributed accelera-

tion for CFL reachability-based analysis [34]. Unfortunately, a lot

of data�ow analyses, e.g., cache analysis and numerical analysis,

do not belong to this category. Greathouse et al. [13] proposed

scalable data�ow analysis. However, they focused on dynamic anal-

ysis rather than static analysis. In brief, there exist no distributed

systems supporting static data�ow analysis.

As for parallel approaches, Lee and Ryder [23] exploited algorith-

mic parallelism to accelerate data�ow analysis. Rodriguez et al. [36]

proposed an actor model-based parallel algorithm for interprocedu-

ral �nite distributive subset (IFDS) analysis [35]. Moreover, some

researchers [31, 44] also studied parallel algorithms for pointer anal-

ysis. Note that the above approaches only support speci�c analysis

rather than the general class of data�ow analyses. More impor-

tantly, they rely heavily on memory for computation. There is no

doubt that they can rarely scale to large systems such as Linux

kernel [1, 53]. Recently, Zuo et al. [53] developed Chianina, a sin-

gle machine-based analysis framework which can scale general

data�ow analysis to millions lines of code. Unfortunately, due to

the involvement of disks, it readily takes hours or even days to

�nish the analysis for large-scale programs. Such ine�ciency can

hardly meet the requirement of quick analysis response (usually

in minutes) in the modern continuous integration and deployment

(CI/CD) pipelines [8, 38].

Our Work. With the advent of cloud computing, the large-scale

distributed cluster of commodity computers has become prevalent.

It not only o�ers powerful computing capability, but nowadays can

be easily accessible by a single developer. Exploiting cloud resources

for static analysis would be the promising breakthrough point for

achieving both signi�cant scalability and e�ciency. However, as

mentioned earlier, there exists no distributed system running on a

cluster which can support the general data�ow analysis. Adapting

the existing parallel algorithms (such as Chianina) to distributed en-

vironment is non-trivial. Parallel algorithms only focus on computa-

tion on shared memory, which lacks the consideration of partition-

ing, task dispatching, fault tolerance, and e�cient communications

between cluster nodes. None of the existing parallel approaches

can directly do it without re-designing and re-implementing the

system. In this work, we propose a novel system that can leverage

large-scale distributed cloud resources to scale and accelerate the

general class of interprocedural data�ow analyses. In particular,

it only takes minutes to analyze the programs of millions lines of

code provided that a cluster of 125 commodity PCs.

Inspired by large-scale graph processing [20, 27, 28], we revisit

the traditional worklist algorithm from the perspective of distributed

vertex-centric computation model, and devise a dedicated distributed

worklist algorithm tailored for interprocedural data�ow analysis.

We implement the distributed algorithm atop the general distributed

graph processing platform (i.e., Apache Giraph [6, 39]) and develop

a framework named BigData�ow running on the cloud so as to

take full advantage of the modern distributed computing resources.

The underlying platform (i.e., Apache Giraph) provides the basic

functionalities to support reliable and robust distributed processing,

including input partitioning, task dispatching, cross-node commu-

nications, and fault tolerance. BigData�ow, as a generic framework,

provides several APIs to specify the transfer functions and merge

operator similar to other monotone data�ow frameworks [5, 32],

thus alleviating the burden of implementing various client analy-

ses. By �lling these APIs, users can readily implement a particular

data�ow analysis on top of BigData�ow.

Contributions. The contributions are listed as follows:

• We devise an optimized distributed vertex-centric computa-

tion model to accelerate static data�ow analysis by leverag-

ing large-scale cloud resources.

• We develop and implement a distributed data�ow analy-

sis framework called BigData�ow running on a real-world

cloud, which provides a variety of high-level APIs to easily

implement client data�ow analyses.

• We evaluate the performance and scalability of BigData�ow

over large-scale real-world software systems (e.g., Firefox

and Linux kernel). The experimental results validate the

promising performance of BigData�ow—it can �nish analyz-

ing the program of millions lines of code in minutes.

Outlines. The rest of the paper is organized as follows. § 2 gives

the necessary background of data�ow analysis and distributed

graph processing. § 3 presents the distributed worklist algorithms

proposed, followed by the implementation details of BigData�ow

in § 4. We discuss the programming model provided by our frame-

work to implement various client analyses in § 5. § 6 describes the

empirical evaluation of BigData�ow in terms of performance and

scalability. We give certain discussions in § 7 and review the related

work in § 8. Finally, § 9 concludes.

2 BACKGROUND

2.1 Intraprocedural Data�ow Analysis

Data�ow analysis is a technique for gathering program informa-

tion with respect to various program points along program �ows. A

client data�ow analysis can usually be formulated as an instance of

the monotone data�ow analysis framework [19, 21], which consists

of the analysis domain including operations to copy and merge

domain elements, and the transfer functions over domain elements

with respect to each type of statement in the control �ow graph
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(CFG). An iterative worklist algorithm then takes as input an in-

stance of the monotone framework, performs the transfer function

for each program statement iteratively along the CFG, and com-

putes a �xed point as the analysis result [18]. Algorithm 1 shows

the worklist algorithm for forward analysis in detail.

For each statement : in the CFG, two elements IN: and OUT:
represent the incoming and outgoing data�ow facts, respectively.

At each merging point of CFG in which case a node : has multiple

predecessors ? ∈ ?A43B (:), the incoming data�ow fact IN: of

node : is the combination of all the outgoing facts OUT ? (shown

as Line 4) where ⊗ indicates the merge operator speci�ed by users

which can be meet (for must-analysis) or join (for may-analysis).

A transfer function for statement : then takes as input IN: and

returns the new outgoing fact, as shown by Line 5. The worklist

algorithm is conducted along the CFG to update the data�ow ele-

ments IN: and OUT: for each statement in an iterative manner

until a �xed point is reached, meaning that all the data�ow facts

are unchanged anymore [18].

Algorithm 1:Worklist Algorithm for Forward Analysis

1 W ← {all the entry statements of the CFG}

2 repeat

3 remove : fromW

4 IN: ← ⊗?∈preds (: ) OUT? /*merge function*/

5 Temp← (IN: \ �!!: ) ∪��#: /*transfer function*/

6 if Temp ≠ OUT: then

7 OUT: ← Temp

8 W ←W ∪ succs (: )

9 untilW ≡ ∅

2.2 Interprocedural Data�ow Analysis

Interprocedural data�ow analysis takes into account the propa-

gation of data�ow values across multiple procedures. Context-

sensitive interprocedural analysis distinguishes the distinct calls of

a procedure to eliminate the invalid paths, thus achieving high pre-

cision. Generally, there exist two dominant approaches to context-

sensitive interprocedural analysis, namely the summary-based (or

functional) approach and the cloning-based approach [40].

The summary-based approach commonly constructs a summary

(transfer) function for each procedure. At each call site where the

procedure is invoked, the analysis computes the e�ects of the pro-

cedure by directly applying the summary function to the speci�c

inputs at the call site. As such, the re-analysis of the procedure

body is avoided while enabling context sensitivity. However, it is

not possible to construct such (symbolic) summary functions in

general. Take the pointer analysis as an example, we can hardly

establish a succinct summarization for each procedure since the

e�ects of a procedure are heavily dependent of the alias relations of

the inputs at each call site. The evaluation of a summary function on

a particular input may not be cheaper than reanalyzing the whole

procedure [48]. Another option is the explicit representation, a.k.a.

tabulation method or partial transfer functions [30, 48]. Given a

�nite lattice, it enumerates the summary function as input-output

data�ow value pairs for each procedure. The output value of a sum-

mary function can be directly exploited when the identical input

value is encountered again for the same procedure. However, as a

large number of states need to be maintained, this approach usually

su�ers from huge space consumption.

The alternative of achieving context-sensitivity is a cloning-

based approach, where a separate clone of the procedure body

is created at each callsite [9, 47]. As such, each procedure is re-

analyzed under each calling context, preventing the analysis from

propagating data�ow values along invalid paths. In this work, we

adopt the cloning-based approach to achieve context-sensitivity.

The basic analysis logic of interprocedural analysis is the same as

that of intraprocedural analysis shown as Algorithm 1, except that

the CFG becomes the interprocedural CFG. More speci�cally, to con-

struct the interprocedural CFG, the CFG for each function is �rstly

generated. Based on a pre-computed call graph, the CFG for each

function is cloned and incorporated into that of each of its callers by

creating assignment edges to connect vertices representing formal

parameters and actual arguments. In order to achieve the sweet

spot between scalability and precision, we can actually perform

cloning only at certain levels, which is theoretically equivalent to

the :-CFA call string approach [42].

2.3 Vertex-Centric Graph Processing

With the inception of Pregel system [27], vertex-centric graph pro-

cessing becomes a hotspot in the large-scale graph processing com-

munity [20]. Following Pregel, various algorithmic techniques and

systems were proposed, such as asynchronous model (GraphLab

[25]), in-memory data parallel model (GraphX [12]). People are able

to achieve e�cient, scalable, and fault-tolerant graph computing

on a large cluster of computers by leveraging these systems.

Algorithm 2: Synchronous Vertex-centric Graph Processing

Data: A: the set of active vertices during processing

1 repeat

2 for each vertex : ∈ A do in parallel /*done by system*/

3 Remove : from A /*done by system*/

4 /*perform user-speci�ed logic for each vertex, in particular

including Gather, Apply and Scatter*/

5 M: ← Gather(: ) /*gather messages or information

from neighbors*/

6 D: ← Apply(M: , : ) /*update value of k based on

gathered information*/

7 ⟨M,A′ ⟩ ← Scatter(D: , : ) /*activate new vertices

and/or send out messages*/

8 /*synchronize before next superstep*/

9 Synchronize() /*done by system*/

10 A ← A′ /*done by system*/

11 until A ≡ ∅

Algorithm 2 gives the pseudo-code of a synchronous vertex-

centric processing algorithm. Given an initialized set of active ver-

tices, it conducts an iterative computation where each iteration is

termed as a superstep. At each superstep, all the active vertices in

A are processed in a distributed and parallel way across the en-

tire cluster. Over each active vertex : , Gather-Apply-Scatter (a.k.a.,
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GAS model) is performed [11]. At �rst, the messages or informa-

tion from its neighbors are gathered (Line 5). At the Apply phase,

it updates its associated value D: according to its current value

and the information gathered (Line 6). Based on the newly com-

puted value, it updates the active vertices accordingly, and/or sends

necessary messages to its neighbors (Line 7) at the Scatter phase.

Before the next superstep, all the messages generated at the current

superstep and active vertices are synchronized (Lines 9-10). The

whole computation terminates until no active vertex is generated.

Note that vertex-centric graph processing [11, 27, 28] is a pro-

gramming model for implementing graph processing applications.

Users write graph algorithms from the perspective of vertices. They

only need to specify the code executed at each vertex, particu-

larly Gather-Apply-Scatter functions (Lines 5-7). The underlying

graph processing system is responsible for dividing the input large-

scale graph into multiple partitions, loading partitions into di�er-

ent cluster nodes, launching multiple threads/processes to execute

user-de�ned code simultaneously, performing necessary synchro-

nizations, optimizing communication among nodes, maintaining

replicas to ensure fault tolerance, etc.

In this work, we take inspiration from vertex-centric graph

processing, design and implement a distributed framework Big-

Data�ow tailored to interprocedural data�ow analysis of large-

scale code. Similar to the existing general-purpose graph systems,

BigData�ow provides user-friendly APIs (e.g., merge and transfer

functions) based on which users can readily implement their own

client analyses without worrying about scalability. The intrinsic sys-

tem support under BigData�ow ensures the distributed capability

in lifting the sophisticated analysis to large-scale programs.

3 DISTRIBUTED VERTEX-CENTRIC
WORKLIST ALGORITHM

Inspired by large-scale graph processing, we revisit the classic

worklist algorithm of data�ow analysis (Algorithm 1) from the

perspective of vertex-centric computation model (Algorithm 2),

and accordingly present our �rst distributed worklist algorithm, i.e.,

Algorithm 3 in § 3.1. This algorithm faithfully follows the classic

worklist algorithm, and thus it is easy to understand; however, its

scalability is also limited under the distributed setting. As a result,

in § 3.2, we further propose an optimized algorithm that achieves

better performance than Algorithm 3 as demonstrated in § 6.

3.1 Distributed Worklist Algorithm

By directly instantiating Gather-Apply-Scatter interface and other

respective data structures in Algorithm 2, we devise the �rst dis-

tributed worklist algorithm for data�ow analysis, which is listed as

Algorithm 3.

Our �rst worklist algorithm takes as input a large interprocedural

control �ow graph (CFG) or an arbitrary sparse representation

[7, 16, 33]. At the beginning, all the entry vertices in the input

CFG are added toW as the initial active vertices (Line 1). During

each superstep, the underlying system launches a large number

of threads/processes to handle the computation on each vertex in

parallel (Line 3). On each vertex : , all the data�ow facts from :’s

predecessors are �rstly gathered (Line 5). This can be implemented

by directly invoking the existing APIs provided by pull-based graph

Algorithm 3: Distributed Worklist Algorithm

Data:W: the list of all active vertices during analysis;

DS: : {OUT? | ? ∈ ?A43B (: ) } a set containing all the

data�ow facts of :’s predecessors

1 W ← {all the entry vertices in CFG}

2 repeat

3 for each CFG vertex : ∈ W do in parallel /*done by */

4 Remove : fromW /*done by system*/

5 DS: ← GatherAll(: ) /*gather all the predecessors’

data�ow facts*/

6 IN′: ← Merge(DS: ) /*merge*/

7 OUT′: ← Transfer(IN′: , : ) /*transfer*/

8 if Propagate(OUT: ,OUT
′
: ) then /*propagate*/

9 OUT: ← OUT
′
:

10 W′ ← W′ ∪ succs (: )

11 Synchronize() /*done by system*/

12 W ←W′ /*done by system*/

13 untilW ≡ ∅

systems (e.g., PowerGraph [11]) or designing a pulling mechanism

on top of push-based systems (such as Giraph [6]). Next a Merge

function takes all the data�ow facts gathered from predecessors

(i.e.,DS: ) as input, and produces the incoming data�ow fact IN ′
:

(Line 6). A transfer function is then performed to generate the new

outgoing data�ow fact OUT ′
:
(Line 7). After that, we check if the

updated data�ow fact OUT ′
:
is di�erent from that (i.e., OUT: ) at

previous superstep. If so, the propagation is employed to update the

data�ow fact as the newly computed value (Line 9). Simultaneously,

all of :’s successors are activated and put into active listW′ for

the next superstep (Line 10).

(a) initial state (b) gather and merge (c) transfer and propagate

Figure 1: One superstep computation at vertex 4 in Algo. 3.

Example. Figure 1 illustrates the computation procedure at vertex

4 in the above algorithm,where the verticeswith yellow background

are active. Vertices 1, 2, 3 are the predecessors of 4, and 5, 6 are its

successors. Suppose that at the beginning of a certain superstep,

the active vertex 4 has its outgoing data�ow fact OUT 4. Prede-

cessor 1 has the newly updated fact OUT ′
1
, while predecessors 2

and 3 hold the old data�ow facts OUT 2 and OUT 3, respectively

(shown as Figure 1a). Firstly, all the predecessors’ data�ow facts

are gathered asDS4 = {OUT
′
1
,OUT 2,OUT 3} and IN

′
4
is gen-

erated by merging DS4 shown in Figure 1b. OUT ′
4
is computed

by performing transfer function on IN ′
4
. Assuming that OUT ′

4

is di�erent from OUT 4, propagation is employed so that all the

successors 5 and 6 are marked as active shown as Figure 1c.
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Despite that the above algorithm succeeds in leveraging large-

scale distributed computing resources to accelerate data�ow anal-

ysis, it may still su�er from poor scalability especially when an-

alyzing large-scale programs such as the Linux kernel or Firefox

(elaborated shortly in § 6). As shown in Algorithm 3, each vertex

has to collect a full set of data�ow facts associated with all its prede-

cessors (i.e., DS: ) for computation. In the worst case, the data�ow

fact of each vertex would be made multiple copies each of which

is sent to one of its successors. As a result, the total number of

data�ow facts held in memory and passed across networks grows

exponentially with the size of interprocedural control �ow graph

under analysis. This number could be super large in practice espe-

cially when performing context-sensitive analysis over large-scale

programs. Passing/gathering a huge number of expensive data�ow

facts not only exhausts the precious memory of a cluster quickly

but also increases the burden of network communications, leading

to poor scalability. We implemented Algorithm 3 as a prototype

named BigData�ow-classic and conducted the empirical evalua-

tion of it. The experimental results discussed shortly in § 6 show

that BigData�ow-classic works well for medium-size programs,

but quickly runs out of memory on a 500-worker cluster when

analyzing large-scale programs, such as the Linux kernel or Fire-

fox. In the following (§ 3.2), we propose an optimized algorithm

which addresses the aforementioned limitations by signi�cantly

pruning away the data gathered, thus achieving better scalability

and performance.

3.2 Optimized Distributed Worklist Algorithm

Algorithm 4: Optimized Distributed Worklist Algorithm

Data:W: the list of all active vertices during analysis;

M: : {OUT′? | p is a predecessor of k} a set containing

the data�ow facts of :’s predecessors which are updated at

previous superstep

1 W ← {all the entry vertices in CFG}

2 repeat

3 for each CFG vertex : ∈ W do in parallel

4 Remove : fromW

5 M: ← GatherMessages(: ) /*gather data�ow facts of

the updated predecessors*/

6 IN′: ← Merge(M: , IN: ) /*merge*/

7 OUT′: ← Transfer(IN′: , : ) /*transfer*/

8 if Propagate(OUT: ,OUT
′
: ) then /*propagate*/

9 OUT: ← OUT
′
:

10 foreach successor 3 of : do

11 SendMessages(3, OUT′: ) /*send the updated

data�ow facts to successors*/

12 W′ ← W′ ∪ {3 }

13 IN: ← IN
′
:

14 Synchronize() /*done by system*/

15 W ←W′ /*done by system*/

16 untilW ≡ ∅

As discussed earlier, each active vertex requires the data�ow facts

associated with all its predecessors to complete the computation

in the original worklist algorithm (i.e., Line 4 of Algorithm 1 and

Line 6 of Algorithm 3). That is why extensive data�ow facts have to

be transferred across the cluster network and then merged locally

on each vertex, resulting in poor scalability. To tackle the problem,

we devise an optimized algorithm which prunes the data�ow facts

to be gathered. In particular, instead of gathering the full set of

data�ow facts from all the predecessors, only the predecessors’

data�ow facts that are newly updated at the previous superstep are

passed and merged. Since a signi�cant portion of data�ow facts are

not changed at one superstep, the optimized algorithm can thus

prune away many unnecessary and memory-consuming data�ow

facts to be gathered, greatly reducing the overall message tra�c and

computation cycles for merging. We will discuss the correctness

of such optimization – it produces the same analysis results as the

original algorithm, and give the formal proof shortly in §3.3.

We propose an optimized distributed worklist algorithm shown

as Algorithm 4. For each active vertex : , only the set of predeces-

sors’ data�ow facts which are updated at previous superstep are

gathered. This can be achieved via the push-based message pass-

ing mechanism. Speci�cally, each vertex : passively receives the

messages passed to it (i.e.,M: ) from its predecessors at previous

superstep (Line 5). Each message in fact corresponds to a data�ow

fact sent from one of the predecessors which is updated at the pre-

vious superstep. Subsequently, the data�ow facts OUT ′? ∈ M:

are merged with the incoming data�ow fact of : at last superstep

(i.e., IN: ) to generate the new incoming data�ow fact (i.e., IN ′
:
)

(Line 6). We then update the data�ow fact accordingly via a trans-

fer function (Line 7). Next we check if the updated data�ow fact

OUT ′
:
is di�erent from that (i.e., OUT: ) at previous superstep. If

so, the propagation is employed to update the data�ow fact as the

newly computed value (Line 9). At the same time, OUT ′
:
is sent

as a message to each of its successors 3 (Line 11), while activating

3 for the next superstep (Line 12).

(a) initial state (b) gather and merge (c) transfer and propagate

Figure 2: One superstep computation at vertex 4 in Algo. 4.

Example. Figure 2 illustrates the computation procedure at vertex

4 in Algorithm 4 for the same example as Figure 1. Suppose that at

the beginning of a certain superstep, the active vertex 4’s predeces-

sor 1 has the newly updated fact OUT ′
1
and sends it as a message

to 4 at the last superstep denoted by the dashed arrows in Figure

2a. The message is gathered asM4 = {OUT
′
1
} and then IN ′

4
is

generated by incrementally merging the data�ow facts inM4 with

IN4 shown as Figure 2b. Finally as shown by Figure 2c, OUT ′
4

is computed by performing transfer function on IN ′
4
. Assuming

that OUT ′
4
is di�erent from OUT 4, propagation is employed to

send the newly updated OUT ′
4
to all the successors 5 and 6 while

marking them as active.
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3.3 Correctness Proof of Optimized Algorithm

The underlying rationale of such optimization is that the merge

operation for the general monotone data�ow analysis satis�es the

accumulative property. In other words, on each active vertex : ,

merging only the updated data�ow facts of :’s predecessors with

the old IN: of last superstep should produce identical results to

that merging the full set of data�ow facts of all its predecessors.

The following Theorem 1 gives its formal de�nition.

Theorem 1 (Accumulative Property). Given an active vertex :

at superstep 8 . Let ?A43B (:) be the set of :’s predecessors. With-

out loss of generality, suppose at superstep 8 − 1, a partial set

of :’s predecessors i.e., % ′ (:) ⊆ ?A43B (:) update their outgo-

ing data�ow facts, while the outgoing facts of the remaining i.e.,

% (:) = ?A43B (:) − % ′ (:) stay unchanged. IN: and IN ′
:
indicate

the incoming data�ow fact of : at superstep 8 − 1 and 8 , respectively.

The accumulative property is satis�ed if and only if the following

equation holds.

IN ′
:
≡ IN:⊗( ⊗?∈P′ (: ) OUT

′
? )

i.e.,

( ⊗?∈P(: ) OUT ? ) ⊗ ( ⊗?∈P′ (: ) OUT
′
? ) ≡

( ⊗?∈preds(: ) OUT ? ) ⊗ ( ⊗?∈P′ (: ) OUT
′
? )

Proof. Generally, there are two cases of monotone data�ow

analysis, namely (1) increasing analysis with the join operator ⊔

and (2) decreasing analysis with the meet operator ⊓.

For case (1): ⊗ = ⊔ and for each predecessor ? ∈ % ′ (:),

OUT ? ≤ OUT
′
? holds where ≤ denotes the partial order re-

lation and ≤ is re�exive, anti-symmetric and transitive according

to its de�nition.

As de�ned by the ⊔ operator which computes the least upper

bound of two elements in the lattice, the following inequality 3.1

holds.

OUT ′? ≤ OUT ? ⊔ OUT
′
? (3.1)

Given that OUT ? ≤ OUT
′
? (for increasing analysis) and

OUT ′? ≤ OUT
′
? (≤ is re�exive), the following can be deduced:

OUT ? ⊔ OUT
′
? ≤ OUT

′
? (3.2)

As ≤ is anti-symmetric, given inequalities 3.1 and 3.2 hold, we

can imply the following equation 3.3.

OUT ′? ≡ OUT ? ⊔ OUT
′
? (3.3)

Therefore, for all ? ∈ P′ (:), the following equation 3.4 holds.

⊔?∈P′ (: )OUT
′
? ≡ ⊔?∈P′ (: ) (OUT ? ⊔ OUT

′
? ) (3.4)

Because the ⊔ operator in monotone data�ow analysis is both

associative and commutative, we can imply that:

⊔?∈P′ (: )OUT
′
? ≡ ( ⊔?∈P′ (: ) OUT ? ) ⊔ ( ⊔?∈P′ (: ) OUT

′
? )

(3.5)

By joining ⊔?∈P(: )OUT ? with both sides of the equation 3.5,

we can get the following:

( ⊔?∈P(: ) OUT ? ) ⊔ ( ⊔?∈P′ (: ) OUT
′
? ) ≡

( ⊔?∈P(: ) OUT ? )⊔(( ⊔?∈P′ (: ) OUT ? ) ⊔ ( ⊔?∈P′ (: ) OUT
′
? ))

(3.6)

And further equation 3.7 is deduced since ⊔ is associative.

( ⊔?∈P(: ) OUT ? ) ⊔ ( ⊔?∈P′ (: ) OUT
′
? ) ≡

(( ⊔?∈P(: ) OUT ? ) ⊔ ( ⊔?∈P′ (: ) OUT ? )) ⊔ ( ⊔?∈P′ (: ) OUT
′
? )

(3.7)

Since equation 3.8 holds,

( ⊔?∈P(: ) OUT ? ) ⊔ ( ⊔?∈P′ (: ) OUT ? ) ≡ ⊔?∈preds(: )OUT ?
(3.8)

The �nal equation 3.9 for case (1) is thus proved.

( ⊔?∈P(: ) OUT ? ) ⊔ ( ⊔?∈P′ (: ) OUT
′
? ) ≡

( ⊔?∈preds(: ) OUT ? ) ⊔ ( ⊔?∈P′ (: ) OUT
′
? ) (3.9)

Example. We use the vertex 4 in Figure 2 as an example to demon-

strate the proof procedure. Assuming that : = 4, ?A43B (4) =

{1, 2, 3}. Given that at previous superstep, predecessor 1 updates

its outgoing data�ow fact, thus % ′ (4) = {1} and % (4) = ?A43B (4) −

% ′ (4) = {2, 3}. The incoming data�ow fact of 4 at previous and

current supersteps are IN4 and IN
′
4
, respectively. For case (1),

suppose each data�ow fact corresponds to a set. The join opera-

tor ⊔ indicates the set union ∪. The partial order relation ≤ is set

inclusion ⊆. Validating the accumulative property speci�c to this

example is to prove the following equation holds:

IN ′
4
≡ IN4 ∪ OUT

′
1

Given the join operator ∪ and partial order relation ⊆, it is appar-

ent that the equation OUT ′
1
≡ OUT 1 ∪ OUT

′
1
holds according

to 3.1 and 3.2.

OUT ′
1
≡ OUT 1 ∪ OUT

′
1

3.6
=⇒ (OUT 2 ∪ OUT 3) ∪ OUT

′
1
≡

(OUT 2 ∪ OUT 3) ∪ (OUT 1 ∪ OUT
′
1
)

3.7
=⇒ (OUT 2 ∪ OUT 3) ∪ OUT

′
1
≡

(OUT 2 ∪ OUT 3 ∪ OUT 1) ∪ OUT
′
1

3.8
=⇒IN ′

4
≡ IN4 ∪ OUT

′
1

For case (2): ⊗ = ⊓ and for each predecessor ? ∈ % ′ (:),

OUT ′? ≤ OUT ? holds. We can follow the similar proof logic.

As the meet ⊓ operator calculates the greatest lower bound of

elements, the following inequality 3.10 holds.

OUT ? ⊓ OUT
′
? ≤ OUT

′
? (3.10)

Given that OUT ′? ≤ OUT ? (for decreasing analysis) and

OUT ′? ≤ OUT
′
? (≤ is re�exive), the following can be deduced:

OUT ′? ≤ OUT ? ⊓ OUT
′
? (3.11)

As ≤ is anti-symmetric, given inequalities 3.10 and 3.11, the

following equation 3.12 can be concluded.

OUT ′? ≡ OUT ? ⊓ OUT
′
? (3.12)
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Therefore, we can imply the following equations.

⊓?∈P′ (: ) OUT
′
? ≡ ⊓?∈P′ (: ) (OUT ? ⊓ OUT

′
? )

⇒ ⊓?∈P′ (: ) OUT
′
? ≡ ( ⊓?∈P′ (: ) OUT ? ) ⊓ ( ⊓?∈P′ (: ) OUT

′
? )

⇒ ( ⊓?∈P(: ) OUT ? ) ⊓ ( ⊓?∈P′ (: ) OUT
′
? ) ≡

( ⊓?∈P(: ) OUT ? ) ⊓ (( ⊓?∈P′ (: ) OUT ? ) ⊓ ( ⊓?∈P′ (: ) OUT
′
? ))

⇒ ( ⊓?∈P(: ) OUT ? ) ⊓ ( ⊓?∈P′ (: ) OUT
′
? ) ≡

(( ⊓?∈P(: ) OUT ? ) ⊓ ( ⊓?∈P′ (: ) OUT ? )) ⊓ ( ⊓?∈P′ (: ) OUT
′
? )

⇒ ( ⊓?∈P(: ) OUT ? ) ⊓ ( ⊓?∈P′ (: ) OUT
′
? ) ≡

( ⊓?∈preds(: ) OUT ? ) ⊓ ( ⊓?∈P′ (: ) OUT
′
? ) (3.13)

As equations 3.9 and 3.13 hold for each case, we ultimately com-

plete the proof of Theorem 1.

□

4 IMPLEMENTATION

We implemented BigData�ow by following the distributed worklist

algorithm on top of Apache Giraph 1.4.01, a well-maintained open

source Java implementation of Pregel [6, 39].

Giraph replicates Pregel’s concepts and adds several new fea-

tures to this model, including master computation, out-of-core

computation, and sharded aggregators, etc. In particular, Giraph

�rst divides the input graph into a number of partitions based on

Hadoop distributed �le system. Within each superstep of the BSP

model, Giraph launches multiple workers and enables each worker

to process a partition separately in a distributed way. Giraph o�ers

multiple e�ective partitioning schemes, which BigData�ow directly

adopts to achieve good workload balance and scalability.

Besides, BigData�ow leverages two extra options o�ered by Gi-

raph to realize the pulled-based worklist algorithm. (1) BasicCompu-

tation Class. BasicComputation is a general option for performing

computations in Giraph. It can be used to access the graph’s infor-

mation, such as the superstep ID and information of vertices and

edges. We extend it to distinguish analysis phase and acquire edge

information in the implementation of BigData�ow. (2) Broadcast

Class. Broadcast is the simplest way for master node to communi-

cate with worker nodes in the scope of the entire cluster, ensuring

that all vertices access the same information. BigData�ow exploits

this feature to broadcast workers of entry nodes in CFG.

5 PROGRAMMING MODEL

BigData�ow as a framework supporting the general interprocedural

data�ow analysis, provides a set of necessary APIs to users. Users

readily implement a particular client analysis based on these APIs

by specifying the information of input CFG, the data�ow equations

(i.e., merge, transfer), and the propagation logic. In the following,

we �rst discuss the crucial APIs provided by BigData�ow, then

demonstrate how to implement a client analysis based on the APIs.

5.1 APIs

Given a control �ow graph or other sparse representation[16, 33],

BigData�ow takes it as input and constructs the graph in memory.

During a data�ow analysis, each vertex in the CFG maintains a

1https://giraph.apache.org/

data�ow fact, as well as the program statements associated. Lines

1-4 in listing 1 show the abstract class of VertexAttribute, which

de�nes two members: data�ow fact of abstract class Fact and state-

ments of class Stmts. Data�ow fact describes the data�ow informa-

tion computed at each program point during analysis. The abstract

class Fact (Line 6) leaves users the interface for specifying a par-

ticular type of data�ow fact in a client analysis. Stmts (Lines 9-11)

describes the set of statements associated with the vertex, which

determines the logic of transfer functions. In a statement-level

data�ow analysis, data�ow fact is associated with each statement,

where an instance of Stmts contains one single statement. While

in a basic block-level analysis, each instance of Stmts indicates a

set of statements in a basic block.

Listing 1: The APIs.

1 abstract class VertexAttribute{

2 Fact fact;

3 Stmts stmts;

4 }

5

6 abstract class Fact{}

7

8 abstract class Stmt {}

9 class Stmts {

10 Stmt[] stmts;

11 }

12

13 interface Analysis {

14 Fact merge(Set <Fact > predFacts , Fact oldIN);

15 Fact transfer(Stmts stmts , Fact inFact);

16 boolean propagate(Fact oldFact , Fact newFact);

17 }

Besides the above crucial data structures, three necessary com-

ponents of data�ow analysis are de�ned in the Analysis interface

shown as Lines 13-17 in listing 1. Whenever the computation on a

vertex : is launched, merge() is �rst invoked to take the newly up-

dated data�ow facts of predecessors together with the old incoming

fact, and produce a new incoming data�ow fact for : . In general,

the merge operation can be union or intersection depending on the

speci�c client analysis. Users override merge() to specify the ex-

act logic. Taking the incoming data�ow fact produced by merge()

and the statements as input, transfer() computes the outgoing

data�ow fact accordingly. Users are required to specify the particu-

lar transformation logic by overriding transfer() for a particular

client analysis. propagate() describes the conditions for propagat-

ing data�ow facts to successors. Usually, propagation is decided

by the comparison between old fact and new fact. User overrides

propagate() to de�ne concrete termination condition.

5.2 An Example of Alias Analysis

We use a context- and �ow-sensitive alias analysis as an example to

illustrate how to use the APIs to implement a client analysis. Flow-

sensitive alias analysis computes the alias relations between pointer

variables at each program point. As a fundamental analysis, it has

been widely used in various applications including bug detection,

security enforcement, optimizations, etc.

We adopt function cloning to achieve context-sensitivity [9, 53].

The input CFG to BigData�ow actually corresponds to a cloned

interprocedural CFG. Taking the inlined ICFG as input, we �rst

de�ne a particular subclass AliasStmt to instantiate each statement

for alias analysis. Its detailed implementation is omitted due to
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space limit. Stmts has only one Stmt instance as we would like to

analyze the alias information at the granularity of statement. Here

we adopt the program expression graph (PEG) [50] as a data�ow fact

to represent the alias information at each program point. As such,

each object of Fact is instantiated as a PEG instance. Next, merge()

is achieved as union of the updated PEGs from predecessors with

the old incoming fact. Within the overridden transfer(), edge

addition and/or deletion are performed on PEG according to the

semantics of each type of statement. If the old PEG and newly

updated PEG are isomorphic, propagate() returns false and the

vertex becomes inactive.

Listing 2: The implementation of �ow-sensitive alias analysis

on top of BigData�ow.

1 public class AliasStmt extends Stmt {...}

2 class AliasVertexAttribute extends VertexAttribute

3 {

4 super ();

5 fact = new PEG();

6 }

7

8 class AliasAnalysis implements Analysis{

9 Fact merge(Set <Fact > predFacts , Fact oldIN) {

10 PEG peg = (PEG)oldIn;

11 for (Fact item : predFacts) {

12 if (item == null) continue;

13 PEG prePEG = (PEG)item;

14 peg.merge(prePEG);

15 }

16 return peg;

17 }

18 Fact transfer(Stmts stmts , Fact fact) {

19 PEG peg = (PEG)fact;

20 switch (stmts [0]. getType ()) {

21 case Load:

22 transfer_load(peg ,( AliasStmt)stmts [0]);

23 break;

24 //...

25 }

26 return peg;

27 }

28 boolean propagate(Fact oldFact , Fact newFact) {

29 if(oldFact == null) return true;

30 PEG newPEG = (PEG)newFact;

31 PEG oldPEG = (PEG)oldFact;

32 return !newPEG.consistent(oldPEG);

33 }

34 }

As can be seen, to implement a client analysis on top of Big-

Data�ow, users only need to specify the necessary functionalities

speci�c to client analysis, without worrying about any implemen-

tation details of the underlying worklist algorithm as well as other

system-side optimizations.

6 EVALUATION

Our evaluation focuses on the following three questions:

• Q1: What is the overall performance of BigData�ow given a

rich set of distributed computing resources? (§ 6.1)

• Q2: How does BigData�ow perform compared with other

competitive analysis systems/tools? (§ 6.2)

• Q3: What about the performance of BigData�ow given the

varying numbers of cores and resources? (§ 6.3)

Subjects. To measure the performance of BigData�ow on scal-

ing large programs, we selected �ve real-world software as the

experimental subjects, including Linux kernel, Firefox, PostgreSQL,

Table 1: Characteristics of subject programs.

Subject Version #LoC #Functions Description

Linux 5.2 17.5M 565K operating system

Firefox 67.0 7.9M 770K web browser

PostgreSQL 12.2 1.0M 30K database system

OpenSSL 1.1.1 519K 12K TLS protocol

H�pd 2.4.39 196K 6K web server

OpenSSL, and Apache Httpd. Table 1 lists detailed information

about the subjects, such as the version (Version), the number of

lines of code (#LoC), the number of functions (#Functions), and its

description.

Reference Tools. To validate the advantage of BigData�ow in

terms of performance and scalability on large-scale programs, we

selected the existing parallel/distributed analysis systems/tools

as the competitors. For parallel algorithms, we chose Chianina

[53], the most recent and state-of-the-art parallel system scaling

context - and �ow-sensitive analysis to large-scale C programs.

Chianina is implemented in C/C++, and leverages two-level par-

allel computation model and out-of-core disk support to achieve

both analysis e�ciency and scalability. We ignore other sequen-

tial analysis algorithms [16, 45] since it has been validated that

Chianina outperforms them [53]. For distributed work, since there

exist no distributed systems supporting data�ow analysis, we used

BigData�ow-classic, the version implemented based on the dis-

tributed classic worklist algorithm shown as Algorithm 3 as the

reference tool. By default, BigData�ow is implemented using the

optimized version (i.e., Algorithm 4).

Hardware and So�ware Se�ings. All experiments were con-

ducted in the Alibaba Cloud environment. Both BigData�ow and

BigData�ow-classic are deployed on a cluster consisting of 125 Elas-

tic Compute Service (ECS)2 nodes with Alibaba Elastic MapReduce

(EMR) installed. Each node (in particular ecs.r7.2xlarge) is equipped

with 8 virtual CPU cores based on Intel Xeon Scalable processors

and 64GB memory, running CentOS 7.4. The adopted EMR version

is 3.14.0 corresponding to Hadoop 2.7.2 and Giraph 1.4.0. To com-

pare with Chianina which can only run on a single-machine with

shared memory, we used the most powerful server node available in

the US (Virginia) region, i.e., ecs.r6.26xlarge with 104 virtual cores,

768G memory, and 1T SSD-backed cloud disk.

Client Analyses. In the experiments, we implemented two client

analyses, namely context-sensitive �ow-sensitive alias analysis and

instruction cache analysis, on top of BigData�ow, BigData�ow-

classic, and Chianina. The alias analysis is same as the example

discussed in § 5.2. For cache analysis, we followed the abstract

model of LRU caches in [26] that adopts the set-associative or-

ganization. The con�guration is set as 512 cache lines with LRU

replacement strategy enabled. The analysis computes a cache model

at each program point and decides a cache hit or miss. We chose

the above two analyses for several reasons: 1) both analyses are

fundamental and widely-used; 2) they are expensive and hardly

scalable given their memory-intensive data�ow fact and compute-

intensive transfer function; 3) they fall into the two cases of the

2https://www.alibabacloud.com/product/ecs
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Table 2: Overall performance: columns #PAliases and #BCached indicate the number of alias pairs and the number of potentially

cached memory blocks; columns #Workers, #PMem, Time and Cost represent the number of workers used, the size of peak

memory consumed, the total analysis time, and the rental cost of cloud resources, respectively; #Part. indicates the number of

partitions; - indicates out-of-memory error; (a) and (b) report the results for alias and cache analysis, respectively.

(a) Alias Analysis

BigData�ow BigData�ow-classic Chianina

Subject #PAliases #Workers #PMem Time Cost #Workers #PMem Time Cost #Part. #PMem Time Cost

Linux 12.5B 350 3.5T 16.7mins $15.8 350 - - - 4 453.4G 17.4hrs $110.4

Firefox 11.5B 140 1.2T 16.5mins $15.6 140 - - - 4 131.6G 5.3hrs $33.6

PostgreSQL 727.0M 50 329.7G 2.8mins $2.6 50 330.7G 4.9mins $4.6 1 61.9G 50.4mins $5.3

OpenSSL 734.8M 30 285.3G 3.5mins $3.3 30 329.8G 6.8mins $6.4 1 43.2G 35.4mins $3.7

H�pd 183.1M 10 119.9G 2.8mins $2.6 10 137.9G 4.0mins $3.8 1 14.2G 11.2mins $1.2

(b) Instruction Cache Analysis

BigData�ow BigData�ow-classic Chianina

Subject #BCached #Workers #PMem Time Cost #Workers #PMem Time Cost #Part. #PMem Time Cost

Linux 21.5B 500 5.6T 44.4mins $42.0 500 - - - 4 555.4G 9.4hrs $59.6

Firefox 15.8B 400 4.4T 39.0mins $36.9 400 - - - 4 351.5G 7.2hrs $45.7

PostgreSQL 1.4B 180 1.1T 3.2mins $3.0 180 1.1T 6.5mins $6.1 1 115.3G 38.1mins $4.0

OpenSSL 2.8B 180 1.3T 6.9mins $6.5 180 1.5T 13.4mins $12.7 1 227.6G 1.7hrs $10.8

H�pd 782.0M 100 684.3G 3.0mins $2.8 100 781.3G 4.6mins $4.4 1 58.3G 18.5mins $2.0

accumulative property in § 3.3 respectively, thereby validating the

proof more comprehensively.

The context-sensitivity is achieved via fully function cloning (i.e.,

∞-CFA). We start the cloning based upon a call graph constructed

by using a lightweight inclusion-based context-insensitive pointer

analysis with support for function pointers. To handle recursion,

we �rst identify the strongly connected components (SCCs) over

the pre-computed call graph. Functions not in any SCC enjoy full

context sensitivity. Whereas, level-2 call-string sensitivity (i.e., us-

ing 2 top-most callsites as the distinguishing context) is used for

those within SCCs. Note that function cloning is NOT the core

contribution of this work. Users can adopt the classical k-limited

context-sensitivity or other selective context-sensitivity techniques

[17, 24]. This can be done by launching a cheap pre-analysis to

understand the contexts desired, and then performing selective

function cloning.

For each client analysis, the version implemented on top of Big-

Data�ow, BigData�ow-classic and Chianina are identical and pos-

sess the same analysis precision. We checked the analysis results

of three tools and validated they are consistent. Speci�cally, we

compared the total number of alias pairs (including both memory

alias and value alias) generated for alias analysis, and the total num-

ber of potentially cached memory blocks for cache analysis. The

columns #PAliases and #BCached in Table 2 list the exact numbers.

6.1 Overall Performance

Tables 2a and 2b demonstrate the performance of BigData�ow

when analyzing the �ve real-world subjects. Columns #Workers,

#PMem, and Time indicate the number of workers used (one worker

corresponding to one physical core), the amount of peak memory

consumed, and the total analysis time, respectively.

It is well known that the complexity of a particular data�ow

analysis is heavily dependent on many factors, such as the size,

density, structure of the control �ow graph, and the semantics of

program under analysis. Thereby, it is di�cult to give a general

formula that can �gure out the ideal number of workers needed.

What we can do is to estimate a number as small as possible so as

to the analysis task can be completed successfully and e�ciently.

To this end, we �rst run a small sample of the analysis (e.g., 1/50 of

the input graph) on a small test cluster with 10 nodes. Based on the

resource utilization data monitored, we estimate an initial number

roughly. Next, we run the analysis on the initial number of workers.

If the task fails due to insu�cient memory, the number of workers

is doubled until the analysis can succeed.

As can be seen, the peak memory consumed in both alias analy-

sis and instruction cache analysis can easily reach several terabytes

for large-scale programs, such as the Linux kernel and Firefox, due

to the memory-intensive data�ow fact and the huge number of

program points. Even for the smallest subject Httpd, performing

the context- and �ow-sensitive analysis takes more than a hun-

dred or even several hundreds of gigabytes. This is consistent with

the claim in [1] that memory would be the major bottleneck for

analysis to scale to large programs. By leveraging the enormous

amount of memory and computing resources in a cloud environ-

ment, BigData�ow manages to analyze all the subjects successfully

and e�ciently. The alias analysis can be completed within 20 min-

utes for all subjects; the more expensive cache analysis takes less

than 45 minutes for the Linux kernel with 500 workers.

6.2 Comparison with Other Frameworks

Given the identical version of the client analysis implemented, we

compared BigData�ow against BigData�ow-classic and Chianina

with respect to performance and cost. Columns under BigData�ow-

classic and Chianina in Table 2a and 2b show the detailed results

of BigData�ow-classic and Chianina, respectively.

Chianina. As Chianina can only run on a single-machine with

shared memory, we rented the most powerful server node with 104

virtual cores, 768G memory, and 1T SSD available in the US (Vir-

ginia) region of Alibaba Cloud. In terms of analysis time, Chianina
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with 104 threads takes more than 17 hours and 9 hours to �nish

alias analysis and cache analysis over Linux. While BigData�ow

completes alias and cache analysis within 20 and 45 minutes under a

cluster, respectively. It shows that distributed parallelism enabled by

BigData�ow indeed accelerates the analysis signi�cantly (up to 62x

and 12x for alias analysis and cache analysis on Linux, respectively).

Note that BigData�ow takes more time for cache analysis than alias

analysis on all the subjects, whereas Chianina does not. This can be

explained from two aspects. First, cache analysis is more memory-

intensive than alias analysis. The cache analysis on BigData�ow

implemented in Java deservedly pays more GC time. Second, as

observed, the alias analysis running on Chianina has low CPU util-

ity due to load imbalance and excessive thread-switching costs for

certain subjects (e.g., Linux) when a large number of threads are

enabled on a single machine.

As the computing resources used by BigData�ow and Chianina

are di�erent, we cannot simply derive that BigData�ow outper-

forms Chianina. For the sake of fairness, we measured the exact

amount of rental costs of cloud resources in dollars paid by Big-

Data�ow and Chianina for completing the identical analysis. As

cloud providers generally adopt a uni�ed pricing strategy, there is

little di�erence in the price of nodes with similar resources across

di�erent providers. Without loss of generality, we calculated the

cost by multiplying the analysis time and the o�cial pay-as-you-go

hourly price of Alibaba Cloud in US (Virginia) region3. In partic-

ular, at the time of submission, each node ecs.r7.2xlarge used by

BigData�ow takes $0.454/hour. The price of the entire cluster is

0.454*125, i.e., $56.75/hour. The single ecs.r6.26xlarge server node

used by Chianina takes $6.344/hour. The cost columns in Table 2

show the detailed results. As can be seen, BigData�ow spends lower

rental costs than Chianina over all the subjects except for Httpd.

Although the price of the cluster used by BigData�ow ($56.75/hour)

is much higher than that of the single server used by Chianina

($6.344/hour), BigData�ow takes much less time to �nish the anal-

ysis than Chianina. We can thus conclude that BigData�ow is able

to o�er signi�cantly higher analysis e�ciency for large-scale pro-

grams, while taking fewer costs compared to Chianina.

Regarding memory consumption, BigData�ow apparently con-

sumes much more memory than Chianina. There are several rea-

sons. (1) Chianina is a disk-based system where the memory con-

sumption is strongly restricted. It will leverage disks to maintain

the huge amount of data once the memory consumption exceeds

a certain threshold. In contrast, BigData�ow prefers utilizing the

memory on each node to perform communications and accelerate

the analysis. (2) BigData�ow is implemented in Java, while Chian-

ina is implemented in C/C++. No doubt Chianina would have less

memory footprint than BigData�ow. (3) BigData�ow is running on

top of Giraph. To achieve fault tolerance, Giraph needs to maintain

extra (e.g., 3) replicas for all the data stored. Moreover, for certain

global data used in the analysis, BigData�ow has to broadcast it on

every node, leading to extra memory consumption.

BigDataflow-classic. As numerous redundant and expensive

data�ow facts were transmitted in the network and gathered at

each vertex, BigData�ow-classic failed to analyze the large-scale

subjects in our experiments (i.e., Linux and Firefox) given the same

3https://www.alibabacloud.com/zh/product/ecs-pricing-list/en

computing resources as BigData�ow. It validates that BigData�ow

does save memory resources, thus o�ering better scalability than

BigData�ow-classic. For the analyses which both BigData�ow-

classic and BigData�ow successfully complete, BigData�ow exclu-

sively outperforms BigData�ow-classic in terms of time e�ciency.

This is because BigData�ow-classic requires more data transferred

and merged than BigData�ow to accomplish the same analysis.

6.3 Scalability

To understand the scalability of BigData�ow, we measured the anal-

ysis time in seconds and peak memory consumption in gigabytes

for both alias analysis and cache analysis given di�erent numbers of

workers. Figures 3 and 4 show the detailed performance results of

alias analysis and cache analysis on OpenSSL, respectively, where

the x-axis indicates the number of workers, and y-axis represents

the time or peak memory used. Here only the data of PostgreSQL is

reported. Other subjects show a similar trend to that of OpenSSL.

(a) time (b) peak memory

Figure 3: The time (a) and peak memory (b) used for alias

analysis on OpenSSL with varying number of workers.

(a) time (b) peak memory

Figure 4: The time (a) and peak memory (b) used for cache

analysis on OpenSSL with varying number of workers.

For alias analysis, the time taken by BigData�ow follows a V-

bottom pattern shown as Figure 3a. When less workers are avail-

able (i.e., 40), the total memory capacity just satis�es the analysis

need. With the number of workers increasing from 40 to 80, in-

creased parallelism is translated to higher performance. Therefore,

the overall running time shows a descending trend. However, the

communication cost among workers is monotonically increased

with the growth of workers involved. Once the performance bene�t

of parallelism is no longer superior to the increased communication

cost among workers, time climbs steadily. As such, for the speci�c

analysis, having 80 workers provides the best trade-o� between

parallelism bene�t and communication cost, leading to the shortest

running time of all the tested parallel schedules. It implies that

in practice we can seek a sweet spot of parallelism for di�erent
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subjects according to the tendency of running time as the num-

ber of workers changes. This is particularly meaningful because 1)

cloud resources are on demand and charged on actual usage; and

2) performing data�ow analysis on the same large-scale program

could be an iterative process as the program evolves constantly.

In terms of the peak memory usage, as more threads/processes

consume more memory space, it is not surprising that it shows an

ascending trend with the growth of workers in Figure 3b. Figure 4

shows similar trends for cache analysis. As can be read from Figure

4a, with 160 workers available, BigData�ow successfully �nishes

the cache analysis. The best performance is achieved given more

workers (i.e., 180). After that point, more analysis time is needed

with the increasing number of workers.

7 DISCUSSION

Usage Scenarios. BigData�ow o�ers the distributed capability in

lifting sophisticated data�ow analysis to large-scale programs. It’s

highly valuable for organizations with large codebases to analyze,

while often with their own cluster deployed. In such scenarios,

BigData�ow readily o�ers both high-speed and scalable analysis to

ultra-large-scale programs.

Soundness. Like other analysis frameworks (e.g., Soot andWALA),

users implement a particular client analysis by specifying its corre-

sponding merge and transfer functions. It is the analysis developer’s

responsibility to ensure the soundness of their analysis; BigData�ow

faithfully executes whatever has been implemented by the devel-

opers. As for the underlying framework, we adopted the classic

worklist algorithm [18], and directly implemented it based on the

vertex-centric computation model. Its soundness stays unchanged.

8 RELATED WORK

8.1 Parallel and Distributed Static Analysis

Over the past decades, a few attempts have been made to speed

up static program analysis by leveraging parallel and distributed

computing facilities. Lee and Ryder [23] exploited algorithmic paral-

lelism to accelerate data�ow analysis. Rodriguez et al.[36] proposed

a parallel algorithm for IFDS-based data�ow analysis [35] based on

the actor model, which requires the transfer function to be distribu-

tive over meet operators. Nagaraj and Govindarajan [31] utilized

Intel Threading Building Blocks to design a parallel �ow-sensitive

pointer analysis algorithm. Su et al. [44] proposed parallel CFL-

reachability-based �ow-insensitive pointer analysis. Importantly,

all the above approaches rely heavily on memory for computation.

They can rarely scale to large systems such as Linux kernel.

Following the line of systemizing program analysis, various sys-

tems are developed to support scalable interprocedural analysis.

Graspan [46, 52] and BigSpa [51] scale the context-sensitive CFL-

reachability analysis [34] in a single machine and distributed en-

vironment, respectively. Unfortunately, many data�ow analyses

cannot fall into this category, such as cache analysis and interval

analysis. Chianina [53] is an out-of-core graph system perform-

ing the context- and �ow-sensitive analyses in parallel. However,

restricted by the limited parallel computing resources in a single

machine, it is ine�cient when analyzing large-scale systems code.

For distributed work, Albarghouthi et al. [2] took the inspirations

fromMapReduce paradigm and parallelized the demand-driven top-

down analyses, such as veri�cation and software model checking.

They failed to support data�ow analysis. Garbervetsky et al. [10]

recently devised a distributed worklist algorithm based on the actor

model. However, it does not support the standard data�ow analysis

due to the absence of �ow ordering between actors. Christakis et

al. [8] explored input splitting strategies to analyze di�erent code

pieces on parallel partitions independently. However, as stated

explicitly, the splitting causes analysis imprecision due to the in-

formation loss across separate partitions. Greathouse et al. [13]

extended dynamic data�ow analyses with a novel sampling system

to achieve low runtime overhead. Apparently, they only focused

on dynamic analysis rather than static data�ow analysis.

8.2 Vertex-Centric Graph Processing

Vertex-centric model has been tightly incorporated into distributed

processing frameworks to tackle the challenge of large-scale graph

processing. Based on that, Pregel [27] is the pioneering system

supporting general graph applications. Pregel adopts BSP model to

accelerate the intensive computation. Following the idea of Pregel,

Apache Giraph [4] is implemented in Java as an open source system.

Following Pregel, more advanced vertex-centric models and vari-

ants have been proposed. GraphLab [25] supports asynchronous

vertex computation based on Chandy-Lamport snapshots without

halting the entire program. GraphX [12] is a graph system based

on Resilient Distributed Dataset (a.k.a., RDD) abstraction.

Note that all the above graph systems are dedicated to the general

graph applications. None of them can directly scale the interproce-

dural data�ow analysis well. As a result, we propose BigData�ow,

the �rst distributed system tailored to data�ow analysis.

9 CONCLUSION

This paper proposes a distributed interprocedural data�ow analysis

framework named BigData�ow. By leveraging the large amount

of memory and CPU cores in the cloud, BigData�ow greatly im-

proves the scalability of data�ow analysis for analyzing large-scale

programs. The experiments conducted in a real-world cloud envi-

ronment validate that BigData�ow not only scales context-sensitive

data�ow analysis to million lines of code, but also completes such

analysis in a highly e�cient manner. It can be expected that we

could achieve nearly on-the-�y analysis of industrial-scale code-

bases by leveraging modern cloud computing facilities.

10 DATA AVAILABILITY

BigData�ow is publicly available: https://github.com/BigData�ow-

system. All the experimental data can be accessed via the link: https:

//�gshare.com/articles/dataset/material_fse23_zip/21971945/3.
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