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ABSTRACT

Self-supervised learning on graphs has recently drawn a lot of at-

tention due to its independence from labels and its robustness in

representation. Current studies on this topic mainly use static in-

formation such as graph structures but cannot well capture dy-

namic information such as timestamps of edges. Realistic graphs

are often dynamic, which means the interaction between nodes

occurs at a specific time. This paper proposes a self-supervised dy-

namic graph representation learning framework (DySubC), which

defines a temporal subgraph contrastive learning task to simulta-

neously learn the structural and evolutional features of a dynamic

graph. Specifically, a novel temporal subgraph sampling strategy

is firstly proposed, which takes each node of the dynamic graph

as the central node and uses both neighborhood structures and

edge timestamps to sample the corresponding temporal subgraph.

The subgraph representation function is then designed according

to the influence of neighborhood nodes on the central node after

encoding the nodes in each subgraph. Finally, the structural and

temporal contrastive loss are defined tomaximize themutual infor-

mation between node representation and temporal subgraph rep-

resentation. Experiments on five real-world datasets demonstrate

that (1) DySubC performs better than the related baselines includ-

ing two graph contrastive learning models and four dynamic graph

representation learning models in the downstream link prediction

task, and (2) the use of temporal information can not only sample

more effective subgraphs, but also learn better representation by

temporal contrastive loss.

CCS CONCEPTS

• Theory of computation → Dynamic graph algorithms; •

Computingmethodologies→Unsupervised learning; Learn-

ing latent representations.
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self-supervised learning, temporal subgraph contrast, dynamic graph

representation learning
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1 INTRODUCTION

Graph-structured data, such as social networks [1], collaboration

networks [17] and chemical molecular graphs [13], are ubiquitous

in the real world. They naturally represent entities and their rela-

tionships. Graph representation learning aims to transform nodes

into low-dimensional dense embeddings that preserve attributive

and structural features of the graph. The method of using graph

neural networks (GNN) [10, 26, 33, 36] has recently drawn consid-

erable attention and achieved excellent performance. However, the

supervised or semi-supervised GNNs heavily rely on labels with

high acquisition cost, which could lead to poor generalization and

weak robustness under label-related adversarial attacks [15].

Self-supervised learning can effectively alleviate the above prob-

lems. By designing appropriate training tasks on the graph, the

self-supervised model can learn a more generalized graph repre-

sentation in the absence of labels. Most of the existing methods

focus on learning representations from the structural perspective

by contrasting graph elements of different scales, such as node and

local subgraph contrasting [8], and node and global graph contrast-

ing [6, 34].

However, neither graph sampling nor graph contrastive learn-

ing in these methods take the graph dynamics (especially the tem-

poral information of edge generation) into account. As a result,

the learned node representation cannot reflect the graph evolution.

Take the social network in Figure 1 as an example, where the edge

represents the friend relationship of two person nodes. Each edge

is marked with a timestamp (C1 < C2 < . . . < C9), indicating the

moment when they became friends. The central node Mary used

to be an engineer, and most of her neighbor nodes were engineers

before C6. Recently, Mary changed her career to become a teacher

and started to have teacher neighbor nodes (e.g., she will friend a

teacher at time C9). The static graph representation learning model

samples subgraphs and encodes the nodes only based on structures,

so it could predict that Mary will friend an engineer instead of a

teacher at time C9. By using temporal information, the dynamic

subgraph sampling and node representation method can capture

Mary’s relationship evolution, which may give a more accurate

prediction.

http://arxiv.org/abs/2112.08733v1
https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456
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Figure 1: The influence of time-aware subgraphs on Mary’s

interaction at C9 in social networks.

Nodes are usually more closely related to their regional neigh-

bors [8]. So intuitionally, frequent changes of neighbors will re-

flect potential changes of the central node and the latest neigh-

bors that interacted with the central node are more valuable in

node representation. This paper proposes a novel self-supervised

dynamic graph representation learning method (DySubC), which

learns node representation by sampling and contrasting with tem-

poral subgraphs. To be specific, a temporal subgraph sampling strat-

egy is firstly proposed, which takes each node as the central node

to sample the corresponding temporal subgraph. The subgraphs

are sampled by considering not only the local structure but also

the temporal information of neighborhood interactions. Then, a

certain GNN encoder is used to learn node representation for each

temporal subgraph, thus output the representation of the central

node and the summary of the temporal subgraph calculated by a

time-aware readout function defined in this paper. Finally, the cen-

tral node is paired with (a) its corresponding time-weighted sub-

graph as a positive sample, (b) any other temporal subgraph in a

shuttled sampling set as a structural negative sample and (c) its cor-

responding unweighted subgraph as a temporal negative sample

to train the whole model by maximizing the mutual information

of the central node and its temporal subgraph.

In summary, the main contributions of the DySubC framework

include:

• This paper studies the problem of dynamic graph contrast

learning for the first time and better captures the structural

evolution characteristics of graphs by introducing temporal

information.

• A temporal subgraph sampling method is proposed, which

simultaneously uses the structural and temporal informa-

tion of neighborhoods.

• A new readout function is defined to get the summary of a

temporal subgraph, which takes the influence of the neigh-

borhood nodes on the central node into account.

• A temporal subgraph contrast loss is defined including struc-

ture contrast loss and time contrast loss.

• Extensive experiments verify the superiority of DySubC in

link prediction compared to the related continuous time graph

representation learning models and graph contrastive learn-

ing models. The ablation study further proves the effective-

ness of each time-enhanced module.

The rest of this paper includes the following sections. In Section

2, the related work on dynamic graph representation learning and

self-supervised graph learning is briefly reviewed. Section 3 intro-

duces the proposed DySubC framework in detail. The experimen-

tal results are shown and analyzed in Section 4. Section 5 concludes

the paper.

2 RELATED WORK

2.1 Dynamic Graph Representation Learning

Graph neural networks (GNNs) [10, 26, 33, 36] have achieved the

competitive performance in static graph representation learning

[4, 24, 30, 35]. Recently, the dynamic graph representation learn-

ing has drawn more and more attentions due to its ability to incor-

porate temporal information into representations. There are two

different types of dynamic graphs, i.e., discrete time graphs and

continuous time graphs. Accordingly, dynamic graph representa-

tion learning is also roughly divided into two categories.

Discrete time graph refers to a dynamic graph formalized as a

series of multiple graph snapshots with the same time interval be-

tween them. This type of methods generally conduct representa-

tion learning on each snapshot first and then learns the evolution

features of the graph structure over time through a sequence learn-

ing model (e.g., RNN [37], self-attention [32], etc.). Representative

methods includeDynGEM [3], DynamicTriad [38], EvolveGCN [22],

DySAT [29] and so on. These methods focus more on capturing the

global evolution features rather than the features of local continu-

ous changes.

The continuous time graph is another formalization of dynamic

graphwhere edges aremarkedwith continuous timestamps. CTDNE

[19] proposes a temporal random walk method and then uses skip-

gram to obtain node representation. HTNE [41] introduces the

Hawkes process theory into the dynamic graph model and learns

node representation based on the fact that the influence of neigh-

bors on the central node will change over time. DyRep [31] cap-

tures the interleaved dynamics of communication processes and

correlation processes, thereby updating node representation. TGN

[27] combines the memory module and graph-based operators to

update node representations and improves the computational effi-

ciency. The method proposed in this paper also falls into the cat-

egory of continuous time graph representation learning, which

mainly uses the changes of regional neighbors to learn node rep-

resentations.

2.2 Self-supervised Graph Learning

Self-supervised learning uses pretext tasks to train the model with

constructed supervised information from large-scale unsupervised

data. It not only alleviates the problem of high cost of acquiring

data labels, but also learns effective features. It has been success-

fully used in computer vision [9] and natural language process-

ing [14]. For graph representation learning, DGI [34] is the first

graph self-supervised learning method that uses the pretext task

of maximizing mutual information between node representations
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and global graph representations. After that, a series of graph con-

trastive learning models emerged. Sankararaman et al. [6] propose

amulti-view graph contrastive learningmodelMVGRL,which treats

the original graph structure and graph diffusion as two different

views to maximize mutual information between nodes and cross-

view representations of large-scale graphs. The graph contrastive

learning in GMI [23] is achieved by maximizing the mutual infor-

mation between the representation of each node and the original

features of its one-hop neighbors. Sub-Con [8] maximizes the mu-

tual information between node representations and subgraph rep-

resentations, which can be used for large-scale graphs.

In addition to the above methods, [25, 39, 40] introduce the con-

trastive learning method [2] in machine vision into graph repre-

sentation learning, which adopts different strategies for positive

and negative sample construction and different loss functions.

However, the existing graph self-supervisedmethods do not take

into consideration the fact that graphs in real world are often dy-

namic. The temporal information is not well used not only in the

pretext task but also in the definition of the objective function. The

work of this paper attempts to bridge this gap.

3 THE PROPOSED METHOD

3.1 Preliminaries

Before detailing the model, a formal definition of dynamic graph is

given. Considering that the interaction between nodes occurs at a

specific time and the graph is constantly changing over time, this

paper models the dynamic graph as a continuous time graph.

Definition 1 (Dynamic Graphs). Given a graph � = (+ , �C , - ),

+ is a set of vertices, �C ⊆ + ×+ ×R
+ is a set of edges with timestamp

C (C ⊆ R+) and- denotes the matrix of node attributes. 4 = (D, E, C) ⊆

�C represents the interaction between nodeD and E at time C . Note that

when the nodes are not attributed, one-hot encoding is often used to

initialize - .

Problem1 (Continuous-time dynamic graph representation learn-

ing). For a dynamic graph� = (+ , �C , - ), the task is to learn themap-

ping function 5 : + → R� to embed the node in a 3-dimensional

vector space. The node representation is supposed to contain both

structural and temporal information and suitable for downstream

machine learning tasks such as link prediction.

3.2 Overview

The proposed DySubC (Dynamic graph representation learning

via temporal SubgraphContrast) framework uses graph contrastive

learning that captures the structural and temporal features from

continuous-time graphs during the training phase without addi-

tional supervision. An overview of theDySubC framework is shown

in Figure 2, which mainly includes three time-enhanced modules.

• Temporal subgraph sampling. Firstly, a temporal subgraph

for each node 8 in the original graph is sampled using both

structural and temporal information, generating a time-weighted

subgraph�8 = (-8, �8) and an unweighted counterpart�
′
8 =

(- ′8 , �
′
8 ).

• Node and subgraph representation. Secondly,�8 and�
′
8

are encoded through GNN and then the summary of each

subgraph is represented by a readout function, respectively.

For each node 8 , we have its representationℎ8 , a time-weighted

subgraph representation B8 and an unweighted subgraph rep-

resentation B ′8 .

• Temporal contrastive learning. Finally, a positive sam-

ple B8 , a temporal negative sample B ′8 and a structural nega-

tive sample B̃8 are constructed for each central node 8 repre-

sented by ℎ8 . The model is trained by maximizing the mu-

tual information of the central node representation and the

time-weighted subgraph representation.

Note that the temporal subgraph sampling can be completed

independently before the start of training. Thus, it does not take

up the running time of the model.

3.3 Temporal Subgraph Sampling

The temporal subgraph sampling module is first proposed for each

node to generate training samples for self-supervised learning.

By considering both the structure of neighbors and the times-

tamp of edge interactions, the temporal subgraph sampler (see Al-

gorithm 1) can sample a temporal subgraph with a fixed number

of nodes : for each central node 8 . The specific steps are as follows.

Algorithm 1 Temporal Subgraph Sampler

Input: Dynamic graph� = (+ , �C , - ); Subgraph size : .

Output: A time-weighted subgraph �8 = (-8 , �8 ) and an un-

weighted subgraph� ′8 = (-
′
8 , �
′
8 ) for each node 8 .

1: Preprocess� to get the time-weighted adjacency matrix� and

the unweighted adjacency matrix �′.

2: for each node 8 do

3: Initialize the queue @ = ∅, the sampling pool %; = ∅ and

the number of sampled nodes 2>D=C=0.

4: Add 8 to @ and %; respectively, count=1.

5: repeat

6: Add #486ℎ1>A (E)(∀E ∈ @) into the candidate set �0=3 .

7: if |�0=3 | < (: − 2>D=C) then

8: Add all the nodes in �0=3 into @ and %; , respec-

tively.

9: 2>D=C ← 2>D=C + |�0=3 |.

10: else

11: Calculate the importance score ( (Eq. 1-2) of each

node in the �0=3 .

12: Take the : − 2>D=C nodes with the largest ( value

from �0=3 and add them into %; .

13: end if

14: until 2>D=C == :

15: Calculate�8 and �
′
8 with %; using Eq. 3.

16: end for

Firstly, all first-order neighbors of 8 are sampled. Since the num-

ber of first-order neighbors is usually less than : , the second-order

or even the higher-order neighbors of 8 may be sampled until the

number of candidate nodes is greater than or equal to : .

Then, if the number of candidate nodes exceeds : , a selection

strategy is adopted to select more important candidate nodes into

the sampling pool according to their importance score, which is de-

fined as the combination of structural importance score (
9
BCAD2CDA4

(Eq. 1) and temporal importance score (
9
C8<4

(described below), where

9 is the node id in the sampling path.
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Figure 2: The overall framework of DySubC. DySubC first samples the temporal subgraph �8 for each node. Then, taking

the yellow central node as an example, DySubC encodes all the nodes in �8 including the central node 8 (represented as ℎ8 ).

The time-weighted subgraph representation B8 and the unweighted subgraph representation B ′8 are calculated by two readout

functions respectively. Meanwhile, the other temporal subgraphs are shuffled to get a subgraph �̃8 with its representation B̃8 .

Finally, one positive sample and two negative samples are generated to calculate contrastive loss and train the model.

The structural importance score (
9
BCAD2CDA4 is simply defined as

the degree of the node:

(
9
BCAD2CDA4 = �46A44 ( 9). (1)

Actually, (
9
BCAD2CDA4 can also be defined using other measures such

as the eigenvector centrality [18] , influence in PageRank [18], etc.

The temporal importance score (
9
C8<4 is a normalized largest

timestamp of the edge connected to node 9 .

As a result, the importance score of node 9 is denoted as:

( 9 = (
9
C8<4
+ U(

9
BCAD2CDA4 , (2)

where, U is the hyperparameter used to balance the influence of

structure and time.

An example is shown in Figure 3, where C represents the times-

tamp and ( represents the importance score. Assuming that : = 10,

for the yellow central node, its 4 first-order neighbors are first sam-

pled and then its 11 second-order neighbors are also sampled, in-

creasing to 16 nodes in the candidate set. According to Eq. 2, 5

blue nodes with the highest importance score will be saved as the

sampling nodes.

Finally, after the : nodes are sampled, the time-weighted sub-

graph�8 and unweighted subgraph�
′
8 of node 8 are obtained refer-

ring to the original graph [8], represented by the adjacency matrix

�8 and �
′
8 respectively. The edge weight in�8 is the normalization

of its latest timestamp. The feature matrix -8 and the adjacency

matrix �8 of�8 are:

-8 = -83G,:, �8 = �83G,83G, (3)

where, 83G represents the index of the sampled node. -83G,: is the

row-wise (i.e. node-wise) indexed feature matrix. �83G,83G is the

row-wise and col-wise indexed adjacencymatrix. Similarly, the fea-

ture matrix - ′8 and adjacency matrix �′8 of�
′
8 are also obtained.

As a result, the output of the temporal subgraph sampling mod-

ule for each node 8 includes a time-weighted subgraph�8 = (-8, �8)
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Figure 3: An illustrative example of temporal subgraph sam-

pling.

and an unweighted subgraph � ′8 = (- ′8 , �
′
8 ). Both of them will be

used in the subsequent contrastive learning task.

3.4 Node and Subgraph Representation

After obtaining �8 = (-8, �8 ) and � ′8 = (- ′8 , �
′
8 ), the encoder E1

and E2 are used to output their representation �8 and � ′8 , respec-

tively:

�8 = E1 (-8, �8), �
′
8 = E2 (-

′
8 , �
′
8 ). (4)

For simplicity, bothE1 and E2 adopt a one-layer graph convolu-

tional network (GCN) [10] that can efficiently aggregate neighbor

information. Take �8 as an example, the propagation rules are as

follows:

E(-8 , �8 ) = f (�̂8
− 1

2 �̂8�̂8
− 1

2-8, ), (5)
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where �̂8 = �8 + � is the adjacency matrix inserted into a self-loop,

�̂8 is the corresponding degree matrix. The non-linear function f

is the perametric ReLU (PReLU) function [7] and, is a learnable

linear transformation.

The representation ℎ8 of the central node 8 is then picked out

from the representation matrix �8 :

ℎ8 = P(�8), (6)

where P denotes the pick-out operation.

To facilitate the subsequent contrast learning tasks, the time-

weighted subgraph representation B8 and the unweighted subgraph

representation B ′8 are represented by using two readout functions

R1 and R2, respectively.

R1 is a time-aware readout function designed in this paper,which

calculates the influence score of any node 9 on the central node 8 (Eq.

7) and then performs a weighted average of node representations

to get B8 (Eq. 8).

�=59 = g (8, 9) + V
1

�8BC (8, 9)
, (7)

where, g (8, 9) represents the latest interaction timestamp between

8 and 9 , �8BC (8, 9) represents the shortest distance between 9 and 8

and V is a hyperparameter.

B8 =
1

∑:
9=1 �=59

:∑

9=1

�=59ℎ 9 , (8)

where, : is the number of nodes in �8 .

R2 is used to simply average all node representations in the sub-

graph� ′8 :

B ′8 =
1

:

:∑

9=1

ℎ′9 , (9)

Algorithm 2 The DySubC algorithm

Input: Dynamic graph� = (+ , �C , - ).

Output: node representations {ℎ1, ℎ2, ..., ℎ |+ |}

1: Sample {�1,�2, ..., � |+ |} and {�
′
1
,� ′

2
, ..., � ′

|+ |
} for each node

by the temporal subgraph sampler.

2: while not converge do

3: for each �8 and �
′
8 do

4: Encode �8 and � ′8 into �8 and � ′8 through E1 and E2
(Eq. 4).

5: Pick out ℎ8 = P(�8) (Eq. 6).

6: Obtain B8 and B
′
8 through the readout function R2 and

R1 respectively (Eq. 8-9).

7: end for

8: Shuffle the set of {B1, B2, ..., B |+ |} to generate

{̃B1, B̃2, ..., B̃ |+ |}.

9: Construct a positive sample B8 , a temporal negative sample

B ′8 and a structural negative sample B̃8 .

10: Update parameters of E1 and E2 by Eq. 13.

11: end while

12: for each node 8 do

13: Calculate the representation ℎ8 = P(�8) by Eq. 6.

14: end for

3.5 Temporal Contrastive Learning

Pretext tasks and the generation of positive and negative samples

are crucial for self-supervised learning. As mentioned above, the

dynamics of neighborhood nodes has greater influence on the cen-

tral node than that of distant nodes. The pretext task is designed

to make the central node strongly correlated to its regional neigh-

bors. In our method, the mutual information of the central node

and its corresponding temporal subgraph is maximized.

For the central node 8 , the pretext task is to contrast its real

temporal subgraph to its fake temporal subgraph. Specifically, a

positive sample, a structural negative sample and a temporal neg-

ative sample are constructed for ℎ8 . The positive sample is the

time-weighted subgraph representation B8 . The structural negative

sample is generated by shuffling the representation set of time-

weighted subgraphs, denoted as:

{̃B1, B̃2, ..., B̃ |+ |} = (ℎD5 5 ;4 ({B1, B2, ..., B |+ |}). (10)

The temporal negative sample is the unweighted subgraph rep-

resentation B ′8 , with the purpose to make the node representation

ℎ8 closer to the time-weighted subgraph representation B8 and far-

ther away from the unweighted subgraph representation B ′8 . The

temporal contrast information is therefore emphasized.

Finally, the margin triplet loss is used to train the model as it is

more favorable for subgraph contrastive learning [8]. The margin

loss of the structural negative sample is defined as:

L1 =

1

|+ |

|+ |∑

8=1

E(-,�) (−<0G (f (ℎ8B8 ) − f (ℎ8 B̃8) + q, 0)), (11)

where f (G) = 1/(1+4G? (−G)) is the sigmoid function and q is the

margin value. Similarly, the margin loss of the temporal negative

sample is defined as:

L2 =

1

|+ |

|+ |∑

8=1

E(-,�) (−<0G (f (ℎ8B8 ) − f (ℎ8B
′
8 ) + i, 0)), (12)

where i is the margin value. As a result, the total loss function of

the model is:

L = L1 + _L2, (13)

where _ is a hyperparameter to balance two loss.

The process of DySubC is summarized in Algorithm 2.

4 EXPERIMENTS

The following experiments are conducted to evaluate our model

from various aspects.

• The performance of DynSubC and the related baselinemeth-

ods in link prediction is compared, thereby reflecting their

representation learning ability.

• The effectiveness of each proposed time-enhanced module

and how it affects the overall model is evaluated.

• In the temporal subgraph sampling module, the impact of

the subgraph size on the model is explored, and the balance

between memory and performance is analyzed.

• The sensitivity of themodel to hyperparameters is analyzed.

• The visualization of node representations obtained by Dy-

SubC and Sub-Con is compared.



Woodstock ’18, June 03–05, 2018, Woodstock, NY Linpu Jiang, Ke-Jia Chen and Jingqiang Chen

Table 1: Statistics of dynamic graph datasets.

Dynamic graph |+ | |�C | Timespan (days)

fb-forum 899 33,720 164.49

soc-sign-bitcoinalpha 3,783 24,186 1,901.00

soc-wiki-elec 7,118 107,071 1,378.34

ia-movielens-user2tags-10m 16,528 95,580 1,108.97

sx-mathoverflow-c2q 16,836 203,639 2,349.00

Before detailing the experimental results and analysis, we start

with a brief introduction of the datasets, the experimental settings

and the baselines.

4.1 Datasets

For a comprehensive comparison, we use five widely used datasets

collected from different types of real networks. The detailed statis-

tics of the datasets are summarized in Table 1.

• fb-forum [20]. The dataset is a forum network similar to

Facebook, obtained from online social networks. The directed

edge < D, E, C > means that user D and user E interacted at

time C .

• soc-sign-bitcoinalpha [11, 12]. This is a who-trusts-whom

network among people who trade using Bitcoin on a plat-

form called Bitcoin Alpha. The directed edge < D, E, C > in-

dicates that user D trusted user E at time C .

• soc-wiki-elec [28]. The dataset contains the administrator

election and voting data based on the latest complete dump

of Wikipedia page edit history (from January 3, 2008). The

directed edge < D, E, C > indicates that D voted for E at time

C .

• ia-movielens-user2tags-10m [28]. This bipartite network

represents the tagging behaviors of MovieLens users. The

nodes represent users andmovies. The directed edge < D, E, C >

means that the user D tagged the movie E at C time.

• sx-mathoverflow-c2q [21]. It is a temporal interaction net-

work on the stack exchange website Math Overflow. The

directed edge < D, E, C > means that user D commented on

user E’s question at time C .

4.2 Experimental settings

Since the nodes in the above datasets have no features, we use one-

hot encoding as the initial features of the node. Considering that

the downstream task is link prediction, we first sort the edges in

the graph in ascending order of time, using the recent 25% ran-

domly divided as validation set (10%) and test set (15%) and the

remaining 75% as the training set. For the recent 25% edges (i.e.

positive samples), we randomly sample the same number of nega-

tive samples (unconnected node pairs).

For each experiment, the dimension of node representations is

set to 128. A simple logistic regression classifier is trained and

tested for link prediction using the embedding results. We train

the model for 10 times on different data splits and report the av-

erage performance for fair evaluation. Consistent with previous

work [19, 27, 31, 41], we also use AUC and accuracy indicator to

evaluate the performance of link prediction.

In training, the Adam optimizer is used with an initial learning

rate of 0.001. For all datasets, the size of subgraphs is set to 20. Both

the margin value i and q for the loss function are set to 0.75 and

_ is 0.5.

4.3 Baselines

We use three types of representative baseline methods for com-

parison: (1) Continuous-time dynamic graph representation learn-

ing methods: TGN [27], DyRep [31], CTDNE [19] and HTNE [41];

(2) State-of-art static graph self-supervised methods: DGI [34] and

Sub-Con [8]; (3) Static graph representation learning benchmarks:

Node2vec [4] and GraphSAGE [5]. Note that when reproducing the

codes of different models, we carefully select the reported optimal

hyperparameters to ensure a fair comparison.

4.4 Performance on Link Prediction

The comparative results of all methods in link prediction perfor-

mance are summarized in Table 2. Overall, our proposed model

shows a competitive performance. Except that the AUC and ac-

curacy of DySubC is slightly lower than that of TGN on the sx-

mathoverflow-c2q dataset, the model is superior to all baselines on

the remaining datasets. The possible reason for the good perfor-

mance of TGN on the sx-mathoverflow-c2q dataset is that its mem-

ory module will be more advantageous for datasets with a large

time span. The methods that use self-supervised learning (DGI,

Sub-Con and DySubC) perform better than methods that do not

use self-supervised learning (node2vec and graphSAGE).

More detailed observations and analysis are as follows. Firstly,

the performance of our model is significantly higher than static

self-supervised graph representation learning methods (i.e. DGI

and Sub-Con). Especially on the sx-mathoverflow-c2q dataset, the

AUC score of DySubC is nearly 0.9 higher than DGI and 0.1 higher

than Sub-Con. It verifies the importance of temporal information

for graph representation learning models and the temporal sub-

graph contrastive method in this paper can effectively capture tem-

poral information. Secondly, on the bipartite graph dataset (i.e.,

ia-movielens-user2tags-10m), the performance of most continuous-

time dynamic graph representation learning methods is poor. In

contrast, the DySubC model achieves the best performance, which

indicates that our method is more robust and can be applied to

different types of graphs. Thirdly, DySubC performs significantly

better than othermodels on soc-sign-bitcoinalpha and ia-movielens-

user2tags-10m datasets. These twographs are relatively sparse, which

could cause the deterioration in model performance. However, Dy-

SubCmay alleviate the above problem caused by the graph sparsity

since it learns at the sub-graph level. Finally, the performance of

Sub-Con on the ia-movielens-user2tags-10m dataset is poor, proba-

bly because its subgraph sampling strategy is a personalized PageR-

ank algorithm [18]. It may not sample sufficient first-order neigh-

bors, which are particularly important for the central node in the

bipartite graph.

4.5 Ablation Studies

In order to further observe the impact of three time-enhanced mod-

ules (i.e., temporal subgraph sampling, time-weighted subgraph

representation and temporal contrastive learning) of DySubC, we
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Table 2: Performance of link prediction in terms of AUC score and accuracy. The best result is bolded.

fb-forum soc-sign-bitcoinalpha soc-wiki-elec ia-movielens-user2tags-10m sx-mathoverflow-c2q

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

node2vec 0.7351 0.6703 0.7001 0.6514 0.6877 0.6439 0.7118 0.6477 0.7521 0.6932

graphSAGE 0.7465 0.6815 0.7389 0.6887 0.7454 0.7014 0.7648 0.6994 0.7863 0.7258

DGI 0.8118 0.7589 0.7948 0.7428 0.8828 0.8127 0.8975 0.8484 0.8392 0.7803

Sub-Con 0.8506 0.7802 0.8735 0.8092 0.8784 0.8084 0.8052 0.7321 0.8281 0.7725

CTDNE 0.7522 0.6897 0.7334 0.6891 0.7225 0.6854 0.7855 0.7234 0.8507 0.7987

HTNE 0.7756 0.7023 0.7365 0.6872 0.8253 0.7673 0.8271 0.7562 0.8429 0.7904

DyRep 0.7592 0.6814 0.8274 0.7684 0.8381 0.7794 0.8395 0.7883 0.8766 0.8237

TGN 0.8678 0.7895 0.8375 0.7776 0.8794 0.8116 0.8659 0.8017 0.9371 0.8821

DySubC 0.8861 0.8082 0.9221 0.8457 0.9229 0.8558 0.9524 0.8902 0.9302 0.8791

Table 3: Ablation studies. The best result performance is bolded.

fb-forum soc-sign-bitcoinalpha soc-wiki-elec ia-movielens-user2tags-10m sx-mathoverflow-c2q

AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC Accuracy

DySubC−(−#−' 0.8442 0.7661 0.8967 0.8186 0.8874 0.8264 0.9301 0.8705 0.8815 0.8156

DySubC−#−' 0.8572 0.7782 0.9149 0.8388 0.9124 0.8462 0.9395 0.8751 0.9017 0.8458

DySubC−' 0.8821 0.8051 0.9203 0.8415 0.9218 0.8543 0.9511 0.8877 0.9283 0.8768

DySubC 0.8861 0.8082 0.9221 0.8457 0.9229 0.8558 0.9524 0.8902 0.9302 0.8791

conduct a series of ablation experiments by replacing each of the

three modules with the counterpart that does not utilize the time

information. The subscript -S represents that the model replaces

the temporal subgraph sampling with a subgraph sampling that

only uses structural information. The subscript -N means that the

model does not use the negative sample B ′8 for contrastive learning.

The subscript -R stands for replacing our designed readout func-

tion with a simple average function in time-weighted subgraph

representation. It is worth noting that DySubC−(−#−' and Sub-

Con [8] are not equivalent, as their subgraph sampling strategies

are different.

The ablation results are listed in Table 3. It verifies the effective-

ness of each time-enhanced module, which consistently improves

the model performance on all datasets. Especially when consider-

ing the negative sample B ′8 , the performance of the model is signif-

icantly improved (see the comparative results of DySubC−' and

DySubC−#−' ). The combination of three modules achieves the

best performance. On the sx-mathoverflow-c2q dataset, the final Dy-

SubC model gains an improvement of 0.05 AUC score compared to

the base model with no time-enhanced module enabled.

4.6 Subgraph Size Analysis

This section studies the impact of the subgraph size in DynSubC

on the five datasets. We adjust the subgraph size from 10 to 100

(including the central node), and the evaluation results are shown

in Figure 4. Note that in the experiment on ia-movielens-user2tags-

10m and sx-mathoverflow-c2q datasets, themaximum subgraph size

is set as 50 due to limited computational memory. The correspond-

ing result with size 100 in the figure is approximated by the result

with size 50, since the model performance tends to be stable.

As shown in the figure, the model achieves better performance

when the size of the subgraph is larger. It is probably because neigh-

borhood nodes contain more structural and temporal information,

which helps to obtain a higher quality representation. However, in

the fb-forum dataset, the model with the subgraph size 100 per-

forms worse than the model with the subgraph size 50. It may be

because the dataset is small in size, a large size subgraph will con-

tain nodes far away from the central node, which could be not

beneficial to representation learning. When the size of subgraph

is too small (e.g., 10), the performance of the model in all datasets

is poor, which indicates that necessary information for learning is

lost. When the subgraph size is 20, the model performs quite well

on all five datasets and consumes less system memory than the

model with a larger subgraph size.

4.7 Sensitivity Analysis

In this section, the sensitivity analysis is conducted on critical hy-

perparameters in DynSubC, i.e., U and V , which determine the qual-

ity of temporal subgraph sampling and time-weighted subgraph

representation. Specifically, the value of U is increased from 2 to

20 with the step size 2 and the value of V is increased from 0.4 to

3.6 with the step size 0.4.

The stability of the model under the perturbation of the two

hyperparameters is observed. The results on the fb-forum dataset
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Figure 4: The impact of the subgraph size on DySubC.

are shown in Figure 5. The model performs best when U is 10 and

V is 1.6, both of which are around the median of their respective

value ranges. It demonstrates that DynSubC is sensitive to these

two hyperparameters. As we mentioned before, U is used to bal-

ance the structural and temporal information in the subgraph sam-

pling. The result shows that the temporal information is at least as

important as structural information when sampling and should be

considered. V is used to balance the influence of the latest inter-

action and its distance to the central node. Both are verified to be

indispensable in subgraph representation.

Figure 5: The performance of DySubC on the fb-forum

dataset with the change of two hyperparameters.

4.8 Visualization Analysis

Finally, we use the tSNE algorithm [16] to visualize the node repre-

sentation and the latest interactions obtained by DySubC and Sub-

Con. Figure 6 shows the result on the soc-sign-bitcoinalpha dataset.

The red lines denote the latest 10 interactions. The visualization

result shows that DySubC can better embed the evolutional fea-

tures of nodes into the representation, so that the latest interacted

nodes are also closer in the embedding space compared to Sub-

Con, which is a static subgraph contrast method. Moreover, it is

observed that the nodes that are recently active are more clustered

in the visualization of DySubC than that of Sub-Con. It is consis-

tent with the characteristics of the dataset, that is, users who trust

each other are often in a community structure, so they are sup-

posed to be closer in the embedding space.
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Figure 6: Visualization comparison of node embedding and

10 latest interactions obtained by Sub-Con and DySubC on

the soc-sign-bitcoinalpha dataset.

5 CONCLUSION

In this paper, a novel self-supervised dynamic graph representa-

tion learning framework (DySubC) based on temporal subgraph

contrast is proposed. The model learns the representation with

both structural and temporal information by maximizing the mu-

tual information of the node representation and its temporal sub-

graph representation. DySubC proposes three time-enhanced mod-

ules, which can not only sample more effective subgraphs, but also

learn better representation by temporal contrast loss. The effective-

ness of DySubC compared with related graph contrast learning

methods and dynamic graph representation learning methods is



Self-Supervised Dynamic Graph Representation Learning via Temporal Subgraph Contrast Woodstock ’18, June 03–05, 2018, Woodstock, NY

demonstrated by empirical evaluation on multiple datasets. The

success of DySubC provides an insight for the future study on

continuous-time graph representation learning.
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