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This article presents a fast and approximate multifrontal solver for large sparse linear systems. In a recent

work by Liu et al., we showed the efficiency of a multifrontal solver leveraging the butterfly algorithm and

its hierarchical matrix extension, HODBF (hierarchical off-diagonal butterfly) compression to compress large

frontal matrices. The resulting multifrontal solver can attain quasi-linear computation and memory complex-

ity when applied to sparse linear systems arising from spatial discretization of high-frequency wave equations.

To further reduce the overall number of operations and especially the factorization memory usage to scale

to larger problem sizes, in this article we develop a composite multifrontal solver that employs the HODBF

format for large-sized fronts, a reduced-memory version of the nonhierarchical block low-rank format for

medium-sized fronts, and a lossy compression format for small-sized fronts. This allows us to solve sparse

linear systems of dimension up to 2.7× larger than before and leads to a memory consumption that is reduced

by 70% while ensuring the same execution time. The code is made publicly available in GitHub.
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1 INTRODUCTION

Efficiently computing the solution of large sparse linear systems arising from finite element, finite
difference, or finite volume discretizations of Partial Differential Equations (PDEs) is an im-
portant requirement for many scientific and engineering applications. The multifrontal method
is a fast solution method that can be implemented efficiently on modern hardware, as it arranges
the computations in such a way that most of the computational work is done on smaller dense
submatrices, so-called frontal matrices. Unfortunately, the overall amount of dense linear algebra
operations needed to complete the multifrontal method sums up to O (N 2) for typical 3D PDEs,
where N is the matrix dimension corresponding to the sparse linear system.

For many applications arising from wide classes of PDEs, this complexity can be reduced
up to O (N logα N ) for some α by leveraging algebraic compression formats to exploit rank
structures in off-diagonal blocks of the matrix. Examples of low-rank-based compression meth-
ods include H matrices [12, 15], HODLER (hierarchically off-diagonal low-rank) formats [1],
hierarchically semiseparable (HSS) formats [44], and Block Low-Rank (BLR) formats [2, 4, 43].
Available software packages that couple these rank-structured formats with multifrontal methods
include STRUMPACK [10] and MUMPS [4]. PaStiX [17, 35] is an additional software package
that couples low-rank compression methods with supernodal methods instead of multifrontal
methods.

In addition to the algorithms mentioned earlier, we consider another low-rank-based com-
pression tool called butterfly [21, 22, 29, 32, 38], a multilevel matrix decomposition algorithm
well suited for representing highly oscillatory operators such as Fourier transforms and integral
operators and special function transforms. When combined with hierarchical matrix techniques,
butterfly can also serve as the building block for accelerating iterative methods, direct solvers,
and preconditioners for boundary element methods for high-frequency wave equations. These
techniques essentially replace low-rank products in the H and HODLR formats with butterflies
and leverage fast and randomized butterfly algebra to compute the matrix inverse (for direct
solvers and preconditioners). An open source software package that provides an implementation
of the butterfly algorithm is available at https://github.com/liuyangzhuan/ButterflyPACK.

In a related work [27], we presented a fast multifrontal sparse solver for high-frequency
wave equations. The solver leverages the butterfly algorithm and its hierarchical matrix ex-
tension, HODBF (hierarchically off-diagonal butterfly) compression, to compress large frontal
matrices. The resulting solver can attain quasi-linear computation and memory complexity
when applied to high-frequency Helmholtz and Maxwell equations. Similar complexities have
been analyzed and observed for Poisson equations as well. Nevertheless, to further reduce the
overall number of operations and to enable solving larger problem sizes, in this article we
present a composite multifrontal solver that employs the HODBF format for compressing the
large frontal matrices in the multifrontal method and leverages additional compression methods
for the remaining fronts. To be more specific, HODBF serves as a good compression method
as shown in the related work [27]. However, due to its more complex data structures, it only
pays off to use HODBF for larger fronts to yield a high compression ratio. For medium-sized
fronts, we employ BLR compression. We combine Left-Looking (LL) and Right-Looking (RL)
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versions of BLR to a hybrid method that decreases the memory consumption significantly. For
the remaining small-sized fronts, we make use of lossy compression enabled through the zfp
software [24] to further decrease the memory consumption while maintaining accuracy of the
preconditioner.

Our contributions in this work are the development of a composite multifrontal solver that
employs three compression methods: HODBF, BLR and floating point compression, and an imple-
mentation of BLR with a reduced memory footprint that makes use of a column-wise construction
of matrix tiles. The sparse approximate multifrontal solver is used as a preconditioner for restarted
GMRES(30) with modified Gram-Schmidt and a zero-vector initial guess. These updates lead to a
significant decrease of memory consumption, and it allows us to solve sparse linear systems of di-
mension up to 2.7× larger compared to a multifrontal solver with HODBF compression only [27].
The code is made publicly available in the sparse solver package STRUMPACK [9].

The rest of the article is organized as follows. The multifrontal factorization method is presented
in Section 2. The zfp, hierarchically off-diagonal butterfly compression, and BLR algorithms are
described in Section 3, including the classical LL and RL BLR versions as well as our proposed hy-
brid and memory optimized BLR algorithm. The proposed composite rank-structured multifrontal
method is detailed in Section 4. Numerical results demonstrating the efficiency and applicability
of the proposed solver for the 3D Helmholtz, reaction-diffusion, and Navier-Stokes equations are
presented in Section 5, followed by our conclusion in Section 6.

2 MULTIFRONTAL FACTORIZATION

This section briefly recalls the main ingredients of the multifrontal method for general invertible
sparse matrices. For a more detailed discussion of multifrontal methods, see other works [20, 25].
The method separates the factorization of a sparse matrix (A = LU ) into a series of partial factor-
izations of many smaller dense matrices, which correspond to the separators from a nested dis-
section ordering. After each factorization step, a Schur complement is formed and carried along
temporarily, and its scattering to the global Schur complement is delayed until that part of panel
factorization is about to start.

As a preprocessing step, the system matrixA is first scaled and permuted for numerical stability:
A← DrADcQc , where Dr and Dc are diagonal matrices that scale the rows and columns of A and
Qc is a column permutation that places large entries on the diagonal. We use the MC64 code by
Duff and Koster [19] or the parallel method—without the diagonal scaling—described by Azad
et al. [6] to perform the scaling and column permutation. After that, a fill-reducing permutation
A ← PAPT is applied—that is, the number of nonzero entries in the sparse factors L and U is
minimized. The permutation matrix P is typically computed using nested dissection applied to the
adjacency graph of A +AT , as implemented in Scotch [39] or METIS [11].

The multifrontal method relies on a structure called the assembly tree. Each node τ of the as-
sembly tree is represented by a dense frontal matrix Fτ , with the following 2 × 2 block structure:

Fτ =
[

F11 F12

F21 F22

]
. The rows and columns corresponding to the F11 block are called the fully summed

variables. After the fully summed variables have received all of their Schur complement updates,
the front is constructed. We denote the dimension of F11 by #I s

τ and the dimension of F22 by #Iu
τ .

The Iu
τ index sets define the temporary Schur complement update blocks. Let nτ = #I s

τ + #Iu
τ de-

note the dimension of Fτ . Note that the frontal matrices tend to get bigger toward the root of the
assembly tree. Furthermore, if ν is a child of τ in the assembly tree, then Iu

ν ⊂ {I s
τ ∪ Iu

τ }. For the
root node t , Iu

t = ∅. When considering a single front, we will omit the τ subscript.
The multifrontal method consists of a bottom-up traversal of the assembly tree following a topo-

logical ordering. Processing a node consists of four steps making up the numerical factorization
of that node:
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ALGORITHM 1: Sparse multifrontal factorization and solve

Input: A ∈ RN×N , b ∈ RN

Output: x ≈ A−1b

1: A← DrADcQc � (optional) col perm & scaling
2: A← PAP	 � symm fill-reducing reordering
3: Build assembly tree: define I s

τ and Iu
τ for every frontal matrix Fτ

4: for nodes τ in assembly tree in topological order do

5: � sparse with the children updates extended and added

6: Fτ ←
[
A(I s

τ , I s
τ ) A(I s

τ , I u
τ )

A(I u
τ , I s

τ ) 0

]

↔ F22;ν1 
↔ F22;ν2

7: PτLτUτ ← F11 � LU with partial pivoting
8: F12 ← L−1

τ P	τ F12

9: F21 ← F21U
−1
τ

10: F22 ← F22 − F21F12 � Schur update
11: end for

12: x ← DcQcP
	 bwd-solve (fwd-solve (PDrb))

(1) Assembling the frontal matrix Fτ (i.e., combining elements from the sparse matrix A with
the children’s (ν1 and ν2) contribution blocks). This involves a scatter operation and is called
extend-add, denoted by 
↔.

(2) Elimination of the fully summed variables in the F11 block (i.e., dense LU factorization with
partial pivoting of F11).

(3) Updating the off-diagonal blocks F12 and F21.
(4) Computing the contribution block from the Schur complement update of F22 ← F22 −

F21F
−1
11 F12. F22 is temporary storage and can be released as soon as it has been used in the

front assembly (step 1) of the parent node.

After the numerical factorization, the lower triangular sparse factor is available in the F21 and
F11 blocks and the upper triangular factor in the F11 and F12 blocks. These can then be used to
efficiently solve linear systems, using forward and backward substitution. A high-level overview
is given in Algorithm 1.

Figure 1 illustrates the multifrontal algorithm for a sparse matrix resulting from the discretiza-
tion of a PDE using a 5-point finite difference stencil on a regular 2D 11 × 11 mesh. Figure 1(a)
shows the mesh and the top three levels of the nested dissection ordering. Nested dissection is a
heuristic algorithm for the ordering of a sparse matrix to reduce the fill-in in the sparse factors.
It is based on recursively finding vertex separators. The vertical line marked S0 is the root sepa-
rator, and this separator corresponds to the root of the assembly tree (see Figure 1(b)). The next
level separators, S1

0 and S1
1 , correspond to the F11 blocks of the next lower level in the assembly

tree. Typically, the larger frontal matrices are found near the root of the assembly tree since the
separators tend to get smaller further in the nested dissection recursion.

2.1 Parallel Traversal of the Assembly Tree

Following the assembly tree, the distributed algorithm creates nested Message Passing Inter-

face (MPI) subcommunicators to facilitate the computation at each node and its subtree. At the
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Fig. 1. (1(a)) The top three levels of nested dissection for an 112 mesh. The root separator S0 is a vertical
11-point line. The next level separators are S1

0 and S1
1 . The root separator corresponds to the top-level front

in (b), and similarly for the next level down in the assembly/frontal tree. Note that the fronts in (b) typically
get smaller lower in the tree.

root of the tree, we create a 2D process grid using the available processes in the root MPI com-
municator and distribute the frontal matrix over this grid using the ScaLAPACK 2D block-cyclic
data layout. Next, the root MPI communicator is split in two communicators proportionally to the
memory required by the subtrees rooted at the children of the root node. Each child constructs a
2D process grid and distributes the child’s frontal matrix over this subgrid. This is repeated recur-
sively until the MPI communicator has only one process in it, at which point the local subtree is
traversed within a single OpenMP region using OpenMP task parallelism. While moving up the
distributed part of the assembly tree, communication between fronts is required for the extend-add
operation. This is implemented using an MPI_Alltoallv on the MPI subcommunicator of the parent
node. Note that this paragraph discusses the parallel traversal of the assembly tree with a focus
on dense frontal matrices. In Section 4, we will discuss details of the procedure for compressed
frontal matrices, where a 2D block-cyclic layout is used only for dense, BLR, and lossy compressed
fronts, whereas the HODBF compression is based on a 1D block layout (see Section 3.3.1).

We implemented the multifrontal method in the STRUMPACK library [9], using C++, MPI, and
OpenMP. STRUMPACK supports real/complex arithmetic, single/double precision, and 32/64-bit
integers. STRUMPACK has recently ported the sparse direct multifrontal solver to GPU, targeting
both NVIDIA and AMD hardware. In this article, we focus on the CPU implementation only.

In what follows, we leverage multiple compression methods, namely lossy compression enabled
through the zfp software [24] (see Section 3.1) BLR compression (Section 3.2), and the hierarchical
matrix extension of the butterfly algorithm (HODBF) (see Section 3.3). These methods are used to
represent frontal matrices and to construct fast sparse direct solvers, particularly for large matrix
systems resulting, for example, from high-frequency wave equations.

3 COMPRESSION METHODS

In this article, we make use of compression methods within the multifrontal solver, which main-
tains the solver’s robustness and reliability and reduces the computational complexity. The three
compression methods of interest are the HODBF format, the BLR format, and lossy compression.
The HODBF format can be described as a hierarchical compression format with a multilevel matrix
decomposition algorithm. HODBF is available as an effort to integrate the dense solver package
ButterflyPACK [26] into the sparse solver package STRUMPACK and can be used to compress
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frontal matrices within the multifrontal solver. BLR is based on a flat low-rank based compres-
sion format, which exploits rank structures in off-diagonal blocks of the frontal matrix. BLR is
implemented in STRUMPACK and can also be used to compress fronts. The lossy floating point
compression method is available through the zfp package [24] and is integrated into STRUMPACK.
Since the multifrontal method relies on dense factorizations, all three approximations can be easily
incorporated into the multifrontal factorization by representing the frontal matrices as zfp, BLR,
and HODBF matrices, respectively, as will be described in Section 4. All three compression formats
are described in detail in the following subsections.

3.1 Lossy Compression with zfp

As an open source library for compressed floating point data, zfp was designed to achieve high
compression ratios and therefore uses lossy compression. zfp is often more accurate and faster
than other lossy compressors. For more details on the zfp software library, see the work of Lind-
strom [24].

In contrast to low-rank formats, lossy compression is a near-lossless compression scheme that
maps small blocks of 4d values with dimensiond to a fixed number of bits per block, called bitplanes

in Section 5. This compressor is based on an orthogonal block transform. For more details on the
zfp algorithm, please refer to the work of Lindstrom [23].

In Section 4, we make use of the zfp software library integrated into STRUMPACK to compress
small frontal matrices within a multifrontal solver.

3.2 BLR Compression

Among the possible low-rank formats, BLR is the simplest. The format partitions the matrix with
a flat, nonhierarchical blocking of the matrix that is defined by conveniently clustering the asso-
ciated unknowns and approximates its off-diagonal blocks by low-rank submatrices. A BLR repre-

sentation B̃ of a dense matrix B is shown in (1), with p × p blocks.

B̃ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
B̃11 B̃12 . . . B̃1p

...
. . .

. . .
...

B̃p1 . . . . . . B̃pp

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(1)

Assuming I = {1, . . . ,n} is the set of row and column indices of B, we can define the blocking
of the matrix as follows. We call a set of indices σ ⊆ I a cluster. Then, a clustering of I is a disjoint
union of clusters that equals I . b = σ ×τ ∈ I × I is called a block cluster based on clusters σ and τ . A
block clustering of I ×I is then defined as a disjoint union of block clusters that equals I ×I . A block
Bσ τ corresponds to an interaction between two subdomains σ and τ , where σ contains the row
indices of Bσ τ while τ contains its column indices. The rank of a given block Bσ τ depends on the in-
teraction it represents. Indeed, if Bσ τ is a diagonal block (i.e., σ = τ ), it represents a self-interaction
and is thus full-rank. However, if Bσ τ is an off-diagonal block, it may be either full rank or low rank
depending on the interaction it represents: the weaker the interaction, the lower the rank. The ad-
missibility condition determines whether a block σ ×τ is admissible for low-rank compression. We
support both weak admissibility, where every off-diagonal block is compressed, and strong admis-
sibility, where only matrix blocks corresponding to well-separated clusters are compressed. The
block clustering, and the admissibility condition, are typically formulated in terms of the geometry
of the physical system being modeled. However, in this article, we discuss BLR matrices and the cor-
responding block clustering in the context of an algebraic multifrontal solver, where no geometry
information is available. The block clustering and the admissibility condition in the context of the
multifrontal solver are discussed in Section 4. Based on the choice of the admissibility condition,
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the off-diagonal blocks Bσ τ (σ � τ ) of sizemσ ×mτ and numerical rank rσ τ are approximated by a

low-rank matrix B̃σ τ = Xσ τY
T
σ τ at accuracy ε .Xσ τ is amσ ×rσ τ matrix, andYσ τ is amτ ×rσ τ matrix.

As part of the numerical factorization within the multifrontal solver, as discussed in Section 2,
we make use of a LU factorization of each F11 part of a frontal matrix. To compute the blocked
factorization of the front, four fundamental tasks must be performed:

— Factor (F): LU decomposition Bσ σ = Lσ σUσ σ for diagonal blocks σ = 1, . . . ,p with partial
pivoting

— Solve (S): Solve triangular linear system Bσ τ = L−1
σ σBσ τ , Bτ σ = Bτ σU

−1
σ σ , with σ = 1, . . . ,p,

τ = σ + 1, . . . ,p
— Update (U): Matrix-matrix multiplication Bκτ = Bκτ − BκσBσ τ , with σ = 1, . . . ,p, τ =
σ + 1, . . . ,p,κ = σ + 1, . . . ,p

— Compression (C): Compress off-diagonal blocks Bσ τ ≈ B̃σ τ = Xσ τYσ τ .

We refer to the computation of the low-rank approximation B̃σ τ of each block as the compres-
sion step, which can be performed in different ways. We chose a QR factorization with column
pivoting (i.e., LAPACK’s Anderson et al. [45] geqp3 routine), which is modified to stop the fac-
torization when the diagonal coefficient of R, ri,i , falls below a prescribed threshold ε . We use a
relative tolerance (i.e., we stop the factorization after |ri,i |/|r0,0 | < ε).

Depending on when the compression step is performed within the numerical factorization, sev-
eral algorithm variants can be defined and implemented based on the execution order of the four
tasks defined previously: FSUC, FSCU, FCSU, CFSU. These acronyms indicate the order in which
the tasks are performed [31].

ALGORITHM 2: RL BLR algorithm: FCSU

Input: a p × p block matrix B of size n,
B = [Bi, j ]i=1:p, j=1:p

1: Construct tiles Bi, j , ∀i, j
2: for i = 1 to p do
3: Factor: Bi,i = Li,iUi,i

4: for j = i + 1 to p do

5: Compress: Bi, j ≈ Xi, j Y T
i, j

6: Solve: Bi, j ← L−1
i,i Bi, j

7: Compress: Bj,i ≈ X j,i Y T
j,i

8: Solve: Bj,i←Bj,iU −1
i,i

9: end for
10: for j = i + 1 to p do
11: for k = i + 1 to p do

12: Update: Bk, j←Bk, j − Xk,i (Y T
k,i

Xi, j )Y T
i, j

13: end for
14: end for
15: end for

ALGORITHM 3: LL BLR algorithm: UFCS

Input: a p × p block matrix B of size n,
B = [Bi, j ]i=1:p, j=1:p

1: Construct tiles Bi, j , ∀i, j
2: for i = 1 to p do
3: for j = i to p do
4: for k = 1 to i − 1 do
5: Update: Bi, j←Bi, j −Xi,k (Y T

i,k
Xk, j )Y T

k, j

6: if j � i then
7: Bj,i←Bj,i − X j,k (Y T

j,k
Xk,i )Y T

k,i

8: end if
9: end for

10: end for
11: Factor: Bi,i = Li,iUi,i

12: for j = i + 1 to p do

13: Compress: Bi, j ≈ Xi, j Y T
i, j

14: Solve: Bi, j ← L−1
i,i Bi, j

15: Compress: Bj,i ≈ X j,i Y T
j,i

16: Solve: Bj,i←Bj,iU −1
i,i

17: end for
18: end for

These variants are so-called RL versions, in the sense that at each stepk , as soon as the factor and
solve tasks for all blocks in row k and column k have been performed, the entire trailing submatrix
(column blocks to its “right”) is updated (Figure 2(a)). We make use of the FCSU (standing for Factor,
Compress, Solve, and Update) variant of the BLR factorization algorithm. All low-rank updates of a

given block B̃σ τ are compressed before the triangular solve of the LU factorization of a dense BLR
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Fig. 2. First steps of a BLR compression with the FCSU/UFCS version. (a) Right-looking. (b) Left-looking.
(c) Hybrid with colmax = 3.

matrix. Based on the comparative study by Mary [31], the FCSU variant seems the most promising
out of the RL versions, as it provides a good balance between efficiency and accuracy. Compressing
earlier influences the accuracy negatively, an effect that is quantified in the work of Higham and
Mary [18].

The RL algorithms can be rewritten in an LL1 form, where at each step k , blocks in row k as well
as column k are updated using all blocks already computed (those at its “left”): UFS, UFSC, UFCS,
UCFS, CUFS.

In this article, we focus on the UFCS version, as this version is most promising in terms of timing
due to a different memory access pattern [8] as described in other works [4, 31]. See Algorithm 2
for the RL implementation and Algorithm 3 for the LL implementation, and Figures 2(a) and 2(b)
for a comparison between RL and LL, respectively.

The RL and LL variants perform the same number of operations but in a different order, which
results in a different memory access pattern. The impact of using RL or LL factorization is mainly
observed on the update step. In particular, for the RL variant, at each step k, the full-rank blocks of
the trailing submatrix are written, and therefore they are loaded many times (at each step of the

1This algorithmic variant is also called left-up looking in the literature; however, for brevity, we use left-looking (or LL)

throughout the article.
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ALGORITHM 4: Hybrid BLR algorithm (column-wise constructed)

Input: a p × p block matrix B of size n, B = [Bi, j ]i=1:p, j=1:p

1: for b = 0 to �p/colmax � − 1 do � Advance colmax block columns each time
2: for i = colmaxb + 1 to colmax (b + 1) do � Construct colmax block columns among Pc process columns
3: for j = 1 to p do
4: Construct tiles Bj,i

5: end for
6: end for
7: if b > 0 then � See Figure 3, subfigures 4–6
8: for j = 1 to colmaxb do
9: for i = colmaxb + 1 to colmax (b + 1) do

10: Compress: Bj,i ≈ X j,i Y T
j,i

11: Solve: Bj,i ≈ Bj,iU −1
i,i

12: for k = j + 1 to p do

13: Update: Bk,i ≈ Bk,i − Xk, j (Y T
k, j

X j,i )Y T
j,i

14: end for
15: end for
16: end for
17: end if
18: for i = colmaxb + 1 to colmax (b + 1) do � See Figure 3, subfigures 1–3 and 7–9
19: Factor: Pi Bi,i = Li,iUi,i � LU with partial pivoting for the diagonal block
20: for j = i+1 to colmax (b + 1) do
21: Compress: Bi, j ≈ Xi, j Y T

i, j

22: Solve: Bi, j ← L−1
i,i Bi, j

23: end for
24: for j = i+1 to p do

25: Compress: Bj,i ≈ X j,i Y T
j,i

26: Solve: Bj,i ≈ Bj,iU −1
i,i

27: end for
28: for j = i+1 to colmax (b + 1) do
29: for k = i+1 to p do

30: Update: Bk, j ≈ Bk, j − Xk,i (Y T
k,i

Xi, j )Y T
i, j

31: end for
32: end for
33: end for
34: end for
35: � We assume that p is a multiple of colmax for simplicity, but our code can easily handle any value of p .

factorization), whereas the low-rank blocks of the current panel are read once and never loaded
again. In the LL variant, at each step k, the full-rank blocks of the current panel are written for the
first and last time of the factorization, whereas the low-rank blocks of all previous panels are read,
and therefore they are loaded many times during the entire factorization.

As visualized in Figure 2, all BLR tiles of the entire frontal matrix for the LL and RL versions
are constructed at once, as dense tiles, which results in a high peak memory consumption. This
is followed by the factorization of the i-th diagonal tile, then the tiles of the i-th row and i-th
column are compressed and solved. For the RL version, the update task is executed on all remaining
tiles of the trailing submatrix. For the LL version, the update task is executed on the immediate
neighboring row and column block columns of the trailing submatrix.

Based on the observation that both the LL and RL versions result in a memory bottleneck due to
an initial construction of the entire frontal matrix as dense tiles, the problem sizes that can be exe-
cuted within a multifrontal solver are limited (see Section 5). Therefore, we decided to implement
a memory-efficient version where we combine aspects of the LL and RL versions, which results
in a column-wise construction of the frontal matrices (see Algorithm 4 and Figure 2(c)). We call
this variant the hybrid BLR version. For the hybrid version, only the neighboring #colmax block
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columns are created, and subsequently the compression and solve steps are executed only on the
neighboring #colmax row tiles (see Algorithm 4 for more details). Algorithm 4 is based on the as-
sumption that p is an integer multiple of b for simplicity, but our code can easily handle any value
of p in general. The experiments in Section 5 are based on #colmax = number of columns in the 2D
MPI process grid such that each MPI process is involved in updating one local column.

The benefit of using the hybrid version over the RL or the LL version is the reduced memory
consumption that eventually enables solving of larger problem sizes (see Section 5). In future work,
we intend to investigate other memory-efficient strategies, comparing, for example, the “Minimal-
Memory” strategy used in the supernodal solver Pastix [40].

3.2.1 Parallel Layout of the Hybrid BLR Matrix. In our implementation, the hybrid BLR matrix is
parallelized with a 2D process grid using the available processes in the MPI communicator, and the
matrix is distributed over this grid using a 2D block-cyclic data layout, similar to the ScaLAPACK

layout but with nonuniform block sizes. The process grid is Pr ×Pc with Pr = �
√
P� and Pc = P/Pr ,

with at most �
√
P�−1 idle processes, where P represents the number of available MPI processes. In a

parallel setting, the block columns for the hybrid BLR algorithm are distributed among all available
MPI processes in the grid, based on the 2D block-cyclic data layout with colmax = Pc . After the block
columns are created locally, the factor, compression, and solve steps are executed on the neighbor-
ing #colmax row tiles. In between each of these four tasks, the MPI processes communicate their
updates to the processes in the same row communicator and in the same column communicator.

Figure 3 presents the algorithmic steps for a parallel hybrid BLR method with 12 MPI processes
arranged as four processes for each column times three processes for each row. In particular, each
process constructs its local tiles within the first colmax = 3 columns. The process that owns the tile
in the first row and column executes the factorization step; this is followed by two broadcast opera-
tions to share the updated tile with all processes of row 1 and all processes of column 1. Afterward,
the compression and solve steps are executed for all tiles in the first column as well as the two
tiles in row 1. The update operation as described in Algorithm 4 is executed for all tiles in columns
2 and 3. These four tasks are repeated over and over such that all tiles that have been constructed
already are updated. Then, these steps are executed again for the next colmax = 3 columns.

3.2.2 Communication Cost Comparison for BLR Factorization. As described in Section 3.2.1, the
parallel layout of the BLR matrix follows a 2D block-cyclic data layout, similar to the ScaLAPACK
layout but with varying block sizes. As visualized in Figures 2 and 3, the BLR(RL), BLR(LL), and
BLR(Hybrid) algorithms consist of various different execution steps that lead to a different com-
munication pattern in a parallel setting.

The BLR(RL) algorithm consists of a repetition of the following steps:

(1) LU factorization followed by a broadcast of the LU factored tile along the row processes and
the column processes. In addition, the pivot elements are shared along the row processes
with an additional broadcast.

(2) After the compression and solve steps, the row of updated tiles as well as the column of up-
dated tiles are broadcast along all row and column processes using two broadcast operations
times the number of column/row processes each.

Step 1 consists of three broadcast operations, whereas step 2 consists of two broadcast operations
times the number of column/row processes each. These steps are repeated for each row of tiles—
that is:

(�n/b� − 1) × 3 bcast_ops,

(�n/b� − 1) × (2 × (Pr + Pc )) bcast_ops,
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Fig. 3. Hybrid BLR algorithm with 12 processes arranged as a 4 x 3 process grid and colmax = 3.
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with n = size of F11, b = size of tile, Pr = number of row processes, and Pc = number of column
processes.

The BLR(LL) algorithm consists of a repetition of the following steps:

(1) LU factorization followed by a broadcast of the LU factored tile along the row processes and
the column processes. In addition, the pivot elements are shared along the row processes
with an additional broadcast.

(2) After the compression and solve steps, the row and column of updated tiles as well as all
previous updated rows and columns are communicated to the necessary MPI processes using
four broadcast and two send operations times the number of column/row processes each.
The broadcast operations are used for the communication of one tile along columns and one
tile along rows, whereas the send operations are used for the remaining tiles of the rows and
columns, which results in two send operations times the number of column/row processes
each.

Step 1 consists of three broadcast operations, whereas step 2 consists of four broadcast oper-
ations times the number of previous updated columns/rows and two send operations times the
number of column/row processes each times the number of previous updated columns/rows, lead-
ing to a total of 3 + (i × 4) broadcast and i × (Pr × 2 + Pc × 2) send operations, with i the current
phase of the factorization. These steps are repeated for each row of tiles i = 1 : �n/b� − 1—that is:

(�n/b� − 1) × 3 bcast_ops,

�n/b �−1∑
i=1

(i × 4) bcast_ops,

�n/b �−1∑
i=1

(i × (2 × (Pr + Pc ))) send_ops.

The formula indicates that BLR(RL) uses fewer broadcast operations than BLR(RL). However,
BLR(RL) consists of broadcast operations only, whereas BLR(LL) needs additional send operations,
which leads to higher communication cost overall for BLR(LL) compared to the BLR(RL) variant.

The BLR(Hybrid) algorithm consists of a repetition of the following two stages:

(1) Construct columns, and if columns to the left already exist, execute the following step:
(a) After compression and solve steps of the new partial row, the updated tiles are communi-

cated to the necessary MPI processes using two broadcast operations times the number of
column processes. In addition, the previously updated block columns are communicated
to the necessary MPI processes using two broadcast operations times the number of row
processes.

This first stage is executed for all previously constructed columns—that is, four broadcast oper-
ations (times the number of row/column processes) times the number of previously constructed
columns. The second stage consists of the following operations:

(2)(a) LU factorization followed by a broadcast of the LU factored tile along the row processes and
the column processes. In addition, the pivot elements are shared along the row processes
with an additional broadcast. Even though only a part of a row is constructed in each step,
all processes are involved in the update and communication steps.

(b) After the compression and solve steps of one partial row and one column, the updated tiles
are communicated to the necessary MPI processes using two broadcast operations times
the number of row/column processes each.
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Fig. 4. Illustration of a four-level hierarchically off-diagonal butterfly matrix. The root node is at level l = 0,
and all leaf nodes are at level L = 3. The two largest off-diagonal blocks are approximated using two-level
butterfly matrices. The four off-diagonal blocks one level down in the hierarchy are approximated using a
one-level butterfly (U 1B1V 0). Finally, the smallest off-diagonal blocks are approximated as zero-level butterfly
matrices.

Step (a) of stage 2 consists of three broadcast operations, whereas step (b) consists of two broadcast
operations. For both stages, the number of communication operations sums up to

�I/colmax� × colmax × 3 bcast_ops,

I∑
i=1

(colmax × i × (2 × Pr + 2 × Pc )) bcast_ops,

with I = ��n/b�/colmax�.

In summary, we notice additional communication cost for the two BLR variants (LL) and (Hy-
brid) compared to the BLR(RL) variant. BLR(RL) and BLR(Hybrid) consist of broadcast operations
only, whereas BLR(LL) needs additional send operations. The formula indicates that BLR(RL) uses
the least amount of broadcast operations and BLR(Hybrid) uses significantly more than the other
two variants, which is due to additional broadcast operations needed for each newly constructed
set of columns.

Incorporating BLR fronts in the sparse multifrontal solver adds some additional challenges that
we discuss in Section 4.

3.3 HODBF Compression

The HODBF matrix representation [28] is the butterfly extension of the HODLR matrix—that is,
H -matrix with weak admissibility condition [16]—which means that every off-diagonal block is
compressed. The clustering into blocks as well as the weak admissibility condition in the context of
the multifrontal solver are discussed in detail in Section 4. In what follows, we briefly describe the
HODBF format, which is used in Section 4 to construct the quasi-linear complexity multifrontal
solver.

HODBF starts with a hierarchical clustering of the row and column indices of an n × n matrix
A into L = O (logn) levels. At the leaf level L, we have a partitioning T L

1 ,T
L
2 , . . . ,T

L
2L , the same as

the BLR matrix; at the next level, we have a new partitioning T L−1
1 , . . . ,T L−1

2L−1 by combining every

two adjacent clusters/nodes at level L into one. For a given cluster at level l < L, T l
k

, we use T l
k

to

denote the subtree rooted at T l
k

and TH = T 0
0 (Figure 4).

It follows that off-diagonal blocks of the HODBF matrix, representing interactions between
two distinct level-l clusters with subtrees TS and TO , are compressed as butterfly representations,
whereas the diagonal blocks at the leaf level Dτ = A(T L

τ ,T
L
τ ) for cluster τ are stored as regular
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dense matrices (see Figure 4). The butterfly representation of Lb = L − l levels for the block
K = A(TO ,TS ) reads as follows:

K ≈ U LbRLb−1 · · ·RhBh (W h )∗ · · · (W 1)∗ (V 0)∗, (2)

where h = Lb/2, U Lb and V 0 are block diagonal matrices, and RLb−1, · · ·Rh ,Bh ,W 1, · · · ,W h are
all block diagonal matrices after certain predefined permutations. Typically, butterfly representa-
tion of an m × n matrix K contains at most O (n logn) nonzeros. In practice, one can rapidly con-
structs such a representation by evaluating O (n logn) matrix entries from K . Once constructed,
the HODBF matrix can be inverted efficiently with randomized algorithms [28]. For more details
on butterfly decomposition and its components, please refer to other works [27, 29].

3.3.1 Parallel HODBF Layout. In our implementation, the HODBF matrix is distributed using
a given MPI communicator. The overall 1D block layout can be summarized as follows: starting
with Dτ = A at the root τ of TH , the given communicator sharing Dτ is split into two subcommu-
nicators of similar number of processes. The two subcommunicators store and compute Dτ1 ,Bτ1

and Dτ2 ,Bτ2 , respectively. Layouts of Bτ1 and Bτ2 follow those described in related work [27].
Each of the two subcommunicators is further recursively split unless the communicator has only
one process that stores and computes Dτ . Once constructed following this layout, the HODBF
representation can also be inverted following this layout. See more detail on parallelization in the
work of Sayed et al. [42].

4 RANK-STRUCTURED MULTIFRONTAL FACTORIZATION

Algorithm 5 outlines the rank-structured multifrontal factorization using BLR compression for
medium-sized fronts and HODBF compression for large-sized fronts. Since the more complicated
HODBF matrix format has larger overhead for smaller matrices compared to the BLR compression,
HODBF compression is only used for fronts corresponding to a separator size larger than a certain
threshold nHmin. In addition, BLR compression is only used for fronts corresponding to a separator
size smaller than nHmin and larger than a threshold nBmin. We have the option to add zfp compres-
sion [24] for small fronts, below threshold nBmin and larger than or equal to a separator size of 8.
All fronts corresponding to a separator size smaller than 8 will not be compressed. The advantage
of adding zfp compression is an additional reduction in memory consumption; however, the solve
time increases due to the decompression of zfp fronts during the solve step (e.g., see Figure 8(c)
and (e), presented later).

Typically, the larger fronts are found closer to the root of the multifrontal assembly tree. This
is illustrated in Figure 5 for a small regular 5 × 5 × 4 mesh (Figures 5(a)), and 5(c) shows the
corresponding multifrontal assembly tree, where only the top three fronts are compressed using
HODBF, the next two levels down in the assembly tree consist of BLR compressed fronts, and the
remaining fronts are compressed with zfp.

We now discuss the construction as well as the partial factorization of frontal matrices within a
multifrontal solver with a focus on BLR and HODBF compressed fronts. Recall from Section 2 that
a front Fτ is built up from elements of the reordered sparse input matrix A and the contribution
blocks of the children of the front in the assembly tree: F22;ν1 and F22;ν2 , where ν1 and ν2 are the two
children of τ . Since the multifrontal factorization traverses the assembly tree from the leaves to
the root, these children contribution blocks might already be compressed using the BLR or HODBF
format. Hence, extracting frontal matrix elements requires getting them from fronts compressed
previously. There are four different options that we describe in detail in Sections 4.1 through 4.4:
extracting from HODBF to construct HODBF, extracting from BLR to construct HODBF, extracting
from LL/RL BLR to construct LL/RL BLR, and extracting from hybrid BLR to construct hybrid
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ALGORITHM 5: Sparse rank-structured multifrontal factorization using zfp, BLR, and HODBF
compressions, followed by a GMRES iterative solve using the multifrontal factorization as an effi-
cient preconditioner

Input: A ∈ RN×N , b ∈ RN

Output: x ≈ A−1b

1: A← P (Dr ADc Qc )P	 � scaling, and permutation for stability and fill reduction

2: A← P̂AP̂	 � rank-reducing separator reordering
3: Build assembly tree: define I s

τ and I u
τ for every frontal matrix Fτ

4: for nodes τ in assembly tree in topological order do
5: if dimension(I s

τ ) < 8 then
6: construct Fτ as a dense matrix � Algorithm 1
7: else if dimension(I s

τ ) < nBmin then
8: construct Fτ as a dense matrix � Algorithm 1
9: if zfp enabled then

10: compress as zfp matrix
11: end if
12: else if dimension(I s

τ ) < nHmin && LL/RL BLR then

13: Fτ ←
[
A(I s

τ , I s
τ ) A(I s

τ , I u
τ )

A(I u
τ , I s

τ ) 0

]

↔ F22;ν1 
↔ F22;ν2

14: Pτ Lτ Uτ ← F11 � LU with partial pivoting
15: F11, F12, F21 ← BLR compress(F11, F12, F21)
16: F12 ← L−1

τ P	τ F12

17: F21 ← F21U −1
τ

18: F22 ← F22 − F21F12 � Schur update
19: else if dimension(I s

τ ) < nHmin && BLR(Hybrid) then
20: for columns C in frontal matrix Fτ corresponding to I s

τ do

21: F11;C ← BLR compress
(
A(I

spartial
τ , I

spartial
τ ) 
↔ F22;ν1;partial 
↔ F22;ν2;partial

)

22: Pτ Lτ Uτ ← F11;C � LU with partial pivoting
23: F11;C , F21;C ← BLR compress(F11;C , F21;C )
24: F21;C ← F21;CU −1

τ
25: end for
26: for columns C in frontal matrix Fτ corresponding to I u

τ do
27: F12;C ← BLR compress(F12;C )
28: F12;C ← L−1

τ P	τ F12;C

29: F22;C ← F22;C − F21F12 � Schur update
30: end for
31: else
32: F11 ← HODBF compress

(
A(I s

τ , I s
τ ) 
↔ F22;ν1 
↔ F22;ν2

)
33: F−1

11 ← HODBF invert (F11)

34: F12 ← butterfly compress
(
A(I s

τ , I u
τ ) 
↔ F22;ν1 
↔ F22;ν2

)

35: F21 ← butterfly compress
(
A(I u

τ , I s
τ ) 
↔ F22;ν1 
↔ F22;ν2

)

36: S ← butterfly compress
(
F21F−1

11 F12

)

37: F22 ← HODBF compress
(
F22;ν1 
↔ F22;ν2 − S

)
� Schur update

38: end if
39: end for
40: x ← GMRES(A, b, M : u ← Dc Qc P	P̂	 bwd-solve(fwd-solve(P̂ P Dr v )))

BLR. In addition to the preceding extracting operations, also called extend-add operations, there
are extracting operations that we do not discuss here either because they are straightforward
operations, like extracting from dense matrix to construct a matrix in BLR form, or because they
are similar to the other operations that we explain in detail in the following sections, like extracting
from dense or zfp matrix to construct HODBF.

The block clustering for the BLR representation of F11 and the HODBF cluster tree for the F11

part of a front are defined by performing a recursive bisection (not to be confused with nested
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Fig. 5. (a) The top two levels of nested dissection for a 5 × 5 × 4 mesh. The top three separators are S0, S1
0 ,

and S1
1 . (b) The root separator S0 is a vertical plane of 20 points, which is recursively bisected to define level

1 (T 1
0 to T 1

1 ) and level 2 (T 2
0 to T 2

3 ) of the hierarchical matrix partitioning. (c) The root separator corresponds
to the top-level front, and its HODBF partitioning is defined by the recursive bisection of the root separator,
as shown in (b), similar to the next level down; the following two levels in the assembly/frontal tree consist
of BLR fronts, and the remaining fronts are compressed with zfp.

dissection), using METIS, of the graph corresponding to A(I s
τ , I

s
τ ), where I s

τ denotes the index sets
of F11. Recursive bisection leads to a tree structure that can be used to define the HODBF cluster
tree and a corresponding permutation of the rows/columns of F11. For BLR, only the leaves of this
tree are considered for the definition of the blocks.

4.0.1 BLR Admissibility Condition. The admissibility condition determines which blocks in the
BLR matrix should be considered as compressible. We implement two different admissibility con-
ditions. As the default strategy, each off-diagonal block is compressed, but if the rank of an off-
diagonal block is too large, such that the compression does not decrease memory consumption,
then that block is stored in its dense format. The diagonal blocks Bii are always stored as full-rank

matrices (B̃ii = Bii ). We also provide an alternative strategy, where we use the graph of A(I s
τ , I

s
τ )

to determine whether a block is admissible. For BLR with this alternative strategy, we say that an
interaction σ × τ is inadmissible if σ ≡ τ , or if the matrix block Bσ τ contains a nonzero entry
coming from sparse matrix A. We found that trying to compress each block performed slightly
better in terms of both compression ratio and runtime.

4.1 HODBF with HODBF Children Nodes

Extracting an HODBF frontal matrix to construct an HODBF matrix looks like this:

(3)

with F11 and F22 compressed as HODBF, and F12 and F21 compressed as butterfly. For the construc-
tion of an HODBF front with HODBF children, the following tasks need to be executed:

(1) Since fronts are constructed as a combination (extend-add) of other smaller fronts, a list
of submatrices needs to be extracted from other fronts that are already compressed using
HODBF. Therefore, it is critical for performance to use an efficient algorithm to extract
a list of submatrices from a butterfly matrix. This is presented as extract_BF in related
work [27]. The F11 block of F ≡ Fτ is compressed as an HODBF matrix (see the related
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work [27] for details), which uses the extract_BF routine to extract elements from F11 =

A(I s
τ , I

s
τ ) 
↔F22;ν1 
↔F22;ν2 (see line 32 in Algorithm 5). Note that in this case, the extend-add

operation just requires checking whether the required matrix entries appear in the sparse
matrix, or in the child contribution blocks, and then adding those different contributions
together.

(2) Line 33 approximates F−1
11 from the butterfly representation of F11 (see the related work [27]

for details).
(3) In lines 34 and 35, the off-diagonal blocks/fronts F12 and F21 are each approximated as a

single butterfly matrix, using routines to extract elements from A(I s
τ , I

u
τ ) 
↔ F22;ν1 
↔ F22;ν2

and A(Iu
τ , I

s
τ ) 
↔ F22;ν1 
↔ F22;ν2 , respectively. For F12, the tree TH corresponding to

F11 is used as TO , and the tree corresponding to F22 is used for TS , and vice versa for
F21.

(4) The final step for this front is to construct the contribution block of τ , F22, as an HODBF
matrix, again using element extraction, now from F22;ν1 
↔ F22;ν2 − S , where F22;ν1 and
F22;ν2 are in HODBF form and S = F21F

−1
11 F12 is a single butterfly matrix compressed via the

randomized algorithm in related work [27]. S can be released as soon as the contribution
block has been assembled, and the contribution block is kept in memory until it has been
used to assemble the parent front.

4.2 HODBF with BLR Children Nodes

Extracting a BLR(Hybrid) frontal matrix to construct an HODBF matrix is similar to an extraction
from HODBF and looks like this:

(4)

For the construction of an HODBF front with BLR children, the following tasks need to be
changed compared to those shown in Section 4.1:

• For line 32 in Algorithm 5, a different routine to extract elements from F11 = A(I s
τ , I

s
τ ) 
↔

F22;ν1 
↔ F22;ν2 needs to be executed. For LL/RL BLR, the extract is straightforward since
F22;ν1 and F22;ν2 remain dense at the time of extraction. Hence, we simply extract the ele-
ments from a dense submatrix using a scatter operation. In case of the BLR(Hybrid), children
F22;ν1 and F22;ν2 are compressed. Hence, more computational effort is needed to extract from
compressed BLR tiles.
• In lines 34 and 35, the F12 and F21 front off-diagonal blocks are each approximated as a

single butterfly matrix, using routines to extract elements from A(I s
τ , I

u
τ ) 
↔ F22;ν1 
↔ F22;ν2

and A(Iu
τ , I

s
τ ) 
↔ F22;ν1 
↔ F22;ν2 , respectively, where F22;ν1 and F22;ν2 are in compressed form

as in BLR(Hybrid) or dense as in LL/RL BLR.
• The final step to construct the contribution block of τ , F22, as an HODBF matrix, uses element

extraction, now from F22;ν1 
↔ F22;ν2 − S , where F22;ν1 and F22;ν2 are in BLR form and S is a
single butterfly matrix.

Note that for BLR fronts, the extend-add operation just requires checking whether the required
matrix entries appear in the sparse matrix, or in the child contribution blocks, and then adding
those different contributions together.
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4.3 BLR with BLR Children Nodes with Immediate Construction of All Tiles

(LL/RL BLR)

Extracting a BLR frontal matrix to construct a BLR matrix looks like this:

(5)

and the following tasks need to be executed for the RL and LL BLR versions:

(1) The F ≡ Fτ frontal matrix is constructed as a BLR matrix, which implies that it is sep-
arated into smaller dense tiles. First, we apply extend-add operations to update Fτ ←[

A(I s
τ , I s

τ ) A(I s
τ , I u

τ )
A(I u

τ , I s
τ ) 0

]

↔ F22;ν1 
↔ F22;ν2 (see line 13 in Algorithm 5). Since F22;ν1 and F22;ν2 are

not compressed, the extract is straightforward, and we simply extract the elements from a
dense submatrix using a scatter operation.

(2) Line 14 computes the LU decomposition of F11 tile by tile.
(3) Line 15 compresses the off-diagonal tiles of F11 and the tiles of F12, F21 via QR factorization

with column pivoting.
(4) In lines 16 and 17, the off-diagonal blocks F12 and F21 are updated.
(5) The final step for this front is to construct the contribution block F22 as a BLR matrix with

dense tiles (see line 18). The contribution block is kept in memory until it has been used to
assemble the parent front.

4.3.1 Construction of a Parallel BLR Parent Front with Immediate Construction of All Tiles. In our
implementation, the BLR matrix is distributed among MPI communicators (i.e., a certain amount
of BLR tiles is assigned to each MPI communicator). The parallel construction is executed for
each MPI communicator. First, each MPI communicator collects their contribution from children
fronts F22;ν1 and F22;ν2 . This is followed by an all-to-all exchange of BLR tiles such that each MPI
process has access to the necessary update tiles. Afterward, each MPI communicator updates their
tiles within the parent front. A more detailed description and a visualization can be found for the
similar hybrid BLR algorithm with fragmentary construction of the BLR matrix (see Section 4.4)).

4.4 BLR with BLR Children Nodes with Fragmentary Construction of the BLR Parent

Matrix (BLR(Hybrid))

Extracting a BLR frontal matrix to construct a parent BLR matrix in fragments (a few columns at
a time) is similar to a BLR construction where we construct all tiles immediately (see Section 4.3).
However, it requires some algorithmic updates as represented in the following:

(6)

The tasks to be executed need to be updated as described next:

(1) The extend-add operations to update Fτ ←
[
A(I s

τ , I s
τ ) A(I s

τ , I u
τ )

A(I u
τ , I s

τ ) 0

]

↔ F22;ν1 
↔ F22;ν2 require

a different routine to only update the columns that have been constructed. Additional

ACM Transactions on Mathematical Software, Vol. 49, No. 3, Article 24. Publication date: September 2023.



Sparse Approximate Multifrontal Factorization with Composite Compression Methods 24:19

extend-add steps need to be executed every time block columns are added to the front.
Equation (6) visualizes the extend-add operation involving three newly constructed columns
of the parent front Fτ and columns of the child fronts F22;ν1 and F22;ν2 , highlighted in yellow.
F22;ν1 and F22;ν2 are in BLR matrix form, fully constructed and compressed. Note that only
the columns of the contribution blocks corresponding to the data points represented in the
columns of the parent front need to be extracted for the extend-add operation. The extract
operation for the required block columns can be executed as follows:
• If the tiles of F22;ν needed for the extend-add operation are compressed, we first

decompress the block columns and then apply a scatter operation to construct Fτ .
• If the tiles of F22;ν needed for the extend-add operation have been decompressed already,

we simply apply a scatter operation to construct Fτ .
These steps need to be repeated for each column that is constructed.

(2) The remaining steps are adjusted such that only the constructed block columns are con-
sidered. A loop is added for partial construction and update of block columns (see lines 20
and 26 in Algorithm 5).

4.4.1 F22 Compression. For the final step, the so-called update step of the contribution block
F22 of a frontal matrix (see line 29 in Algorithm 5), we include an additional compression step for
the hybrid BLR algorithm. In contrast to the BLR matrices with immediate construction of all tiles
(compare with Section 4.3), we do a simple compression step after the General Matrix Multiply
(GeMM) operation is executed.

4.4.2 Construction of a Parallel Hybrid BLR Parent Front. In our implementation, the BLR matrix
is distributed among MPI communicators—that is, a certain amount of BLR tiles is assigned to each
MPI process. The parallel construction is executed for each MPI communicator. First, each MPI
process collects their contribution from children fronts F22;ν1 and F22;ν2 needed for the update of
the block columns in the parent front. This is followed by an all-to-all exchange of BLR tiles such
that each MPI process has access to the necessary update tiles. Afterward, each MPI communicator
updates their tiles within the columns of the parent front.

As discussed in Section 3.2.2, the communication cost of the BLR matrix incorporated in the
sparse multifrontal solver vary based on the BLR variant. We concluded that there was a higher
communication cost for a BLR(Hybrid) matrix compared to BLR(RL) and BLR(LL) in Section 3.2.2.
In addition, when BLR is used within a multifrontal solver, BLR(Hybrid) requires additional com-
munication steps for the extend-add operation sending updates from children fronts to parent
frontal matrices. These observations lead to an increased factorization time, as can be seen in
Section 5.

5 EXPERIMENTAL RESULTS

Experiments reported here are all performed on the Haswell nodes of the Cori machine, a Cray
XC40, at the National Energy Research Scientific Computing Center in Berkeley. Each of the 2,388
Haswell nodes has two 16-core Intel Xeon E5-2698v3 processors and 128 GB of 2.133-MHz DDR4
memory. The approximate multifrontal solver is used as a preconditioner for restarted GMRES(30)
with modified Gram-Schmidt and a zero initial guess. Unless noted otherwise, all experiments
are performed in double precision with absolute or relative stopping criteria ‖ui ‖ ≤ 10−10 or
‖ui ‖/‖u0‖ ≤ 10−6, where ui = M−1 (Axi − b) is the residual at Krylov iteration i , with M the
approximate multifrontal factorization ofA. We use iterative refinement instead of GMRES for the
exact multifrontal solver, which is also called multifrontal solver with no compression. For simplicity,
all experiments are in double precision. For a discussion on mixed-precision iterative refinement
for approximate sparse solvers, see the work of Amestoy et al. [3].
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Fig. 6. Results for high-frequency 3D Helmholtz using the BLR(10−3) multifrontal solver with GMRES.
(a) Flop counts for factorization. (b) CPU time for factorization. (c) Memory usage for factorization (i.e.,
factor nonzeros/factor memory). (d) Flop counts for solve per iteration in GMRES. (e) CPU time for solve.
The number of GMRES iterations are shown at every data point (additional data in Table 1). (f) Peak work-
ing memory. We use 64 compute nodes, with four MPI ranks per node and eight OpenMP threads per MPI
process.

5.1 Visco-Acoustic Wave Propagation

We first consider the 3D visco-acoustic wave propagation governed by the Helmholtz equation:

�
∑

i

ρ (x)
∂

∂xi

1

ρ (x)

∂

∂xi

��p (x) +
ω2

κ2 (x)
p (x) = −f (x). (7)

Here, x = (x1,x2,x3), ρ (x) is the mass density, f (x) is the acoustic excitation, p (x) is the pres-
sure wave field, ω is the angular frequency, and κ (x) = v (x) (1 − i/(2q(x))) is the complex bulk
modulus with the velocityv (x) and quality factor q(x). We solve Equation (7) by a finite-difference
discretization on staggered grids using a 27-point stencil and eight PML absorbing boundary lay-
ers [36]. This requires direct solution of a sparse linear system where each matrix row contains 27
nonzeros, whose values depend on the coefficients and frequency in Equation (7).

We consider a cubed domain with v (x) = 4,000 m/s, ρ (x) = 1kg/m3, and q(x) = 104. The
frequency is set to ω = 8π Hz, and the grid spacing is set such that there are 15 grid points per
wavelength.

First, we vary N from 2003 to 4203 and compare four types of multifrontal solvers: “no compres-
sion” (exact solver), “BLR(RL)” (BLR compression with RL variant), “BLR(LL)” (BLR compression
with LL variant), and “BLR(Hybrid)” (BLR compression with hybrid variant) (Figure 6). All fronts
corresponding to separators with size nBmin ≥ 200 are compressed with tolerance ε = 10−3. For
all experiments, the relative error was ‖x − x̃ ‖2/‖x̃ ‖2 < 10−5. We observed that all variants of
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Table 1. Iteration Counts Corresponding to Results in Figure 6

problem size 2003 2203 2503 2803 3003 3203 3503 3803 4003 4203

BLR(Hybrid) 5 4 5 5 4 6 4 5 5 8
BLR(RL) 4 4 5 5 4 6
BLR(LL) 4 4 5 5 4 6

Fig. 7. Amount of communication for BLR(LL), BLR(RL), and BLR(Hybrid). (a) Number of broadcast
operations. (b) Number of send operations. BLR(RL) and BLR(Hybrid) require zero send operations; see
Section 3.2.2.

the BLR multifrontal solver outperform the exact solver in terms of factor flops, factor time, fac-
tor nonzeros, and peak memory (see Figure 6). The iteration counts are shown in Figure 6(e) for
BLR(Hybrid) (see Table 1 for iteration counts of other variants). The BLR(RL) version outperforms
the other two BLR variants in terms of factor time. This can be explained with additional communi-
cation cost for the other two BLR variants. As explained in Section 3.2.2, BLR(RL) and BLR(Hybrid)
consist of broadcast operations only, whereas BLR(LL) needs additional send operations. The for-
mula in Section 3.2.2 indicates that BLR(RL) uses the least amount of broadcast operations and
BLR(Hybrid) uses significantly more than the other two variants (Figure 7(a)), which is due to ad-
ditional broadcast operations needed for each newly constructed set of columns. Figure 7(b) shows
that the BLR(LL) variant dominates the amount of send operations since they are not used within
fronts in the other two variants. The BLR(Hybrid) algorithm has lower peak memory consump-
tion, which allows solving of larger problem sizes. BLR(RL) and BLR(LL) run out of memory when
solving Equation (7) with sizes larger than 3203. Among all three variants, BLR(RL) requires the
least amount of communication and is the fastest, but it requires the largest amount of memory.

Next, we consider a problem with size N = k3, with k ranging from 200 to 420, and compare the
performance of four multifrontal solver, with BLR, HODBF, HODBF_BLR and HODBF_BLR_ZFP
(Figure 8). For the BLR multifrontal solver, we use the BLR(Hybrid) variant, which allows solving
of problems of size up to 4203. We set the tolerance ε = 10−2 for HODBF and ε = 10−3 for BLR, re-
spectively. These different tolerances are important settings to ensure good butterfly compression
(ε = 10−2) and accurate matrix entries in BLR (ε = 10−3) that are extracted and yield the desired
butterfly ranks. The zfp compressed fronts use 16 bitplanes in HODBF_BLR_ZFP.

For HODBF compression, all fronts corresponding to separators with sizes nHmin ≥ 7K are com-
pressed. For HODBF_BLR_ZFP and HODBF_BLR compression, all fronts corresponding to separa-
tors with sizes nHmin ≥ 15K are compressed with HODBF, all fronts corresponding to separators
200 ≤ nBmin ≤ 15K are compressed with BLR, and all fronts corresponding to separators smaller
than 200 are either not compressed or compressed with zfp compression. For all experiments, the
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Fig. 8. Results for high-frequency 3D Helmholtz using the four different multifrontal solver with GMRES.
(a) Flop counts for factorization. (b) CPU time for factorization. (c) Memory usage for the factorization (i.e.,
factor nonzeros/factor memory). (d) Flop counts for solve per iteration in GMRES. (e) CPU time for solve. The
number of GMRES iterations are shown at every data point (additional data in Table 2). (f) Peak working
memory. We use 64 compute nodes, with four MPI ranks per node and eight OpenMP threads per MPI
process.

Table 2. Iteration Counts Corresponding to Results in Figure 8

problem size 2003 2203 2503 2803 3003 3203 3503 3803 4003 4203

BLR(Hybrid) 5 4 5 5 4 6 4 5 5 8
BLR(RL) 4 4 5 5 4 6
HODBF 6 6 9 8 15
HODBF_BLR(Hybrid) 8 8 29 41 20 43 73 196 317
HODBF_BLR(Hybrid)_ZFP 8 8 29 41 20 43 72 179 354

relative error was ‖x − x̃ ‖2/‖x̃ ‖2 < 10−5. Compared to the O (N 2) computation and O (N 4/3) mem-
ory complexities using the exact multifrontal solver and the BLR multifrontal solver, we observe
the predicted O (N log2 N ) computation and O (N ) memory complexities (Figure 8(a)–(e)) for the
HODBF multifrontal solver variants. The iteration counts are shown in Figure 8(e) for BLR(Hybrid)
and HODBF_BLR_ZFP (see Table 2 for iteration counts of the other multifrontal solvers).

Note that HODBF_BLR_ZFP and HODBF_BLR outperform the other solvers in terms of factor
time, factor flops, and solve flops. HODBF_BLR_ZFP outperforms all solvers in terms of factor
nonzeros. Due to its lower peak memory consumption, the BLR(Hybrid) multifrontal solver allows
solving of larger problem sizes up to 4203 with a low solve time. From Figure 8, notice that the peak
memory is higher than the factor memory, which is due to the need for temporary construction
of the F22 blocks.
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Fig. 9. Results for 3D singularly perturbed differential equations using the BLR, BLR-ZFP, BLR-HODBF, and
BLR-HODBF-ZFP (10−2) multifrontal solver with GMRES. (a) Flop counts for factorization. (b) CPU time for
factorization. (c) Memory usage for factorization (i.e., factor nonzeros/factor memory). (d) Flop counts for
solve per iteration in GMRES. (e) CPU time for solve. (f) Peak working memory per MPI. We use 64 compute
nodes, with two MPI ranks per node and 16 OpenMP threads per MPI process.

5.2 Singularly Perturbed Differential Equations

Next, we consider the following 3D singularly perturbed reaction-diffusion differential equation
that arises in fluid dynamics, computational chemistry, and biological applications (e.g., see [41]):

−δ 2Δu + u = f , on Ω = (0, 1)3, and u (∂Ω) = д, (8)

where the perturbation parameter δ is small and positive, and д and f are some given functions.
Solving large sparse systems arising from finite difference discretizations, even for the 2D analogue
of (8), is a challenging task. For example, MacLachlan and Madden [30] showed that standard
Cholesky-based solvers exhibit poor performance when δ is small. The underlying reason for this
is that the fill-in entries in the Cholesky factors are so small as to fall into the range of subnormal

numbers, which are expensive to compute [37]. A thorough investigation of how the subnormal
numbers propagate in the Cholesky factors for the 2D problems can be found in the work of Nhan
and Madden [34].

Here, we set δ = 10−4 and solve Equation (8) by a 7-point finite difference discretization. We
vary N from 643 to 5123 and compare the performance of four multifrontal solvers, with BLR,
BLR_ZFP, HODBF_BLR, and HODBF_BLR_ZFP (Figure 9). We set the tolerance ε = 10−2 for both
the BLR and the HODBF compression tolerance and use 16 bitplanes for zfp compression. For the
multifrontal solver with BLR or BLR_ZFP compression, all fronts with separator sizes nBmin ≥ 200
are compressed with BLR. For the multifrontal solver with HODBF_BLR_ZFP or HODBF_BLR
compression, all fronts with separator sizes nHmin ≥ 5K are compressed with HODBF, all fronts
corresponding to separator sizes 200 ≤ nBmin ≤5K are compressed with BLR, and all fronts
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corresponding to separator sizes below 200 are either not compressed or compressed with zfp
compression. For all experiments, the relative error was ‖x − x̃ ‖2/‖x̃ ‖2 < 10−5. We observed that
when adding the HODBF compression, one can attain the O (N log2 N ) computation and O (N )
memory complexities. Adding zfp on top of BLR and HODBF can slightly improve the total factor
memory, but it can increase the solve time per iteration.

5.3 Incompressible Navier-Stokes Flow

We solve linear systems with the Stokes operator, modeling incompressible flow described by the
Navier-Stokes equations. The system is discretized on a regular 3D mesh using a staggered grid
with the velocity components approximated at the cell faces and the pressure at the cell centers.
Velocity boundary conditions are used on all (six) faces of the cube. For a 3D cube with k mesh
points in each direction, there are 3(k+1)k2 velocity degrees of freedom and k3 pressure degrees of
freedom. The discretization is performed using IBAMR [13, 14, 33] (Immersed Boundary Method
Adaptive Mesh Refinement Software Infrastructure), which is built on top of SAMRAI [5] (Struc-
tured Adaptive Mesh Refinement Application Infrastructure). Matrix assembly is done through
PETSc [7].

Discretization of the governing equations leads to a linear system Mx = b, or[
A G
−D 0

] [
xu

xp

]
=

[
bu

bp

]
, (9)

where A corresponds to the temporal and viscous terms, G to the (pressure) gradient, and D to
the diverge (of the velocity). xu and xp are the velocity (three spatial components) and pressure,
respectively.

Since the pressure is only defined up to a constant, the matrix M is singular. The nullspace is
Z = k−3/2 [0 . . . 0 1 . . . 1], with the last k3 elements of Z corresponding to the pressure degrees
of freedom. We construct an exact solution x̃ = xr − ZZTxr with xr a vector with elements in
N (0, 1). From the solution vector x obtained using BiCGStab with the approximate multifrontal
preconditioner, we compute the final solution x ← x−ZZTx and compare that to x̃ . The BiCGStab
stopping criterion is a 10−10 relative residual decrease. Results of the BLR_ZFP multifrontal solver
and the BLR multifrontal solver are shown in Figure 10 with k varying from 100 to 250. For
BLR, fronts corresponding to separator sizes nBmin above 1,000 are compressed with a relative
compression tolerance 10−6 and all fronts corresponding to separators sizes below 1,000 are either
not compressed or compressed with zfp compression using 32 bitplanes. M has a large zero block
on the diagonal. Our solver can apply a static permutation, before the start of the numerical
factorization, to make the main diagonal of the matrix nonzero. This permutation is implemented
using the MC64 matching code. However, doing so completely destroys the symmetry of the
pattern of M . Note that our solver computes (nonsymmetric) LU factorization, but using a
symmetric nonzero pattern. Furthermore, we observed numerical difficulties when trying to
solve the linear system with the matrix M permuted with the MC64 matching. Our solver also
implements a small pivot replacement option, in which, during numerical factorization, small
pivots, which would cause overflow during triangular solution, are replaced with a slightly larger
value of

√
εmach‖M ‖1. However, since the operator M is highly ill conditioned, instead of relying

on this small pivot replacement, we replace the zero diagonal elements of M with τ
√
εmach‖M ‖1

before starting the numerical factorization. Since we also apply a matrix equilibration similar
to LAPACK’s dgeequ/dlaqge, ‖M ‖1 = 1. The factor τ needs to be chosen carefully. A larger τ
reduces the condition number of the preconditioner and allows for better compression. However,
a larger τ leads to a worse preconditioner, resulting in more BiCGStab iterations. We pick τ = 104.
The diagonal shift is also applied for the multifrontal solver without compression, which is
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Fig. 10. Results for linear systems modeling incompressible Navier-Stokes flow using the BLR and BLR-ZFP
multifrontal solver with BiCGStab. (a) Flop counts for factorization. (b) CPU time for factorization. (c) Mem-
ory usage for factorization (i.e., factor nonzeros/factor memory). (d) Total solve flop counts in BiCGStab and
the multifrontal preconditioner. (e) CPU time for solve. (f) Peak working memory per MPI rank. We use 64

compute nodes, with four MPI ranks per node and eight OpenMP threads per MPI process.

then also used with BiCGStab (instead of iterative refinement). For all experiments, the relative
error was ‖x − x̃ ‖2/‖x̃ ‖2 < 10−5. Figure 10 shows a lower peak memory consumption when
using BLR(Hybrid)_ZFP, which allows solving of larger problem sizes. However, BLR(RL) and
BLR(RL)_ZFP outperform BLR(Hybrid)_ZFP in terms of factor and solve time. We did not include
HODBF results for these highly ill conditioned matrices, since HODBF with high accuracy will not
compress sufficiently, and using HODBF with low accuracy will cause nonconvergence in GMRES.

5.4 SuiteSparse Matrix Collection

The problems shown so far were all defined on a regular 3D domain. Table 3 shows results for a
number of matrices from the SuiteSparse matrix collection. These are some of the larger problems
in this collection, and they correspond to a range of different applications, with varying numerical
and structural properties. Table 3 shows a comparison between the exact solver (no compression)
and the approximate multifrontal solver with either BLR compression (RL variant with relative
compression tolerance 10−2) or the BLR_ZFP compression (lossy compression with 32 bitplanes).
For all other parameters, and for each problem, the default values are used (e.g., nBmin = 512,
nLmin = 8).

In Table 3, we notice the speedup obtained for the factorization when using the BLR compres-
sion. When using BLR_ZFP compression, there is a small overhead in factorization time compared
to using BLR compression only. Likewise, when enabling zfp compression, the solve becomes sig-
nificantly slower. However, enabling zfp leads to better compression ratios. For instance, for the
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Table 3. Results for the Numerical Factorization and Solve for a Number of Matrices from the
SuiteSparse Matrix Collection

no compr. BLR(RL,10−2) compression BLR(RL,10−2)_ZFP(32) compression

N nnz fact sol #fronts fact sol comp peak rel. #fronts fact sol comp peak rel.

matrix ×103 ×103 (s) (s) its dense BLR (s) (s) its (%) (%) err. dense ZFP BLR (s) (s) its (%) (%) err.

boneS01 127 6,715 0.45 0.02 1 15K 4 0.38 0.20 14 87.3 101.0 8e-06 11K 4K 4 0.43 4.92 14 46.7 74.0 8e-06
xenon2 157 3,866 0.49 0.02 1 19K 8 0.47 0.23 12 87.4 102.0 9e-07 13K 5K 8 0.56 4.49 12 50.2 76.0 9e-07
scircuit 170 959 0.12 0.01 1 21K 0 0.12 0.01 1 100.0 102.0 1e-10 12K 8K 0 0.12 0.11 4 53.7 47.0 2e-08
pwtk 217 11,634 0.27 0.02 1 27K 1 0.27 0.06 3 99.7 99.0 6e-08 20K 6K 1 0.33 1.06 3 50.8 70.0 1e-06
torso3 259 4,632 0.81 0.03 1 32K 14 0.59 0.10 2 72.1 100.0 2e-07 25K 7K 14 0.70 1.66 2 37.0 70.0 2e-07
cage13 445 7,479 75.11 0.25 1 55K 56 28.74 0.53 2 24.1 54.0 6e-07 46K 8K 56 31.69 8.50 2 17.8 50.0 6e-07
audikw_1 943 77,651 12.54 0.42 1 117K 124 6.60 4.90 48 47.7 47.0 5e-04 94K 22K 124 7.04 141.04 58 29.2 37.0 1e-03
atmosmodd 1,270 8,814 9.82 0.12 1 158K 63 5.60 1.03 8 44.5 64.0 5e-07 106K 52K 63 5.94 15.32 8 29.3 51.0 5e-07
Serena 1,391 64,531 42.39 0.36 1 173K 134 18.66 1.87 10 34.8 52.0 2e-05 137K 36K 134 19.01 55.42 10 22.3 39.0 2e-02
Geo_1438 1,437 63,156 26.76 0.23 1 179K 177 12.76 2.01 13 45.4 47.0 8e-05 142K 36K 177 13.39 41.93 12 30.1 36.0 1e-03
atmosmodl 1,489 10,319 9.18 0.13 1 186K 64 5.40 0.60 4 45.8 64.0 9e-07 126K 59K 64 5.85 10.36 4 27.4 52.0 9e-07
Hook_1498 1,498 60,917 15.00 0.22 1 187K 135 7.81 4.81 34 46.9 48.0 4e-05 137K 49K 135 8.37 139.68 34 27.3 31.0 4e-05
ML_Geer 1,504 110,879 4.79 0.14 1 187K 115 2.97 2.32 24 65.4 40.0 2e-05 144K 43K 115 3.79 84.81 23 33.5 24.0 2e-05
Transport 1,602 23,500 8.76 0.18 1 200K 128 4.69 3.01 26 51.7 60.0 1e-05 152K 47K 128 5.41 81.27 26 30.5 42.0 7e-06
memchip 2,707 15,950 0.35 0.13 1 338K 0 0.35 0.17 1 100.0 100.0 7e-15 204K 134K 0 0.42 0.68 1 48.3 51.0 2e-06

Compression ratio (comp %) refers to the size of the final LU factors relative to the exact solver without compression,

whereas peak (%) refers to peak memory usage during factorization, also relative to the exact solver. The factorization

is always fastest for the solver with BLR compression. The hybrid BLR_ZFP solver uses the least memory.

scircuit and memchip systems, using BLR only does not give any compression, whereas zfp com-
presses the factors by at least 2×. Unlike most of the other problems, the scircuit and memchip
matrices are not derived from PDE discretizations, which explains why their graphs do not have
separators larger than nBmin = 512. The fact that there are no large separators means that the
amount of fill-in will be relatively small, and hence the exact sparse direct solver should be an
efficient solver.

6 CONCLUSION

This article presented a fast and approximate multifrontal solver for large sparse linear systems.
The solver leverages HODBF, a reduced-memory version of the nonhierarchical BLR format, BLR,
and lossy compression. Depending on the application as well as problem sizes, we made use of
different combinations of the three compression methods. In general, HODBF is used to compress
large frontal matrices, BLR for medium-sized frontal matrices, and lossy compression for small
frontal matrices. The reduced-memory version of the BLR format, BLR(Hybrid), leads to a reduc-
tion in peak memory consumption that allows solving of larger problem sizes. The resulting solver
can attain the O (N log2 N ) computation and O (N ) memory complexities when adding HODBF
compression. Some of the presented results for smaller problem sizes do not make use of HODBF
compression because HODBF is beneficial for really large fronts only. Adding zfp on top of BLR
and/or HODBF can improve the compression ratios and the total factor memory, but it can increase
the solve time per iteration.

The code is made publicly available through the sparse solver package STRUMPACK.2 The
HODBF implementation is integrated using the dense solver package ButterflyPACK,3 and lossy
compression is provided with the software package zfp.4
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