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Applying deep learning (DL) to science is a new trend in recent years, which leads DL engineering to become

an important problem. Although training data preparation, model architecture design, and model training

are the normal processes to build DL models, all of them are complex and costly. Therefore, reusing the

open-sourced pre-trained model is a practical way to bypass this hurdle for developers. Given a specific task,

developers can collect massive pre-trained deep neural networks from public sources for reusing. However,

testing the performance (e.g., accuracy and robustness) of multiple deep neural networks (DNNs) and recom-

mending which model should be used is challenging regarding the scarcity of labeled data and the demand for

domain expertise. In this article, we propose a labeling-free (LaF) model selection approach to overcome the

limitations of labeling efforts for automated model reusing. The main idea is to statistically learn a Bayesian

model to infer the models’ specialty only based on predicted labels. We evaluate LaF using nine benchmark

datasets, including image, text, and source code, and 165 DNNs, considering both the accuracy and robustness

of models. The experimental results demonstrate that LaF outperforms the baseline methods by up to 0.74

and 0.53 on Spearman’s correlation and Kendall’s τ , respectively.
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1 INTRODUCTION

Deep learning (DL) is helping solve all sorts of real-world problems in various domains, such as
computer vision [42], natural language processing (NLP) [38], code understanding [44], and au-
tonomous driving [24]. Due to the outstanding performance of deep neural networks (DNNs),
software engineering (SE) researchers have attempted to apply DNNs to solve various SE tasks,
such as source code processing [9, 44], automatic software testing [57, 58], and GUI designs [56].
Building machine learning (or deep learning) systems generally requires model architecture design
and data preparation, model training, and model deployment and maintenance, known as ma-

chine learning operations (MLOps) [5]. However, since (1) designing new DNN architectures
requires tremendous experimentation and DL knowledge, (2) preparing massive labeled training
data is labor-intensive, and (3) training the DL model needs a considerable amount of time and
resources, developers generally reuse generic and publicly available pre-trained models to solve
their given task. Ultimately, we expect model reuse to become the norm in DL-based SE, just like
it has been in other fields like NLP.

Due to the convenience of multiple public open sources such as GitHub [4], TensorFlow
datasets [7], and Hugging Face [52], engineers can today access a massive number of DNNs, in
the form of either pre-trained model files (e.g., .h5 and .pth). While this is practical, there is no
prior evidence of which model will be capable of solving the targeted task the most effectively. In-
deed, different models have been developed by different contributors and in different development
settings, while they have been evaluated in unknown or incomparable testing conditions. For exam-
ple, only 21 of the 165 DNNs we collected and evaluated in this article have a performance report.

Model selection is a process of determining the best fit from multiple models for a given test set.
Selecting candidate models for the targeted task raises two challenges. First, test data that can be
found in the real world (e.g., source code from public repositories) are generally unlabelled [48],
while data labeling requires significant manual effort. For example, the AIZU online programming
challenge [1] receives submissions in different programming languages all the time. A Java devel-
oper can easily annotate the source code in Java but may have difficulties with other programming
languages, such as C++. The effective selection of pre-trained models to solve various tasks and
overcome the challenge of insufficient domain knowledge, therefore, requires a precise and effi-
cient method to compare and rank DNN candidates without data labels.

An additional challenge originates from the fact that the chosen models will likely be confronted
with data that have a different distribution from the data they were trained/tested on, i.e., out-of-

distribution (OOD) data [11, 15, 23]. For many application domains—including software [27]—
the distribution shift phenomena that yield OOD data are inevitable. As a result, these models
may exhibit remarkably different performances over time, which raises the concern of quality
and reliability [8]. For instance, for the same dataset iWildCam (please refer to Section 4.3 for
more details), two DNNs exhibit 75.74% and 76.60% accuracy on the initial test data, while their
performance turns to 76.82% and 65.30%, respectively, on OOD data. In conclusion, this suggests
that ideal selection methods can handle the data distribution shift problem and reliably estimate
model performance on OOD data.

Such methods have been proposed by a recent approach named sample discrimination-based

selection (SDS) [37]. SDS achieves positive model ranking results on three benchmark datasets.
SDS selects a set of data to label based on the majority voting [45] and item discrimination [16].
These data are considered the most discriminative in terms of distinguishing the accuracy be-
tween DNNs. DNNs are then ranked based on their accuracy on these selected and labeled data.
Figure 3 illustrates how this sampling-based approach works. Although promising, SDS still suf-
fers from manual labeling. Besides, it has only considered ranking based on model accuracy with
in-distribution (ID) data (i.e., data that follow the same distribution as the data the models were
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trained on)—it has disregarded OOD data. Third, it has been applied to the image domain only; its
effectiveness for other domains remains unclear.

In this article, we aim to overcome the above limitations and propose a labeling-free (LaF)

model selection method, for DNNs that is effective with both ID and OOD data. Given a sample,
only the predicted labels of multiple DNNs are available. The main idea of LaF is to build a Bayesian
model that incorporates the data difficulty and model specialty to estimate the likelihood of a pre-
dicted label being the true label. The data difficulty implies how difficult a sample is for all DNNs to
predict correctly, which is reflected by the prediction difference across multiple models. The model
specialty indicates how good a model is to infer the correct labels of all samples, which is reflected
by the ability to have the same predictions as the majority of models. Via optimizing the Bayesian
model, we infer the model specialty to perform the model selection. The optimization is achieved
by the expectation-maximization (EM) algorithm [14], which is efficient in finding maximum
likelihood parameters (the data difficulty and model specialty in our case). To summarize, the main
contributions of our work are:

(1) We propose a novel approach, LaF, for automatically ranking multiple DNN models to facil-
itate the reuse of DNNs from public sources.

(2) We demonstrate the effectiveness of LaF on ID and OOD data. Both the artificial and natural
distribution shifts are considered.

(3) LaF is labeling-free, which makes it practical and feasible in real-world applications.
(4) We experiment on nine benchmark datasets spanning different domains including image,

text, and source code with different programming languages (Java and C++). To the best of
our knowledge, this is the first DNN model selection work containing datasets other than
images.

(5) All the used models, datasets, and implementations of LaF and baseline methods are publicly
available at https://github.com/testing-cs/LaF-model-selection.git

The rest of this article is organized as follows. Section 2 introduces preliminary knowledge
behind this work. Section 3 presents the problem statement and our proposed solution. Section 4
explains our experimental design. We present the empirical results and corresponding discussions
in Section 5. Section 6.2 details the threats that may affect the validity of conclusions. Section 7
reviews related work. The last section concludes our work and points out future research
directions.

2 BACKGROUND

2.1 MLOps and Model Reusing

Generally, building machine learning systems needs a set of operations [5] that are depicted in the
first row of Figure 1. Roughly speaking, first, developers connect their interested data and design
the model architecture that is suitable to train the data. Then, developers fed the model and data
into the high-performance server to tune the parameters of the model. After a model with expected
performance was trained, it will be deployed (embedded) into the application and function in the
wild. Finally, similar to conventional software systems, machine learning systems also need to
be evolved and maintained from time to time. For the first two steps, i.e., data preparation and
model design, huge human efforts and expert domain knowledge are needed to label the data and
design the model. And for the model training process, expensive computing resource is necessary
to handle the complex parameter tuning procedure. In conclusion, the first three steps make the
whole process heavy before the model is deployed for real usage.

In practice, model reusing is a commonly adopted way to lighten machine learning oper-

ations (MLOps). As shown in the second row of Figure 1, the original three operations data
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Fig. 1. MLOps with and without model reusing.

preparation, model design, and model training are replaced by the two, tests preparation and
model reusing. The hidden reason for this replacement is that, nowadays, given a specific task, e.g.,
face recognition, we can access many well-established pre-trained models from online resources,
e.g., GitHub. Thus, the straightforward way to build our machine learning system is to reuse such
models. To do so, we only need to collect potential pre-trained models, prepare some test data
(which can be much less than the training data) for our task, and finally, select the best model
using the test data to build our system. In this way, we can reduce the human effort of training
data labeling and the difficult procedure of model architecture design. Here, two important
problems we need to pay attention to, (1) how to correctly obtain these massive models, when
there are no models provided by others available for your specific tasks, preparing these candidate
models is still a challenging problem. (2) How to select the best model among the collected models
with less effort. Even though we can only use a small set of test data to select the best model, the
labeling budgets still exist and make the process non-automatic. In this work, we focus the second
problem on how to efficiently select the best model from the massive number of available models.

2.2 Comparison Testing and Test Selection in Deep Learning

In conventional software engineering, comparison testing [26, 46, 47] aims at figuring out the
strength and weaknesses of a newly developed software product compared with existing products.
The end goal is to facilitate the deployment of a product with high functionality and reliability.
Recently, Meng et al. [37] re-framed “comparison testing” as testing methods that aim to compare
alternative software artifacts, especially DNNs [25]. Concretely, the problem turns into how to
find out the most discriminative data that can amply distinguish the difference. In their proposed
sample discrimination-based selection method, the majority voting [45] is first applied to produce
pseudo-labels based on which DNNs are classified to top, middle, and bottom groups following the
item discrimination [16]. Via the prediction difference between the top and bottom DNNs, each
data has a unique discrimination score, and the high ones are selected for the final ranking.

A close topic to comparison testing is test selection for DNN model performance estimation.
The key idea of this kind of test selection is, given massive unlabeled test data and a DNN model,
we estimate the performance of the model on these data by using a subset of data selected by test
selection metrics. In this way, the labeling effort can be reduced and the budget can be saved. For
instance, Li et al. [31] proposed the cross Entropy-based sampling method to identify the most
representative data of a test set. Similarly, Chen et al. [12] developed the practical accuracy esti-
mation. The difference is that in test selection, the objective is a single DNN, while in comparison
testing, the objective is multiple DNNs. Undoubtedly, one can first approximate the performance
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Fig. 2. Image examples with artificial distribution shifts (noise, brightness, location change). Images come
from Reference [27].

of each DNN by selecting its corresponding representative set and then undertake the comparison.
However, this will largely increase the effort in labeling and is less practical than selecting once.

Both comparison testing and test selection can be used in the model reusing process to indicate
the model with the best performance.

2.3 Distribution Shift

Distribution shift is a crucial problem in machine learning, which means the train data and test
data follow different data distributions. Generally, compared to the in-distribution data (IID),
the model is more difficult to handle the data with distribution shift, which makes the reported
performance (using IID) of the model unreliable.

Roughly speaking, there are two types of distribution shifts, artificial and natural. Artificial
distribution shift mainly comes from adding artificial perturbations (corruptions) into raw data.
Dan and Thomas [21] proposed to add 15 types of algorithmically generated corruptions with
five levels of severity to image data to mimic realistic situations, such as noise, blur, snow, and
zoom. Based on these corruptions, different benchmark datasets, such as CIFAR-10-C [21] and
MNIST-C [39], have been developed for testing the robustness of DNN models. Figures 2(a) and
2(b) show two examples of artificial distribution shift—the original bird picture with two types
of noises, white noise and brightness. However, natural distribution shift is usually induced by
the change of environment or population and exists in raw data, such as the change of camera
traps [10], new customers [40], and new repositories [27]. A recent benchmark [27] provides in-
the-wild distribution shifts covering diverse data domains and applications. Figures 2(c) and 2(d)
are examples of the natural distribution shift. The two pictures have the same label cow but the
cows are captured by different positions.

3 METHODOLOGY

3.1 Problem Formulation

In this article, we are interested in the classification task. Given aC-class task over a sample space
Z = X × Y → R, where x ∈ X is an input data and y ∈ Y is its class label. Let f : x → y be
a DNN that maps x to the problem domain. Given n models, f1, f2, . . . , fn , extracted from public
sources and a set of unlabeled test data T , the problem we study is to estimate the rank of models
regarding their performance onTTT = {x1,x2, . . . ,xm }. Figure 3 illustrates the workflow.

We assume that compared to the time cost of labeling data, the time cost of computation is neg-
ligible. For example, labeling code data from only four libraries can take up to 600 man-hours [59],
whereas LaF and the competing methods produce a ranking with much less time (e.g., ranking
Java250-based models with less than 15 min). To this end, we propose to tackle the ranking prob-
lem by only querying the predictions, which is highly applicable in practical scenarios. Remarkably,
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Fig. 3. Illustration of the studied problem.

in this article, we consider the performance of both accuracy and robustness. The accuracy is the
correctness ratio of prediction on ID data. The robustness is the correctness ratio of OOD data.

3.2 Motivating Example

Figure 4 gives an example of LaF. In this simple three-class example, there are three DNN models
(f1, f2, f3) given six unlabeled samples (x1,x2, . . . ,x6). The goal is to rank the three models
concerning their accuracy on these samples in the absence of true labels. First, we compute the
predicted label of each sample by each model and remove x6 where all the models have the same
prediction. Second, we initialize the two parameters, ααα and βββ , contained in our approach. ααα refers
to how difficult a sample is for all models to predict the correct label. βββ indicates how good a model
is to output the correct labels of all samples. Initially, we use the simplest and most commonly used
majority voting heuristic [45] to give a pseudo-label to each sample. For instance, the pseudo-label
of x1 is 0, because two (f1, f2) of three models predict the label as 0. ααα is defined as the ratio of
mismatched models that output a different label instead of the pseudo one. βββ is calculated as the
ratio of correctly predicted samples over the entire set. Third, since the pseudo-labels are not the
true labels, ααα and βββ cannot truly reflect the data difficulty and model ability. We optimize these
two parameters by a likelihood estimation method in the presence of true labels. Finally, based
on the optimized βββ ( 4

5 ,
1
5 ,

3
5 ), we obtain the ranking 1, 3, and 2 for f1, f2, and f3, respectively.

3.3 Our Approach: LaF

Given that no label is available in the test data, the main idea of our approach is to infer the
specialties of DNNs by approximately maximizing the likelihood between the predictions and true

labels via the expectation-maximization (EM) algorithm [14]. Let ỸYY = {ỹi j }1≤i≤m,1≤j≤n be the
predicted labels of TTT and YYY = {yi }1≤i≤m be the true labels. Here, ỹi j refers to xi and model fj .

Given the observed ỸYY and latentYYY governed by unknown parameters θθθ , the likelihood function is

defined as L(θθθ ;ỸYY ) = p (ỸYY | θθθ ) =
∑m

i=1 p (ỸYY ,yi | θθθ ). The goal is to search the best θθθ that maximizes

the likelihood, in other words, the probability of observing ỸYY . As for θθθ , inspired by Reference [51],
we consider two factors, data difficulty ααα = {αi }1≤i≤m and model specialty βββ = {βj }1≤j≤m , that
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Fig. 4. An example of our four-step approach. It ranks three DNNs (f1, f2, f3) given six unlabeled data
(x1,x2,x3,x5,x6) in a three-class classification task. Numbers (0, 1, 2) highlighted in colors are predicted
labels.

influence the performance of DNNs. Namely, θθθ = (ααα ,βββ ). Algorithm 1 presents the pseudo-code of
our approach.

Step 1: Pruning. Inevitably, some data will receive the same predictions by all models, which
is useless for discriminating the performance and causes computational cost. For this reason, we
filter these data without losing any information for ranking and obtain a smaller setT ′T ′T ′ (Lines 1–6
in Algorithm 1).

Step 2: Initializing. First, for each data xi , since we do not have its ground-truth label, we use
the voted label by DNNs as the replacement, namely, y ′i = mode({ỹi j }1≤j≤n ) (Lines 7–9). Next, αi

is the number of DNNs that gives a different label from the pseudo-label and βj is the accuracy
based on pseudo-labels (Lines 10–15). Formally, the definitions are

αi =

{
ỹi j | ỹi j � y ′i , 1 ≤ j ≤ n

}
n

, βj =

{
ỹi j | ỹi j = y

′
i , 1 ≤ i ≤ ��T ′T ′T ′��

}
��T ′T ′T ′�� . (1)

Step 3: Optimizing. To obtain the best results of the model parameters (data difficulty and
model specialty), we use the EM algorithm [14], which has been proven to be a powerful tool for
estimating the parameters of statistical models to solve the optimization problem. Specifically, EM
performs an expectation (E) step and a maximization (M) step (Lines 16–26) in the optimization
process. In the E-step, it estimates the expected value of the log-likelihood:

Q (θθθ ,θlastθlastθlast ) = E
[
logL

(
θθθ ;ỸYY ,YYY

)]

=

|T ′T ′T ′ |∑
i=1

E
[
log (p (yi ))

]
+

|T ′T ′T ′ |∑
i=1

n∑
j=1

E
[
p
(
ỹi j | yi ,αi , βj

)]
,

(2)

where θθθ = (ααα ,βββ ) and θlastθlastθlast is from the last E-step. For the computation, we use the definition
from Reference [51], where p (ỹi j = yj | αi , βj ) =

1

1+e−αi βj
. Besides, as ỹi j and βββ are independent
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ALGORITHM 1: LaF: Labeling-free comparison testing

Input : { f1, f2, . . . , fn }: DNNs for comparison

TTT = {x1,x2, . . . ,xm } : test set

Γ: performance criterion

Output : {r ′( f1), r ′( f2), . . . , r ′( fn )}: Rank of DNNs

/* Step1: Pruning */

1 T ′T ′T ′ = {}
2 for i = 1→m do

3 if |{{ỹi j }1≤j≤n }| > 1 then

4 T ′T ′T ′ ← xi ; // ỹi j is the predicted label by fj

5 end

6 end

/* Step 2: Initializing */

7 for i = 1→ |T ′T ′T ′ | do

8 y′i = mode({ỹi j }1≤j≤n ); // Majority voting

9 end

10 for i = 1→ |T ′T ′T ′ | do

11 αi =
{ỹi j |ỹi j�y′i ,1≤j≤n }

n ; // Data difficulty

12 end

13 for j = 1→ n do

14 βj =
{ỹi j |ỹi j=y′i ,1≤i≤ |T ′T ′T ′ | }

|T ′T ′T ′ | ; // Model specialty

15 end

/* Step 3: Optimizing */

16 ααα last = {αi }1≤i≤ |T ′T ′T ′ |
17 βββlast = {βj }1≤j≤n

18 Qlast = computeQ (ααα last ,βββlast ) ; // ComputeQ estimates the log likelihood based on Equation (2)

19 ααα ,βββ = дradientAscent (ααα last ,βββlast ,Qlast )

20 Q = computeQ (ααα ,βββ )

21 while |Q−Ql ast

Ql ast
| > 1E − 5 do

22 Qlast = Q

23 ααα last ,βββlast = ααα ,βββ

24 ααα ,βββ = дradientAscent (ααα last ,βββlast ,Qlast )

25 Q = computeQ (ααα ,βββ )

26 end

/* Step 4: Ranking */

27 r ′( f1), r ′( f2), . . . , r ′( fn ) = Sort (βββ )

28 return {r ′( f1), r ′( f2), . . . , r ′( fn )}

given ααα , p (yi ) = p (yi | ααα , βj ). Remarkably, yi represents the true label of a sample. In the ranking
problem, yi is absent but the probability of taking it as a true label can be inferred by p (yi | ααα , βj ).

In the M-step, the gradient ascent is applied to search for ααα and βββ that maximize Q :

θnewθnewθnew = arg max
θθθ

Q (θθθ ,θlastθlastθlast ), (3)

where θnewθnewθnew is the updated parameters for the next iteration.
Step 4: Ranking. Finally, as βββ well estimate the abilities of each DNN given the observed

labels, we use this vector to rank DNNs (Line 27). A high specialty indicates a good performance
on the data.
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Overall, LaF is a parameter-free method where the influence factors in LaF—the initialization of
data difficulty and model specialty are automatically decided by the majority voting.

4 EXPERIMENTAL SETUP

4.1 Implementation

All experiments were conducted on a high-performance computer cluster and each cluster node
runs a 2.6 GHz Intel Xeon Gold 6132 CPU with an NVIDIA Tesla V100 16G SXM2 GPU. We im-
plement the proposed approach and baseline methods based on the state-of-the-art frameworks,
Tensorflow 2.3.0 and PyTorch 1.6.0. For the artificial data distribution shift, we consider 3 bench-
mark datasets where each includes 15 types of natural corruption with 5 levels of severity. In total,
we test on 3 ∗ 15 ∗ 5 = 225 datasets with the artificial distribution shift. We report the average
results on corrupted data for baseline methods. The entire results corroborate our findings and are
available on our companion project website [3].

4.2 Research Questions

In this study, we focus on the following four research questions:

• RQ1 (effectiveness given ID test): How is LaF ranking multiple DNNs given ID test data?
• RQ2 (effectiveness under distribution shift): How is LaF ranking multiple DNNs given

OOD test data (including artificial and natural distribution shifts)?
• RQ3 (ablation study): How does each component contribute to LaF?
• RQ4 (impact factors of LaF): What is the impact of model quality, model diversity, model

number, and input number on ranking DNNs?

The first two research questions successively evaluate the effectiveness of our proposed solution
given test data with and without distribution shift. The second one also tends to show how flexible
and practical LaF is in real-world applications, especially by the test data with natural distribution
shifts. The third research question studies the contribution of each component in LaF. The last one
investigates the impact factors that may affect the ranking performance.

4.3 Datasets and DNNs

Datasets. We choose seven datasets, MNIST [29], Fashion-MNIST [53], CIFAR-10 [28], iWild-
Cam [10], Amazon [40], Java250, and C++1000 [44] that are widely studied in previous work.
These datasets cover the image (first four), text (Amazon), and source code (Java250 and C++1000)
domains. The test data that follow the same distribution as the training set are the so-called in-
distribution (ID) data. The test data with data distribution shift are seem as out-of-distribution
(OOD) data. In our work, we consider two types of distribution shifts: artificial and natural. For
the artificial distribution shift, we use two benchmark datasets, MNIST-C [39] and CIFAR-10-C [21],
for MNIST and CIFAR-10, respectively. We follow the official implementation of MNIST-C and se-
lect 15 types of corruption that are also used in CIFAR-10-C for our experiments, such as Gaussian
noise, shot noise, impulse noise, defocus blur, frosted glass blur, motion blur, zoom blur, snow, frost,
fog, brightness, contrast, elastic, pixelate, and jpeg. Besides, each type of corruption has 5 levels of
severity. In total, our used MNIST-C and CIFAR-10 datasets contain 75 different test sets. However,
there are no existing benchmark datasets for the distribution shift version of Fashion-MNIST, we
simply follow the same setting of MNIST-C and use their script to generate Fashion-MNIST-C. For
the natural distribution shift, we use two datasets for iWildCam and Amazon, respectively, from
a recent-published benchmark, WILDS [27]. The distribution shift comes from new came traps in
iWildCam and new users in Amazon. For Java250, we manually collect the OOD dataset based on
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Table 1. Summary of Datasets

Dataset Domain Data Type #Classes #ID #OOD Distribution Shift

MNIST Computer vision Image of handwritten digits 10 10,000 750,000 Artificial
Fashion-MNIST Computer vision Image of fashion products 10 10,000 75,000 Artificial
CIFAR-10 Computer vision Image of animals and vehicles 10 10,000 750,000 Artificial
iWildCam Computer vision Image of wildlife 182 8,154 42,791 Natural
Amazon Natural language processing Text of comments 5 46,950 100,050 Natural
Java250 Source code analysis Source in Java 250 15,000 15,000 Natural
C++1000 Source code analysis Source code in C++ 1,000 99.997 — —

“#ID” is the number of in-distribution test data. “#OOD” is the number of out-of-distribution test data with artificial or

natural distribution shifts.

Table 2. Summary of Models

Dataset #DNNs #Parameters Accuracy (%) Robustness (%)

MNIST 30 7,206–3,274,634 85.27–99.54 MNIST-C
Fashion-MNIST 25 258,826–1,256,080 90.09–93.38 Fashion-MNIST-C
CIFAR-10 30 62,006–45,294,194 69.90–95.92 CIFAR-10-C
iWildCam 20 7,224,054–23,960,630 75.72–77.26 65.30–76.82
Amazon 20 3,223,255–12,861,655 56.06–59.13 38.24–56.94
Java250 20 2,927,290 64.73–87.39 57.24–81.67
C++1000 20 4,409,288 71.39–92.10 —

“#DNNs” is the number of DNNs collected for each dataset. “#Parameters” shows the minimum and the

maximum number of parameters of collected DNNs. “Accuracy” and “Robustness” lists the lowest and highest

accuracy and robustness on test data with and without distribution shift, respectively. MNIST-C and

CIFAR-10-C are two benchmark datasets and corresponding robustness is summarized in Table A2.

the definition in WILDS that the distribution shift of source code comes from new repositories.
For each class in Java250, we extract java files from Reference [44] under the constraint that the
corresponding users do not exist in ID data. Unfortunately, we did not find suitable OOD data for
C++1000. Table 1 lists the details of datasets.

DNNs. From Github, we collect, in total, 165 models, 30 for MNIST, 25 for Fashion-MNIST, 30
for CIFAR-10, 20 for iWildCam, 20 for Amazon, 20 for Java250, and 20 for C++1000. In concrete,
the models of MNIST and CIFAR-10 are extracted using the GitHub links in Reference [37]. The 25
models of Fashion-MNIST are extracted from References [2, 37]. For iWildCam and Amazon, we
train models using the implementation in the benchmark WILDS [27]. For Java250 and C++1000,
we train models using the implementation in the benchmark Project CodeNet [44] by different
optimizers (sgd, rmsprop, adam, adadelta, adagrad, adamax, nadam, ftrl) and architectures (basic,
doublePool). Table 2 presents the accuracy and robustness of DNNs on ID test data and OOD test
data with natural distribution shift, respectively.

4.4 Baseline Methods

In our study, we compare LaF to four baseline methods, including one labeling-free method (CRC)
and three sampling-based methods (random sampling, SDS, and CES). For conducting sampling-
based methods, we set the labeling budgets from the number of DNNs (i.e., 30 DNNs in MNIST) to
180 at intervals of 5. Here, we follow the previous work [37] to set the maximum labeling budget
as 180. Moreover, since our method is labeling-free, we tend to compare LaF with sampling-based
methods that use as little labeling budget as possible, which is the number of DNNs.

Consistent relative confidence (CRC) [34] is a recently proposed method that only uses out-
put probabilities to rank models. Roughly speaking, given a set of models and input, CRC assumes
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that a model has higher confidence to input should have better performance. Here, the confidence
is calculated by the maximum probability of outputs.

Random sampling is a basic and model-independent method for data selection where each
data has an equal probability to be considered. A subset of data is randomly selected and annotated
to rank DNNs.

Sample discrimination-based selection (SDS) [37] is the state-of-the-art approach in ranking
multiple DNNs with respect to accuracy. Following [37], among data in the top 25% with high
discrimination scores, we randomly select a given budget of data to label and annotate to perform
the ranking task.

Cross Entropy-based Sampling (CES) [31] is designed to select a set of representative data
to approximate the actual performance given a single DNN. We follow the same procedure as
Reference [37] to adapt CES for multi-DNN comparison.

The comparison we conduct is fair, because all methods used the same amount of data informa-
tion for ranking. All the considered methods need to access the prediction of all unlabeled data
once. For sampling-based models, they use this prediction to perform data selection and label a
subset of data to rank the models. For labeling-free methods, the ranking is conducted based only
on the predictions and no further labeling budgets are required. Due to the random manner in
the sampling methodology, each experiment of the baseline methods is repeated 50 times, and we
report the average result.

4.5 Evaluation Measures

To evaluate the effectiveness of each method, we follow the baseline work [37] and apply the sta-
tistical analysis, Spearman’s rank-order correlation [13], and Jaccard similarity [37]. The first one
evaluates the general ranking of all models, while the last one specifically estimates the ranking
of top-k DNNs. In addition, we add the evaluation on Kendall’s τ rank correlation [13]. Similar
to Spearman’s rank-order correlation, Kendall’s τ measures the non-parametric rank correlation.
However, Kendall’s τ calculates based on concordant and discordant pairs and is insensitive to er-
rors (if any) in data. By contrast, Spearman’s rank-order correlation calculates based on deviations
and is more sensitive to errors (if any) in data.

Given n DNNs, f1, f2, . . . , fn , let r ( f1), r ( f2), . . . , r ( fn ) be the ground-truth ranking and r ′( f1),
r ′( f2), . . . , r ′( fn ) be the estimated ranking. The Spearman’s rank-order correlation coefficient is
computed as

ρ =
n
∑n

i=1 r ( fi )r ′( fi ) − (
∑n

i=1 r ( fi )) (
∑n

i=1 r
′( fi ))√

[n
∑n

i=1 r ( fi )2 − (
∑n

i=1 r ( fi ))2][n
∑n

i=1 r
′( fi )2 − (

∑n
i=1 r

′( fi ))2]
. (4)

A large ρ indicates that the correlation between the ground truth and estimation is strong.
Kendall’s τ is

τ =
P −Q√

(P +Q +T ) (P +Q +U )
, (5)

where P and Q are the numbers of ordered and disordered pairs in {r ( fi ), r ′( fi )}, respectively.
T and U are the numbers of ties in {r ( fi )} and {r ′( fi )}, respectively. A large τ indicates a strong
agreement between the ground truth and estimation.

Meng et al. proposed to apply the Jaccard similarity for measuring the similarity between the
top-k models. The similarity coefficient is defined as

Jk =
| { fi | r ( fi ) <= k

} ∩ { fi | r ′ ( fi ) <= k
} |

| { fi | r ( fi ) <= k
} ∪ { fi | r ′ ( fi ) <= k

} | , 1 ≤ i ≤ n. (6)

A large Jk implies a high success in identifying the top-k models.
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Table 3. Spearman’s Correlation Coefficient of Ranking Results
of LaF and CRC

MNIST Fashion-MNIST CIFAR-10
Data Type

LaF CRC LaF CRC LaF CRC

ID 0.89 0.26 0.80 0.36 0.99 0.05
Gaussian Noise 0.97 0.23 0.36 0.23 0.94 0.18
Shot Noise 0.90 0.36 0.33 0.36 0.92 0.18
Impulse Noise 0.97 0.29 0.65 0.29 0.92 0.18
Defocus Blur 0.38 0.16 0.73 0.16 0.99 0.10
Glass Blur 0.77 0.16 0.35 0.16 0.96 0.22
Zoom Blur 0.91 0.37 0.22 0.37 0.99 0.12
Snow 0.98 0.10 0.44 0.10 0.99 0.16
Fog 0.74 0.08 0.34 0.08 0.99 0.05
Brightness 0.98 0.12 0.16 0.12 0.99 0.07
Contrast 0.83 0.13 0.79 0.13 0.95 0.11
Elastic 0.46 0.25 0.71 0.25 0.98 0.16
JPEG 0.90 0.39 0.27 0.39 0.98 0.20
Pixelate 0.92 0.26 0.55 0.26 0.91 0.20
Frost 0.99 0.13 0.35 0.13 0.98 0.22
Motion Blur 0.61 0.20 0.54 0.20 0.98 0.23

iWildCam Amazon Java250 C++1000

LaF CRC LaF CRC LaF CRC LaF CRC

ID 0.39 0.20 0.99 0.39 0.96 0.98 0.95 0.17
OOD 0.91 0.35 0.97 0.36 0.85 0.52 — —

5 RESULTS AND DISCUSSION

5.1 RQ1: Effectiveness Given ID Test Data

First, we compare the effectiveness of five methods in ranking multiple DNNs based on the accu-
racy of ID data. Table 3 shows the comparison of two labeling-free methods. We can see that for
ID test data, LaF significantly outperforms CRC in six of seven cases with an average 0.565 better
correlation score. Only for the Java250 dataset, both LaF and CRC have similar and good results,
0.96 versus 0.98. Table 4 shows Kendall’s τ scores of LaF and CRC, which also demonstrate LaF
is better than CRC. For the comparison of LaF and sampling-based methods, Figure 5 shows the
result measured by Spearman’s rank-order correlation. The first conclusion we can draw is that,
over seven datasets, all methods succeed in outputting positively correlated rankings. By compar-
ison, LaF continuously outperforms (by up to 0.74) the baseline methods regardless of the labeling
budget. Namely, the ranking by LaF is strongly correlated with the ground truth. In general, for
the three sample-selection-based baseline methods, the correlation between the estimated rank
and the ground truth increases when more data are labeled. However, for some datasets, the per-
formance is still far from LaF. For example, in Amazon, LaF obtains a correlation coefficient of 0.80,
while the best baseline, SDS, only achieves 0.48 using the maximum labeling budget of 180. Besides,
due to the sampling randomness, each baseline method obtains different ranking results from 50
experiments, which is indicated by the large standard deviation (up to 0.36, shaded area in the fig-
ure) at each labeling budget. As a result, the rank by one experiment is not reliable by occasionally
being good and poor. In particular, the standard deviation becomes smaller when more data are

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 25. Publication date: November 2023.



LaF: Labeling-free Model Selection for Automated Deep Neural Network Reusing 25:13

Table 4. Kendall’s τ of Ranking Results of LaF and CRC

MNIST Fashion-MNIST CIFAR-10
Data Type

LaF CRC LaF CRC LaF CRC

ID 0.78 0.18 0.61 0.35 0.96 0.03
Gaussian Noise 0.88 0.16 0.38 0.25 0.82 0.13
Shot Noise 0.78 0.25 0.26 0.23 0.84 0.12
Impulse Noise 0.88 0.19 0.58 0.19 0.78 0.13
Defocus Blur 0.35 0.11 0.63 0.25 0.93 0.06
Glass Blur 0.67 0.12 0.38 0.26 0.85 0.15
Zoom Blur 0.82 0.26 0.42 0.27 0.95 0.08
Snow 0.91 0.08 0.36 0.18 0.94 0.12
Fog 0.68 0.06 0.61 0.27 0.94 0.03
Brightness 0.91 0.08 0.18 0.21 0.95 0.07
Contrast 0.76 0.10 0.73 0.17 0.86 0.07
Elastic 0.42 0.17 0.59 0.38 0.93 0.11
JPEG 0.78 0.26 0.26 0.14 0.91 0.13
Pixelate 0.80 0.19 0.40 0.17 0.83 0.13
Frost 0.94 0.09 0.38 0.14 0.91 0.15
Motion Blur 0.51 0.14 0.52 0.18 0.92 0.15

iWildCam Amazon Java250 C++1000

LaF CRC LaF CRC LaF CRC LaF CRC

ID 0.25 0.19 0.95 0.29 0.91 0.92 0.87 0.17
OOD 0.77 0.27 0.92 0.28 0.83 0.55 — —

labeled, which means the ranking method highly relies on the labeling budget. By contrast, since
LaF is labeling-free, there is no sampling randomness, in other words, the rank is deterministic.

Additionally, Figure 6 presents the effectiveness of all ranking methods based on Kendall’s τ rank
correlation. By comparison, the result confirms the conclusion drawn from the analysis based on
Spearman’s rank-order correlation. Namely, our approach stands out concerning the effectiveness
without sampling randomness.

Besides, to demonstrate the significance of the two statistical analyses, we calculate the cor-
responding p-value of all methods. A p-value lower than the common significance level of 0.05
indicates that the ranking is strongly correlated with the ground truth. Except for the iWildCam
dataset, the ranking results by LaF are all strongly correlated. However, due to the effectiveness
and sampling randomness, the baseline methods always achieve insignificant rankings. For the
iWildCam dataset, we believe the reason is that the difference between multiple DNNs is too slight
given 182 classes. For instance, the accuracy difference between the best and worst is only 1.54%
(Table 1). The impact of the accuracy/robustness on the ranking is investigated in Section 5.4.

However, we evaluate different methods concerning identifying the top-k DNNs (k = 1, 3, 5, 10).
Table 5 lists the result of Jaccard similarity. On average, LaF achieves the best result regardless of
the datasets. It is better than the worst performance by up to 0.33, 0.32, 0.33, and 0.27 in the top 1,
3, 5, and 10 rankings, respectively. Concretely, in the top-1 ranking, for datasets MNIST, Fashion-
MNIST, and iWildCam, all methods (Random, SDS, and ours) are not effective (under 0.08). Remark
that CES takes the best results of all models for each labeling budget when knowing the ground
truth. Specifically, it takes n (number of DNNs) times of labeling budget. Therefore, it sometimes
outperforms others but is not applicable in practice.
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Fig. 5. Spearman’s correlation coefficient of ranking results based on ID test data. The higher the better. The
shaded area represents the standard deviation. “Budget” is the number of labeled data.

Answer to RQ1: Based on the accuracy of ID test data, LaF outperforms all baseline methods
in outputting strongly correlated ranking. In addition, statistical analysis demonstrates that out-
performing is significant.

5.2 RQ2: Effectiveness Under Distribution Shift

For the synthetic distribution shift, Tables 3 and 4 show the results of two labeling-free methods.
The results indicate that LaF outperforms CRC in 46 of 49 cases in terms of Spearman’s correlation
coefficient, and 48 of 49 cases in terms of Kendall’s results. Considering the comparison of LaF and
sampling-based methods, Tables 6 and 7 summarize the results of Spearman’s rank-order correla-
tion and Kendall’s τ on MNIST-C, Fashion-MNIST-C, and CIFAR-10-C, respectively. We observe
that our approach achieves the best performance in most cases, for instance, in CIFAR-10-C, LaF
consistently beats other methods. Furthermore, as shown in RQ1, SDS performs the second best
among the four ranking approaches. However, compared to random and CES, SDS tends to lose its
performance in these two tables (highlighted in yellow). For example, in MNIST-C with Defocus
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Fig. 6. Kendall’s τ of ranking results based on ID test data. The higher the better. The shaded area represents
the standard deviation. “Budget” is the number of labeled data (only apply to Random, SDS, and CES).

Blur, SDS ranks the models wrongly with a correlation of −0.15 (Table 6), while CES can achieve a
good ranking performance. The reason is that SDS only relies on the prediction of models to rank.
However, the confidence of models on OOD data reduces when the level of severity increases, e.g.,
SDS performs extremely poorly on MNIST-C where many models have very low accuracy on the
dataset MNIST-C-severity-5. In short, this existing state-of-the-art approach is sensitive to artificial
distribution shifts, which calls for the testing under distribution shifts of existing approaches. Con-
sidering the Jaccard similarity, in the 75 corruptions of MNIST-C, both LaF and CES outperform
the random sampling and SDS to identify the top DNNs precisely. In CIFAR-10-C, LaF achieves
the best performance (similarity of 1) in most cases (173 of 300). For the natural distribution shift,
the results are shown in Figure 7. LaF can better distinguish the performance of DNNs than the
baseline methods. In addition, concerning the Jaccard similarity in Table 8, LaF is also the best in
identifying the top DNNs. The reason for the good performance of LaF is that the Bayesian model
in LaF can model the probability of each possible label given the predicted labels from different
DNNs and model parameters (data difficulty and model specialty in LaF), which makes LaF flexible
to the change of predictions.
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Table 5. Jaccard Similarity of Ranking the Top-k DNNs Based on the Clean Accuracy

Jaccard Method MNIST Fashion-MNIST CIFAR-10 iWildCam Amazon Java250 C++1000 Average

Random 0.01 0.02 0.19 0.07 0.12 0.12 0.09 0.10
SDS 0.03 0.07 0.17 0.02 0.20 0.18 0.20 0.15
CES 0.65 0.23 0.21 0.10 0.15 0.84 0.94 0.45

k = 1

Our 0.00 0.00 1.00 0.00 1.00 0.00 1.00 0.43

Random 0.07 0.12 0.36 0.14 0.17 0.21 0.19 0.19
SDS 0.11 0.24 0.37 0.20 0.31 0.88 0.29 0.27
CES 0.69 0.28 0.39 0.15 0.21 0.18 0.80 0.46

k = 3

Our 0.20 0.20 1.00 0.20 1.00 0.70 0.50 0.51

Random 0.11 0.19 0.50 0.22 0.25 0.23 0.30 0.28
SDS 0.17 0.33 0.60 0.33 0.39 0.79 0.44 0.39
CES 0.89 0.36 0.55 0.16 0.29 0.18 0.68 0.53

k = 5

Our 0.25 0.43 1.00 0.25 1.00 0.70 0.67 0.61

Random 0.23 0.35 0.80 0.43 0.43 0.26 0.58 0.49
SDS 0.41 0.55 0.85 0.46 0.49 0.65 0.79 0.62
CES 0.73 0.46 0.82 0.44 0.46 0.24 0.68 0.61

k = 10

Our 0.67 0.54 1.00 0.43 0.67 1.00 1.00 0.76

For baseline methods, we report the average results over all labeling budgets. The best performance is

highlighted in gray. The higher the better.

Table 6. Spearman’s Correlation Coefficient of Ranking Results based on MNIST-C, Fashion-MNIST-C,
and CIFAR-10-C

MNIST Fashion-MNIST CIFAR10

Random SDS CES LaF Random SDS CES LaF Random SDS CES LaF

Gaussian Noise 0.90 0.94 0.91 0.97 0.29 0.26 0.39 0.36 0.91 0.93 0.92 0.94
Shot Noise 0.76 0.83 0.83 0.90 0.34 0.29 0.42 0.33 0.90 0.92 0.91 0.95
Impulse Noise 0.38 0.44 0.94 0.97 0.26 0.27 0.33 0.65 0.89 0.90 0.90 0.92
Defocus Blur 0.84 0.10 0.87 0.38 0.25 0.30 0.31 0.73 0.93 0.95 0.94 0.99
Glass Blur −0.16 −0.15 0.93 0.77 0.31 0.31 0.36 0.35 0.84 0.93 0.87 0.96
Zoom Blur 0.77 0.83 0.88 0.91 0.27 0.24 0.39 0.22 0.92 0.94 0.93 0.99
Snow 0.50 0.51 0.95 0.98 0.25 0.23 0.32 0.44 0.91 0.92 0.92 0.99
Fog 0.40 0.39 0.98 0.74 0.16 0.23 0.26 0.34 0.95 0.97 0.96 0.99
Brightness 0.94 0.47 0.95 0.98 0.04 0.05 0.13 0.16 0.94 0.97 0.95 0.99
Contrast 0.94 0.35 0.95 0.83 0.28 0.33 0.26 0.79 0.93 0.95 0.94 0.95
Elastic 0.80 0.16 0.83 0.46 0.41 0.39 0.29 0.71 0.90 0.94 0.92 0.98
JPEG 0.78 0.85 0.82 0.90 0.36 0.34 0.39 0.27 0.79 0.89 0.82 0.98
Pixelate 0.38 0.40 0.86 0.92 0.32 0.27 0.32 0.55 0.89 0.90 0.91 0.91
Frost 0.44 0.42 0.98 0.99 0.23 0.24 0.29 0.35 0.90 0.92 0.92 0.98
Motion Blur 0.58 0.62 0.95 0.61 0.27 0.32 0.32 0.54 0.92 0.94 0.93 0.98
Average 0.62 0.48 0.91 0.82 0.27 0.27 0.32 0.45 0.90 0.93 0.92 0.97

For baseline methods, we compute the average and standard deviation over all labeling budgets and 50-repetition

experiments. The best performance is highlighted in gray. Values highlighted in yellow indicate CES or random

outperform SDS. The higher the better.

In addition, compared to the effectiveness given ID test data, the ranking by all methods is
different, since the performance of DNNs changes given OOD test data. However, we notice an
opposite phenomenon happens. Given ID test data, LaF achieves 0.39, 0.99, and 0.96 concerning
Spearman’s coefficient for iWildCam, Amazon, and Java250, respectively. When given OOD test
data, the results are 0.91, 0.97, and 0.85, respectively. In other words, the effectiveness improves on
the OOD test data in iWildCam but degrades in Amazon and Java250. To make clear the reason
behind this, we analyze the accuracy and robustness of multiple DNNs on ID and OOD test data
(Table 1), respectively. In iWildCam, the performance difference of its 20 DNNs becomes larger on
OOD test data, from 1.54% to 11.52%. In Amazon, the performance of all 20 DNNs degrades, e.g.,
from 56.06% to 59.13%. Besides, the performance difference in Amazon becomes smaller. Therefore,
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Table 7. Kendall’s τ of Ranking Results based on MNIST-C, Fashion-MNIST-C, and CIFAR-10-C

MNIST Fashion-MNIST CIFAR10

Random SDS CES LaF Random SDS CES LaF Random SDS CES LaF

Gaussian Noise 0.79 0.84 0.82 0.88 0.27 0.27 0.33 0.38 0.78 0.79 0.80 0.82
Shot Noise 0.64 0.71 0.71 0.78 0.34 0.30 0.37 0.26 0.76 0.77 0.78 0.84
Impulse Noise 0.32 0.36 0.84 0.88 0.28 0.28 0.33 0.58 0.75 0.74 0.77 0.78
Defocus Blur 0.71 0.10 0.74 0.35 0.27 0.30 0.31 0.63 0.81 0.85 0.82 0.93
Glass Blur −0.11 −0.10 0.82 0.67 0.31 0.30 0.34 0.38 0.70 0.81 0.73 0.85
Zoom Blur 0.65 0.71 0.77 0.82 0.29 0.25 0.36 0.42 0.80 0.81 0.81 0.95
Snow 0.43 0.44 0.86 0.91 0.27 0.25 0.33 0.36 0.77 0.79 0.79 0.94
Fog 0.32 0.31 0.91 0.68 0.27 0.24 0.28 0.61 0.84 0.88 0.85 0.94
Brightness 0.86 0.41 0.87 0.91 0.07 0.07 0.13 0.18 0.82 0.87 0.83 0.95
Contrast 0.85 0.31 0.86 0.76 0.30 0.33 0.29 0.73 0.81 0.85 0.83 0.86
Elastic 0.70 0.15 0.72 0.42 0.40 0.38 0.31 0.59 0.76 0.81 0.78 0.93
JPEG 0.66 0.74 0.70 0.78 0.35 0.34 0.35 0.26 0.63 0.73 0.66 0.91
Pixelate 0.33 0.35 0.74 0.80 0.35 0.28 0.38 0.40 0.76 0.76 0.78 0.83
Frost 0.37 0.36 0.91 0.94 0.25 0.27 0.31 0.38 0.77 0.79 0.79 0.91
Motion Blur 0.48 0.51 0.83 0.51 0.29 0.33 0.33 0.52 0.79 0.82 0.81 0.92
Average 0.53 0.41 0.81 0.74 0.29 0.28 0.32 0.45 0.77 0.81 0.79 0.89

For Random, SD, and CES, we compute the average and standard deviation over all labeling budgets and 50-time

experiments. The best performance is highlighted in gray. Values highlighted in yellow indicate CES or random

outperform SDS. The higher the better.

Fig. 7. Spearman’s correlation coefficient of ranking results based on OOD test data. The higher the better.
The shaded area represents the standard deviation. “Budget” is the number of labeled data.

we believe that the model’s ability and the performance difference among DNNs have an impact
on the ranking effectiveness, which leads to the investigation in RQ3.

Answer to RQ2: Under different distribution shifts, LaF still outstands in all ranking methods.
Due to the distribution shift, DNNs’ performance declines, which degrades the ranking effec-
tiveness. Particularly, SDS is sensitive to artificial distribution shifts and fails to defeat random
sampling and CES in many cases.

5.3 RQ3: Ablation Study

To check if each component contributes to the performance of LaF, we conduct an ablation study.
Specifically, we prepare two variants of LaF,

• LaF without pruning. We remove the pruning process of LaF, which means LaF will use all
the inputs to do majority voting.
• LaF without optimizing. We remove the optimizing process of LaF and directly use the results

of the majority voting to perform the final performance ranking.
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Table 8. Jaccard Similarity of Ranking the Top-k DNNs
Concerning Natural Distribution Shift

Jaccard Dataset Random SDS CES LaF

iWildCam 0.66 0.96 0.68 1
Amazon 0.01 0.03 0.84 0.00k = 1
Java250 0.16 0.00 0.95 0.00

iWildCam 0.4 0.63 0.41 1
Amazon 0.14 0.21 0.86 0.67k = 3
Java250 0.27 0.11 0.76 0.00

iWildCam 0.44 0.61 0.47 0.67
Amazon 0.22 0.19 0.31 0.67k = 5
Java250 0.36 0.28 0.78 0.25

iWildCam 0.62 0.83 0.65 0.82
Amazon 0.41 0.12 0.51 0.81k = 10
Java250 0.61 0.72 0.67 1

For baseline methods, we report the average results over all labeling

budgets. The best performance is highlighted in gray. The higher

the better.

Tables 9 and 10 summarize the results of our ablation study on ID test data. We can see in most
cases (12 of 14 cases), LaF outperforms the other two variants. This means each component of LaF
is necessary and has a positive impact on the performance of LaF.

Answer to RQ3: Each component contributes to the performance of LaF and can not be re-
moved.

5.4 RQ4: Analysis of Impact Factors

In this part, we analyze the potential factors that could affect the effectiveness of LaF, (1) the
number of candidate models, (2) the number of input data used for ranking, (3) the quality of
candidate models, and (4) the diversity of candidate models.

For the analysis of the first two factors, we reduce the number of candidate models and test
inputs and then repeat the model ranking experiments. Concretely, we set the ratio of models and
inputs as 20%, 40%, 60%, 80%, and 100%, and use LaF to rank the models and compare the results to
check if these two factors have a high impact on the performance of LaF. Note that 100% of inputs
and models mean the settings used in the first three research questions. Figure 8 depicts the results
of ID test data. First, considering the input numbers, we can see the results are relatively stable.
With increasing (or decreasing) the number of inputs, the ranking performance of LaF is still at a
similar level. This indicates LaF is not sensitive to the number of input data. However, considering
the number of models, the results indicate that LaF is more effective to rank a small number of
models. With the increase of model numbers, the performance of LaF slightly drops, except for the
iWildCam, which has a big performance drop. We can conclude that it is more challenging to rank
a large number of models by using LaF.

As mentioned in RQ2, by comparing the ranking effectiveness given ID and OOD test data, we
raise the demand of investigating the two impact factors, the quality, and diversity of multiple
DNNs. The quality refers to the model’s performance given the test data and is calculated as the
average accuracy or robustness over all DNNs on each dataset. For instance, in MNIST without
distribution shift, the quality is the average accuracy of 30 DNNs on the ID test data, and in MNIST-
C with Gaussian Noise (severity = 1), the quality is the average robustness of 30 DNNs on the

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 25. Publication date: November 2023.



LaF: Labeling-free Model Selection for Automated Deep Neural Network Reusing 25:19

Table 9. Results of Ablation Study

LaF w/o Pruning w/o Optimizing

MNIST 0.89 0.88 0.85
Fashion-MNIST 0.80 0.80 0.77
CIFAR-10 0.99 0.98 0.99
Java250 0.96 0.97 0.94
C++1000 0.95 0.90 0.94
iWildCam 0.39 0.34 0.35
Amazon 0.99 0.95 0.92

Spearman’s correlation coefficient of ranking results. The best

performance is highlighted in gray.

Table 10. Results of Ablation Study

LaF w/o Pruning w/o Optimizing

MNIST 0.78 0.72 0.77
Fashion-MNIST 0.96 0.96 0.95
CIFAR-10 0.61 0.60 0.61
Java250 0.91 0.86 0.89
C++1000 0.87 0.89 0.84
iWildCam 0.25 0.25 0.18
Amazon 0.95 0.93 0.91

Kendall’s τ of ranking results. The best performance is highlighted in gray.

Fig. 8. Impact of numbers of data and models. Spearman’s correlation coefficient of ranking results.

corresponding OOD data. The diversity indicates the performance difference among DNNs and is
the standard deviation of accuracy or robustness over all DNNs on each dataset.

Figure 9 plots the distribution of ranking performance concerning quality and diversity. Most
good rankings happen with a high model quality (greater than 50%). The reason is that in our sce-
nario, we only have access to the predictions of test data of multiple DNNs, which sets up the initial
inference of data difficulty and model specialty. Therefore, the learned Bayesian model can be more
precise when the qualities of DNNs are high. Furthermore, this also explains why LaF outperforms
the sampling-based methods. For example, SDS selects a few discriminative data to annotate to
rank DNNs and the selection of data highly relies on the predicted labels. As a result, since the
low qualities of DNNs always give a wrong estimation of the discrimination ability of data, the
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Fig. 9. The impact of model quality/diversity on the ranking performance of LaF. Each point indicates Spear-
man’s correlation coefficient of a specific dataset and its DNNs. All 160 datasets are included.

ranking performance is poorer. For instance, in Java250 and C++1000, SDS only reaches 0.82 and
0.79 on Spearman’s correlation with 20 labeled data, respectively. However, LaF achieves 0.96
and 0.95 in two datasets, respectively, with no labeling effort. However, concerning the diversity,
Figure 9 reveals that there is a high chance of a good ranking when DNNs are diverse (greater
than 5%). Additionally, a poor ranking mostly happens when DNNs are too close to each other,
which confirms the result of iWildCam with ID data (Figure 2(d)) that all ranking methods obtain
poor ranking.

Answer to RQ4: There is no connection between the performance of LaF and the number of
used test data. However, with the increase in model numbers, LaF is more challenging to rank
the models. Besides, when the multiple DNNs have high quality (e.g., the average accuracy/
robustness is over 50%), the performance of DNNs can be discriminated better. However, there
is a higher chance of a good ranking when DNNs are more diverse (larger than 18%).

5.5 Applicable Scenarios

Collecting a large number of labeled data is the starting point to build a high-performance DNN
model. However, data labeling is time-consuming and usually requires domain knowledge. We
provide some application scenarios of our work.

(1) Overcome the challenge of insufficient domain knowledge. For example, a Java developer
can easily annotate the source code in Java but will have difficulties with other program-
ming languages such as C++, due to the difference in handling memory allocations. Consider
a scenario where a Java developer builds a DNN model to solve some Java tasks, e.g., bug de-
tection. If the developer later switches from Java to C++, then preparing labeled C++ datasets
to select another good model from the open source can be challenging. LaF can assist in this
scenario by enabling the developer to select a suitable model without this domain knowledge.

(2) Manage distribution shift. Consider a company that intends to leverage a DNN model to
solve a particular task. They prepared some labeled data to select and build a good model
for this month. However, as time goes by, the new coming data may follow a different

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 25. Publication date: November 2023.



LaF: Labeling-free Model Selection for Automated Deep Neural Network Reusing 25:21

distribution from the existing labeled data. If the company wishes to switch to a better
model, then it needs to label additional new data and redo the model selection. With LaF,
the company can effortlessly obtain the best model without further labeling effort.

6 DISCUSSION

6.1 Limitation

Since LaF relies on the results of majority voting to annotate the inputs, the quality of voting
could affect the performance of LaF. When many candidate models (not all the models, since LaF
has a pruning process to filter these data where all the models have the same prediction) have
consistently wrong predictions on a large number of inputs, LaF could have a poor ranking per-
formance. However, this is the corner case that we will rarely meet. Even though models have
poor performance, their wrong predictions can be different, for example, in MNIST-C-Defocus
Blur-Severity = 5, almost all of the models have bad performance (accuracy ranges from 1.96 to
18.30), LaF still performs well for ranking them.

6.2 Threats to Validity

The internal threat is mainly due to the implementation of the baseline methods, our proposed
approach, and the evaluation metrics. For SDS, we use the original implementation on GitHub
provided by Meng et al. [37]. For random sampling and CES, we implement it based on the descrip-
tion in Reference [37] and carefully check the result to be consistent with that in Reference [37].
Regarding the evaluation metrics, we adopt popular libraries, such as SciPy [6].

The external threat comes from the evaluated tasks, datasets, DNNs, and baseline methods. Re-
garding the classification tasks, we consider three different ones, image, text, and source code. For
the datasets, we select the publicly available datasets. In particular, for datasets with the artificial
distribution shift (15 types of natural corruptions) and natural distribution shift, we employ four
public benchmarks. Concerning the DNNs, we collect them (either the off-the-shelf models or train
with the provided scripts) from different repositories on GitHub. These models are with different
architectures and parameters. For the comparison, we consider three sample-selection-based base-
line methods and apply different numbers of labeling budgets to imply their performance.

The construct threat mainly lies in the sampling randomness in the baseline methods and the
evaluation measures. To reduce the impact of randomness, for each baseline method, we repeat
each experiment concerning the labeling budgets and datasets 50 times and report the results of
both average and standard deviation. Since our proposed approach does not rely on sampling
data to annotate, there is no sampling randomness. Considering the randomness (gradient ascent
search) in the EM algorithm, we repeat LaF 50 times and found that the randomness was negligible
(less than 1.84E-03). Regarding the evaluation measures, we consider three popular statistical anal-
yses. Kendall’s τ rank correlation and Spearman’s rank-order correlation can infer the effectiveness
of the methods concerning the general ranking, while the Jaccard similarity can specifically check
the performance concerning the top-k ranking. Besides, for the statistical analyses, we report the
p-value to demonstrate the significance.

7 RELATED WORK

We review the related work from two aspects, deep learning testing and test selection for deep
learning.

7.1 Deep Learning Testing

DL testing refers to evaluating the quality of developed DNNs for further deployment [55]. A sim-
ple and local testing strategy is to split a dataset into training, validation, and test sets. The training
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and validation sets contribute to the training process to tune parameters. The test set is untouched
by the training process to provide an unbiased evaluation of the accuracy. Typically, this testing is
built on the assumption that the training and test sets are independent and identically distributed.

Instead of simple performance testing, multiple advanced testing techniques have been pro-
posed in recent years. Pei et al. [43] proposed neuron coverage-guided testing for deep learning
systems, which borrows the idea from code coverage-based testing in traditional software engi-
neering. Here, the coverage is calculated based on the outputs of neurons in DNN. After that, based
on the basic neuron coverage criterion, Ma et al. [35] designed different types of coverage crite-
ria to further explore the coverage-guided testing. Based on these coverage criteria, DeepTest [49]
and TACTIC [33] tended to test DNN-based self-driving systems. Both of them utilize the coverage
information to guide the search algorithm to generate error-prone test sets to challenge the target
systems. Besides, the famous technique—fuzzing testing was also applied for testing deep learning
models. Odena et al. [41] proposed the first fuzzing testing framework by randomly injecting noise
into the image to generate new tests to find the error inputs against the DNN model. Xie et al. [54]
used neuron coverage as fitness to fuzz the data and generate tests for the DNN testing. More
practical, Guo et al. [19] provided a tool to support fuzzing testing of DL models.

Different from the above works, which focus on a single DNN model and utilize test data to
measure the quality of the model, our work studies multiple models and provides a new technique
to rank multiple models without label information.

7.2 Test Selection for Deep Learning

The purpose of test selection for deep learning is to reduce the labeling effort during DL testing.
Generally, test selection methods can be divided into two types, test selection for fault identifica-
tion and test selection for performance estimation.

Test selection for fault identification is to find the test data that are most likely been mispredicted
by the model. Multiple methods have been proposed in the last few years. Feng et al. [17] and
Ma et al. [36] proposed metrics based on the uncertainty of output probabilities and also demon-
strated that these metrics can be used to select data and retrain the pre-trained model to further
enhance its performance. Chen et al. [50] utilized the technique of mutation testing to mutate in-
put data and models and select the error-prone test data based on the killing score. More recently,
Li et al. [30] proposed a learning-based method that uses graph neural networks to learn the dif-
ference between the fault data and normal data and then predicts the new faults. Gao et al. [18]
considered the diversity of faults and selected faults from different fault patterns.

Test selection for performance estimation aims to select a subset of data that can represent the
whole test set. In this way, we can only label and test this subset and know the performance of the
model on the entire test data. Li et al. [32] proposed CES, which selects samples that have the min-
imum cross entropy with the entire test set. Chen et al. [12] proposed a clustering-based method
PACE that selects data from the center of each cluster. Hu et al. [22] proposed Aries, a method that
leverages the connection between the accuracy of a model on a test set and the distance between
the set to the decision boundaries to estimate the model performance.

Even though test selection for performance estimation can be also used for selecting the best
model during the model reusing process, we considered it as our comparison baseline. The major
difference between test selection and our proposed method LaF is—LaF is labeling free, which
means the model reusing process can be fully automated.

8 CONCLUSION AND FUTURE WORK

Observing the limitations (labeling effort, sampling randomness, and performance degradation
on out-of-distribution data) of existing selection-based methods, we proposed a labeling-free
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approach to undertake the task of ranking multiple DNNs without the need for domain expertise
to lighten the MLOps. The main idea is to build a Bayesian model given the predicted labels of
data, which allows for free labeling and non-sampling randomness. The experimental results on
various domains (image, text, and source code) and different performance criteria (accuracy and
robustness against artificial and natural distribution shifts) demonstrate that LaF significantly
outperforms the three baseline methods concerning both Spearman’s correlation and Kendall’s τ .
In addition, the results of the Jaccard similarity show the efficiency of LaF in identifying the top-k
(k = 1, 3, 5, 10) DNNs. This work currently only focuses on the classification task, we will explore
it for other tasks, such as regression, in future work. Observing the ranking difference on ID and
OOD test data, our approach might be useful to detect the existence of distribution shifts. We will
consider this in future work.

In the future, we plan to:

• Combine sampling-based methods and LaF to further improve the effectiveness of model
ranking. Since we can see that in some cases (e.g., models have low quality and diversity)
LaF cannot perform well, we can use β to check the quality of models first, and then use
sampling-based methods to rank models for these cases.
• Utilize LaF to build better model ensembles. Since existing works [20] show that it is good

to use diverse models to build model ensembles, we can leverage LaF (β value) to check the
model diversity for boosting ensemble building.

APPENDICES

A INCREASING LABELING BUDGETS

In this Appendix, we provide more results by comparing LaF to sampling-based methods with
bigger labeling budgets. Here, we consider labeling budgets 500, 1,500, and 2,500. Note that SDS
needs to select data from the top 25% ranked data, thus labeling budget of 2,500 is not suitable
for the iWildCam dataset (over 2,500 data). Table A1 summarizes the results. We can see that in
most cases (14 of 21 cases), LaF outperforms sampling-based methods under labeling budget 500.
Under the labeling budget of 1,500, LaF still has competitive performance with other baselines, e.g.,
LaF achieves the best results in 10 of 21 cases. However, when the labeling budget becomes 2,500,
sampling-based methods are better choices.

ACM Transactions on Software Engineering and Methodology, Vol. 33, No. 1, Article 25. Publication date: November 2023.



25:24 Q. Hu et al.

Table A1. Increasing the Budgets of Sampling-based Methods

Dataset Method 500 1500 2500 Dataset Method 500 1500 2500

Random 0.89 0.95 0.98 Random 0.85 0.91 0.96
CES 0.96 0.97 1.00 CES 0.95 0.95 0.96
SDS 0.95 0.97 1.00 SDS 0.96 0.98 0.98

MNIST

LaF 0.89 0.89 0.89

C++1000

LaF 0.95 0.95 0.95

Random 0.98 0.99 1.00 Random 0.36 0.53 0.58
CES 0.99 0.99 1.00 CES 0.54 0.60 0.60
SDS 0.99 0.99 0.99 SDS 0.46 0.45 —

CIFAR-10

LaF 0.99 0.99 0.99

iWildCam

LaF 0.39 0.39 0.39

Random 0.77 0.79 0.93 Random 0.56 0.76 0.85
CES 0.87 0.86 0.94 CES 0.75 0.85 0.93
SDS 0.90 0.91 0.91 SDS 0.56 0.79 0.86

Fashion-MNIST

LaF 0.80 0.80 0.80

Amazon

LaF 0.99 0.99 0.99

Random 0.91 0.96 0.97
CES 0.96 0.97 0.99
SDS 0.95 0.96 0.96

Java250

LaF 0.96 0.96 0.96

Values highlighted by yellow background indicate where LaF is better.
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B ACCURACY OF ARTIFICIAL DISTRIBUTION SHIFT DATASETS

Table A2 summarizes the accuracy of our collected models on artificial distribution shift datasets.

Table A2. Summary of MNIST-C, Fashion-MNIST-C, and CIFAR-10-C with the
Artificial Distribution Shift and Robustness

Corruption Type Severity = 1 Severity = 2 Severity = 3 Severity = 4 Severity = 5

MNIST-C

Gaussian Noise 84.85–99.49 80.49–99.25 55.89–99.05 29.86–98.77 16.92–96.02
Shot Noise 84.89–99.53 84.73–99.49 84.87–99.38 84.32–99.00 83.12–98.68
Impulse Noise 84.29–99.20 71.33–98.91 56.50–98.62 27.77–96.39 16.80–88.67
Defocus Blur 58.63–95.69 31.76–84.91 9.73–43.40 3.73–20.46 1.96–18.30
Frosted Glass Blur 65.06–96.52 54.02–94.33 19.06–75.43 15.63–70.29 11.12–54.46
Motion Blur 56.71–97.29 36.28–90.04 25.23–78.19 20.29–65.58 18.59–61.07
Zoom Blur 82.68–99.54 81.50–99.45 80.42–99.35 78.30–99.22 74.93–98.7
Snow 51.43–99.06 17.78–98.38 19.27–96.03 16.53–93.73 11.39–95.73
Frost 17.25–98.99 10.60–97.91 9.52–96.72 9.18–96.63 9.05–95.36
Fog 9.74–97.07 9.61–95.32 9.75–89.51 9.73–85.28 9.69–73.37
Brightness 66.18–99.53 21.94–99.22 12.55–98.99 9.96–98.60 9.10–97.06
Contrast 37.47–99.22 20.38–99.17 10.29–99.04 9.74–98.08 8.02–92.11
Elastic 49.09–99.07 12.80–17.58 79.89–97.75 44.52–94.33 12.32–71.43
Pixelate 80.40–98.64 84.37–99.11 77.65–98.47 62.11–92.34 54.96–89.33
JPEG 84.90–99.53 84.93–99.56 85.10–99.54 84.78–99.44 84.85–99.36

Fashion-MNIST-C

Gaussian Noise 74.57–74.57 56.19–83.34 37.41–73.87 18.24–61.61 11.94–44.15
Shot Noise 82.48–89.97 77.72–87.53 72.08–83.93 62.20–78.25 53.33–72.39
Impulse Noise 52.35–91.07 29.11–87.62 20.06–83.07 12.87–69.44 10.81–54.32
Defocus Blur 26.08–70.49 13.51–59.18 7.39–44.41 3.35–33.09 1.87–27.16
Frosted Glass Blur 59.16–80.66 57.87–77.73 28.12–58.08 28.37–58.97 23.0–52.96
Motion Blur 70.43–92.55 66.97–91.59 61.61–90.74 58.67–89.68 53.02–88.42
Zoom Blur 61.09–87.87 34.25–77.51 41.80–78.9 40.72–78.17 34.46–77.66
Snow 29.40–82.47 23.91–78.08 19.23–69.08 17.66–59.28 14.38–43.6
Frost 64.64–90.34 54.74–89.14 40.69–88.19 31.25–87.18 27.16–85.87
Fog 29.86–87.42 21.40–85.32 12.80–80.58 10.00–62.81 10.00–42.9
Brightness 51.79–85.74 15.64–19.97 51.55–77.36 41.33–67.57 22.46–50.32
Contrast 83.89–90.14 81.87–89.8 80.78–89.16 76.59–88.1 74.80–87.01
Elastic 40.71–64.36 76.53–88.27 70.78–84.76 27.80–51.18 40.37–72.85
Pixelate 47.18–88.03 33.51–84.25 27.71–79.91 27.11–79.0 23.45–75.86
JPEG 44.56–84.03 31.41–72.04 29.23–58.28 22.68–47.94 18.36–45.64

CIFAR-10-C

Gaussian Noise 59.02–82.46 45.70–75.57 34.70–73.70 30.07–72.54 25.08–71.14
Shot Noise 66.72–88.90 57.29–81.71 42.12–75.33 37.34–74.12 31.77–71.97
Impulse Noise 63.82–88.70 52.58–83.19 42.74–76.43 24.28–66.53 15.32–61.54
Defocus Blur 69.62–96.13 68.32–96.19 66.24–95.85 52.11–91.50 31.98–86.14
Frosted Glass Blur 35.53–74.17 37.23–73.88 40.17–73.61 30.33–68.81 32.24–68.36
Motion Blur 67.30–94.31 59.71–91.27 49.23–86.62 48.20–86.27 40.05–81.53
Zoom Blur 64.45–93.94 57.73–94.29 49.07–92.93 42.70–91.18 35.24–87.35
Snow 67.65–93.63 54.93–87.77 59.97–88.74 58.91–86.40 54.09–82.56
Frost 66.73–92.93 62.62–89.90 54.64–84.75 53.15–83.61 44.76–76.56
Fog 68.71–95.87 61.93–95.16 55.08–93.99 45.97–91.18 32.22–75.58
Brightness 69.55–95.76 68.88–95.65 67.51–94.98 65.73–94.44 60.59–92.64
Contrast 67.12–95.77 49.64–93.63 38.69–91.56 30.37–87.35 15.53–64.79
Elastic 62.71–93.92 63.91–94.03 63.78–93.46 55.80–86.46 53.64–80.07
Pixelate 69.62–94.77 67.38–91.97 60.46–89.24 42.55–78.97 28.45–75.55
JPEG 69.29–87.71 64.43–83.60 61.23–81.53 59.08–80.11 54.93–77.30

Each dataset includes 15 types of natural corruptions (e.g., Gaussian Noise) with five levels of

severity (1–5). The number in each cell presents the minimum and maximum robustness of

multiple DNNs given the corruption type and severity.
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