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In his paper  on the min imiza t ion  of  spa t ia l ly  mul t i -  
plexed charac te r  sets [2], G i m p e l  cons idered  the fol- 
lowing set basis  p rob lem.  Given  a col lect ion o f  sets 
S = {5'1, S.~ . . . .  , Sz}, a bas is  B is defined as a collec-  
t ion of  sets, B = {B1, B2, . . . , B~} such tha t  for each 
Si in S there  exists a (poss ib ly  tr ivial)  subset  of  B 
whose  union  equals  S i ,  the p r o b l e m  is to find a basis  
o f  least  card ina l i ty .  

This  i m p o r t a n t  p r o b l e m  also arises in fea ture  ex- 
t rac t ion  and  o ther  a reas  in p ic ture  process ing  [1]. In  
mos t  cases, the a m o u n t  of  c o m p u t a t i o n  requ i red  to 
solve this p r o b l e m  is p roh ib i t ive ly  large.  

In  [2], the convers ion  of  this  p r o b l e m  to the set 
cover ing  p r o b l e m  is d iscussed and  can be descr ibed  as 
follows. The  co lumns  of  the cover ing  p r o b l e m  cor-  
r e spond  to e lement  ins tances  wi thin  the sets {S~}. Thus  
the to ta l  number  of  co lumns  is equal  to the sum of  the 
card ina l i t ies  of  the {Si}. F o r  e lement  ej in set S~, there  

Copyright © 1975, Association for Computing Machinery, Inc. 
General permission to republish, but not for profit, all or part 
of this material is granted provided that ACM's copyright notice 
is given and that reference is made to the publication, to its date 
of issue, and to the fact that reprinting privileges were granted 
by permission of the Association for Computing Machinery. 

Authors' address: IBM Thomas J. Watson Research Center, 
P. O. Box 218, Yorktown Heights, NY 10598. 

Communications November 1975 
of Volume 18 
the ACM Number 11 

http://crossmark.crossref.org/dialog/?doi=10.1145%2F361219.361225&domain=pdf&date_stamp=1975-11-01


,g 

Table I. 

S~ S2 S3 
a b b c a b c 

a 

b 
C 

ab 
a c  

bc 
abc 

1 0 
0 1 
0 0 
1 1 
0 0 
0 0 
0 0 

0 0 
1 0 
0 1 
0 0 
0 0 
1 1 
0 0 

1 0 0 
0 1 0 
0 0 1 
1 1 0 
1 0 1 
0 1 1 
1 1 1 

is a column which we may  designate S~/ei. The rows 
of the table are sets which are candidates for member-  
ship in a basis {B~}. A row representing set Rk covers a 
column S~/ej if and only if eiC Rk ___ St .  Thus, if S~ = 
{a, b}, $2 = {b, c}, and $3 = {a, b, c}, the covering 
problem can be represented by Table I. 

As pointed out in [2], this conversion to a set cover- 
ing problem has the advantage that many well-known 
methods to solve the set covering problem exist and 
can therefore be applied immediately. But it also has 
the disadvantage that the resulting matrix is too large 
in size. For example, if the number of distinct elements 
is n, the number of rows in the covering table is 2 '~ -- 1, 
corresponding to all the subsets of n objects except the 
void set. Note that this is only the worst possible case. 
In fact, there are usually fewer candidate sets because 
of the observations made by Gimpel in [2]. Therefore 
in the worst possible case the number of rows may grow 
exponentially with n. (The number of columns is c~ = 
I S1 ] q- [ $2 I ~ + " ' +  ] St l, where I Si ] is the cardi- 
nality of S~). 

We show here that the set basis problem can be re- 
duced to yet another well-known problem, namely, 
the clique cover problem. Notice that as far as time 
complexities are concerned, the set covering problem 
and the clique cover problem have been shown to be 
in the same class, i.e. both are polynomially complete 
[3]. However, our method reduces the set basis problem 
to the clique cover problem in polynomial time and the 
corresponding graph hasc~ = ] $ 1 1 +  ] S2I + ' " +  [SzI 
nodes, hence at most  (]) edges. Consequently, its 
size grows only polynomially with n. 

First we need some definitions: given an (undi- 
rected) graph G, a c#que is a complete subgraph of G; 
a clique cover of size k for G is a family of k cliques 
such thatevery  node in G is in at least one of the 
cliques. 

Next we show that given S one can construct a 
graph G such that any basis for S corresponds to a 
clique cover for G with the same cardinality and vice 
versa. 
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Given S = {$1, $2, . . . ,  Sz}, where S~ = {h, 
i 2 , . . . , i k i }  f o r i  = 1 , 2 , . . . , 1 ,  consider the graph Gs 
constructed as follows. The set of nodes in Gs has a 
one-to-one correspondence to the elements of the set 

l 

X = U {(S~,ij) [ j  = 1 , 2 , . . . , k ~ } .  
i = 1  

An edge is drawn between the two nodes corresponding 
to the elements (S , ,  u,) and (So, v~) in X if and only 
if Su A S~ ___ {u, ,  re}. The following proposition gives 
the relationship between the set basis problem for S 
and the clique cover problem for Gs. 

PROPOSITION. S has a basis o f  cardinality k i f  and 
only i f  Gs has a clique cover o f  size k. 

PROOF. Suppose S has a basis of cardinality k, say, 
B = {B1, /?2, . . . ,  Bk}. Consider the subgraph Gi 
of Gs with nodes corresponding to the set Xi = { (Su, x) ] 
Su ___ B~ and xC B~} and with all the edges connecting 
nodes in X~. By the construction of Gs, G~ forms a 
clique. Furthermore,  since B forms a basis, for every 
element (St ,  b)E X, there exists at least one basis ele- 
ment Bh such that iiE Bh___ S~. Therefore (St ,  b) is in 
Gh. Consequently, every element in X is in at least one 
of the cliques. Hence G = {G~, G2, . . . ,  Gk} forms a 
clique cover for Gs.  

On the other hand, if Gs has a clique cover of size k, 
let G = {G1, G2, . . . ,  Gk} designate the clique cover. 
Def ineBj  = {xl  (ST ,x )  i s a n o d e i n  Gi}, f o r j  = 1, 
2 , . . . ,  k. Notice that since Gj is a clique, for all (S,j, x) 
in Gi, Sy 2 Bs. Now, for each S~CS, let T~ = {s] Gs 
contains a node (Si,  ii), 1 < j  _< k d. Then 

k 

84= {x (&, x)cX}= U I{x(&, x)CG~l 
i=1 

= U Bj.  
J C T i  

Hence B = {B1, B2, . . . , Bk} forms a basis. [] 
Finally, it should be pointed out that Stockmeyer 

[4] recently proved the polynomial completeness of 
the set basis problem. Therefore it may be useful to 
study heuristics which yield near optimal results. 
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