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The availability of  interactive, three-dimensional, 
computer graphics systems coupled to powerful digital 
computers encourages the development of algorithms 
adapted to this environment. Pictorial pattern recognition 
techniques make possible a number of approaches to 
X-ray structure determination based on molecular model 
building, i.e. the use of chemical information to frame 
"structural hypotheses" which can computationally be 
tested and refined by reference to the experimental data. 

Application of standard pattern recognition 
algorithms is hindered by the fact that the 
cross-correlation between a model and the correct 
structure cannot be computed because of a fundamental 
incompleteness in the measured data. However, it is 
possible to compute an upper bound to such a 
cross-correlation. A simple example demonstrates that 
this information can be the basis of a technique for 
structure determination that can make effective use of an 
interactive graphics system. 

Model building by cross-correlations has intrinsic 
advantages over usual crystallographic techniques based 
on the autocorrelation or Patterson function, especially 
for large structures. This is significant, for 
crystallography of biological macromolecules has been 
and will continue to be a field of intense interest. 
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The Phase Problem of X-ray Crystallography 

Powerful algorithms are essential in the determina- 
tion of chemical structures by X-ray crystallography for 
several reasons. First, the measurements are indirect, 
since the data contain information about the Fourier 
transform of the electron density distribution in a mole- 
cule. Second, the measurements are incomplete in a 
fundamental sense, in that they fix the absolute magni- 
tudes of the Fourier coefficients but in general give no 
information about their arguments. 

This ambiguity leads to "the phase problem," of 
determining the arguments (or phase angles) of the 
Fourier coefficients. Once phase angles are known, a 
straightforward Fourier transformation produces the 
electron density distribution itself. A variety of tech- 
niques for phase determination, both experimental and 
computational, have led to successful structure deter- 
minations [3]. 

Often, a crystallographer knows a good deal about a 
compound before attempting to solve its structure by 
X-ray diffraction. If  he can construct even a rough 
model for his structure, the determination of the location 
and orientation of the model that best fits the data is a 
useful step toward a solution, since phases taken from 
the Fourier transform of a properly positioned model 
may be applied to the experimental data. Many crystal- 
lographic structure determinations utilize such a c o m -  
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putation of an approximate electron density map, de- 
rived by combining a set of approximated phases for the 
Fourier coefficients with measured magnitudes. The 
crystallographer may then select for further analysis 
those features he believes to be correct and reject those 
he discredits. 

Pepinsky, Vand, and co-workers explored the ap- 
plication of interactive computer displays to the phase 
problem approximately 20 years ago, using an analog 
computer called X-RAC [7-9]. Although newer digital 
computers superseded that equipment in size and speed, 
the power of interactive displays was recognized and 
demonstrated then. 

These considerations suggest that pictorial pattern 
recognition techniques might effectively be applied to 
X-ray structure determination using modern interactive 
computer graphics systems [4, 17]. 

Patterson (Autocorrelation) Techniques 

The Patterson or autocorrelation function has been 
an extremely powerful and widely used tool for intro- 
ducing chemical information into a crystallographic 
structure determination [1, 2, 6, 12]. The Patterson func- 
tion is computable directly from measurable quantities, 
requiring no information about  phases. It has a mean- 
ingful structural interpretation: a peak in the autocorre- 
lation function corresponds to an interatomic vector 
somewhere within the structure. If the~e are N atoms in 
a structure, there are N 2 peaks in the Patterson function 
(N of which pile up at the origin, corresponding to the 
vectors from each atom to itself--these may be sub- 
tracted). Thus the complexity of a Patterson function 
increases very rapidly with the size of the structure. 

Techniques based on cross-correlations, in which a 
structural model serves directly as a pattern, have in- 
trinsic advantages over the autocorrelation approach, 
especially for macromolecules. Although the cross-cor- 
relation between an unknown structure and a pattern is 
not computable without knowing phases For the struc- 
ture, an upper bound to the cross-correlation can be 
computed by transferring phases from the model to the 
structure. In at least some cases this information is 
sufficient for accurate positioning of a structural model. 
Such an approach is closely related to that of Stout, et 
al. [15, 16] and to rigid body refinement techniques [13]. 

Pattern Recognition by Maximal Normalized 
Cross- Correlation 

The normalized cross-correlation between two func- 
t i o n s f a n d  g is a convenient, scale independent measure 
of their agreement; it is analogous to the cosine of the 
angle between two vectors [11 ]: 

cos O(f, g) = f f ( x ) . g ( x )  d x / [ f  [f[2 d x . f  I g 12 dx] ~12- 

The functions considered here are p(x), the electron 
density distribution in a unit cell of the crystal, and 
pro(x), a charge distribution corresp6nding to some 
model. The magnitudes of the Fourier coefficients of the 
structure are denoted by Fo ,  and those of the pattern 
by Fc . 

To locate the model in the unit cell so as best to 
approximate the structure, a translation vector t and a 
rotation matrix R are sought to maximize cos 0(p(x), 
pm(R.x + t)). This can be done equivalently in re- 
ciprocal space: 

COS O(p, pm(a, t)) = XFo. fc (R,  t) /[Z [ Fo 12.y~ [ Pc 15] '/2 

in which Fe(R, t) are the Fourier coefficients of  

p(R. x + t). 

cos 0(p, pro(R, t)) cannot be evaluated without know- 
ing phases for the Fourier coefficients of p. An upper 
bound is available by assigning to the Fourier coeffi- 
cients of p the phases of those of the model 

COS O(p, pm(a, T)) 

< x ] Fo [.1 Fc(R, t)]/[~ I Fo I~-Z [ Fe ]2]~/~. 

The quantity on the right-hand side is larger than or 
equal to the normalized cross-correlation of the model 
with any function consistent with the measured Fourier 
coefficient magnitudes. If for some choice of R and t the 
bound is small, then a good match between the structure 
and the model placed with that position and orientation 
is ruled out; if large, then for some choice of phases the 
model can be well matched. 

Thus a peak in the maximal normalized cross-corre- 
lation as a function of positional or orientational 
parameters suggests the proper placement of a pattern 
in the unit cell. 

An Example: OkC Projection of Dihydrouracil 

Dihydrouracil, a structure solved recently by other 
methods, is particularly favorable for the application of  
pattern recognition techniques since all atoms are visible 
in projection [10]. The cell dimensions are a = 4.201 A, 
b = 5.816 .&, c = 19.777 .&, ¢~ = 95.15 °, the 0kg projec- 
tion has symmetry pgg, and there are four molecules 
per unit cell. 

One possible route to the solution of this structure 
proceeded in four steps, using progressively more refined 
patterns. In Figure 1, the pattern used in each step is 
shown set into the structure obtained by combining 
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Fig. 1. Solution of Okg projection of dihydrouracil by recognition of 
progressively refined patterns. Patterns shown over structures com- 
puted by Fourier transformation from structure factor intensities 
measured by X-ray diffraction and phases determined from the 
patterns. The computer program used to produce the half-tone 

drawings differed only in minor details from one coded by I.D.G. 
MacLeod [5]. 

The final frame is in effect a portrait of the electron density 
distribution in dihydrouracil at approximately 100 million times 
magnification. 
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measured Fourier coefficient magnitudes with model 
phases. 

The first pattern is an annulus of inner radius 0.85 ,~ 
and outer radius 1.7 A (plus three other identical annuli 
generated by the unit cell symmetry). Its symmetry re- 
duces the problem to a two-variable search for its posi- 
tion. There are 16 peaks in the maximal normalized 
overlap, which form four sets, each corresponding to 
four molecules related by symmetry. Each set corre- 
sponds to a different possible choice of origin in the unit 
cell. All are physically equivalent. 

With the ring in a position corresponding to one 
choice of  origin, two point a toms are placed outside 
the ring, 120 ° apart ,  and rotated in tandem through 360 ° 
to locate the angular positions of  the oxygen atoms. This 
model consisted of the annulus plus two atoms. 

The next step is the replacement of the annulus by a 
regular hexagon of atoms. Appropriate  form factors 
were assigned to carbon, nitrogen, and oxygen. In this 
model, all bond lengths and angles are equal, but those 
in the structure computed from it are not. This stage 
already satisfies a criterion stated by Stout and Jensen 
[14]: " . . .  a structure not containing heavy atoms can 
generally be completed without excessive difficulty if 50 
to 75 percent of the electron density is located within an 
average error of about  0.3 ,~." 

The fou r t h s ec t i on  of the photograph shows the 
s t ruc ture  partially refined. The maximum deviation of 
any atomic coordinate from those reported is 0.16/~. 

Discussion and Conclusions 

An approach to the phase problem of X-ray crystal- 
lography employs a cross-correlation technique to test 
and refine structural models. This has certain intrinsic 
advantages over some standard crystallographic tech- 
niques based on the Patterson or autocorrelation func- 
tion: it avoids the quadratic dependence in complexity 
of the Patterson function upon the size of the structure; 
it does not require the identification of individual inter- 
atomic vector peaks in the Patterson; and models for 
fragments of a complex structure may be combined 
linearly. 

A test of the method in a simple two-dimensional 
case was successful, demonstrating that the technique 
can solve a real structure using real data. The computer  
time required for this example was tr ivial-- the cost of 
evaluating all cross-correlations was less than 810, at 
about 8500 per hour- -which  suggests that more complex 
cases will also be tractable. The generalization from 
two-dimension to three-dimension requires finding the 
maximum of a function of at most six variables, a task 
within the reach of current algorithms. 

As pointed out in the test example, computat ion can 
be simplified in two ways: by the choice of symmetrical 
patterns, at least in the early stages of analysis; and by 
the building up of a complex structure by "synthesis" of 

models of simpler fragments. Choice of  the route for 
such a synthesis may advantageously be left to the dis- 
cretion of a skilled crystallographer, and it could be 
carried out particularly effectively using 'an interactive 
computer  graphics system. 

It  is hoped that this approach will be helpful in 
solving structures of  biological macromolecules, for 
which models are generally available but for which the 
Patterson functions are quite complicated to analyze. 
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