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Fig. 1. Overview of selected released Biomedical pre-trained language models. One can see a more detailed list in Sec. 3. Note that
there is a BERT-like language model embedded in the overall architecture of AlphaFold 2.

1 INTRODUCTION

As the principal method of communication, humans usually record information and knowledge in a format of token
sequences, e.g., natural languages, time series, constructed knowledge base, etc. For biomedical information and
knowledge, tokens in sequences could be of various types, including words, disease codes, amino acids, and DNAs.
Tremendous biomedical information and knowledge in nature and human history are implicitly encapsulated in these
natural token sequences in nature (a.k.a., data).

There exist many data that involve biomedical informationwith different abstraction degrees of biomedical knowledge.
However, there is a trade-off between the high abstraction degree and its scale. For data that explicitly conveys biomedical
knowledge (i.e. at a high abstraction degree), it is usually small-scaled, see biomedical knowledge bases and EHR
data (maybe in multi-modality). One example of data that may not directly convey biomedical knowledge could be
protein and DNA sequences, since one can hardly know what a short protein or DNA sequence really means for
humans and it needs more effort for abstraction. Fortunately, these data are usually tremendous. In the current stage,
existing work pays more attention to data at a high abstraction level (biomedical knowledge-intensive data, e.g., EHR,
biomedical knowledge bases, and biomedical encyclopedia); however, it is usually relatively small-scale. We argue that
biomedical knowledge on various abstraction degrees should be paid attention to. To capture and mine the biomedical
information and knowledge from various abstraction degrees, there is recently growing attention in the biomedical
natural language processing (NLP) community to adopt pre-trained language models (PLMs); since PLMs could leverage
these massive sequences without biomedical knowledge abstraction and human annotations, including but not limited
to plain biomedical text, biomedical images, general text, protein sequences, and DNA sequences.

The biomedical NLP is a cross-discipline research direction from various communities such as bioinformatics,
medicine, and computer science (especially a major frontier of artificial intelligence, i.e., natural language processing
a.k.a. NLP). The computational biology community [142] and biomedical informatics community [57] have made a
substantial effort to make use of NLP tools for information mining and extraction of widespread-adopted electronic
health records, medical scientific publications, medical WIKI pages, etc. For many decades, NLP has been investigating
various biomedical tasks [56, 58] such as classification, information extraction, question answering, drug discovery et al.
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4 Wang. et al.

Meanwhile, the approaches in the NLP community are changing rapidly, as one can witness exponentially increasing
submitted papers in top conferences like ACL, EMNLP, and NAACL. Tailoring these NLP approaches that have been
evidenced effectively in the NLP community to a specific biomedical domain is beneficial.

Unfortunately, there is usually a delay for newly proposed NLP approaches being applied to the biomedical domain.
Especially, since the adoption of various pre-trained language models (e.g., ELMo [230], GPT [240], BERT [66], XLNET
[114], RoBERTa [185], T5 [241] and ELECTRA [54]) [237] have nearly shifted the paradigm in NLP, their biomedical
variants trained using biomedical data comes sooner or later. With this hot trend of the biomedical pre-trained language
model, this survey aims to bridge the gap between pre-trained language models and their applications in the biomedical
domain.

Motivation of pre-trained language models in biomedical domain. The current NLP paradigm is gradually
shifting to a two-stage (pre-training and fine-tuning) paradigm, thanks to recently proposed pre-trained language
models. Compared to the previous paradigm with purely supervised learning that relies on feature engineering or
neural network architecture engineering [182], the current two-stage paradigm is more friendly to the scenario when
supervised data is limited while large-scaled unsupervised data is tremendous. Fortunately, the biomedical domain is a
typical case of such a scenario.

The motivation to use pre-trained language models in the biomedical domain is pretty straightforward. First,
annotated data in the biomedical domain is usually not large-scale. Therefore, a well-trained pre-trained language
model is more crucial to provide a richer feature extractor, which may slightly reduce the dependence on annotated data.
Second, the biomedical domain is more knowledge-intensive than the general domain. At the same time, pre-trained
language models could serve as an easily-used soft knowledge base [231] that captures implicit knowledge from
large-scale plain documents without human annotations. More recently, GPT3 has been shown to have the potential
to ‘remember’ many complicated common knowledge [38]. Lastly, large-scaled biomedical corpora and biomedical
sequences (including proteins and DNAs), which are previously thought as difficult to handle, can be effectively handled
by pre-trained language models (especially transformers networks).

As shown in Fig. 2, in recent three years, we have witnessed a rapid development of pre-trained language models
(e.g., ELMo [230], GPT [240], BERT [66], XLNet [114], RoBERTa [185], T5 [241] and ELECTRA [54]) in the general NLP
domain. Following these progresses, there are efforts to tailor these pre-trained language models to their corresponding
biomedical variants, via in-domain data. For example, BERT, the most typical pre-trained language, has many variants
in the biomedical domain, e.g., Med-BERT [248], BioBERT [156], publicly available Clinical BERT Embeddings [13],
SciBERT [23], ClinicalBERT [113], and COVID-twitter-BERT [210] et al. We draw an overview for these models in
Fig. 1. It shows that the extensions of general domain pre-trained language models to the biomedical domain attract
great attention from researchers in both NLP and bioinformatics communities. Interestingly, we can observe that once
the general NLP community develops a new variant of PLM, it usually leads to a biomedical counterpart after some
months. This parallel development between general PLMs and biomedical PLMs shows a strong demand and even a
necessity to summarize the existing works, which could help beginners to start their contributions in this field easily.

Difference with existing surveys. There are a few reviews to summarize the NLP applications in the biomedical,
clinical, bioinformatic domain, such as an early one [276] and recent ones [228, 326, 360]. They cover many general
methods and applications of biomedical/clinical NLP. Specifically, [276] mainly discuss either based on statistics-based
NLP pipeline (including lexicon, co-occurrence patterns, syntactic/semantic parsing), or word embeddings based neural
network approaches (it was mentioned that 60.8% of them are based on recurrent neural networks) [326] for NLP
Manuscript submitted to ACM
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Fig. 2. Parallel development of general and biomedical pre-trained language models. The time is determined by the released date of
the paper, for example, in arXiv. General pre-trained language models are shown below in the timeline, and biomedical pre-trained
language models are shown above the timeline (refer to Tab. 4 for detailed dates).

applications (e.g., information extraction, text classification, named entity recognition, and relation extraction et al).
Especially, two reviews [130, 134] discuss the word embeddings used in biomedical NLP.

All the above reviews made thorough summarization of existing work before the pre-trained language model era of
NLP. The NLP techniques in these reviews are mainly about feature engineering, or architecture engineering [182].
However, the NLP recently has been shifted to a pre-training and then fine-tuning paradigm with large-scale pre-trained
language models (see existing surveys [32, 96, 182, 183, 237] for pre-trained language model in the general domain). [32]
called these pre-trained models as ‘foundation models’ to underscore their critically central. We believe the biomedical
NLP applications have benefited and will continually benefit from the development of pre-trained language models.

More recently, [129] reviews biomedical textual pre-training, especially using BERT. The difference between [129]
and this review is that Our paper provides a more inclusive taxonomy of biomedical PLMs than [129], which are
three fold.. First, biomedical PLMs summarized in our review are not limited to that trained on texts like [129], but
also other data resources including protein, DNA, and even biomedical text-image pairs. In general, any data that
involves biomedical information could be used in biomedical PLMs. Second, in contrast to [129] which only discusses
Transformer-based pre-trained language models, this review also discusses RNN-based language models (like ELMO
[121], which is typically considered as the first pre-trained language model in NLP). We also summarize decoder involved
generative pre-trained language models (like GPT [146] and T5 [232]), while [129] mainly discusses encoder-based
PLMs (BERT or BERT variants). Third, to the best of our knowledge, this is the first survey paper to discuss pre-trained
vision-language models in the biomedical domain. Last, our paper provides a more comprehensive overview of the
applications of PLMs in the biomedical domain compared with [129]. Except for biomedical NLP tasks such as natural
language inference, text summarization [334], relation extraction et al that are summarized in [129], our paper further
reviews recent PLMs-based methods for event detection, dialogue systems, as well as protein and DNA sequence.
Moreover, compared with [129] that only reviews recent methods of biomedical NLP tasks coarsely, we make a thorough
categorization and discussion of PLMs-based methods for biomedical NLP tasks and their benchmark datasets. Our
paper also introduces competitions and venues such as shared tasks. Therefore, we believe there is a requirement for a
more thorough survey paper to review the recent progress of pre-trained language models in the biomedical domain
from a multi-scale perspective.

Contribution. The contributions of the paper can be summarized as follows:

• We give a comprehensive review to summarize existing PLMs-based methods for the biomedical domain, which
thoroughly categorizes and discusses biomedical data sources, biomedical PLMs, model variants, downstream
tasks, shared competitions, etc.
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Fig. 3. Architecture of this survey.

• We propose a taxonomy of biomedical PLMs, which classifies existing PLMs in the biomedical domain from
various perspectives: training data sources, model architecture, etc.

• We enumerate existing resources for PLMs and their detailed configuration, facilitating their spreading for
beginners.

• We discuss the limitations of existing methods and prospect future trends.
• To the best of our knowledge, this is the first survey paper to summarize generative pre-trained language models,
protein/DNA language models, pre-trained vision-language models in the biomedical domain.

How do we collect the papers? In this survey, we collected over a hundred related papers. We used Google
Scholar as the main search engine, and also adopted MedPub, Web of Science, as an essential tool to discover related
papers. In addition, we screened most of the related conferences and journals such as ACL, EMNLP, NAACL, AAAI,
Bioinformatics, JAMIA, AMIA, etc. The major keywords we used included medical pre-trained language model, clinical
pre-trained language model, biological language model, etc. Plus, we take Med-BERT [248], BioBERT [156], SciBERT
[23], ClinicalBert [113], COVID-twitter-BERT [210] as the seed papers to check papers that cited them.

Organization. The overall architecture of this paper is shown in Figure 3. The paper is organized as below: Sec.2
introduces the general pre-trained language models including backbone networks, pre-training objective, pre-training
Manuscript submitted to ACM
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corpora, fine-tuning, and categorization of PLMs. Sec.3 introduces the pre-trained language models for the biomedical
domain and proposes a taxonomy, including motivations for using PLMs, biomedical data sources, domain-specific pre-
training, biomedical PLMs, and their categorization. Sec.4 summarizes the applications of biomedical PLMs for various
downstream tasks and categorizes existing methods for these tasks respectively. More discussions about limitations and
future directions are in Sec. 5. We conclude in Sec.6.

2 BACKGROUND: Pre-trained Language Models

Pre-trained language models (PLMs) have been widely used in natural language processing, etc., due to their effectiveness
to learn useful representations from unannotated data such as natural languages. In this paper, we mainly discuss
pre-trained language in sequential tokens 1. We will introduce the textual pre-training in Sec. 2.2, one can read the
review paper of PLMs in [237] for more details. Thanks to the popularity of CLIP, pre-trained language models are also
usually jointly trained with a visual pre-trained model in the image-text pre-training scenario. We will also discuss
visual pre-training in Sec. 2.3. Note that models in the visual pre-training usually treats image patches as visual tokens,
this makes it language model-like pre-training; we, therefore, include visual pre-training models in this survey.

In this section, we will introduce the basic ingredients of pre-training models: the training objective with self-
supervised tasks and corpora in Sec. 2.2 and Sec. 2.3 for text and images respectively, basic neural network models in
Sec. 2.1, and training paradigm in Sec. 2.4.

2.1 Backbone Networks in Language Models

The success of pre-trained language models is also attributed to the development of their base backbone network, from
LSTM [108] to Transformer [301]. Before Transformer was invented, LSTM was widely used as the base architecture
of pre-trained language models such as ELMO. However, because of its recurrence structure, it is computationally
expensive to scale up LSTM to be deeper in layers. To this end, Transformer is proposed and becomes the backbone of
modern NLP. Transformers are better architecture can be attributed to: 1) efficiency: a recurrent-free architecture that
could compute the individual token in parallel, 2) effectiveness: attention allows spatial interaction across tokens that
dynamically depends on the input itself. In this section, we briefly introduce the two typical architectures in pre-trained
language models, namely, LSTM and Transformers.

2.1.1 Previous backbone networks in texts.

LSTM. Long short-term memory (LSTM) is a recurrent neural network (RNN) architecture for sequential modeling.
Unlike standard feed-forward neural networks processing single data points (such as images), LSTM can deal with
entire sequences of data (such as text, speech, or video). A common LSTM unit is composed of a cell, an input gate, an
output gate, and a forget gate. The cell learns hidden states over arbitrary time intervals and the three gates regulate
the flow of information into and out of the cell. LSTM networks are well-suited for time series data and were developed
to deal with the vanishing gradient problem that can be encountered when training traditional RNNs. Peters et al [230]
tried to adopt a Long and Short term memory network (LSTM) in pre-trained language, which naturally processes
tokens sequentially.

2.1.2 Previous backbone networks in images.

1Tokens usually refers to words or subwords in NLP, and also protein sequences in the biomedical domain.
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CNNs. Convolutional neural networks [155] (CNNs) are a type of neural networks that are particularly suited for
vision tasks. Typically, CNNs are made up of four main types of layers: convolution, pooling, activation, and fully
connected layers. The convolution layers are trainable filters that can learn to recognize patterns in images, such as
edges, textures, and objects; The pooling layers are used to reduce the dimensionality of the data; The activation layers
are used to introduce non-linearity to the network; The fully connected layers are used to make predictions based on
the extracted features. Note that CNNs are also a good choice for language understanding [139].

2.1.3 The current backbone networks in texts and images.

Transformer. The backbone of most pre-trained language models (e.g., BERT, its variants, GPT, T5 et al) is a neural
network called ‘Transformer ’ building upon self-attention networks (SANs) and feed-forward networks (FFNs). SAN
is used to facilitate interaction between tokens, while FNN is used to refine the token presentation using non-linear
transformation. Since Transformer has been the de facto backbone to replace recurrent and convolutional units, almost
all language models adopt the Transformer as the backbone network. The transformer is superior in terms of capacity
and scalability thanks to, 1) discarding recurrent units and process tokens more efficiently in parallel with the position
embeddings[308, 309], 2) relieving saturation issue of expressive power with large-scale data and very deep layers due
to the well-designed architecture including residual connections, layer normalization, and etc.

A Transformer layer consists of a self-attention (SAN) module and a feed-forward network (FFN) module. An input
𝑋 2 for SAN will be linearly transformed into query, key, value, and output space {𝑄,𝐾,𝑉 } as below 3:

𝑄

𝐾

𝑉

 = 𝑋 ×


𝑾𝑄

𝑾𝐾

𝑾𝑉

 (1)

The self-attention mechanism (a.k.a Scaled Dot-Product Attention) is calculated as

Attention(Q,K,V) = softmax( 𝑄𝐾√︁
𝑑𝑘

)𝑉 (2)

For a multi-head version of the self-attention mechanism, it linearly projects 𝑄,𝐾,𝑉 with ℎ times using individual
linear projections to smaller dimensions (e.g. 𝑑𝑘 =

𝑑model
ℎ

), instead of performing a single attention function with
𝑑model-dimensional keys, values and queries. Finally, the output of SAN is

SAN(𝑋 ) = [head1; · · · ; headℎ]𝑾𝑂

head𝑖 = Attention(𝑄𝑖 , 𝐾𝑖 ,𝑉𝑖 ),
(3)

where 𝑄 = [𝑄1; · · ·𝑄ℎ], 𝐾 = [𝐾1; · · ·𝐾ℎ], and 𝑉 = [𝑉1; · · ·𝑉ℎ]. The individual attention heads are independently
calculated. Since the output of SAN is a linear transformation (using𝑾𝑂 ) of 𝑉 , which is a weighted sum of 𝑉 . A stack
of many purely SAN layers is not expressive [71], since it is equivalent to a single linear transformation. To this end, a
feed-forward network with non-linear activation is alternately used with each SAN layer,

FFN(𝑋 ) = 𝛿 (𝑋𝑾 in)𝑾out . (4)

Since some neurons after the activation function (e.g., 𝛿 is ReLU or GELU [104]) become inactivated (zero), 𝑑in
is usually bigger than 𝑑model to avoid the low-rank bottleneck, typically, 𝑑in = 4 × 𝑑model = 𝑑out. Other tricks, such

2𝑋 is the word embedding of each individual input token which are tokenized using subword tokenization. Moreover, the input is usually concatenated
with position embeddings [317] to perceive word order
3For all linear transformation in this paper, the bias term is in default omitted
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as layer normalization, residual connection, dropout, and weight decay are also adopted to relieve the optimization
and overfitting problems when it goes deeper, resulting in better stability when training large neural networks. It is
generally believed that Transformer is better than LSTM in terms of generalization since its performance usually does
not get to saturation as early as LSTM. When models become large, the performance of the Transformer is consistently
increasing when feeding more data while LSTM gets saturation if a certain amount of data is fed.

Interestingly, the computer vision [171] and computational biology communities also borrow some insights to
design their models, see ViT [171] for vision and AlphaFold2 [127] for protein. In Table ??, we introduce some typical
pre-trained language models in general NLP domains, based on these two backbone neural networks.

2.2 Pre-training for texts

Previously, there were many typical methods to build token representation (e.g., word vectors) from plain corpora.
For example, [200, 227] build a one-to-one mapping between words and their vectors, which is called ‘static word
embedding’ since it is static and not related to word context. However, it is well known that words often express
different meanings in different contexts. To achieve this, most recently many pre-trained language models [230] are
proposed to learn ‘contextualized word embedding’ that models the bi-directional contexts of words. For ‘contextualized
word embedding’, the vector for a word depends on its specific usage in a context. For example, the meanings of ‘bank’
in ‘river bank’ and in ‘money bank’ are supposed to have some difference. Compared with ‘static word embedding’,
the ‘contextualized word embedding’ largely improves the quality of word representation in various tasks [66].

A language model aims to assign a probability to a given piece of text (e.g., a sentence or an n-gram.) [128], see below:

Θ : V𝑁 → R+ (5)

While, in the scenario of natural language processing, a generally-called language model is usually a conditional language
model that assigns a probability to a next word𝑤𝑛 given some conditioning context (denoted as [𝑤1, · · · ,𝑤𝑛−1]). A
conditional language model is a generalization of language model in a sense the former could be obtained by dividing
the probability of the concatenated sentence (i.e., [𝑤1, · · · ,𝑤𝑛−1,𝑤𝑛]) by that of the context, namely

𝑃 (𝑤𝑛 |𝑤1, · · · ,𝑤𝑛−1,𝑤𝑛) =
Θ(𝑤1, · · · ,𝑤𝑛−1)
Θ(𝑤1, · · · ,𝑤𝑛−1)

(6)

In the earliest, neural language models [25, 201] and their variants such as Skip-Gram [200], CBow [200] and
Glove [227], were the backbones of modern NLP to provide pre-trained word features. The pre-training task of classical
neural language models [25] is the unidirectional language modeling (ULM), that predicts the next word conditionally
on history words. To learn better word embeddings, several classical models further improved the pre-training task. For
example, the training objective of Skip-Gram [200] is predicting context words given the input word. CBow [200] aims
to predict the next word based on its bidirectional context words. The training task of Glove [227] is to predict the
log co-occurrence of words. These models typically use shallow neural network architecture to conduct calculations
between word vectors, for efficient training.

Language models could be considered as an instance of self-supervision. Compared to data-hungry supervised
learning, which usually needs annotations from humans, language models could make use of massive amounts and
cheap plain corpora from the internet, books, etc. In language models, a next word is a natural label for a context
sentence as a next word prediction task, or one can artificially mask a known word and then predict it. The paradigm that
uses the unstructured data itself to generate labels (for example, the next word or the masked word in language models)
and train language models to predict labels thereof is called ‘self-supervision learning’. Language model pre-training is
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Table 1. Typical ways for word vectors and language models. 𝑋 = {𝑎,𝑏, 𝑐,𝑑, 𝑒 } is an example text sequence. ELMO, BERT, and GPT
usually work on much longer sequences than neural language models (NLMs), Skip-gram and CBOW.

Model Type Architecture Task Loss function

NLM [25] static 1-layer MLP (𝑎,𝑏 ) → 𝑐

predicting the next word −∑𝑇
𝑖=1 𝑙𝑜𝑔𝑝 (𝑥𝑖 | {𝑥1, ..., 𝑥𝑖−1 })

Skip-Gram [200] static 1-layer MLP 𝑏 → 𝑐, 𝑏 → 𝑎

predicting neighboring words −∑𝑇
𝑖=1 𝑙𝑜𝑔𝑝 ({𝑥𝑖−𝑜 , ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑖+𝑜 } |𝑥𝑖 ) , (𝑜 is the window size)

CBow [200] static 1-layer MLP (𝑎, 𝑐 ) → 𝑏

predicting central words −∑𝑇
𝑖=1 𝑙𝑜𝑔𝑝 (𝑥𝑖 | {𝑥𝑖−𝑜 , ..., 𝑥𝑖−1, 𝑥𝑖+1, ..., 𝑥𝑖+𝑜 }) , (𝑜 is the window size)

Glove [227] static 1-layer MLP ®𝑤𝑖𝑇 ®𝑤𝑗 ∝ 𝑙𝑜𝑔𝑝 (#(𝑤𝑖𝑤𝑗 ) )
predicting the log co-occurrence count −∑𝑇

𝑖=1, 𝑗=1 𝑓 (𝑥𝑖 𝑗 ) ( ®𝑤𝑖
𝑇 ®𝑤𝑗 + 𝑏𝑖 + 𝑐 𝑗 − 𝑙𝑜𝑔𝑥𝑖 𝑗 ), (𝑥𝑖 𝑗 = 𝑝 (#(𝑤𝑖𝑤𝑗 ) ) )

ELMO [230] contextualized LSTM (𝑎,𝑏, 𝑐,𝑑 ) → 𝑒, (𝑒,𝑑, 𝑐,𝑏 ) → 𝑎 −∑𝑇
𝑖=1 𝑙𝑜𝑔𝑝 (𝑥𝑖 | {𝑥1, ..., 𝑥𝑖−1 }) + 𝑙𝑜𝑔𝑝 (𝑥𝑖 | {𝑥𝑖+1, ..., 𝑥𝑇 })bi-directional language model

BERT [66], Roberta [185] contextualized Transformers (𝑎, [mask], 𝑐 ) → (_, 𝑏, _) −∑
𝑥 ∈𝑚𝑎𝑠𝑘 (𝑥 ) 𝑙𝑜𝑔𝑝 (𝑥 |�̂� ) , �̂� is the corrupted sentence with masksALBERT [154],XLNET [350] or Transformer-XL predicting masked words

Electra [54] contextualized Transformer (𝑎,𝑏, 𝑐,𝑑 ) → (0, 1, 0, 1) −∑𝑇
𝑖=1 𝑙𝑜𝑔𝑝 (𝑏𝑖 |�̂� ) , 𝑏𝑖 indicates whether 𝑥𝑖 is replaced.replaced token prediction

T5 [241] contextualized Transformers (𝑎,𝑏, 𝑐, ) → (𝑑, 𝑒 ) −∑𝑇
𝑖=1 𝑙𝑜𝑔𝑝 (𝑦𝑖 |𝑋, 𝑦0, · · · , 𝑦𝑖−1 ) ,𝑋 and 𝑌 = {𝑦1, · · · , 𝑦𝑇 } are the input/outputBART [158] predicting the sequence

GPT [240] contextualized Transformers (𝑎,𝑏, 𝑐,𝑑 ) → 𝑒 autoregressively −∑𝑇
𝑖=1 𝑙𝑜𝑔𝑝 (𝑥𝑖 | {𝑥1, ..., 𝑥𝑖−1 }) , {𝑥1, ..., 𝑥𝑇 } is the sequencepredicting the next word

therefore referred to as an ‘auxiliary task’, in which the learned representations in language models can be used as an
initial model for various downstream supervised tasks. The pre-training objective/task is critical for learning efficient
representations that are generalizable and universal for downstream tasks.

Recently, efforts have been proposed to learn contextualized word representations based on deep neural networks,
such as the pioneer method ELMO [230], GPT [240], and the breakthrough work: BERT [66]. Similar to traditional neural
language models, GPT uses the unidirectional language model task as the pre-training objective. ELMO proposed the
pre-training task for bidirectional language modeling based on both the forward language model and backward language
model task. The forward language model task aims to model the probability of the word given its previous words, while
the backward language model task predicts the word based on its future words. To better model bi-directional contexts
during pre-training, BERT proposed the masked language model (MLM) pre-training objective with the inspiration of
the Cloze task. It randomly masks tokens of input sequences and aims to predict masked tokens with the masked text
sequences. Different from ELMO which concatenates the forward and backward language model, MLM can train the
deep bidirectional contextual representations with only one language model. Based on MLM, Encoder-Decoder language
models such as T5 [241], proposed the pre-training objective of generating the given sequences in an auto-regressive
way taking the masked sequences as input. The language models based on the auto-regressive pre-training objective are
more suitable for the text generation tasks such as abstractive summarization and question answering. The overview of
pre-training tasks is shown in Table 1. Recently, Open AI have released many API services on their trained model,
including GPT 3, InstuctGPT, Codex, and ChatGPT. Especially, ChatGPT could interact in a conversational and makes it
possible to answer follow-up questions, admit mistakes, challenge incorrect premises, and reject inappropriate requests.

These pre-training tasks in language modeling are sometimes called ‘pretext tasks’. In conclusion, by pre-training
multi-layer transforms in plain text using pretext tasks, it learns general text representation that can easily be adapted
to downstream tasks.

Pre-training corpora. Except for the superior pre-training objective, it usually requires a large scale of raw texts to
pre-training language models effectively. On the internet, unlabelled raw texts are abundant ranging from news texts,
Manuscript submitted to ACM
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and web pages, to online encyclopedias. The training corpora for pre-trained language models mainly include: 1) online
encyclopedia like Wikipedia 4, which was widely used for training BERT and its variants. 2) existing books and stories
that have been digitized like BooksCorpus [378] and , 3) web texts extracted from online websites/URL, such as crawled
online corpora5. PLMs trained by these corpora are usually able to capture the common sense knowledge inherited in
the raw training texts. For specific domains such as the biomedical domain, it, therefore, needs other efforts such as
domain-specific pre-training with domain-specific texts, to capture the domain knowledge (will further be introduced
in the next section). Moreover, the vocabulary with limited words is unable to cover all words in the large-scale training
texts. To address the out-of-vocabulary (OOV) problem, they proposed to split words into sub-words to formulate the
vocabulary via the Byte-Pair Encoding (BPE) [262] or WordPiece [152] methods.

Transformer

Transformer

Transformer

Transformer

Transformer

Transformer

Encoder Decoder

…. ….

Predicting Generating

A, B, C ,D, E, F, G A, B, C ,D

A’, B’, C’ ,D’, E’, F’, G’

∅

E, F, G A, B, C ,D, E, F, G

Encoder (e.g. BERT)

Decoder (e.g. GPT)

En-Decoder (e.g. T5)

Fig. 4. The difference between Encoder, Decoder and En-Decoder pre-
trained language models.

Category Data Task

Pre-training general domain pre-training task
Domain adaption target domain pre-training task
Task adaption general domain downstream task
Fine-tuning target domain downstream task

Table 2. Categories to tailor pre-trained language models

Representative PLMs. Pre-trained language models can generally be categorized into three principal types, based on
whether the input or output constitutes a text sequence or label: Encoder-only, Decoder-only, and Encoder-Decoder
models. Models such as BERT [66], RoBERTa [185], and ALBERT [154] fall under the Encoder-only category and
are primarily utilized for text classification and sequence labeling tasks. RoBERTa [185] is a BERT variation that has
undergone a more extended training phase and employs additional data. ALBERT [154] serves as a lightweight BERT
variant but features shared weights and a factorized word embedding.

Pre-trained models equipped with the decoder such as GTP series, T5, BART, could deal with generation-related
tasks like translation, summarization, and language models 6. See Fig. 4 for the difference: an Encoder model predicts
labels for each input tokens (in brownish yellow); a Decoder model generates a sequence of tokens w.r.t. a probability
distribution (in blue); an En-Decoder model predicts a new sequence conditioned on a given sequence (in grey), a.k.a.
Seq2Seq.

Knowledge in PLMs. As a pioneer, LAMA [231] has explored the ability about how much PLMs could capture
factual and commonsense knowledge (in the format of triplets in knowledge bases). It concludes that large PLMs (e.g.,
BERT-Large) can recall knowledge slightly better than small competitors and remarkably better than with non-neural
and supervised alternatives [231]. However, [39] revise the ability that PLMs can potentially be a reliable knowledge
source. Cao et al [39] claims that the way PLMs capture knowledge is vulnerable; it might overfit dataset artifacts
and make use of answer leakage. In the biomedical domain, it needs more domain knowledge and it is therefore more
knowledge-intensive than the general domain. Some existing work (e.g. [118]) has explored injecting biomedical domain
knowledge in PLMs.
4https://dumps.wikimedia.org/
5https://commoncrawl.org/
6XLNet [350] provides a generalization of autoregressive pre-training by leveraging bidirectional contexts to conduct masked word prediction akin to
BERT. It could also deal with text generation.
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2.3 Pre-training for images

Deep neural networks have achieved excellent performance in the imaging domain on various vision tasks, e.g., image
classification, object detection, and instance segmentation. One of the major reasons behind this is pre-training. However,
different from language models in the NLP field, ‘pre-training’ in the earliest means training vision models on large
annotated image datasets, e.g., ImageNet [64]. Subsequently, different self-supervised learning approaches are proposed
to overcome the shortcoming of supervised learning, e.g., generalization error and spurious correlations. Next, we detail
different types of pre-training for images.

Supervised pre-training. In supervised pre-training, the most commonly-used dataset is ImageNet which contains
over one million labeled images. Supervised pre-training [100, 150] involves training a deep learning model on the
entire ImageNet dataset to learn generic features that can be useful for various downstream tasks. Once the model has
been pre-trained on the large dataset, it can be fine-tuned on a smaller, task-specific dataset relevant to the specific task.
This can help the model learn valuable features that can be generalized to different tasks at hand.

Contrastive self-supervised Learning. Different from supervised pre-training, contrastive self-supervised learning [48,
89, 99] is a method for representation learning without needing labeled data. It involves training a model to distinguish
between different variations of a given input image. For example, the model might be trained to identify whether two
images are a rotated version of the same image or whether they are two completely different images. By learning to
predict these labels, the model can learn useful features that can be applied to various tasks, such as object detection
and semantic segmentation.

Masked self-supervised Learning. Motivated by BERT in NLP, masked self-supervised learning has attracted attention
in the computer vision field [21, 98, 336]. It is a type of generative pre-training approach. Models are trained to
reconstruct images from incomplete data, in which part of the input image is removed or masked before it is fed into
the model. This allows the model to learn the underlying structure of the image.

Contrastive language-image pre-training. Contrastive language-image pre-training [238] (CLIP) aims to train a
vision model on a wide variety of image-text datasets. The model is trained to pair images and texts in a mini-batch
through contrastive learning. CLIP showed excellent zero-shot transfer ability, where the pre-trained model can achieve
comparable results with the original ResNet [100] on ImageNet in a zero-shot manner. One of the primary reasons is
that texts provide rich, detailed information about the visual content of an image. For example, a text description of an
image can include information about the objects and scenes depicted in the image, as well as their spatial relationships
and attributes. This information can help a machine learning model to identify and understand an image’s visual
content. Additionally, texts can be easily generated and collected in large quantities, making them a convenient and
scalable source of supervision for visual representation learning.

2.4 Fine-tuning Paradigm in PLMs

One challenge to use PLMs in downstream tasks is that there are two gaps between PLMs and downstream tasks, the
task gap and domain gap. The task gap means the meta-task in PLMs (usually masked language model in BERT or causal
language model in GPT) usually can not directly be tailored to most downstream tasks (e.g. sentimental classification).
The domain gap refers to the difference between the trained corpora in PLMs and the needed domain in a specific
downstream task. The adaptation of both task gap and domain gap is crucial.
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Adaption. To use the pre-trained language model in a downstream task, it is suggested to adopt both the domain
and task adaption [90, 94, 253, 366], see Table. 2 for the difference. The domain adaption suggests continuing training
pre-trained models trained from a general domain, in the target domain, e.g., biomedical domain. Task adaption refers
to fine-tuning on similar downstream tasks. In this paper, without specifying, we mainly discuss the domain-adapted
pre-trained models in various downstream tasks. Task adaption is not the main concern in this review. Take BERT as an
example, BERT is first trained using next-sentence predictions (NSP) and masked language models in the pre-training
phase. Such pre-trained BERT will be used as the initial feature extractor. BERT with an additional classifier layer is
then fine-tuned to optimize the objective of down-stream tasks (like MNLI [324], NER [294], and SQuAD [242]).

3 PLMS IN BIOMEDICAL DOMAIN

Recently, the pre-trained language models have been widely applied to various NLP tasks and achieved significant
improvement in performance, because: 1) Pre-training on the huge text corpus can learn universal language repre-
sentations and help with the downstream tasks. 2) Pre-training provides a better model initialization, which usually
leads to a better generalization performance and speeds up convergence on the target task. 3) Pre-training can be
regarded as a kind of regularization to avoid overfitting on small data [237]. Self-supervised learning, which pre-trained
language models rely on, usually adopts plain unstructured corpora in a format of a sequence of tokens. At first,
most pre-trained language models focus on pre-training in general plain corpora from the Internet, like Wikipedia
or crawled webpages. Except for the general domain, efforts have been proposed to extend PLMs in specific domains
such as: [80] trains CodeBERT in the programming language and [23] trains SciBERT on scientific publications and
biological sequence. This paper aims to discuss pre-trained language models in the biomedical domain. It is believed
that the pre-trained language model can always benefit from more training corpora [90]. To achieve better performance
in the domain-specific downstream tasks, it is also intuitive that the in-domain data pre-training is necessary.

We will first introduce the motivation of using pre-trained language models in the biomedical domain in the Sec. 3.1.
Then, we will illustrate the main components on tailoring PLMs to the biomedical domain including the in-domain
data in the Sec. 3.2, and the pre-training and fine-tuning strategy in the Sec. 3.3. Next, in the Sec. 3.4, we will introduce
existing pre-trained models in the biomedical domain, which are pre-trained from the in-domain data as introduced
in the Sec. 3.2. We will give an overview of these models, catagorization of them, and discussion differences between
them. We expect to help one from both the bioinformatics and computer science communities to get knowledge of the
biomedical domain-specific pre-trained language model quickly.

3.1 Motivation

In the biomedical domain, the motivation for using pre-trained language models is manyfold.

• Firstly, the biomedical domain involves biomedical data in the format of sequential tokens (like biomedical texts
and the history of electronic health records) that usually lack annotations. However, these sequential data were
previously thought of as difficult to model. Thanks to pre-trained language models, it has been empirically
demonstrated to train these sequential data in a self-supervised manner effectively. This would open a new door
for processing biomedical data with pre-trained language models.

• Second, annotated data in the biomedical domain is usually limited at scale. Some extreme cases in machine
learning are called ‘zero-shot’ or ‘few-shot’. More recently, language models such as GPT3 show that language
models have the potential for few-shot learning and even zero-shot learning [38]. Therefore, a well-trained
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dataset types size characteristics

MIMIC III EHR 58,976 hospital admissions for 38,597 patients from Beth Israel Deaconess Medical Center in 2001-2012
CPRD EHR 11.3M patients anonymized medical records from 674 UK GP practices
BREATHE Scientific Publications 6M articles and about 4 billion words sources are diverse.
PubMed Scientific Publications 35M citations and abstracts of biomedical literature It provide only links to journal articles
COMETA in Reddit Social Media 800K Reddit posts 68 health-themed subreddits with entity annotation
Tweets Social Media up-to-date one could crawl real-time Tweets using its official API
UMLS Knowledge Bases 2M names for 900K concepts well-organized medical knowledge source
IU-Xray image-Text Pairs 3,955 reports and 7,470 images XML reports with findings, indications, comparisons, etc.
MIMIC-CXR image-Text Pairs 77,110 images images corresponding to 227,835 radiographic studies
ROCO image-Text Pairs 81,000 radiology images and corresponding captions figures and their corresponding captions in PubMed articles
MedICaT image-Text Pairs 17,000 images includes captions open-access biomedical papers and their captions

Table 3. Summary of Biomedical Data for pre-training.

pre-trained language model in the biomedical domain is more crucial to provide a richer feature extractor, which
may slightly reduce the dependence on annotated data.

• Plus, the biomedical domain is more knowledge-intensive than the general domain, since most tasks may need
domain expert knowledge, while pre-trained language models could serve as an easily-used soft knowledge base
[231] that captures implicit knowledge from large-scale plain biomedical corpora without human annotations.
More recently, GPT3 has been shown to have the potential to ‘remember’ many complicated common knowledge
[38].

• Lastly, beyond text, there exist various types of biological sequential data in the biomedical domain, like protein
and DNA sequences. Using these data to train language models has shown great success in biological tasks
like protein structure predictions. Therefore, it is expected that pre-trained language models could solve more
challenging problems in biology.

3.2 Biomedical Data for Pre-training

Unstructured plain data for pre-trained language models mainly include electronic health records, scientific publications,
social media text, biomedical image-text pairs, and other biological sequences like protein, see Tab. 3. An overview of
EHR mining can be seen in [76, 340], and [87] discussed both health records and social media text. One can also check
[130] for some systematic overview of biomedical textual corpora.

3.2.1 Electronic Health Record. Electronic health record (EHR) is a collection of patient and population electronically-
stored health information in a digital format that may include demographics, medical history, medication and allergies,
immunization status, laboratory test results, radiology images, vital signs, personal statistics like age and weight, and
billing information. One can check [274, 322] for details about EHR with deep learning. Assessing such records may be
restricted to limited organizations, which hinders its widespread to the public. The reason may involve some privacy
issues.

MIMIC III. Medical Information Mart for Intensive Care III dataset [126] 7 is one of the most popular EHR datasets,
which consists of 58,976 unique hospital admissions from 38,597 patients in the intensive care unit of the Beth Israel
Deaconess Medical Center between 2001 and 2012. In addition, there are 2,083,180 de-identified notes associated with
the admissions.

7https://mimic.mit.edu/
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CPRD. Clinical Practice Research Datalink (CPRD) [107] is the primary care database of anonymized medical records
from 674 general physicians (GP) practices in the UK, which involves over 11.3 million patients. It consists of data on
demographics, symptoms, tests, diagnoses, therapies, and health-related behaviors. It is also linked to secondary care
(i.e., hospital episode statistics, or HES) and other health and administrative databases (e.g., office for national statistics’
death registration). With 4.4 million active (alive, currently registered) patients meeting quality criteria, approximately
6.9% of the UK population are included, this shows that patients are broadly representative of the UK general population
in terms of age, sex, and ethnicity. As a result, CPRD has been widely used across countries and spawned a lot of
scientific research output.

3.2.2 Scientific Publications. Scientific publications are another source for biomedical pre-trained language models
since we expect that biomedical knowledge may be encapsulated in scientific publications.

BREATHE. Biomedical Research Extensive Archive To Help Everyone (BREATHE) 8, is a large and diverse dataset
collection of biomedical research articles from leading medical archives. It contains titles, abstracts, and full-body texts.
The dataset collection process was done with public APIs that were used when available. The primary advantage of
the BREATHE dataset is its source diversity. BREATHE is from nine sources including BMJ, arXiv, medRxiv, bioRxiv,
CORD-19, Springer Nature, NCBI, JAMA, and BioASQ [42]. BREATHE v1.0 contains more than 6M articles and about 4
billion words. BREATHE v2.0 is the most recent version.

PubMed. PubMed 9 is a free search engine accessing the MEDLINE database of references and abstracts on life
sciences and biomedical topics primarily. PubMed comprises more than 32 million citations for biomedical literature
from MEDLINE, life science journals, and online books. Citations may include links to full-text content from PubMed
Central and publisher websites. PubMed abstracts (PubMed) have 4.5B words, and PubMed Central full-text articles
(PMC) have 13.5B words.

3.2.3 Social Media. Users post information on social media, which may contain biomedical information. We mainly
introduce Reddit and Tweets as examples.

Reddit. Reddit is an American social news aggregation, web content rating, and discussion website. Registered
members submit content to the site, such as links, text posts, images, and videos, then voted up or down by other
members. Posts are organized by subject into user-created boards called "communities" or "subreddits", which cover a
variety of topics such as news, politics, religion, science, movies, video games, music, books, sports, fitness, cooking,
pets, and image-sharing. Submissions with more up-votes appear towards the top of their subreddit and, if they receive
enough up-votes, ultimately on the site’s front page. Despite strict rules prohibiting harassment, Reddit’s administrators
have to moderate the communities and, on occasion, close them. COMETA corpus [22] crawled health-themed forums
on Reddit using Pushshift (Baumgartner et al., 2020) and Reddit’s own APIs.

Tweets. Twitter is an American micro-blogging and social networking service on which users post and interact with
messages known as "tweets". Registered users can post, like, and retweet tweets. Tweets were originally restricted to 140
characters, but the limit was doubled to 280 for non-CJK languages in November 2017. Audio and video tweets remain
limited to 140 seconds for most accounts. The COVID-twitter-BERT [210] is trained on a corpus of 160M tweets about
the coronavirus collected through the Crowdbreaks platform [211] during the period from January 12 to April 16, 2020.
8https://cloud.google.com/blog/products/ai-machine-learning/google-ai-community-used-cloud-to-help-biomedical-researchers
9https://pubmed.ncbi.nlm.nih.gov/
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3.2.4 Online Medical Knowledge Sources. Other than unstructured text, there is some online medical knowledge
source that is well-organized. For example, UMLS provides biomedical concepts that may benefit biomedical pre-trained
language models.

UMLS. Unified Medical Language System (UMLS) [30] (http:// umlsks.nlm.nih.gov) is a repository of biomedical
vocabularies developed by the US National Library of Medicine. The UMLS has over 2 million names for 900, 000
concepts from more than 60 families of biomedical vocabularies, as well as 12 million relations among these concepts.
These vocabularies include the NCBI taxonomy, the Medical Subject Headings (MeSH), Gene Ontology, OMIM, and the
Digital Anatomist Symbolic Knowledge Base. The UMLS knowledge sources are updated every quarter. In addition, all
vocabularies are freely available for research purposes within an institution if a license agreement is signed.

3.2.5 Biomedical Image-Text Pairs. Besides texts, there are many medical texts paired with their corresponding images.
This type of data is a good resource for learning the cross or joint representations of medical images and texts.

IU-Xray. IU-Xray [62] has a collection of chest X-Ray images from the Indiana University hospital network. The data
includes two files: one for the images and the other for the XML reports of the radiography. Each report may have
multiple images, typically having two views: frontal and lateral. The XML reports contain information such as findings,
indications, comparisons, and impressions. In total, there are 3,955 reports and 7,470 images.

MIMIC-CXR. Medical Information Mart for Intensive Care Chest X-Ray [125] is a large publicly available dataset of
chest radiographs with free-text radiology reports. It contains 377,110 images corresponding to 227,835 radiographic
studies performed at the Beth Israel Deaconess Medical Center in Boston, MA.

ROCO. Radiology Objects in COntext [225] is a large-scale medical and multimodal imaging dataset from the articles
of PubMed Central, an open-access biomedical literature database. They are figures and their corresponding captions in
articles. It has over 81,000 radiology images (from various imaging modalities) and their corresponding captions.

MedICaT. MedICaT [282] is also a dataset of medical figure-caption pairs also extracted from PubMed Central.
Different from ROCO, 74% of its figures are compound figures, including several sub-figures. It contains more than
217,000 images from 131,000 open-access biomedical papers and includes captions, inline references, and manually
annotated sub-figures and sub-captions.

3.2.6 Biological Sequences. Other than text, there are various types of biomedical token sequences, e.g., amino acids
for proteins. The structure of each protein is fully determined by a sequence of amino acids [15]. These amino acids are
from a limited-size amino acid vocabulary, of which 20 are commonly observed. This is similar to text that is composed
of words in a lexicon vocabulary. In this subsection, we introduce a protein dataset called ‘Pfam’ and a DNA sequence
dataset from Human Genome Project.

Pfam Protein Dataset. The Pfam database 10 is a large collection of protein families, in which each protein is
represented by multiple sequence alignments using hidden Markov models. The newest version is Pfam 34.0, which was
released in March 2021 and contains 19,179 families (or called ‘entries’) and 645 clans 11. The original purpose of the
Pfam database is for the classification of protein families and domains. It creates the database using a semi-automated

10http://pfam.xfam.org/
11Clans are the generated higher-level groupings of related entries in Pfam. A clan is a collection of entries that are related by sequence similarity,
structure, or profile-HMM.
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method of curating information on known protein families. Pfam 34.0 contains 47 million sequences, which could be
used to train protein language models.

DNA Dataset. The DNA sequence is composed of a genomic sequence. The Human Genome Project was the
international research effort to determine the DNA sequence of the entire human genome. Human Genome Project
Results. In 2003, an accurate and complete human genome sequence was finished two years ahead of schedule and at a
cost less than the original estimated budget. [119] uses the reference human genome GRCh38.p13 primary assembly
from GENCODE Release 12. The total sequence length is about 3 Billion.

3.3 How to tailor PLMs to the Biomedical Domain

The pre-trained language model [66] is a new two-stage paradigm for NLP. In the first phase, it trains a language model
(e.g., masked language model and casual language model) with a self-supervised meta-task in task-agnostic corpora. In
the second phase, it fine-tunes the pre-trained language model to a (usually small-scaled) specific downstream task. To
tailor pre-trained language models on the biomedical domain, methods [90, 113, 156] have explored conducting the
domain-specific adaptation on both the pre-training and fine-tuning stage. In the pre-training stage, the domain-specific
adaption of existing efforts involves in the continual pre-training or training from scratch with a large scale of raw
biomedical data. This yield many efficient foundation models in the biomedical domain such as BioBERT [156] and
PubMedBERT [90] et al, that can be directly used for downstream domain-specific tasks in the fine-tuning stage.

3.3.1 Biomedical Language Model Pre-training. One challenge in the biomedical domain is that medical jargon and
abbreviations consist of many terms that are composed of Latin or Greek parts. Moreover, clinical notes have different
syntax and grammar from books or encyclopedias. These lead to the semantic and domain-knowledge gap between the
general pre-trained language models and the biomedical domain. Therefore, many existing approaches have investigated
the biomedical language models pre-training on the basis of pre-trained language models in the general domain, to
tailor pre-trained language models to the biomedical domain.

Continual pre-training. The general way used by many methods [113, 156, 226] is to conduct the continual pre-
training based on the general pre-trained language models such as BERT. They directly initialize the model with existing
general PLMs and further pre-training it with the self-supervised task and domain-specific corpora such as PubMed
texts and MIMIC-III et al. The representative works include the BioBERT [156] that conducts continual pre-training
based on the BERT with the PubMed abstracts and PubMed Central full-text articles, BlueBERT [226] that uses PubMed
texts and MIMIC-III, Clinical BERT [113] that further pre-trains BERT with clinical notes. In this case, they use the
same vocabulary as the general PLMs, which cover words in a corpus of the general domain such as Wikipedia and
BookCorpus. However, as mentioned before, biomedical texts consist of many domain-specific terms. Using the same
vocabulary as the general PLMs can be ineffective for modeling biomedical texts [90].

Pre-training from scratch. To conduct better pre-training for biomedical language models, some efforts [23, 90] have
explored the way of pre-training from scratch. Different from the continual pre-training, they propose to build the new
vocabulary from the raw biomedical training corpora. SciBERT [23] is the representative work, that constructs the new
vocabulary with the size of 30K and trains the model with the mix-domain corpora, where 18% training texts from
the computer science domain, and 82% from the biomedical domain. However, one recent work [90] has argued that

12https://www.ncbi.nlm.nih.gov/assembly/GCF_000001405.39/
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the mixed domain pre-training doesn’t make sense for the biomedical domain, since the target data of downstream
applications in the biomedical domain is highly domain-specific. Instead, they proposed the superior domain-specific
pre-training from scratch that uses the training corpora from only the biomedical domain.

Summary. Our observation is that the core factors that affect the decision between training from scratch or continu-
ously training are twofold: the scale of pre-training biomedical corpora and the domain specificity for biomedicine,
where we need to make a trade-off. Pre-training is in general data-hungry, one could fully leverage a large amount
of biomedical corpora without inheriting parameters from a well-trained general PLM if there already exist enough
biomedical corpora. Early work (e.g., [354]) tends to continuously train biomedical PLMs from an initial BERT. Nowa-
days, it becomes more popular to directly train biomedical PLMs from scratch thanks to the large scale of collected
data and adequate computing resources [187]. Interestingly, [270] reused and tailored a giant general PLM (PaLM) to a
clinical one, since giant models are economically expensive. We might expect some approach to decompose existing
models and reuse part of them; afterward one can inject biomedical modules into it.

3.3.2 Fine-tuning. Based on well-trained biomedical language models, one has to adapt them to downstream tasks.
This is typically implemented to replace the mask language model prediction head and next sentence prediction head
with a downstream prediction head, e.g., classification head, or sequence labeling heads.

Since the downstream tasks usually have much less training data than those used in pre-training, fine-tuning is an
unstable process. Sun et al [284] investigate different fine-tuning methods of BERT on the natural text classification
tasks. Mosbach et al [208] argues that the fine-tuning instability is due to vanishing gradients. Merchant et al [197]
observe that fine-tuning mainly modifies the top layers of BERT. Unfortunately, the solutions (e.g. hyper-parameters
of which layer to fine-tune) proposed in those papers cannot be easily translated to other settings. To automate this
process, automatic hyper-parameter tuning (e.g. Bayesian optimization [37, 298]) can come into help. Tinn et al [292]
systematically study fine-tuning stability in biomedical NLP. Particularly, it finds that freezing lower layers is beneficial
for small models, while layerwise decay is beneficial for larger models. In most cases, it facilitates robust fine-tuning by
using domain specific vocabulary and pre-training.

3.4 Biomedical Pre-trained Language Models

Based on the types of training corpora in the biomedical domain as introduced in the above section 3.2, we mainly
introduce two groups of biomedical pre-trained language models: biomedical textual language models and protein
language models. Based on the types of training corpora in the biomedical domain as introduced in the section 3.2, we
mainly introduce biomedical pre-trained language models in three scenarios: pure language models, vision-and-language
modeling, and protein/DNA language models.

3.4.1 Overview of Existing Biomedical Textual Language Models. Since BERT was released, various biomedical pre-
trained language models have been proposed via continued training with in-domain corpora based on the BERT model
or training from scratch. Tab. 4 presents existing pre-trained language models with used corpora, size, release date, and
related web pages.

We introduce some representative pre-trained language models, including encoder-only pre-trained language
models like BioBERT, ClinicalBERT, SciBERT, and COVID-twitter-BERT, decoder-only pre-trained language models
like MedGPT, and encoder-decoder pre-trained language models like SCIFIVE.
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Table 4. Existing textual biomedical pre-trained models. The base setting is with 0.1B parameters, and the large setting is with 0.3B
parameters. The date is based on the submission in arXiv or published date of the journal or conference proceeding.

Model Corpora Architecture Size Date Link

BioBERT [156] PubMed and PMC BERT base & large 2019.01 https://github.com/dmis-lab/biobert
BERT-MIMIC [269] MIMIC III BERT base and large 2019.02 -
SciBERT [23] Semantic Scholar papers BERT base 2019.03 https://github.com/allenai/SciBERT
BioELMo [121] PubMed abstracts ELMo 93.6 M 2019.04 https://github.com/Andy-jqa/bioelmo
Clinical BERT [13] EHR (MIMIC-III) BERT base 2019.04 https://github.com/EmilyAlsentzer/clinicalBERT
Clinical BERT [113] EHR (MIMIC-III) BERT base 2019.05 https://github.com/kexinhuang12345/clinicalBERT
BlueBERT [226] PubMed+MIMIC-III BERT base & large 2019.05 https://github.com/ncbi-nlp/bluebert
G-BERT [263] MIMIC III BERT - 2019.06 https://github.com/jshang123/G-Bert
BEHRT [167] Clinical Practice Research Datalink BERT - 2019.07 https://github.com/deepmedicine/BEHRT
BioFLAIR [264] PubMed abstracts BERT lagre 2019.08 https://github.com/zalandoresearch/flair
RadBERT [195] RadCore radiology reports BERT - 2019.12 -
EhrBERT [161] MADE corpus BERT base 2019.12 https://github.com/umassbento/ehrbert
Clinical XLNet [114] EHR (MIMIC-III) XLNET base 2019.12 https://github.com/lindvalllab/clinicalXLNet
CT-BERT [210] Tweets about the coronavirus BERT large 2020.05 https://github.com/digitalepidemiologylab/covid-twitter-bert
Med-BERT [248] Cerner Health Facts (general EHR) BERT - 2020.05 https://github.com/ZhiGroup/Med-BERT
ouBioBERT [304] PubMed BERT base 2020.05 https://github.com/sy-wada/blue_benchmark_with_transformers
Bio-ELECTRA [222] PubMed ELECTRA base 2020.05 https://github.com/SciCrunch/bio_electra
BERT-XML Anonymous Institution EHR system BERT small and base 2020.06
PubMedBERT [90] PubMed BERT base 2020.07 https://huggingface.co/microsoft/BiomedNLP-PubMedBERT-base-uncased-

abstract
MCBERT [365] Chinese social media, wiki and EHR BERT base 2020.08 https://github.com/alibaba-research/ChineseBLUE
BioALBERT [215] PubMed and PMC ALBERT base & large 2020.09 https://github.com/usmaann/BioALBERT
BRLTM [196] private EHR BERT customized 2020.09 https://github.com/lanyexiaosa/brltm
BioMegatron [268] PubMed and PMC BERT 0.3/0.8/1.2B 2020.10 https://ngc.nvidia.com/
ClinicalTransformer [348] MIMIC III 1 base 2020.10 https://github.com/uf-hobi-informatics-lab/ClinicalTransformerNER
Bioreddit-BERT [22] healththemed forums on Reddit BERT base 2020.10 https://github.com/cambridgeltl/cometa
BioRoBERTa [159] PubMed, PMC, and MIMIC-III RoBERTa base & large 2020.11 https://github.com/facebookresearch/bio-lm
CODER [357] UMLS Metathesaurus BERT base 2020.11 https://github.com/GanjinZero/CODER
bert-for-radiology [36] daily clinical reports BERT - 2020.11 https://github.com/rAIdiance/bert-for-radiology
BioMedBERT [42] BREATHE BERT large 2020.12 https://github.com/BioMedBERT/biomedbert
LBERT [319] PubMed BERT base 2020.12 https://github.com/warikoone/LBERT
ELECTRAMED [203] PubMed ELECTRA base 2021.04 https://github.com/gmpoli/electramed
SCIFIVE [232] PubMed Abstract and PMC T5 220/770M 2021.06 https://github.com/justinphan3110/SciFive
MedGPT [146] King’s College Hospital and MIMIC-III GPY customized 2021.07 https://pypi.org/project/medgpt/
Clinical-Longformer [169] MIMIC-III Longformer [24] base 2022.01 https://github.com/luoyuanlab/Clinical-Longformer
Clinical-BigBird [358] [169] MIMIC-III BigBird base 2022.01 https://github.com/luoyuanlab/Clinical-Longformer
BioLinkBERT [351] PubMed with citation links BERT base& large 2022.03 https://github.com/michiyasunaga/LinkBERT
BioBART [355] PubMed BART base & large 2022.04 https://github.com/GanjinZero/BioBART
BioGPT[187] PubMed GPT GPT-2medium

2 2022.09 https://github.com/microsoft/BioGPT
PubMedGPT PubMed GPT 2.7B 2022.12 https://www.mosaicml.com/blog/introducing-pubmed-gpt
Flan-PaLM [270] Instruction 3 PaLM [53] 8B,62B and 540B 2022.12 unavailable
Med-PaLM 2 [271] Instruction 4 PaLM 2 [16] 8B,62B and 540B 2023.5 unavailable
HuatuoGPT [361] Instruction + conversation GPT (Bloom [258]) 7B 2023.5 https://github.com/FreedomIntelligence/HuatuoGPT
1 ClinicalTransformer [348] provides a series of biomedical models based on different architectures including BERT, RoBERTa, ALBERT, ELECTRA, DistilBERT, XLNet, Longformer, and DeBERTa.
2 BioGPT adopts GPT-2medium as the backbone network (24 layers, 1024 hidden size and 16 attention heads), resulting 347M 355M parameters in total. Its parameter size is close to BERT-large.
3 [270] adopts instruction prompt tuning on medical data. The details were not introduced.
4 Instructions are from MedQA, MedMCQA, HealthSearchQA, LiveQA and MedicationQA.

• BioBERT [156] is initialized with the general BERT model and pre-trained on PubMed abstracts and PMC
full-text articles.

• ClinicalBERT [113] is trained on clinical text from approximately 2M notes in the MIMIC-III database [126], a
publicly available dataset of clinical notes.

• SciBERT [23] is trained on the large scale of scientific papers from a multi-domain based on the BERT. The
training papers are from 1.14 M full-text papers in Semantic Scholar, in which 82% articles are from the biomedical
domain.

• COVID-twitter-BERT [210] is a natural language model to analyze COVID-19 content on Twitter. The COVID-
twitter-BERT model is trained on a corpus of 160M tweets about the coronavirus collected through the Crowd-
breaks platform during the period from January 12 to April 16, 2020.
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• MedGPT [146] is a GPT-like language model trained by patients’ medical history in the format of electronic
health records (EHRs). Given the sequence of past events, MedGPT aims to predict future events like a diagnosis
of a new disorder or complications of an existing disorder.

• SCIFIVE [232] is a domain-specific T5 model which is pre-trained on large biomedical corpora. Like T5, SCIFIVE
is a typical Seq2seq paradigm to transform an input sequence into an output sequence.

3.4.2 Discussions on Biomedical Pre-trained Language Models. Here, we will discuss the listed models in various aspects
as below:

Training corpora: EHR, literature, social media, etc., or the hybrid? Most pre-trained language models are based on
scientific publications e.g., PubMed, and EHR notes. Note that EHR datasets are usually relatively smaller than scientific
publications datasets orWikipedia. Hence pre-trained language models with only EHR datasets are typically trained from
the initialization of well-trained BERT [13, 113], XLNET[114], etc. Furthermore, some PLMs (e.g., BioRoBERTa [159])
adopt both scientific publications and EHRs. A few models such as CT-BERT and Bioreddit-BERT [22, 210] adopt social
media, including Twitter and Reddit.

Extra features. EHR data usually have some extra meaningful features, for example, disease codes, personal informa-
tion of patients like age, gender. Such extra features can be embedded as dense vectors used in some models such as
Med-BERT and BEHRT [167, 248] like word embedding, position embedding, and segment embedding that are used in
the embedding layer of Transformer.

Training from scratch or continue training. The standard approach to obtain a biomedical pre-trained model is to
conduct continual pre-training from a general-domain pre-trained model like BERT [66], such as the BioBERT [354].
Specifically, this approach would initialize the model with the standard BERT model, including its word vocabulary,
which is pre-trained by general Wikipedia and BookCorpus. Besides, some literature demonstrated training from
scratch may fully make use of in-domain data and reduce the negative effect from out-of-domain corpora, which may
be beneficial for downstream tasks such as PubMedBERT [90].

Reusing existing vocabulary or building a new one. To make use of well-trained general pre-trained language models
like BERT [66], one has to reuse its vocabulary [90]. However, Biomedical NLP is more challenging than general
NLP because it involves jargon and abbreviations: clinical notes have different syntax and grammar than books or
encyclopedias. Moreover, a totally new vocabulary necessarily leads to training from scratch due to different vocabularies
that may be more computationally expensive.

Model size. Typically, big models usually have a bigger capacity that needs more data for training. However, the
biomedical domain usually does have as many corpora as the general domain. Thus, biomedical pre-trained language
models are relatively smaller than general pre-trained language models. Another reason is that most of them are based
on BERT or BERT-like encoder-based models, while pre-trained models with decoder architecture (e.g., GPT, T5) could
be bigger than encoder-based pre-trained models. To the best of our knowledge, the biggest model is Biomegatron [268]
with 1.2B parameters. Note that bigger models take longer for inference, which is unfriendly for those researchers
without enough research computing resources.

Being publicly available. Thanks to the open-sourced tradition of computer science, most models have web pages for
downloading and documents for usage. Some of them standardized their model in huggingface (https://huggingface.co),
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Table 5. Existing biomedical vision-and-language pre-trained models. The date is based on the submission in arXiv or published data
of the journal or conference proceeding.

Model Date Type Image Encoder Text Encoder Fusion Module Corpora Downstream Datasets

UMRL [111] 2018.11 Dual-Encoder DenseNet GloVe - MIMIC-CXR ICD-9-IT
ConVIRT [370] 2020.10 Dual-Encoder ResNet ClinicalBERT - MIMIC-CXR, RIH-BONE CheXpert, COVIDx, MURA, RSNA
MulInfo [173] 2021.05 Dual-Encoder ResNet ClinicalBERT - MIMIC-CXR Pathology9, EdemaSeverity
GLoRIA [115] 2021.10 Dual-Encoder ResNet BioClinicalBERT - CheXpert CheXpert, RSNA, SIIM
LoVT [213] 2021.12 Dual-Encoder ResNet ClinicalBERT - MIMIC-CXR COVID-Rural, NIH-CXR, Object CXR, SIIM
BioViL [31] 2022.04 Dual-Encoder ResNet CXR-BERT - MIMIC-CXR MS-CXR, RSNA
BFSPR [261] 2022.05 Dual-Encoder CLIP-Image CLIP-Text - MIMIC-CXR CheXpert, MIMIC-CXR, NIH-CXR, PadChest
CheXZero [293] 2022.09 Dual-Encoder CLIP-Image CLIP-Text - MIMIC-CXR CheXpert, PadChest
MedCLIP [318] 2022.10 Dual-Encoder ResNet/ViT BioClinicalBERT - CheXpert, MIMIC-CXR CheXpert, COVID, MIMIC-CXR, RSNA
MGCA [310] 2022.10 Dual-Encoder ResNet/ViT BioClinicalBERT - MIMIC-CXR CheXpert, RSNA, SIIM
Analysis [212] 2022.11 Dual-Encoder ResNet ClinicalBERT - MIMIC-CXR COVID-Rural, NIH-CXR, Object CXR, SIIM
Analysis [168] 2020.09 Fusion-Encoder - - - MIMIC-CXR IU-Xray, MIMIC-CXR
Analysis [312] 2021.03 Fusion-Encoder ResNet BERT Dual-Stream MIMIC-CXR, NIH14-CXR, IU-Xray MIMIC-CXR, NIH14-CXR, IU-Xray
Med-ViLL [207] 2021.05 Fusion-Encoder ResNet BERT Single-Stream MIMIC-CXR MIMIC-CXR, IU-Xray, VQA-RAD
Berthop [206] 2021.08 Fusion-Encoder ResNet BlueBERT Single-Stream IU-Xray IU-Xray
LViT [171] 2022.06 Fusion-Encoder ViT BERT Single-Stream QaTa-COV19, MoNuSeg QaTa-COV19, MoNuSeg
M3AE [51] 2022.09 Fusion-Encoder CLIP-Image RoBERTa Dual-Stream MedICaT, ROCO VQA-RAD, SLAKE, MedVQA-2019, MELINDA, ROCO
ARL [52] 2022.09 Fusion-Encoder CLIP-Image RoBERTa Dual-Stream MedICaT, MIMIC-CXR, ROCO VQA-RAD, SLAKE, MedVQA-2019, MELINDA, ROCO

which will largely be beneficial for its wide-spreading. However, some models are not available to the public due to
privacy issues even though data might have been anonymized [157].

Biomedical pre-trained language models in other languages. Most of the biomedical pre-trained language models are
in English. However, there is an increasing need for biomedical pre-trained language models in other languages. There
are typically two solutions: a multilingual solution or a purely second-language solution. The former may be beneficial
for low-resource languages, and the latter is usually used in some rich-resource languages like Chinese [365].

3.5 Beyond Text: Biomedical Vision-and-Language Models

Biomedical data is inherently multi-modal. It includes various types of data: text data, imaging data, tabular data,
time-series data, and structured sequence data (e.g., proteins and DNA). Among them, the joint learning of text and
imaging data is one of the most explored directions, and biomedical vision-and-language pre-training has emerged as
an attractive direction in both artificial intelligence and clinical medicine. This owes to two facts: (i) From the technical
perspective, computer vision and natural language processing have been the most popular directions in the past few
years, and many models and algorithms have been proposed to process these two types of data; (ii) From the data
perspective, the text and imaging data are much easier to obtain in the medical domain, and more importantly they are
always pair-collected (e.g., radiology images and their corresponding diagnostic reports).

Most existing biomedical vision-and-language models are motivated by the success of the self-supervised pre-training
recipe of SimCLR [48] in CV and BERT in NLP. Most recently, there have also been some studies [43, 44] applying the
popular text-to-image diffusion models [243, 252, 256] to the medical domain. In this subsection, we summarize the
existing biomedical vision-and-language models in 3.5.1 and describe them in detail.

3.5.1 Overview of Existing Biomedical Vision-and-Language Models. In biomedical vision-and-language pre-training,
most existing studies could be categorized into two classes, i.e., dual-encoder and fusion encoder. These two types of
models have different advantages and disadvantages. Dual-encoder models are able to capture the relationship between
visual and linguistic elements in input by independently encoding each modality and then performing shallow iteration
on the resulting vectors. This allows them to effectively learn representations that can be used for single-modal/cross-
modal tasks, e.g., image classification, image captioning, and cross-modal retrieval. However, dual-encoder models are
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limited in their ability to fully capture the complex interactions between visual and linguistic elements, which can limit
their performance on more challenging vision-and-language tasks.

On the other hand, fusion-encoder models aim to overcome this limitation by directly incorporating visual and
linguistic elements into a single encoder. This allows them to capture more complex interactions between the two
modalities, which can improve their performance on tasks that require a deeper understanding of the relationship
between visual and linguistic elements. They jointly process these two modalities with an early interaction to learn
multi-modal representations to solve those tasks requiring multi-modal reasoning, e.g., visual question answering.
However, it can be more difficult to perform single-modal tasks, as the interactions between visual and linguistic
elements are not as easily separated as they are in dual-encoder models. Tab. 5 presents existing dual-encoder and
fusion-encoder vision-and-language models.

In addition to dual-encoder and fusion-encoder models, there are other approaches for biomedical vision-and-
language pre-training. For example, motivated by the success of diffusion models [243, 252, 256] in the general domain,
several medical text-to-image diffusion models [43, 44] have been proposed in the medical domains.

3.5.2 Dual-Encoder Vision-Language Models. Dual-encoder models encode images and texts separately to learn uni-
modal/cross-modal representations following a shallow interaction layer (e.g., an image-text contrastive layer). The
learned models can be transferred to many single-modal/cross-modal tasks, e.g., image classification and cross-modal
retrieval tasks. Next, we detail some representative dual-encoder models:

• ConVIRT [370] is the first study to apply contrastive learning to images and texts, inspired by its success in
the vision field. For the model architecture, it adopts ResNet and BERT as the vision encoder and the language
encoder, respectively. Afterward, a bidirectional contrastive loss between two modalities is used to train these
two encoders. It is found that the vision encoder can be used to perform the image classification tasks, requiring
much fewer annotated training data as an ImageNet-initialized counterpart to achieve comparable or better
performance.

• GLoRIA [115] proposed to perform the representation learning of medical images from global and local perspec-
tives. Specifically, for global contrastive learning, it is similar to that of ConVIRT. For local contrastive learning,
it uses an attention mechanism to learn local representations by matching the words in radiology reports and
image sub-regions.

• MedCLIP [318] is trained on both image-text and image-label datasets. The core idea is to pre-compute the
matching scores between an image and its text or an image and its label. Subsequently, the scores are used as
the target to perform the learning procedure. It is observed that much fewer data are required to learn good
representations for zero-shot disease classification.

• CheXZero [293] is initialized with the pre-trained CLIP model and pre-trained on the medical image-text dataset.
With the strong backbone model and curated designs, CheXZero can achieve comparable results in disease
classification tasks in a zero-shot manner.

• LoVT [213] is the first dual-encoder study targeting localizedmedical imaging tasks. It proposed a local contrastive
loss to align local representations of sentences or image regions while encouraging spatial smoothness and
sensitivity. This promotes its performance on many localized downstream tasks.
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3.5.3 Fusion-Encoder Vision-Language Models. Fusion-encoder models encode images and texts and then exploit a
fusion module to integrate the image and text features. For the fusion module, normally, there are two types: (i) single-
stream: the models use a single Transformer for early and unconstrained fusion between modalities; (ii) dual-stream:
the models adopt the co-attention mechanism to interact with different modalities. For fusion-encoder models, the most
common objectives are masked language modeling and image-text matching. Similarly, we detail some representative
fusion-encoder studies:

• Li et al. [168] adopted four general-domain pre-trained vision-and-language models (i.e., LXMERT [288],
VisualBERT [165], UNITER [50], and PixelBERT [116]) to learn multi-modal representations from medical images
and texts. The experimental results demonstrated their effectiveness of them in disease classification tasks.

• MedViLL [207] adopted a single BERT-based model and designed a masking scheme to improve both vision-
language understanding tasks (e.g., disease classification, cross-modal retrieval, and visual question answering)
and vision-language generation tasks (e.g., radiology report generation).

• ARL [52] proposed to integrate medical-domain knowledge bases (e.g., UMLS) into the fusion encoder. Medical
knowledge is exploited from three perspectives: (i) aligning through knowledge, (ii) reasoning using knowledge,
and (iii) learning from knowledge.

• LViT [171] is a vision-and-language fusion-encoder model for medical image segmentation. It leverages medical
text annotation to improve the quality of generated segmentation results, especially in the semi-supervised
setting.

3.5.4 Other Vision-Language Models. Besides the dual-encoder and fusion-encoder models, there are also some biomed-
ical pre-trained models involving vision and language. We mainly introduce medical text-to-image diffusion models.
Diffusion models are a type of generative model inspired by non-equilibrium thermodynamics. By defining a Markov
chain of diffusion steps to add random noise to data slowly, the model aims to learn to reverse the diffusion process to
construct desired data samples from the noise. Recently, different text-to-image diffusion models (e.g., DALLE-2 [243],
Stable Diffusion [252], and Imagen [256]) have been proposed and achieved excellent performance on text-based image
generation. In the medical domain, RoentGen [43, 44] investigated the adaptation of Stable Diffusion to the medical
domain. In specific, they exploited chest X-ray images and their corresponding reports from the MIMIC-CXR dataset
to train the model. Then they explored several adaptation approaches (i.e., partially fine-tuning or fully fine-tuning)
and different text encoders for adaptation (e.g., domain-agnostic and domain-specific text encoder). The experiments
demonstrated the effectiveness of the model with respect to image quality and clinical accuracy.

3.6 Beyond Text: Language Models for Proteins/DNA

Various biological sequences like proteins and DNA could also be treated like linguistic tokens in natural language.
Therefore, many existing works explored training language models for these biological sequences. One crucial difference
between language models for biological sequences and the counterparts for natural language is tokenization (see Sec.
3.6.1), which leads to different token vocabularies. Sec. 3.6.2 will summarize the existing language models for these
biological sequences.

3.6.1 Tokenization for Proteins/DNAs. Like words in the text, biological sequences such as proteins and DNA sequences
could also be modeled by language models, which typically aim to predict the next token in a sequence. However,
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in contrast to that words are in a relatively big vocabulary (typically 10k-100k), and the vocabularies for biological
sequences are usually small.

Tokenization in Proteins. Since the structure of a protein is fully determined by its amino acid sequence [15], one can
represent a protein by its amino acid sequences. Roughly 500 amino acids have been identified in nature; however, only
20 amino acids are found to make up the proteins in the human body. The vocabulary of protein sequences consists of
these 20 typical amino acids.

Tokenization in DNAs. The two DNA strands are known as polynucleotides, and they are composed of simpler
monomeric units (a.k.a. nucleotides). Each nucleotide contains one of four nitrogen-containing nucleobases (i.e., cytosine
[C], guanine [G], adenine [A], or thymine [T]). The two separate polynucleotides are bound together, according to
deterministic base pairing rules ([A] with [T] and [C] with [G]), with hydrogen bonds. Typically, existing work [119]
usually adopts a so-called ‘𝐾-mer’ representation for DNA sequences 13 for richer contextual information for DNAs. By
doing so, the vocabulary size will increase to the 4𝑘 + 5 which is exponential to 𝑘 and additionally pluses five special
tokens ([CLS] , [SEP] , [PAD] , [MASK] , [UNK] ).

3.6.2 Language Models for biological sequences.

Protein language models. Since the commonly-found categories of amino acids are relatively small, namely 20.
Initially, some work applied character-level language models to protein to deal with limited-size amino acids. In the
beginning, there were many efforts to training RNN-based language models [11, 26] for protein sequences. [102, 103]
trains a deep bi-directional model ELMo for proteins 14. Other than those protein sequences, protein language models
usually adopt additional features for proteins, e.g., global structural similarity between proteins and pairwise residue
contact maps for each protein [26]. Later, [246] introduces the Tasks Assessing Protein Embeddings (TAPE), a suite
of biologically relevant semi-supervised learning tasks. The authors also train language models based on LSTM,
Transformer, and ResNet on the protein sequences. Bepler et al [27] also proposed a novel framework based on the
LSTM model to learn protein sequence embeddings. They make their embeddings publicly available at 15. [250] trains a
contextual transformer-based language model16 on 250 million protein sequences. The representations learned by this
LM encode multi-level information spanning from the biochemical properties of amino acids to the remote homology
of proteins. Different from the above line of approaches, MSA Transformer [247] fits a model separately to each family
of proteins. ProtTrans [77] trains a variety of LM models with thousands of GPUs, and also makes the trained models
publicly available17. ProGen [191] is a generative LM trained on 280M protein sequences conditioned on taxonomic and
keyword tags. ProteinLM [330] was recently proposed, which trained a large-scale pre-train model for evolutionary-scale
protein sequences, and the trained model is available at18. More recently, DeepMind developed Alphafold2 [127] that
could predict protein structures with high accuracy in the challenging 14th Critical Assessment of protein Structure
Prediction (CASP14). Most interestingly, there is an embedded protein language model in Alphafold2, which makes
Alphafold2 feasible to make use of unlabelled protein data. In detail, Alphafold2 adopts an auxiliary BERT-like loss to
predict pre-masked residues in multiple sequence alignments (MSAs). More recently, ProteinBERT [34] was proposed
13‘𝐾 -mer’ is like a 𝑘-size convolutional window for a sequence. For example, a DNA sequence ATGGCT will be tokenized to a sequence of 3-mers {ATG
TGC GGC GCT} or to a sequence of 5-mers {ATGGC TGGCT}.
14https://github.com/Rostlab/SeqVec
15https://github.com/tbepler/protein-sequence-embedding-iclr2019
16The trained model and code are available at https://github.com/facebookresearch/esm.
17https://github.com/agemagician/ProtTrans
18https://github.com/THUDM/ProteinLM
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Table 6. The performance of different biomedical pre-trained language models on downstream tasks. For all biomedical language
models, we compare the F1 score of the base model on various tasks. The BLURB Score calculates the macro average of F1 test results
on all tasks.

BERT RoBERTa BioBERT SciBERT ClinicalBERT BlueBERT PubMedBERT BioM-ELECTRA BioLinkBERT BioGPT

NER
BC5-chem [162] 89.99 89.43 92.85 92.51 90.80 91.19 93.33 93.1 93.75 -
BC5-disease [162] 79.92 80.65 84.70 84.70 83.04 83.69 85.62 85.2 86.10 -
NCBI-disease [70] 85.87 86.62 89.13 88.25 86.32 88.04 87.82 88.4 88.18 -
BC2GM [272] 81.23 80.90 83.82 83.36 81.71 81.87 84.52 - 84.90 -
JNLPBA [136] 77.51 77.86 78.55 78.51 78.07 77.71 79.10 - 79.03 -
PICO extraction
EBM-PICO [220] 71.70 73.02 73.18 73.06 72.06 72.54 73.38 - 73.97 -
Relation extraction
ChemProt [149] 71.54 72.98 76.14 75.00 72.04 71.46 77.24 77.6 77.57 -
DDI [106] 79.34 79.52 80.88 81.22 78.20 77.78 82.36 - 82.72 -
GAD [35] 79.61 80.63 82.36 81.34 80.48 79.15 83.96 - 84.39 -
Sentence similarity
BIOSSES [273] 81.40 81.25 89.52 87.15 91.23 85.38 92.30 - 93.25 -
Document classification
HoC [97] 80.12 79.66 81.54 81.16 80.74 80.48 82.32 - 84.35 85.12
Question answering
PubMedQA [122] 49.96 52.84 60.24 51.40 49.08 48.44 55.84 - 70.20 78.2
BioASQ [217] 74.44 75.20 84.14 74.22 68.50 68.71 87.56 - 91.43 -
BLURB Score [90] 75.86 76.46 80.34 78.14 77.29 76.27 81.16 - 83.39 -

Table 7. Example for each downstream task.

Task Input Output Example

Named Entity Recognition Unannotated biomedical text Annotated text with biomedical entities identified E.g., identifying drug names, disease terms in text
Relation Extraction Text with annotated entities Text with relations between entities identified E.g., recognizing drug-disease treatment relations
Event Extraction Text with annotated entities and relations Text with biomedical events identified E.g., identifying gene-mutation-event in the literature
Text Classification Biomedical text Classified text into pre-defined categories E.g., classifying medical reports based on disease types
Sentence Similarity Pair of sentences Similarity score between the sentences E.g., measuring similarity between two medical findings
Question Answering Question and context Answer to the question based on context E.g., answering clinical questions based on medical textbooks
Dialogue Systems User input System response E.g., virtual health assistant responding to user health queries
Text Summarization Long biomedical text Short summary of the text E.g., summarizing a medical research article
Natural Language Inference Pair of sentences Inference relation between the sentences E.g., inferring medical conclusions from patient’s symptoms

to use a novel task of Gene Ontology (GO) annotation prediction along with masked language modeling and it is also
tailored to make the model highly efficient and flexible to very large sequence lengths.

DNA language models. Proteins are translated from DNA through the genetic code. There are 20 natural amino
acids that are used to build the proteins that DNA encodes. Therefore, amino acids cannot be one-to-one mapped by
only four nucleotides. Some work also explored the potential to build language models on DNA sequences. DNABERT
[119] is a bidirectional encoder pre-trained on genomic DNA sequences with up and downstream nucleotide contexts.
Yamada et al [342] pre-trains a BERT on RNA sequences and RNA-binding protein sequences. All the LMs remain largely
the same as those used for human language data. Designing new architectures and pipelines tailored to protein/DNA
sequences is a promising direction.

4 FINE-TUNING PLMS FOR BIOMEDICAL DOWNSTREAM TASKS

Similar to the general domain, to evaluate the effectiveness and facilitate the research development of biomedical
pre-trained language models, the Biomedical Language Understanding Evaluation (BLUE) benchmark has been proposed
in [226]. BLUE includes five text mining tasks in biomedical natural language processing, including sentence similarity,
named entity recognition, relation extraction, text classification, and inference task. However, BLUE does not include
some important biomedical application tasks such as question answering, and it mixes the applications of clinical
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data and biomedical literature. To improve it, Gu et al [90] proposed a novel benchmark, the Biomedical Language
Understanding & Reasoning Benchmark (BLURB). It includes named entity recognition (NER), evidence-based medical
information extraction (PICO), relation extraction, sentence similarity, document classification, and question-answering
tasks. Moreover, some works proposed the benchmark in other languages, such as Chinese [365].

The development of biomedical pre-trained languagemodels has greatly boosted the performance of these downstream
tasks recently. In Table 6, we show the performance when directly fine-tuning different biomedical pre-trained language
models for downstream tasks. All biomedical pre-trained language models significantly outperform PLMs in the general
domain including BERT and RoBERTa. Especially for sentence similarity and question-answering tasks, the biomedical
PLMs such as PubMedBERT and BioLinkBERT outperform BERT and RoBERTa by more than 10% percent. PubMedBERT
conducts the domain-specific pre-training from scratch and consistently outperforms other biomedical PLMs such
as BioBERT, ClinicalBERT, and BlueBERT in all tasks. Most recently, BioLinkBERT [351] further utilizes the citation
links of documents from PubMed abstracts in the pre-training stage, and has achieved the SOTA performance on most
tasks. Specifically, for the document level task such as the question-answering task, it outperforms PubMedBERT by
15% percent in the PubMedQA dataset and 4% percent in the BioASQ dataset. In the PubMedQA dataset and another
document-level task: document classification, the BioGPT [187] achieves the new SOTA, which conducts the generative
pre-training on PubMed abstracts from scratch like GPT.

Besides directly fine-tuning, there is other research exploring how to better leverage and improve PLMs for various
downstream tasks. In the following, we will introduce the recent progress based on PLMs on these tasks (we show the
example of each downstream task in Table 7) and other critical tasks in the biomedical domain.

4.1 Information Extraction

Information extraction plays a key role in automatically extracting structured biomedical information (entities, concepts,
relations, and events) from unstructured biomedical text data ranging from biomedical literature, and electronic health
records (EHR) to biomedical-related social media corpus, etc (one can check a review in [316]). In the biomedical
community, it generally refers to several important sub-tasks, including named entity recognition (NER), relation
extraction, and event extraction.

4.1.1 Named entity recognition. NER aims to identify the common biomedical concept mentions or entity names (such
as genes, drug names, adverse effects, metabolites, and diseases) of biomedical texts. Singh et al [255] proposed the
first effort to investigate pre-training the bidirectional language model with the PubMed abstract dataset, and then
fine-tune the model for the supervised NER task. Compared with traditional neural network based methods such as
BiLSTM, it outperforms them by around 1% in the F1-score in datasets including NCBI-disease [70], BC5-disease [162],
BC2GM [272], JNLPBA [136], and requires less labelled training data to achieve comparable results. Several methods have
shown that further pre-training the language models on the in-domain data can consistently improve the performance.
For example, Zhu et al [376]19 trained a domain-specific ELMo model in the mixture data of clinical reports and relevant
Wikipedia pages, which outperforms the previous SOTA method based on BiLSTM-CRF by 3.4% in F1-score in the i2b2
2010 [300] dataset. Si et al [269] have shown that the BERT-large further pre-trained on the MIMIC-III achieves the
best performance for the i2b2 2010 dataset, and improves the performance by 5% over that of the traditional neural
network method based on the GloVe embedding. Sheikhshab et al [266] have shown that directly using the off-the-shelf
ELMo embeddings has limited improvement on the performance, while ELMo continually pre-trained on the in-domain

19https://github.com/noc-lab/clinical_concept_extraction
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data has significant improvement on the performance by 4% in the F1 score of the JNLPBA dataset. Gao et al [82]20

investigated the pre-training and semi-supervised self-training of BiLSTM-CRF and BlueBERT with the in-domain
corpora such as MedMentions and SemMed. They evaluated these models on BioNER with limited labeled training data,
and the BluBERT pre-trained on MedMentions has the best performance overall. Moreover, for the scenarios with very
few labeled data, the semi-supervised self-training can significantly boost performance.

Some methods have explored how to utilize PLMs for BioNER with less time and computational consumption.
Naseem et al [215]21 proposed a lightweight domain-specific language model BioALBERT trained on the biomedical
domain corpora for biomedical named entity recognition, that captures inter-sentence coherence via the sentence-
order-prediction (SOP) task. For eight benchmark datasets, it outperforms the BioBERT by a significant margin, such as
increasing the performance of the F1-score by 7.47% in the NCBI–disease dataset and 10.63% in the BC5CDR–disease
dataset. Poerner et al [233]22 proposed the time and memory saving domain-adaption method: training Word2Vec on
target domain text and aligning them with the word vectors of existing PLMs, and thus propose the GreenBioBERT.
On eight BioNER datasets, the GreenBioBERT covers 60% results of BioBERT but only takes 2% of its cloud compute
cost. Moreover, there are methods incorporating BioNER with the relation extraction task or modeling BioNER beyond
the sequence labeling problem. Khan et al [133] employed PLMs including BERT and BioBERT as the encoder for the
multi-task learning of BioNER. They found that using BioBERT has moderately better performance than BERT, and it
requires more training epochs for the BERT based method to achieve comparable results. Giorgi et al [86]23 proposed
the end-to-end model for jointly extracting named entities and their relations using PLMs as the encoder. However, in
the i2b2 2010 [300] dataset, it has worse performance than the method proposed by Si et al [269] and BlueBERT. Sun et
al [285]24 proposed to model the BioNER as the machine reading comprehension (MRC) problem to incorporate the
prior knowledge flexibly, and use PLMs as the text encoder. Among ClinicalBERT, BlueBERT and BioBERT, the method
based on BioBERT achieves the best performance. Tong et al [295] proposed the auxiliary sentence-level prediction
tasks, which can improve the F1 score by 3% in the low-resource scenario on three benchmark datasets compared with
BioBERT. Banerjee et al [19]25 formulated the BioNER as the knowledge-guided question-answer task (KGQA), that
outperforms the SOTA by 1.78–12% on 11 biomedical NER datasets in the exact match F1 score.

Summary. In Table 8, we summarize the commonly used datasets in the BioNER task and compare performances of
different methods on these datasets in Table 9. We can find that the lightweight BioALBERT [215] model pre-trained on
the sentence-order-prediction (SOP) task, is the SOTA method on almost all datasets. Among various PLMs, several
methods [133, 285, 295] show that using BioBERT generally shows better performance than other PLMs such as BERT,
ClinicalBERT, and BlueBERT. Several methods [82, 266, 269, 376] show that pre-training various PLMs such as ELMO,
BERT and BlueBERT with various in-domain data such as MIMIC-III and MedMentions, can consistently improve the
performance.

4.1.2 Relation Extraction. Biomedical relation extraction (BioRE) aims to identify the relationship (semantic correlation)
between biomedical entities mentioned (such as genes, proteins, and diseases) in texts and generally be considered as a

20https://code.ornl.gov/biomedner/biomedner
21https://github.com/usmaann/BioALBERT
22https://github.com/npoe/covid-qa
23https://github.com/bowang-lab/joint-ner-and-re
24https://github.com/CongSun-dlut/BioBERT-MRC
25https://github.com/kuntalkumarpal/KGQA
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Table 8. Datasets used in the BioNER task.

Dataset Language Entity type Text type Text Genre Size

BC5-chem [162] English Chemical Abstract PubMed 1,500
BC4-chem [147] English Chemical Full text PubMd 10,000
BC5-disease [162] English Disease Abstract PubMed 1,500
NCBI-disease [70] English Disease Abstract PubMed 793
i2b2 2010 [300] English Disease Report Clinical records 871
BC2GM [272] English Gene/Protein Sentence MEDLINE 20,000
JNLPBA [136] English Protein,DNA,RNA,cell line Abstract MEDLINE 2,404
LINNAEUS [84] English Species Full text PMC 100
Species-800 [223] English Species Abstract MEDLINE 800
EBM PICO [220] English Participants,interventions, outcomes Abstract PubMed 4,993
CCKS 2017 Chinese Body,disease,symptom,test,treatment Report Clinical Records 400
CCKS 2018 Chinese Anatomy,symptom,independent,drug,operation Report Clinical Records 1,000
PharmaCoNER [5] Spanish Protein,chemical Report Spanish Clinical Case Corpus 1,000
CANTEMIST [204] Spanish Tumor morphology Report Spanish Clinical Case Corpus 1,301
CAS [88] French Terms,negation,uncertainty Clinical cases PubMed 100

Table 9. Performances (F1-score) of different methods on benchmark datasets.

BC5-chem BC4-chem BC5-disease i2b2 2010 BC2GM JNLPBA LINNAEUS Species-800

Singh et al [255] - - 89.28 - 81.69 75.03 - -
Zhu et al [376] - - - 88.60 - - - -
Si et al [269] - - - 89.55 - - - -
Sheikhshab et al [266] - - - - 89.72 70.08 - -
Gao et al [82] 91.80 88.38 84.02 - 80.56 81.44 91.36 72.49
Naseem et al [215] 97.79 96.23 97.61 - 96.33 83.53 99.73 98.72
Poerner et al [233] 93.08 91.26 85.08 - 83.45 76.89 88.34 74.31
Khan et al [133] 90.52 - - - 83.01 - - -
Giorgi et al [86] - - - 89.26 - - - -
Sun et al [285] 94.11 92.70 87.56 - 85.11 78.45 - -
Tong et al [295]26 93.98 - - - 84.78 - - -
Banerjee et al [19] 90.50 92.39 - 92.67 83.47 79.19 92.63 -

classification problem to predict the possible relation type of two identified entities in a given sentence. Recently, PLMs
have been widely explored in the BioRE. Wei et al [320] conducted the first study that investigated fine-tuning BERT
and combining additional BIO tag features for the clinical RE. It shows that the BERT-based model outperforms previous
SOTA methods based on deep neural networks on n2c2 [105] and i2b2 [300] dataset. Similarly, Thillaisundaram et
al [291] adapted the SciBERT to the BioRE via fine-tuning the representation of the classification token (CLS). However,
it only compared with and outperformed a simple sampling-based baseline. To further explore the potential of utilizing
full information in the last layer to improve performance, Su et al [281] proposed to utilize all outputs of the last layer
when fine-tuning the BioBERT model on the BioRE task, which outperforms the BioBERT only using classification token
on the DDI [106], PPI [148] and ChemProt [149] dataset. Su et al [280] proposed to employ the contrastive learning to
improve fine-tuning BERT model for biomedical relation extraction, which outperforms directly fine-tuning BERT on
the DDI, PPI and ChemProt dataset. Xue et al [339] proposed to fine-tune BERT for joint entity and relation extraction
in Chinese medical text, which outperforms the SOTA joint model based on Bi-LSTM by 1.6%. Chen et al [49] combined
BERT with the one-dimensional convolutional neural network (1D-CNN) for the medical relation extraction, which
significantly outperforms the traditional 1D-CNN classifier. Lin et al [176, 177] combined the global embeddings and
multi-task learning to improve BERT on the clinical temporal relation extraction. Guan et al [91] investigated several
PLMs including BERT, RoBERTa, ALBERT, XLNet, BioBERT, ClinicalBERT, in predicting the relationships between
clinical events and temporal expressions, and found that RoBERTa generally has the best performance. To prevent
private information leakage, Sui et al [283] proposed the first privacy-preserving medical relation extraction method
FedED based on BERT and federated learning, which achieved promising results on three benchmark datasets.
Manuscript submitted to ACM



Pre-trained Language Models in Biomedical Domain: A Systematic Survey 29

Table 10. Datasets used in the BioRE task.

Dataset Entity type Text type Relation Size

i2b2 2010 [300] Medical problem—treatment Report 5,261
i2b2 2012 [287] Event–temporal expression Summary 8,294
TM [278] Event–event EHRs 355
DDI [106] Drug–drug Abstract 48,223
PPI [148] Protein-protein Abstract 5,834
ChemProt [149] Protein–chemical Abstract 31,784
BioC VI PM [69] Protein–protein Full text 1,629

Table 11. Performances (F1-score) of different methods on benchmark datasets.

i2b2 2010 DDI PPI ChemProt ib2b 2012

Wei et al [320] 76.79 - - - -
Su et al [281] - 80.7 82.5 76.8 -
Su et al [280]27 - 82.9 82.7 78.7 -
Chen et al [49]28 - - - - 70.85
Guan et al [91] - - - - 70.5
Sui et al [283] - - - - 75.09

Summary. In Table 10 and Table 11, we summary the commonly used datasets and compare the performances of
different methods on these datasets. In summary, fine-tuning various PLMs significantly outperforms traditional neural
network based methods [49, 320], and improving the fine-tuning strategy can further improve the performance, for
example Su et al [280] using the contrastive learning as the auxiliary task, achieves the best performance on DDI, PPI
and ChemProt.

4.1.3 Event Extraction. Event extraction is another important task for mining structured knowledge from biomedical
data, which aims to extract interactions between biological components (such as protein, gene, metabolic, drug, disease)
and the consequences or effects of these interactions [14]. Similar to BioRE, it is formulated into the multi-classification
problem. Many efforts have been proposed to explore the application of PLMs in biomedical event extraction recently.
Trieu et al [296]29 proposed the model called DeepEventMine with the BERT-based encoder, which significantly
outperforms the strong baseline based on CNN. Wadden et al [305]30 explored combining the BERT model and graph
propagation to capture long-range cross-sentence relationships, which have been proven to improve the performance of
the model-based BERT alone. Ramponi et al [245]31 modeled the biomedical event extraction as the sequence labeling
problem, and proposed the model called BEESL with the BERT model as the encoder. It outperformed the baseline based
on LSTM by 1.57% in the GENIA 2011 [137] benchmark. Wang et al [313]32 formulated the biomedical event extraction
as the multi-turn question-answering problem and utilized the question-answering system based on the SciBERT. The
method can form event structures from the answers to multiple questions and achieves promising results on GENIA
2011 [137] and Pathway Curation 2013 [235] dataset. In Table 12 and Table 13, we summarize commonly used datasets
and compare the performance of different methods.

29https://github.com/aistairc/DeepEventMine
30https://github.com/dwadden/dygiepp
31https://github.com/cosbi-research/beesl
32https://github.com/WangXII/bio_event_qa
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Table 12. Datasets used in the Biomedical event extraction.

Dataset Entities Triggers Relations Events

Cancer Genetics 2013 [216] 21,683 9,790 13,613 17,248
EPI 2011 [221] 16,675 2,035 3,416 2,453
GENIA 2011 [137] 22,673 10,210 14,840 13,560
GENIA 2013 [138] 12,725 4,676 7,045 6,016
Infectious Diseases 2011 [236] 12,788 2,155 2,621 2,779
Pathway Curation 2013 [235] 15,901 6,220 10,456 8,121
Multi-level event extraction [234] 8,291 5,554 7,588 6,677

Table 13. Performances (F1-score) of different
methods on benchmark datasets.Genia means the
GENIA 2011 [137] dataset. PC means the Pathway
Curation 2013 [235] dataset.

Genia PC

Trieu et al [296] 63.96 55.67
Ramponi et al [245] 60.22 -
Wang et al [313] 58.33 48.29

4.2 Text Classification

Text classification aims to classify biomedical texts into pre-defined categories, which play an important role in the
statistical analysis, data management, retrieval of biomedical data et al. Fine-tuning pre-trained language models on
biomedical text classification has attracted great attention recently. Gao et al [81] investigated four methods of adapting
the BERT model to handle input sequences up to approximately 400 words long, for the clinical single-label and
multi-label clinical document classification. However, they found that the BERT or BioBERT model generally has equal
or worse performance for clinical data such as the MIMIC-III clinical notes dataset, than a simple CNN model. They
suggested that it may be because BERT or BioBERT models don’t capture clinical domain knowledge due to trained
on the general domain or biomedical literature datasets, and can’t handle too long sentences longer than 512 tokens.
Mascio et al [193] made a comprehensive analysis of the performance of various word representation methods (such
as Bag-of-Words, Word2Vec, GLoVe, FastText, BERT, BioBERT) and classification approaches (Bi-LSTM, RNN, CNN)
on the electronic health records classification. They found that the contextual embeddings from BERT and BioBERT
generally outperform the traditional embeddings, and the traditional deep neural networks Bi-LSTM enriched with
appropriate entity information and specific domain embeddings have better performance than BERT and BioBERT. Guo
et al [92] compared the performance of three PLMs including RoBERTa-base, BERTweet, and Clinical BioBERT on 25
social media classification datasets, in which 6 datasets are biomedical related. They found that RoBERTa-base and
BERTweet outperform Clinical BioBERT, in which RoBERTa-base can capture general text semantic characteristics,
while BERTweet captures more domain knowledge. Gutierrez et al [95]33 also provided an analysis of traditional deep
neural networks and fine-tuning PLMs including BERT and BioBERT on the performance of multi-label document
classification on the COVID-19 dataset: LitCovid. They found that BERT and BioBERT models have better performance
than traditional methods such as RNN, CNN, and Bi-LSTM in the datasets, and BioBERT outperforms BERT due to
domain-specific pre-training.

Summary. We summarize commonly used biomedical text classification datasets in Table 14, and show the perfor-
mances of different methods in these datasets in Table 15. In summary, all these methods found that directly using
fine-tuning PLMs outperforms the traditional neural network based methods. The performance of different language
models depends on the target datasets, for example, BERTweet pre-trained with large scale English Tweets, significantly
outperforms ClinicalBioBERT on the social media dataset PM Abuse [92]. BioBERT has promising performance on the
covid-19 dataset but has worse performance than ClinicalBioBERT on the clinical data such as the MIMIC-III.

33https://github.com/dki-lab/covid19-classification
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Table 14. Datasets used in the biomedical text classification task.

Dataset Label type Label Num Avg Label Num Text type Data Size

HoC [97] Multi-label 37 - PubMed abstracts 1,852
MeSH [297] Multi-label 26,563 12.55 Biomedical articles 10,876,004
MIMIC-III [126] Multi-label 6,919 11.7 Discharge summaries 49,785
LitCovid [95] Multi-label 8 - PubMed articles 23,038
CORD-19 Test [95] Multi-label 8 - PubMed articles 100
PM Abuse [9] Multi-label 4 - Tweets 15,100

Table 15. Performances (accuracy for PM Abuse, macro F1 score for other datasets) of different methods on classification datasets.

Dataset HoC MiMIC-III PM Abuse LitCovid CORD-19

LSTM [4] - - - 83.9 83.2
CNN [140] - - - 83.3 82.7
BERT [65] 80.12 29.3 - 85.5 85.1
BioBERT [156] 81.54 32.4 - 86.3 86.2
ClinicalBioBERT [12] - 44.4 77.4 - -
BERTweet [218] - - 82.4 - -

Table 16. Benchmark datasets in the biomedical sentence similarity task.

Dataset Text type Data Size

BIOSSES [273] PubMed 100
MedSTS [314] Clinical report 174,629
MedSTS_ann [314] Clinical report 1,068
n2c2/OHNLP [315] Clinical report 1,642

Table 17. Performances (F1-score) of different methods on benchmark datasets.

BIOSSES MedSTS

Chen et al [47] 84.8 83.6
Chen et al [45] - 83.8
Chen et al [46] - 85.28

4.3 Sentence Similarity

The semantic similarity task is generally formulated into the regression problem to predict the similarity score of each
sentence pair. Recent works have focused on fine-tuning various PLMs for this task. Chen et al [47]34 proposed the first
pre-trained open set sentence embeddings in the biomedical domain called BioSentVec, which is trained on over 30
million documents from both biomedical literature such as PubMed and clinical notes such as the MIMIC-III Clinical
Database. Compared with existing word embeddings and sentence encoder-based methods, it yields better performance
on both sentence similarity and text classification tasks, due to better capturing the sentence-level semantic information.
Chen et al [45] empirically compared the performance of traditional deep learning methods such as random forest,
RNN, CNN with PLMs including BERT and BioBERT, which shows that PLMs are more effective. Chen et al [46] further
show the BioSentVec can improve the performance of traditional deep learning models by 2% F1 score. Yang et al [349]
explored three PLMs including BERT, XLNet, and RoBERTa for the clinical semantic textual similarity task, in which the
XLNet achieves the best performance among the three models. We show commonly used sentence similarity datasets
and compare performances of different methods in Table 16 and Table 17. We found that Chen et al [46] using the
34https://github.com/ncbi-nlp/BioSentVec
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pre-trained sentence embedding BioSentVec with the traditional neural networks has better performance than Chen et
al [45] directly fine-tuning BERT and BioBERT.

4.4 Question Answering

Biomedical question answering (BioQA) aims to extract or generate the natural language answers to the given questions,
and generally be formulated into the machine reading comprehension approach focusing on predicting the text span of
answers with the given questions and passages containing the answers. Recently, the fine-tuning and transfer learning
of PLMs have been widely explored in the task. Yoon et al [353]35 applied the BioBERT to answer biomedical questions
such as factoid, list, and yes-no type questions. They show that BioBERT fine-tuned with the question-answering
datasets in both the general and biomedical domains and achieved the best performance in the 7th BioASQ Challenge.
Jeong et al [117]36 proposed to transfer the knowledge of natural language inference (NLI) to BioQA with BioBERT,
which outperforms previous methods on Yes/No, Factoid, and List type questions by 5.59%, 0.53%, and 13.58%, in the 7th
BioASQ Challenge. Chakraborty et al [42]37 proposed a novel language model BioMedBERT for question answering
(QA) and information retrieval tasks, which is pre-trained on a large-scale biomedical literature dataset BREATHE based
on BERT, and outperforms BERT in the BioQA. Kamath et al [131] compared the effectiveness of PLMs based on two
different QA models including the machine-reading comprehension and open question-answering method, and show
the question-answering model achieves better performance on the BioQA. Du et al [75] utilized the BERT model as the
encoder and then used the scaled dot-product attention mechanism to capture the interaction between the question and
passage. The proposed method outperforms the best performance for factoid questions in 2016 and 2017 BioASQ-Task B.
Zhou et al [375] utilized the BioBERT and interactive transformer model for both the recognizing question entailment
and question answering task, and showed significant improvements on the single task with the shared representations
of both tasks. Similarly, Akdemir et al [6] also explored multi-task learning to improve the performance of BioBERT on
the BioQA task with the biomedical entity recognition task, and show its improvements on the BioASQ 8B challenge.
However, these models can’t detect multiple spans of the passage when there are multiple answers to the question. To
solve the problem, Yoon et al [352]38 reformulated the BioQA task as the sequence tagging problem to detect multiple
entity spans simultaneously based on the BioBERT encoder, which achieves the BioASQ 7b and 8b list-type questions.

Some works tried to incorporate domain knowledge, such as biomedical-named entities, into PLMs. He et al [101]39

proposed to infuse the domain knowledge of disease into a series of PLMs including BERT, BioBERT, SciBERT, Clin-
icalBERT, BlueBERT, and ALBERT, to improve their performance. They found all these models can be improved by
infusing the disease knowledge, and for example, the accuracy of BioBERT on the CHQ dataset can be improved by
nearly 4%. Rawat et al [249]40 incorporated the medical entity information with entity embeddings and the auxiliary
task on predicting the logical form of the question to improve the accuracy and generalization of the BERT model on
answering questions, which improves the BERT model by 5% F1 score on the paraphrased question answering of the
emrQA dataset. Kommaraju et al [144] introduced the extra biomedical named entities prediction task to improve the
BioBERT on Biomedical QA. They show the BioBERT pre-trained by the prediction task outperforms the previous best
model on the 7b-Phase B of the 7th BioASQ Task challenge.

35https://github.com/dmis-lab/bioasq-biobert
36https://github.com/dmis-lab/bioasq8b
37https://github.com/BioMedBERT/biomedbert
38https://github.com/dmis-lab/SeqTagQA
39https://github.com/heyunh2015/diseaseBERT
40https://github.com/emrQA/bionlp_acl20
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Table 18. Datasets used in the biomedical question answering task.

Dataset Text type Data Size

PubMedQA [122] PubMed abstracts 1,000
BioASQ [217] MEDLINE articles 885
MEDIQA [3] online community 383
emrQA [224] Clinical notes 400,000
cMedQA [367] online community 61,343
COVID19-QA [289] Literature review 124

Table 19. Performances of different methods. For BioASQ 6b, we compare the Mean Reciprocal Rank (MRR) score on the Factoid
question. For the BioASQ, we compare the averaged MRR score on the Factoid question of all batches. For the MEDIQA and emrQA,
we compare the accuracy score.

BioASQ 6b BioASQ 8b MEDIQA emrQA

Yoon et al [353] 48.41 - - -
Jeong et al [117] 48.05 46.65 - -
Chakraborty et al [42] 50.50 - - -
Kamath et al [131] 45.70 - - -
Zhou et al [375] - - 75.8 -
Akdemir et al [6] - 43.61 - -
Yoon et al [352] - 37.95 - -
He et al [101] - - 79.49 -
Rawat et al [249] - - - 59.00
Kommaraju et al [144] - 43.93 - -
Soni et al [275] - - - 75.56
Soni et al [275] - - - 86.97

Besides methods for biomedical literature corpora, other works have proposed question-answering models for
unstructured electronic health records (EHR). Soni et al [275] investigated the performance of various PLMs including
BERT, BioBERT, ClinicalBERT, and XLNet on the clinical question answering, and explored the fine-tuning methods
with different datasets, including datasets in the general domain, biomedical and clinical corpora. They find that
fine-tuning the open-domain dataset SQuAD consistently improves the performance across all the model variants.
Mairittha et al [192] explored four different fine-tuned BERT models for personalized EHR question answering and
show the extended BioBERT-QA model pre-trained on unstructured EHR data achieves the best performance. Table
18 shows commonly used datasets in BioQA , and Table 19 presents the performances of different methods on these
datasets. Several methods [192, 275, 353] have shown fine-tuning PLMs with the open domain question-answering
dataset, and pre-training PLMs with the in-domain datasets improves the performance of various PLMs. Generally,
it assumes that fine-tuning or pre-training with more corpora is always useful, for example, Soni et al [275] fine-
tuning PLMs with the general domain, biomedical and clinical corpora achieves the best performance for the clinical
question answering. Moreover, incorporating the domain knowledge including disease knowledge, medical entities, and
multi-task learning incorporating BioNER task, can significantly improve the performance. For example, He et al [101]
improved the accuracy of BioBERT on the MEDIQA dataset by nearly 4% with the disease knowledge and achieved the
best performance.

4.5 Dialogue Systems

The dialogue system aims to produce a proper response in either a selective [323, 371] or generative [184, 359, 373] way
given a dialogue context for the biomedical goals of a user. The context includes historical utterances from users and
systems, biomedical knowledge base, electronic health records of users, etc. The format of a response could be various,
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e.g., a set of structured user goal data [321], a distribution of biomedical labels for diagnosis [180, 371] and natural
language utterances [359]. For different types of contexts and responses, recent work focuses on end-to-end Dialogue
System (DS) [337, 359] or parts of four typical DS modules, i.e., Natural Language Understanding (NLU) [73, 267],
Dialogue State Tracking (DST) [180, 321], Dialogue Policy Learning (DPL) [321, 329] and Natural Language Generation
(NLG) [359]. Recently, PLMs are well-known for natural language modeling, but it is nontrivial to pre-train on task
datasets that are based on a specific domain [323]. To adapt PLMs to the medical domain, the dominant solution is
to pre-train a language model on a large-scale general/medical corpus and then fine-tune the model with a medical
dialogue dataset. Yan et al [344]41 first explored fine-tuning PLMs including BER-WWM, BERT-MED, MT5 and GPT2 on
𝑀2-MedDialog dataset for understanding the intents and slots of patients, in which MT5 achieves the best performance.
Zeng et al [359]42 pre-trained Transformer, BERT-GPT, and GPT on dialog datasets and other large-scale texts, and then
fine-tune models on the Chinese MedDialog dataset for generating clinically correct and human-like medical responses.
BERT-GPT has been shown to have lower perplexity compared to both Transformer and GPT, while maintaining
similar diversity metrics as Transformer. Shi et al [267]43 show BERT has promising performance on the medical
slot-filling task, and pre-trained embedding from BERT can further improve the performance of the weak supervision
method. DialoGPT [373]44 is pre-trained based on GPT-2 [240] with a large in-domain dialogue dataset, and is able to
generate more relevant, informative and coherent responses compared with the strong baseline based on the sequence
to sequence model. Li et al [164]45 proposed the dialogue-adaptive pre-training objectives (DAPO) by considering
dialogue-specific features including coherence, specificity, and informativeness, which shows better performance than
other language modeling objectives such as MLM and NSP.

Summary. We summarize all available biomedical dialogue datasets in Table 20. Different from using the accuracy,
recall, and F1 score metrics used by previous tasks, the dialogue system task generally uses the machine translation
metrics including BLEU [373], METEOR [20], and NIST [68], to measure the similarity between generated responses
and the ground truth based on n-gram matching. These metrics for evaluating generated responses are limited in
that they only take into account shallow lexical overlaps and do not account for paraphrasing and terminology
variations. To address this, some automatic metrics based on pre-trained language models have been developed, such
as BERTScore [368], which calculates the similarity between two sentences using contextual embeddings from PLMs.
However, these metrics have been shown to be inadequate in evaluating the faithfulness of generated responses. While
there have been efforts to develop factual consistency metrics like BARTScore [356] in the general domain, there
has been less focus on developing such metrics in the biomedical domain to evaluate factual correctness. Since the
aforementioned methods utilized different datasets, it is hard to compare their performances directly. In summary,
they have demonstrated that creating more effective pre-training tasks, incorporating task-specific information, and
pre-training with large in-domain dialogue datasets are effective strategies for improving the performance of series
PLMs.

41https://github.com/yanguojun123/Medical-Dialogue
42https://github.com/UCSD-AI4H/Medical-Dialogue-System
43https://github.com/xmshi-trio/MSL
44https://github.com/microsoft/DialoGPT
45https://github.com/lockon-n/dapo
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Table 20. Datasets used in the biomedical dialogue system tasks.

Dataset Language Domain Evaluated Task Text type # dialogues

MZ [321] EN Pediatrics DPL Discharge summaries 710
DX [337] CN Pediatrics DPL Patient-doctor dialogues & patient reports 527
RD [172] CN Pediatrics DPL Patient-doctor dialogues & patient reports 1,490
SD [172] CN 9 domains DPL Patient-doctor dialogues & patient reports 30,000
CMDD [180] CN Pediatrics NLU Patient-doctor dialogues 2,067
SAT [72] CN 14 domains NLU Patient-doctor dialogues 2,950
MSL [267] CN Pediatrics NLU Patient-doctor dialogues 1,652
MIE [371] CN Cardiology NLU Patient-doctor dialogues 1,120
CovidDialog [347] CN/EN COVID-19 NLG Patient-doctor dialogues 1,088/603
MedDG [184] CN Gastroenterology NLG Patient-doctor dialogues 17,000
MedDialog [359] CN/EN 29 domains NLG Patient-doctor dialogues & patient reports 3,407,494/257,332
Chunyu [179] CN - NLG Patient-doctor dialogues 12,842
KaMed [160] CN 12 domains NLG Patient-doctor dialogues 63,754
𝑀2-MedDialog-base [344] CN 30 domains NLU&DPL&NLG Patient-doctor dialogues & patient reports 1,557
𝑀2-MedDialog-large [344] CN 40 domains NLG Patient-doctor dialogues & patient reports 95,408

4.6 Text Summarization

Automatic text summarization aims to automatically summarize the key information of single or multiple documents
with shorter and more fluent texts, which greatly decreases the time-consuming of acquiring important information.
Similar to the general domain, existing methods can generally be classified into two categories: extractive summarization
methods and abstractive summarization methods.

To explore the advanced PLMs in the text summarization of the biomedical domain, the domain knowledge is
incorporated by existing methods via domain fine-tuning [190, 332]. For biomedical extractive summarization, Du et
al [74] proposed a novel model BioBERTSum, which used the domain-aware pre-trained language model as the encoder
and then fine-tuned it on the biomedical extractive summarization task. It outperforms SOTA extractive methods such as
BERTSum. Xie et al [331]46 proposed the knowledge infusion training framework to incorporate medical knowledge to
improve a series of PLMs including BERT, RoBERTa, BioBERT, and PubMedBERT. The PubMedBERT-based method has
the best performance and outperforms other strong baselines such as BERTSum and MatchSum. Gharebagh et al [85]
utilized the domain knowledge: salient medical ontological terms to help the content selection of the SciBERT-based
clinical abstractive summarization model, which improves SOTA results by around 2% in ROUGE metrics on two
medical datasets MIMIC-CXR [124] and OpenI [63]. Bishop et al [28]47 proposed unsupervised extractive summarization
method for biomedical literature with T5 and BERTScore, which achieves better performance than strong supervised
methods such as BERTSum. Xie et al [333]48 incorporated the neural topic model with hierarchical transformer encoder
(HTE) based on PLMs, which significantly improved the performance of RoBERTa on long biomedical document
summarization.

For abstractive summarization, Wallace et al [306] utilized the Bidirectional and Auto-Regressive Transformers
(BART) as the encoder for generating biomedical evidence summary of multiple clinical trials. They found that the
summarizers can produce fluent and relevant synopses, but the factual accuracy can’t be guarantee. Deyoug et al [67]49

investigated the BART model for the multi-document summarization on medical studies, which can generate coherent
summaries that align with the reference summaries in evidence direction approximately 50% of the time. Guo et
al [93]50 proposed a novel task of plain language summarization task on the biomedical scientific reviews, and explored

46https://github.com/xashely/KeBioSum
47https://github.com/jbshp/gencomparesum
48https://github.com/xashely/GRETEL_extractive
49https://github.com/allenai/ms2/
50https://github.com/qiuweipku/Plain_language_summarization
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Table 21. Datasets used in the biomedical text summarization.

Dataset Text type Type Data Size

COVID-19 [311] Biomedical literature Single -
MS^2 [67] Biomedical literature Multi 470,402
CDSR [93] Biomedical literature Single 7,805
RCT [306] Clinical trials Multi 4,528
PubMed [55] Biomedical literature Single 119,924
MIMIC-CXR [124] Radiology reports Single 124,577
OpenI [63] Radiology reports Single 3,599
Readibility [188] Biomedical literature Single 28,124

pre-training BART model on general domain dataset CNN/DM and in-domain PubMed dataset. They found BART
pre-trained using CNN/DM and PubMed abstracts demonstrate the strongest ROUGE scores, whereas the BART model
pre-trained only using PubMed abstracts has the lowest level of readability. Luo et al [188]51 proposed the new task
of readability controllable summarization for biomedical documents, and explored the language model Longformer-
Encoder-Decoder (LED) with the advanced controllable techniques including prompts and multi-head. They demonstrate
that the method can generate fluent summaries, but it lacks the capability to effectively control for readability. Hu et
al [112] incorporated the additional knowledge with graph encoder and contrastive learning, to enhance the performance
of the BioBERT. The proposed method achieves state-of-the-art results in radiology report summarization. For the
information acquisition of COVID-19 related scientific literature, Kieuvongngam et al [135] proposed the BERT and
GPT-2 based model for both extractive and abstractive summarization of COVID-19 research literature. There are also
works to build the multi-document summarization system for the information retrieval of COVID-19 research literature
with the Siamese-BERT [78], BioBERT, and XLNet [279].

Similar to the dialogue system task, the commonly used automatic metrics in the text summarization task including
ROUGE [178], and BERTScore [368], usually evaluate the relevance and similarity between the generated summaries
and the gold summaries. Moreover, the factuality metrics have attracted much attention recently to evaluate the factual
correctness of generated summaries [189, 332, 335]. Deyoung et al [67] introduce the ΔEI metric to determine the degree
of the factual accuracy of generated summaries in relation to the input medical studies. Zhang et al [372] introduced the
ChexBERT F1 score to evaluate the factual correctness between generated summaries and gold summaries of radiology
reports. In Table 21, we summarize datasets used in the biomedical text summarization task, and report performances
of different methods on these datasets with the aforementioned evaluation metrics in Table 22. We can find that the
method incorporating the domain knowledge [331] has better performance than directly fine-tuning PLMs [74], and
the method [333] for long biomedical text summarization achieves the best performance on two biomedical literature
datasets PubMed and CORD-19.

4.7 Natural Language Inference

Natural language inference (NLI, also known as text entailment) is a basic task for the natural language understanding
of biomedical texts. It aims to infer the relation such as entailment, neutral and contradiction, between two sentences,
named as the premise and hypothesis, which can further benefit biomedical downstream tasks such as commonsense
comprehension, question answering and evidence inference.
51http://www.nactem.ac.uk/readability/
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Table 22. Performances (ROUGE-L score, counting the longest common subsequence (LCS) between the generated summary and
the reference summary.) of different methods.

PubMed CORD-19 MS^2 RCT MIMIC-CXR

Du et al [72] 29.58 - - - -
Xie et al [331] 33.28 29.10 - - -
Bishop et al [28] 35.65 33.35 - - -
Xie et al [333] 38.61 40.01 - - -
Wallace et al [306] - - - 0.265 -
Deyoug et al [67] - - 20.80 0.1760 -
Hu et al [112] - - - - 46.65

Table 23. Datasets used in the biomedical natural language inference.

Dataset Text type Relation Type Data Size

MedNLI [251] Clinical notes Entailment, contradiction, or neutral 14,049
RQE [1] Consumer health questions Entailment, contradiction 9,120
CMFAQ [377] Consumer health questions Entailment, contradiction 53,822

To facilitate the development of methods for text inference and entailment in the medical domain, participants in the
MEDIQA 2019 shared task [3] investigated the SciBERT, BioBERT, and ClinicalBERT in the medical NLI task. Among
these participants, Wu et al [328]52 achieves the best performance with 98% accuracy in the REQ dataset [1], which
ensembled results of different base models and incorporated the syntax information. Sharma et al [265]53 incorporated
the embedding of knowledge graph (UMLS) into the BioELMo to improve its performance, which shows an improvement
of 0.8% regarding the accuracy to the base BioELMo model. Yadav et al [341]54 a novel framework Sem-KGN for the
medical textual entailment task, which infused the medical entity information from the medical knowledge bases into
the BERT model. They show the medical knowledge information improves the SOTA language model ClinicalBERT
by 8.27% on the REQ dataset. He et al [101]55 proposed to infuse the domain knowledge of disease into a series of
PLMs including BERT, BioBERT, SciBERT, ClinicalBERT, BlueBERT, and ALBERT, which improves performances of
these models in all cases. Zhu et al [377] utilized the neural architecture search (NAS) to automatically find a better
transformer structure for language models, which improves the performance of the Chinese BERT-wwm-ext model [61]
on two Chinese NLI datasets. We summarize all available datasets in Table 23, and compare performances of different
methods in Table 24. We can find that Wu et al [328] using the ensemble method significantly outperforms other
methods in RQE. Among various PLMs including BioELMo, BERT, BioBERT, SciBERT, ClinicalBERT, BlueBERT, and
ALBERT, ALBERT achieved the best performance on the MedNLI dataset.

4.8 Proteins/DNAs Prediction

In this section, we only list some applications that have been well-investigated or have potential, although there are
much bigger spaces in biomedical domains to make use of PLMs.

52https://github.com/ZhaofengWu/MEDIQA_WTMED
53https://github.com/soummyaah/KGMedNLI
54https://github.com/VishalPallagani/Medical-Knowledge-enriched-Textual-Entailment
55https://github.com/heyunh2015/diseaseBERT
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Table 24. Performances (accuracy for MedNLI and REQ, F1 score for CMFAQ) of different methods.

MedNLI RQE CMFAQ

Wu et al [328] - 98.00 -
Sharma et al [265] 79.04 - -
Yadav et al [341] - 56.17 -
He et al [101] 79.49 - -
Zhu et al [377] - - 88.9

4.8.1 Protein structure predictions. Proteins are essential to life, and knowing their structure can facilitate our un-
derstanding of their function. However, the structure of only a small fraction of proteins is known [127]. Predicting
the 3D structure of a protein is based solely on its amino acid sequence, a.k.a, ‘protein folding problem’ [15]. To
evaluate protein structure predictions, CASP (Critical Assessment of Structure Prediction) uses proteins with recently
solved structures that have not been deposited in the PDB or publicly disclosed; it therefore, is a blind test for the
participators, which is the gold-standard assessment for protein structure predictions [151, 209]. In CASP14, AlphaFold
2 [127], a model designed by DeepMind achieves much better performance than other participating methods (e.g.
template-based methods). The authors claim that AlphaFold 2 could provide precise estimates and could be confidently
used for protein structure predictions with high reliability. However, predictions of existing methods, including the
AlphaFold 2 are more family-specific than protein-specific, and rely on the evolutionary information captured in
multiple sequence alignments (MSAs). To solve these issues, citeweissenow2021protein proposed to use the attention
head from the pre-trained protein language model ProtT5 without MSAs. Recently, Sturmfels et al [277] presented a
new biologically-informed pre-training task: predicting protein profiles derived from multiple sequence alignments,
which can improve the downstream protein structure prediction task.

4.8.2 DNA related applications. There are few works in DNA pre-training, among which DNABERT [119] is the
representative one. DNABERT not only achieved SOTA performance on promoter prediction, splice sites and tran-
scription factor binding sites, but also identify functional genetic variants. Hong et al [109] proposed to pre-train DNA
vectors to encode enhancers and promoters, and then Incorporated the attention mechanism to predict long-range
enhancer–promoter interactions (EPIs). Yamada et al [343] proposed a novel method based on the BERT to predict the
interactions between RNA sequences and RNA-binding proteins (RBPs), in which BERT is pre-trained on the human
reference genome. Mock et al [205] presented the BERTax based on BERT, for the taxonomic classification of DNA
sequences.

4.9 Competitions and Venues

To facilitate the technological developments in biomedical text mining, many shared tasks and competitions have been
organized since several years ago, focusing on various important tasks in the biomedical domain.

• BioNLP workshop. The BioNLP workshop56 has been organized for 20 years and continually promoted the
development of the biomedical domain, in which the community proposed a series of shared tasks and benchmark
datasets. In BioNLP 2019, the BioNLP Open Shared Tasks (BioNLP-OST) 2019 [123] and the MEDIQA 2019 Shared
Task [3] were organized. The BioNLP-OST 2019 proposed six tasks, including the information extraction on the
bacterial biotopes and phenotypes, event extraction of genetic and molecular mechanisms, pharmacological

56https://aclweb.org/aclwiki/SIGBIOMED
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substances, compounds and proteins named entity recognition, integrated structure, semantics and coreference
task, concept extraction for drug repurposing, and the information retrieval task for neuroscience. The MEDIQA
2019 aims to explore the method development on the natural language inference (NLI), recognizing question
entailment (RQE), and question answering (QA) in the medical domain. In bioNLP 2021, the MEDIQA 2021 [2]
shared tasks have three tasks related to the summarization of medical documents, including the question
summarization task, the multi-answer summarization task, and the radiology report summarization task.

• BioNLP-OST. The BioNLP Open Shared Tasks (BioNLP-OST)57 has been proposed since 2009 and was motivated
to facilitate the development and sharing of methods on various tasks of biomedical text mining. It is organized
every two years and organized at different conferences such as BioNLP and EMNLP. The latest BioNLP-OST
2019 is organized at the BioNLP 2019 as introduced aforementioned.

• BioASQ. The BioASQ58 organizes workshops and challenges on biomedical semantic indexing and question
answering. It has been held annually since 2013. In BioASQ 2019, the large-scale biomedical semantic indexing
task, the biomedical information retrieval and question-answering task, and corresponding benchmark datasets
are proposed.

• BioCreAtIvE. The Critical Assessment of Information Extraction systems in Biology (BioCreAtIvE)59 organized
challenge evaluations for the text mining and information extraction method on the biological domain since
2004. The latest BioCreative VII Challenge proposed five tracks, of which two tracks are related to COVID-19,
including text mining and multi-label topic classification.

• TREC. The Text REtrieval Conference (TREC60) organizes workshops for supporting the development of
information retrieval methods based on large test collections. It was started in 1992 and held annually. It has
biomedical tracks focusing on clinical decision support, precision medicine, and clinical trials et al.

• eHealth-KD. The eHealth-KD61 organizes challenges on the structure knowledge extraction of eHealth docu-
ments in the Spanish Language. The eHealth-KD Challenge 2019 proposed the key phrases identification and
classification task, and the semantic relations detection task.

• #SMM4H. The Social Media Mining for Health Applications (#SMM4H)62 held workshops and shared tasks
related to natural language processing challenges in social media data for health research since 2015 annually.
The shared tasks in the #SMM4H ’21 involve the information processing methods on Twitter related to COVID-19,
self-report of breast cancer, adverse effect mentions, medication regimen, and adverse pregnancy outcomes.

Moreover, there are some challenges proposed recently, such as the COVID-19 Open Research Dataset Challenge
(CORD-19)63 in response to the COVID-19 pandemic, EHR DREAM Challenge64 proposed in October 2019 and focusing
on using electronic health record data to predict patient mortality, and ICLR 2021 workshop65 devoting to propose
machine learning methods for preventing and combating pandemics. Furthermore, since the continual development
of pre-trained language models from 2018, in recently organized challenges, most participants proposed pre-trained
language model-based methods for different tasks.

57https://2019.bionlp-ost.org/home
58http://bioasq.org
59https://biocreative.bioinformatics.udel.edu
60https://trec.nist.gov
61https://knowledge-learning.github.io/ehealthkd-2019/
62https://healthlanguageprocessing.org/smm4h-2021/
63https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
64https://www.synapse.org/#!Synapse:syn18405991/wiki/589657
65https://mlpcp21.github.io/pages/challenge
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5 DISCUSSION

5.1 Limitations and Concerns

In this subsection, we will mainly discuss the limitations of biomedical PLMs and raise some concerns about them.

Misinformation. The training corpora consist of EHR, and social media may include wrong information. Thus,
pre-trained language models pre-trained on them may convey some misinformation [335]. Furthermore, the biomedical
domain itself may have misclassified disease definitions during its development process. Misinformation has become
much more serious in the biomedical domain than in the general domain since this may lead to fatal biomedical
decision-making consequences. However, researchers must be aware of the complexity of routinely collected electronic
health records, including ways to manage variable completeness. We believe that the predictions from pre-trained
language models should be artificially calibrated by biomedical experts before it is used by end-users like patient or the
public.

Interpretation issues. Along with the power of neural networks, there is a growing concern about the interpretability
of deep neural networks (DNNs). While in the biomedical domain, the consequence of bad decisions/predictions may be
deadly; thus, a well-interpreted model is more crucial. The interpretation in the biomedical domain may come from two
aspects: (1) biomedical models should be easily understood, and the predictions could be simulated from the raw input,
(2) a (textual) reason should be provided for each prediction. The basic example of the former (a.k.a, transparency [181])
is decision trees that could clearly illustrate the decision path. However, such a transparency goal is hardly achieved in
modern natural language processing, especially with pre-trained language models. More efforts could be made for the
latter; one has to find some textual explanation for each prediction/decision, based on what doctors and patients could
make their own decisions.

Identifying causalities from correlations. Similar to interpretability, causality may provide the underlying explanation
of the model decisions. Causality is crucial in many tasks of biomedical knowledge, e.g., diagnosis, pathology, or systems
biology. Causal associations between biological entities, events, and processes are central to most claims of interest; see
an early review from [143]. With automatic causality recognition, it could suggest possible causal connections that may
be beneficial for biomedical decisions, which hence greatly reduces the human workload [199].

Trade-off between coverage or quality? There are no large-scaled and high-quality training corpora in the biomedical
domain. This means one has to sacrifice its coverage to obtain a high-quality vertical application, or train a general
model with large-scaled yet low-quality corpora. Pre-trained language models typically consist of many transformer
layers that have many parameters, which usually require a massive amount of plain text. This may lead to a general
model with great coverage, but a smaller proportion of high-quality expert knowledge.

Heterogeneous training data. For biomedical understandings, there is heterogeneous information, including tables,
figures, graphs (fMRI), etc. For example, tables and numbers are crucial in scientific literature. But most PLMs are unable
to interpret tables and numbers well. To deeply capture the information in these heterogeneous data, both in-depth data
prepossessing and model adaption may be needed. Especially, multi-domain pre-trained language models in biomedical
should be paid much more attention.

Ethics and bias. With the rapid development of AI systems and applications in industrial products, it should be aware
that they should not introduce any bias for special groups or populations [194], and some of the efforts were taken in the
Manuscript submitted to ACM
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NLP field [29, 83, 286, 374]. This becomes more crucial in these sensitive environments in the biomedical domain that
involves life-changing decisions, like surgery [254]. It should ensure that the decisions cannot reflect discriminatory or
biased behavior toward specific groups or certain populations. A few works have quantified the ethics and bias issues
in the domain of pre-trained language models.. [362] quantifies biases in clinical contextual word embeddings. The
reason behind this may arise due to the training itself is biased with respect to various attributes like gender, language,
race, age, ethnicity, and marital status. For example, in the MIMIC-III dataset [126], one can find: 1) gender bias: males
have more heart disease than females, and 2) ethnicity bias: black patients have fewer clinical studies than other groups
[129]. Considering the complexity of directly reducing biases in training corpora, existing works explore identifying
bias by adversarial training [362], or data augmentation [202].

Privacy. Although most corpora used in biomedical pre-training like scientific publications and social medical are
open-access. Some EHRs are private since some organizations do not want to expose their data. For example, clinical
records may contain patient visits and medical history; these sensitive information may bring some physical and mental
harm to patients if exposed [214]. Note that de-identification of these sensitive information in EHR records (like MIMIC
III) is not always safe; recent works showed that there is data leakage from pre-trained models in the general domain,
i.e. recovering Personal Health Information (PHI) from pre-trained models trained from is possible [157]. Therefore, we
warn the public release of pre-trained models, if PHI is risky to be exposed. Recently, Nakamura et al [214] proposed
a framework called ‘KART’ to assess the sensitive information from pre-trained biomedical language models using
various attacks. Also, the federated learning [166, 345] framework may help when different organizations and end-users
could collaboratively learn a shared prediction model while keeping all the training data on a private side.

5.2 Future trends

We further suggest some future trends in this subsection.

Standardized benchmark. In general NLP fields, evaluation criteria and standard benchmarks are a driving force
for the NLP community. For example, BERT [66] was widely accepted in benchmarks [242, 307] makes it spread to
various tasks in NLP. On the other hand, lacking an effective evaluation criterion is one of the bottlenecks of text
generation [41]. In the biomedical domain, various pre-trained models and their fine-tuning applications have been
proposed (as introduced in Sec. 3 and Sec. 4). However, they are generally not well-compared. Although a few efforts
have been made to standardize benchmarks for biomedical pre-trained models, which include but are not limited to
[90, 364]. This becomes much more difficult in the cross-discipline domain like the biomedical domain since papers
are usually from different communities like informatics, medicine, and computer science. An open standardized and
well-categorized benchmark (like in [159, 163]) should be proposed to make use of the advantages of each work and
collaboratively push the development of biomedical NLP. This survey is the first step to introducing the biomedical
pre-trained language models and their applications in downstream tasks. More efforts are expected to be made to design
fine-grained taxonomy and define each SOTA approach in various applications, based on what incremental work could
be better evaluated.

Open culture. In general NLP fields, a lot of effort is made to make better-available resources, including open-source
resources (released training data and models), and fairly implemented approaches. In addition, open culture makes
researchers could easily contribute to the community. For example, the NLP community has been largely developed
thanks to the model collections [79, 325]. In addition, most accepted papers in top conferences tend to release codes,
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models, and data. Biomedical NLP fields also benefit a lot from such open culture and standard systematic evaluations.
For instance, pre-trained models in Huggingface 66 largely fascinated their applications in the biomedical domain.

Efficiency on pre-trained language models. Compared to previous SOTA methods training from scratch based on
neural networks such as LSTM or CNN, before Transformer, pre-trained language models are much bigger in terms of
model scale and much slower due to the increasing number of parameters. This is more expensive for deployment that
requires more computing resources. One may have to refer to [290] for efficient transformers. For example, current
work explores quantization [18, 369], weights pruning [110], and knowledge distillation [120, 257] for BERT. Therefore,
in the biomedical domain, pre-training language models with lower computation complexity are a direction needed to
pay more attention.

Generation-based PLMs are under-investigated. Most works focused on encoder-based models, and a few works
involve decoder or encoder-decoder architectures that enable generations. This may be due to the fact that classification
tasks may be widely used in downstream biomedical tasks. Very recently, [146] proposes GPT models using temporal
electronic health records and [232] trained a T5-based biomedical pre-trained model. We believe that generation-based
PLMs (e.g. GPT, T5, and BART) have great potential in the biomedical domain, but it is currently under-investigated.
Very recently, we have witnessed some work that uses large generation-based PLMs in the biomedical domain, see
especially BIOGPT [187], PubMedGPT 67, and Flan-PaLM [270].

Few-shot learning. [229] evaluates the few-shot ability of LMs when held-out examples are unavailable for choosing
hyperparameters or prompts and finds that LMs do not perform well compared to random selection and under-perform
selection based on held-out examples. In other words, previous methods overestimate the few-shot capability of LMs
based on more realistic settings. This might be even worse for biomedical LMs.

In non-English or low-resource language. Most works in biomedical pre-trained language models are with English
corpora, and a few about Chinese [365], German [36], Japanese [132, 304], Spanish [7, 8, 186, 204], Korean [141], Russian
[299], Italian [40], Arabic [17, 33], French [60], Portuguese [259, 260] etc. For non-English biomedical tasks, there are
two mainstream solutions: a single non-English language paradigm and a multi-linguistic paradigm. The former uses a
single language, while the latter uses multiple languages. The multi-linguistic paradigm could be more beneficial for
low-resource since biomedical knowledge itself is language-independent, and information in a second language could
be complementary.

Multi-modal pre-training. Multi-modal pre-training [239, 244] has attracted much attention in image classification
and generation tasks, because it only needs cheap but large-scale publicly available online resources. This shows great
potential in machine learning since less human annotation is needed. It is expected that various modalities could provide
complementary information. For example, making use of biomedical codes, medical images, waveforms, and genomics
in pre-training models would be beneficial but challenging due to its multi-modal nature.

Injecting biomedical knowledge in pre-trained language model. Before the pre-training age, some works [231] have
explored injecting medical knowledge into embeddings that provide potentially better ML features. Recently, existing
work claims that pre-trained language models could be a soft knowledge base that captures knowledge. Despite this,
[59, 338, 363] also tried to inject knowledge into pre-trained language models explicitly. In the biomedical domain,
66https://huggingface.co/
67https://crfm.stanford.edu/2022/12/15/pubmedgpt.html
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which is knowledge-intensive; knowledge-injected models could have great potential in the future. For example, [198]
integrates domain knowledge (i.e., Unified Medical Language System (UMLS) Metathesaurus) in pre-training via a
knowledge augmentation strategy.

Interpretability in biomedical PLMs. Neural networks were criticized for having limited interpretability. Pre-trained
language models are typically huge neural network models, which is more challenging in terms of interpretability.
One may expect to understand the working mechanism related to the medical characteristics in pre-trained language
models. For example, probing pre-trained language models have been widely used to understand pre-trained language
models, see [145, 175, 303, 327]. For biomedical pre-trained language models, [10] aims to evaluate pre-trained language
models about the disease knowledge. [302] exhaustively analyzing attention in protein Transformer models, providing
many interesting findings to understand the working mechanisms better. [121] conducts some probing experiments
to determine what additional information is carried intrinsically by BioELMo and BioBERT. Another direction of
interpretability in the biomedical field is to mine the causality (rather than correlation) due to its crucial relevance
in establishing clinical interventions and public health policies. Correlation merely indicates a statistical relationship
between two variables, which is valuable in generating hypotheses, but provides limited insights into the underlying
mechanisms. Conversely, causality moves beyond associative relationships to delineate direct cause-effect relationships.
This deeper understanding is pivotal in biomedical research, as it provides the foundation for intervention studies and
enables the development of effective treatments. Identifying a causal relationship, for instance, between a specific genetic
mutation and a disease, allows for targeted therapies and personalized medicine. Thus, while correlation provides a
starting point for scientific exploration, it is the discernment of causality that truly advances biomedical knowledge and
contributes to the development of life-saving interventions.

Dialogue-based medical consultation. Transitional medical consultation is to obtain medical suggestions and treatment
from clinicians. Recently, AI communities have tried to solve medical consultations through online ways using artificial
intelligence tools, especially for pre-consultation and psychological treatment. Meanwhile, online medical consultation
is another natural playground for current state-of-the-art AI algorithms under the ‘AI for Science’ Trend. Some existing
work formulate medical consultation as a question-answering task in the sense that it could leverage many existing
question-answering pairs. However, medical consultation is complicated in the sense that static and single-turn question-
answering pairs could not solve individually-dependent consultation; especially, medical consultations are more likely
to be dependent on individual backgrounds, like historical diseases and treatment, genes, and dietary habits. We believe
dialogue-based consultation systems could better fit medical scenarios than single-question-answering systems. Existing
medical dialogue systems have shown some potential but also perform much worse than the expectation. Very recently,
motivated by the great success of Open AI ChatGPT which uses giant language models to meet human consultation
needs, we believe using giant medical language models could largely improve the quality of medical consultation. More
optimistically, we believe this might, at least to some extent, revolutionize the current medical industry, see [153, 219]
as some preliminary work.

Scale law in medical PLMs. Not only in dialogue systems, large-scale PLMs are as popular as it in the general domain.
The reasons are twofold. First, the adaption of SOTA PLMs to the medical domain takes time, and it is usually more
than half a year late after a general PLM is released. Secondly, non-generative language models are insensitive to huger
scales, and their performance becomes saturated when they are beyond 24 layers (the scale of BERT-large). Meanwhile,
most works use non-generative language models (e.g., BERT, RoBERTa, and Electra) in the biomedical domain while
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very few generative language models are used. With huger language models, we might see some emergent abilities in
medical applications. Fortunately, we have witnessed a preliminary sign that we started to investigate large language
models in medical/clinical tasks [174, 187, 270], especially BIOGPT [187], PubMedGPT 68, and Flan-PaLM [270].

Data collection and sharing protocol. The need for data in biomedicine is tremendous since data is the fuel for
learning. The reasons that hinder medical data collection and sharing are manyfold. Firstly, it has a legal risk regarding
privacy issues, especially because this also involves cross-border or cross-organization data transfer. Secondly, an
individual hospital might adopt different standards in terminology, this issue becomes more severe in developing
counties than in developed counties. The merge between two data sources will be difficult due to the inconsistency of
terminology. Therefore, it requires a well-defined protocol to deal with this, including solving terminology inconsistency
and data privacy. From an NLP perspective, we need to normalize word terminology and data desensitization. For other
perspectives, this needs some high-level data-sharing protocol, e.g., federated learning [346].

Dealing with long sequences. The computation of self-attentions in Transformers is quadratic to the length of sequences.
This means the longer sequences would necessarily make transformer-based PLMs much more time-consuming.
Sequences in biomedicine are usually long; it varies from DNA/protein sequences to texts. First, DNA/protein sequences
are long especially for big protein sequence which has lengths that are longer than 4096, i.e., the typical maximum
sequence length in language models. Biomedical texts, including EHRs, biomedical encyclopedias, and biomedical
literature, are usually longer than the general domain (e.g., the maximum sentence length used in GLUE is usually 128);
for instance, there is usually text redundancy in clinical notes. Therefore, we need to design more efficient and effective
models tailored to long sequences, see some existing recent works [169, 170].

6 CONCLUSION

This paper systematically summarizes recent advances of pre-trained language models in the biomedical domain,
including background, why and how pre-trained language models are used in the biomedical domain, existing biomedical
pre-trained language models, data sources in the biomedical domain, application of pre-trained language models in
various biomedical downstream tasks. Furthermore, we also discuss some limitations and future trends. Finally, we
expect that the pre-trained language model in the general NLP domain could also help the specific biomedical domain.
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