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Exploiting Partially Context-sensitive Profiles to Improve
Performance of Hot Code
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Availability of profiling information is a major advantage of just-in-time (JIT) compilation. Profiles guide

the compilation order and optimizations, thus substantially improving program performance. Ahead-of-time

(AOT) compilation can also utilize profiles, obtained during separate profiling runs of the programs. Profiles

can be context-sensitive, i.e., each profile entry is associated with a call-stack. To ease profile collection and

reduce overheads, many systems collect partially context-sensitive profiles, which record only a call-stack

suffix. Despite prior related work, partially context-sensitive profiles have the potential to further improve

compiler optimizations.

In this article, we describe a novel technique that exploits partially context-sensitive profiles to determine

which portions of code are hot and compile them with additional compilation budget. This technique is ap-

plicable to most AOT compilers that can access partially context-sensitive profiles, and its goal is to improve

program performance without significantly increasing code size. The technique relies on a new hot-code-

detection algorithm to reconstruct hot regions based on the partial profiles. The compilation ordering and

the inlining of the compiler are modified to exploit the information about the hot code. We formally describe

the proposed algorithm and its heuristics and then describe our implementation inside GraalVM Native Im-

age, a state-of-the-art AOT compiler for Java. Evaluation of the proposed technique on 16 benchmarks from

DaCapo, Scalabench, and Renaissance suites shows a performance improvement between 22% and 40% on 4

benchmarks, and between 2.5% and 10% on 5 benchmarks. Code-size increase ranges from 0.8%–9%, where

10 benchmarks exhibit an increase of less than 2.5%.
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1 INTRODUCTION

Just-in-time (JIT) compilation is performed online during the execution of the program and is
done on a subset of frequently executed methods—the other parts of the code are executed by
an interpreter [38]. Ahead-of-time (AOT) compilation is an alternative approach in which the
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program is compiled to the target machine code before its execution begins. AOT compilation over-
comes one of the main issues of JIT—programs are slow during start-up due to being interpreted
before getting compiled [44]. However, profile-guided optimizations (PGO) are the hallmark
of JIT compilers: During the initial interpretation of the program, the runtime environment col-
lects profile information about the program’s execution, such as the frequency of conditionals or
the object types seen at different program locations, and relays this information to the optimiz-
ing compiler once the compilation starts. This can significantly improve the effectiveness of many
compiler optimizations [20, 29, 30, 34, 55, 56, 72, 76, 78, 97, 103].

Nevertheless, profile-driven optimizations are not restricted to JIT compilation—in AOT com-
pilation, the lack of runtime profiling is mitigated with offline profiling runs [68, 85, 110]. One
common approach to offline profiling is to generate an instrumented program binary, which col-
lects certain information about the program’s execution [20, 110, 120]. The information collected
by the instrumented binary is then provided back to the AOT compiler, which uses the profiles to
create a second, optimized binary, with the aim of improving program performance.

Profiling information can be broadly categorized as context-insensitive and context-sensitive:
the former associates each code location with at most one profile entry, while the latter associates
each code location to multiple entries, each of which corresponds to a context in which the respec-
tive code location was executed. In this article, the contexts are the methods on the stack at the time
when the profile was collected—in other words, call stacks (which is usually what the term “context-
sensitive” more narrowly implies). While most JIT-based runtime environments collect context-
insensitive profile information for reasons of simplicity and low overhead [15, 23, 50, 80, 122],
offline profiling facilitates the collection of accurate context-sensitive profiles [42]. Still, accurate
collection of context-sensitive profiles can be expensive even in an offline setting (each profile en-
try needs to be associated with the complete call stack), so multiple approaches were developed to
reduce the profiling overheads [35, 41, 47, 77, 119]. One common approach to reducing these over-
heads is to collect partially context-sensitive profiles, which associate each profile entry with only a
conveniently selected suffix of the call stack [31, 37, 101, 106, 120]. While the collection of partially
context-sensitive profiles can be as efficient as context-insensitive collection, it is not clear how to
best utilize partially context-sensitive profile information to aid compiler optimizations.

This article presents an algorithm for utilizing partially context-sensitive profiles to improve
compilation. The algorithm uses the partial profiles to decide which larger parts of the code are
“hot” and then forms compilation units that “cover” those “hot” parts. Its goal is to improve perfor-

mance of the generated code, without significantly increasing the size of the program binaries.
The main idea in the proposed algorithm is to exploit partially context-sensitive profiles to

opportunistically reconstruct hot portions of the code and to improve inlining in those parts of the
code. To achieve this, the algorithm modifies the compilation order and the inlining decisions of
the compiler: Throughout the text, we therefore refer to it as a compilation-scheduling and inlining

algorithm. In the first phase, the algorithm “stitches” the partially context-sensitive profiles to form
a forest of breadcrumb trails—trees that trace parts of the program that are frequently executed. In
the second phase, the algorithm starts the compilation from the roots of these hotness trails and
compiles them with more aggressive inlining decisions. The remaining cold portions of the code
are thereafter compiled as they would be without the modifications.
Contributions. After summarizing the problem in Section 2, we first explain the algorithm for-
mally and then on the implementation level. The main contributions in this article are as follows:

— A novel compilation technique that uses partially context-sensitive profiles to improve the
performance of ahead-of-time compiled programs, formalized in Section 3. This technique
comprises an algorithm that opportunistically detects hot code using partial contexts, as
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explained in Sections 3.3 and 3.4, and modifications to existing inlining and compilation
scheduling, as explained in Sections 3.5 and 3.6.

— A complete, production-ready implementation of the proposed technique in GraalVM’s
ahead-of-time compiler called Native Image, described in detail in Section 4. Concretely,
within the existing GraalVM compiler, we modified the compilation queue, added a new
phase for the profile analysis, and used it to augment the existing inliner.

— An evaluation on 16 benchmarks from DaCapo [46], Scalabench [108], and Renaissance [99]
benchmarking suites, presented in Section 5. Compared to the previous implementation of
the profile-guided optimizations in the Enterprise version of Native Image, the proposed
algorithm improves performance in the range of 22%–40% on 4 benchmarks, and 2.5%–10%
range on 5 benchmarks. Our approach increases the compiled-code size between 0.8% and
9%; for 10 out of 16 benchmarks the compiled-code size is increased only up to 2.5%. We also
compared the introduced changes against GraalVM Native Image without PGO, standard
GraalVM compiler in JIT mode, and HotSpot’s C2 compiler in JIT mode. After the main
results, the evaluation shows how the algorithm parameters were tuned for performance
and presents a breakdown of performance-contributing factors.

In Section 7, we present an overview of related work in the area of profiling, profile-guided
optimizations, inlining and ahead-of-time compilation, and we conclude the article in Section 8.

2 PROBLEM STATEMENT

In this article, we address the problem of utilizing accurate partially context-sensitive execution
profiles to improve compilation-scheduling and inlining decisions in a way that decreases the run-

ning time of compiled programs without significantly increasing the binary size. Concretely, the
input to the problem is a set of profile entries, where each entry consists of a partial calling con-
text and the execution count associated with that calling context. Here, profile entries include at
least those program locations that are conditional branches and virtual (indirect) calls. Each entry
includes the execution count (for conditionals) or a mapping from the receiver-type to the num-
ber of occurrences of that type (for virtual calls). The term partial means that calling contexts do
not consist of all the procedure calls starting from the program entry point and up to the profiled
location, but only of some suffix thereof. By accurate, we mean that there exists a profile entry for
each profiled program location that was executed during the profiling run and that the respective
execution counts are exact (not approximate).

Furthermore, an important assumption that we make on
the input is that the set of profile entries forms a compilation-

unit-wise partition. To explain this, consider the adjacent fig-
ure that shows an example activation tree. An activation tree
is a tree that contains all call stacks that exist during some ex-
ecution of the program (this is formally defined in Section 3).
Each node in the activation tree represents one subroutine
of the program—for example, the program entry point sub-
routine is the root of the tree, while the subroutines A and B
are invoked from the entry point subroutine.

A compilation unit consists of a root subroutine, along with a connected set of subroutines
that were inlined into the root subroutine. In the figure, compilation units are delineated with a
dashed line. A set of profile entries forms a compilation-unit-wise partition if (1) each subroutine
in the compiled program on which the profiles were obtained is a root of at most one compilation
unit, (2) each profile entry has a calling context that corresponds to some compilation unit (i.e.,
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starts the subroutine that is the root of the compilation unit and contains only subroutines within
that compilation unit).

In the example, there are four compilation units: one rooted at entry point, one at A, one at
D, and another at E. The calling contexts entry point→A→C and A→D are valid calling contexts
in a compilation-unit-wise partition, because each of them starts with the compilation-unit root
and is completely within that compilation unit. The context E→G is not valid in that compilation-
unit-wise partition, because it does not start with a compilation-unit root. The context entry
point→B→D is also not valid, because it is not confined within a single compilation unit. Our
assumption is that the input profile contains only valid entries for some compilation-unit-wise
partition.
Rationale. The constraints imposed on the input profiles may seem artificial at first glance, but
they are a natural consequence of performing instrumentation within compilation units. Each
position in a compilation unit (which consists of inlined subroutines) is assigned a set of unique
counters, each corresponding to a calling context within that compilation unit. The GraalVM
Native Image, in which we implemented the proposed algorithm, collects accurate, partially
context-sensitive conditional and receiver-type profiles, which form a compilation-unit-wise
partition. Native Image does so by producing an instrumented binary of the program, which is
used to collect the profiles. The optimized binary is then created using these profiles. This two-tier
approach is common: similar instrumented binaries can be created by GCC [20], LLVM [16], and
Scala Native [110].

AOT compilation of a program assumes that all of the program’s methods have been compiled
before the execution of the program, with the exception of those methods that are inlined at all
callsites. Most of the methods contain one or more callsites, i.e., locations from which other meth-
ods are invoked (callees). During a single compilation of a method, a decision is made whether
a callee at each callsite should be inlined or not. If the callee method is inlined, then its body re-
places the invocation at a callsite and transitively its callees are considered for inlining. The callees
that remain non-inlined are left to be compiled later in the compilation process. In this setting, a
method is usually compiled only once. Since the same method can be found at multiple callsites,
to avoid multiple compilations of the same method, most AOT compilers compile the methods in
a particular order. Since the size and the content of the compilation units are not pre-compilation
determined, the compilation order (i.e., schedule) itself is determined during the compilation. The
usual compilation order starts from the entry points of the program, i.e., the methods in which the
program execution starts, such as main or thread entry points. These methods are compiled first,
then all their callees are transitively scheduled in a queue and compiled as previously described if
they had not been compiled already. The algorithm in this article separates hot compilation units
from the cold ones and, as such, has to modify the compilation process to ensure that no method
would be compiled as cold if the heuristic determines that it is hot when invoked from another
callsite. If the method were to be first compiled as cold, then that method could not be compiled
again as a hot compilation unit. This is the reason why our algorithm first compiles all the hot
compilation units and only then proceeds to compiling cold compilation units. This cannot be
guaranteed only by taking the methods from the compilation queue following the original order.

The motivation for focusing on compilation-scheduling and inlining is that many optimizing
compilers focus primarily on intraprocedural optimizations [23, 66, 95, 120]. For these compilers,
inlining is an enabler for other compiler optimizations, because it extends “what the compiler sees.”
By having compilation units cover “hot code,” we expect to benefit most from intraprocedural op-
timizations such as escape analysis [112], path-duplication [88], constant folding, and others [98].
Outline of the proposed solution. Given a set of partially context-sensitive profiles, some
of which have higher execution counts than others (i.e., are “hotter”) and thus represent small
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fragments of the program regions that are globally hot, our algorithm is tasked with finding compi-
lation units that cover “hot” parts of the program; in essence, to connect those hot fragments. While
inlining algorithms typically start with an individual subroutine and extend its compilation unit in
a top-down manner—by exploring the call tree from the compilation-unit root towards its callees
until deciding to cease exploration and settling for a set of leaf nodes—our proposed algorithm
works bottom-up: It first identifies the hottest partially context-sensitive entries, which represent
hot compilation units. Our algorithm uses these profiles to form a forest of breadcrumb trails—
trees that represent some portion of hot code. The algorithm then iteratively goes “upwards”—it
extends the trails across likely callersand grafts together trails that share common methods.

The final set of breadcrumb trails represents hot entry points—compilation units for which addi-
tional compilation budget should be allocated. The breadcrumb trails are not used as actual inlining
plans, but instead as inlining hints—they bias the inliner to explore and inline along those paths,
because this leads to code in which most execution time is spent. Once these hot parts of the pro-
gram are compiled, the rest of the program is compiled in a regular manner. Concretely, the inlining
suggestions implied by the breadcrumb trails are mixed with the existing heuristics of the inliner.

3 COMPILATION-SCHEDULING AND INLINING ALGORITHM

In this section, we formally define the proposed compilation-scheduling and inlining algorithm.
We present the algorithm in a top-down manner, starting with a high-level description, and we
then gradually increase the level of detail.
Inputs. The input of the algorithm consists of the call graph of the program, along with the partial
context-sensitive execution profiles. Each subroutine s ∈ S of the program corresponds to one
vertex in the call graph G = (S,E ⊆ S × S ), and a call from subroutine s1 to another subroutine s2

corresponds to a directed edge s1 � s2 of the graph. Partial context-sensitive execution profile is a
mapping from calling contexts to execution counts, where a calling context represents some suffix
of the program-counters on the call-stack, and the corresponding execution count represents how
many times that call-stack occurred during the execution. Each calling context is a list of code
locations �1, �2, . . . , �n that are on the call-stack. Locations �1, �2, . . . , �n−1 represent the callsites
at which the previous subroutine calls the next subroutine on the stack, and �n represents the
specific code location in the callee at the top of the call-stack. The case when n = 1 is called a
context-insensitive profile, and the case where, for every context, n corresponds to the number of
calls on the call-stack, is called a fully context-sensitive profile.
Input simplifications. We defined the set of edges in the call graph as the subset of S × S , where
S is the set of subroutines in the program. This implies that each subroutine s1 can call another
subroutine s2 on at most one callsite. In actual programs, a subroutine s1 may contain multiple
callsites to another subroutine s2. We now show that the single-edge-per-vertex-pair limitation is
inconsequential, because the multi-edged call graph can be reduced to the simpler representation.
Discussion. The implementation must accept a call graph in which each pair of vertices may be
connected by any number of edges. The multi-edged graph can be transformed into a single-edged

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.



20:6 M. Vukasovic and A. Prokopec

graph in a way that the output of the algorithm in Listing 1 can be mapped back to a solution for
the multi-edged graph. Each vertex V of the multi-edged call graph is translated to a subgraph
with the V as the starting vertex of the subgraph. For each edge V →i U at location i in the
subroutine represented by the vertexV to another subroutine represented by a vertexU , a virtual
vertexVi,U is inserted, and directed edgesV → Vi,U andVi,U → U are added. This transformation
corresponds to outlining each callsite of the original program into a separate bridge method.

1 void foreach(int[] xs , int ->void f) {

2 for (int i = 0; i < xs.length; i++)

3 f.apply(xs[i]);

4 }

5

6 void main(int[] args) {

7 min(args);

8 max(args);

9 }

10

11 int min(int[] xs) {

12 int m = Integer.MAX_VALUE;

13 foreach(xs, x -> if (x < m) m = x︸���������������������������︷︷���������������������������︸);14 return m;
F.apply

15 }

16

17 int max(int[] xs) {

18 int m = Integer.MIN_VALUE;

19 foreach(xs, x -> if (x > m) m = x︸���������������������������︷︷���������������������������︸);20 return m;
G.apply

21 }

Listing 1. Example Program.

The resulting compilation schedule that Algo-
rithm 1 creates may mention virtual verticesVi,U

in its edges V → Vi,U or Vi,U → U . Since each
vertex Vi,U points to exactly one original vertex
U , each V → Vi,U edge is replaced with V →i U .
Similarly, since each virtual vertexVi,U is pointed
to by exactly one vertex V , each Vi,U → U edge
is replaced with V →i U . The transformed com-
pilation schedule can have multiple edges at the
same location i—these represent virtual calls.

In conclusion, any input call graph can be trans-
formed into a call graph where every two vertices
are connected with at most one edge. We will in-
troduce a simplified formalization for clarity pur-
poses, but it solves a problem that is equivalent to
our concrete compilation problem.
Outputs. The output of the algorithm is a valid
compilation schedule and a mapping from compi-
lation units to the compilation budget. A compila-

tion schedule is a directed graph, in which each vertex corresponds to a compilation unit, and each
directed edge corresponds to a call from a compilation unit A to a compilation unit B. Compilation

unit A is a subroutine SA of the program, along with the subroutines inlined into A. A compilation
schedule is valid if there exists a compilation unit whose root subroutine corresponds to the entry-
point to the program and if there is a directed edge for each call (corresponding to the original
program) between two compilation units.

Inlining [39, 63, 104] is an optimization in which the call to a subroutine is replaced with a copy of
the code belonging to that subroutine. We say that a compilation unit A calls another compilation
unit B if there is a code location inA that calls the root subroutine SB of B. A compilation schedule
is valid if there exists a compilation unit whose root subroutine corresponds to the entry-point to
the programand if there is a directed edge for each call between two compilation units. Compila-

tion budget is a function that assigns the amount of computational resources that an optimizing
compiler is allowed to spend when compiling a particular compilation unit.
Example input. The program in Listing 1 computes the smallest and the largest integer from
the given list of arguments. This program relies on a generic foreach subroutine that applies a
lambda (i.e., function value) f to each integer in a given array. Starting with the main subroutine,
the program consecutively calls the min and max subroutines, each of which invokes foreach
with a lambda value that tracks the smallest or the largest integer, respectively. Note that, from the
definition of the foreach subroutine, it is impossible to tell what is the exact implementation of the
lambda f—this depends on where foreach is called from. We say that the call to f is indirect [91].
However, calls to max, min and foreach are direct.

The corresponding call graph is shown in Figure 1. We examine several profiles that track
the target-subroutine invocation counts at the callsites. Each calling context is shown as a stack
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Fig. 1. Input examples for the algorithm.

void foreach(int[] xs , int ->void f) {

for (int i = 0; i < xs.length; i++)

f.apply(xs[i]);

}

void main(int[] args) {

int min = Integer.MAX_VALUE;

foreach(args , x -> if (x < m) m = x);

int max = Integer.MIN_VALUE;

foreach(args , x -> if (x > m) m = x);

}

Listing 2. Input Example.

of method-line-number pairs, and each calling
context is mapped to the invocation counts of all
the possible call targets. The two lambda values
used by min and max are named F and G, respec-
tively. The first partially context-sensitive profile
“cuts” the call-stacks in the min and max subrou-
tines, so the foreach calling context counts calls
to both F and G lambdas. In the second partially
context-sensitive profile, the calling contexts are
“cut” in main, which makes the two foreach call-
ing contexts more precise—it is now clear that F
is only invoked when foreach gets called from min. We can conclude that the context-insensitive
profile does not relay less information than the first partially context-sensitive profile in the follow-
ing sense: Note that the call to min at main:7 is direct, meaning that main:7 is the only callsite of
min—the entry min:13 in the context-insensitive profile can be extended and merged with main:7
(and similarly max:19 with main:8), which yields a partially context-sensitive profile that rep-
resents the same execution. Furthermore, the fully context-sensitive profile does not relay more
information than the second partially context-sensitive profile.

Input simplification example. Listing 2 contains a modified version
of the program from Listing 1. Instead of invoking methods min and max
from the main method, their bodies are manually inlined directly into
the main method. Thus, method main contains two callsites that target
the same method foreach. In the adjacent figure, two virtual vertices
loc1 and loc2 were added to the method main from Listing 2 as the
callsites outlined into the bridge methods.

Example outputs. Figure 2 shows several possible outputs of the algorithm. Compilation schedule
I consists of two compilation units—the compilation unit rooted at main inlines the subroutines
min and max, each of which calls the second compilation unit rooted at foreach. Since the second
compilation unit is called from two calling contexts, the foreach polymorphically inlines both
implementations of apply [78]. In compilation schedule II, the main compilation unit does not
inline any subroutines, so min and max are the roots of two separate compilation units, both of
which inline a separate copy of foreach. The benefit of schedule II is that foreach can inline a
single lambda and avoid a type-check. In compilation schedule III, no inlining is carried out—in
this case, each compilation unit consists of a single subroutine. The last compilation schedule is not
valid, because it does not include the edge for the call to G.apply (which can occur in execution).
High-level description. Algorithm 1 (described shortly) uses the call graph and the partially
context-sensitive profile information to deduce which parts of the program are hot and to invest
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Fig. 2. Output examples for the algorithm.

ALGORITHM 1: Compilation Scheduling

input : call graph G, entry-point e , profile Π
output : compilation schedule Σ, budget B

1 Σ = ∅; B = ∅; cold = { e } ;

2 hot = DetectHot(G, Π);

3 while hot � ∅ do

4 hot = hot \ { sC } : sC ∈ hot ;

5 C = InlineHot(sC );

6 Σ = Σ ∪ { C }; B = B ∪ { C };

7 cold = cold \ { sC } ;

8 for s ∈ callees(C) \ (Σ ∪ hot) do

9 if IsHot(S) then hot = hot ∪ { s };

10 else cold = cold ∪ { s };

11 end

12 end

13 while cold � ∅ do

14 cold = cold \ { sC } : sC ∈ cold ;

15 C = InlineCold(sC );

16 Σ = Σ ∪ { C } ;

17 for s ∈ callees(C) \ (Σ ∪ cold) do

18 cold = cold ∪ { s };

19 end

20 end

more effort into compiling those parts. To do
this, it separates compilation units into hot and
cold. In this article, the mapping from compila-
tion units to the compilation budget is binary—
if a compilation unit is hot, then it gets an in-
creased compilation budget, and if it is cold,
then it gets the default budget. The motivation
is to increase the degree of optimization in code
that is frequently executed, but avoid bloating
the size of the code that does not significantly
contribute to the total execution time.

The algorithm maintains two queues—hot

and cold. It first picks the initial set of hot
subroutines and places them on the hot queue.
Then, it iteratively removes a hot subroutine
and performs inlining to create the compilation
unit that starts with that hot subroutine. If, af-
ter inlining, the hot compilation unit calls other
subroutines (i.e., callees) that were not previ-
ously pushed to the queue, then the algorithm
places each such callee on either the hot queue
or the cold queue. After the hot queue becomes
empty, the algorithm schedules the remaining
cold compilation units (including the program
entry-point) and iteratively removes the cold

subroutines until the cold queue is empty. This high-level description is captured in Algorithm 1,
while more detailed information is provided in the following subsections.
Example execution. To see how the algorithm works, consider the program from the earlier
example, whose compilation is in Figure 3. The algorithm first puts the foreach subroutine to the
hot list and the main subroutine (i.e., program entry-point) to the cold list. It then removes foreach
from the hot list, inlines F.apply and decides that there is no budget left for inlining G.apply. The
algorithm nevertheless concludes that G.apply is hot and places it on the hot list. After the hot
list becomes empty, the algorithm schedules main and refrains from inlining due to low frequency
of the callsites—min and max are pushed to the cold list. Importantly, the algorithm does not inline
hot compilation units into cold compilation units—neither min nor max inlines foreach.
Discussion. There are several important details that we must clarify. First, the algorithm needs a
concrete set of steps to decide on the initial set of hot subroutines. Second, subroutines must be
expanded to compilation units with a concrete inlining policy. Third, after a hot compilation unit
is formed, the algorithm must decide which of the remaining callees are hot and which are cold.
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Fig. 3. Example of the compilation-ordering.

In Algorithm 1, these concerns are captured with procedures DetectHot, InlineHot, In-
lineCold, and IsHot, respectively. To drive the behavior of these procedures, our algorithm es-
timates which subroutines are hot in a particular calling context. A subroutine is hot either if
the estimated time spent exclusively in that subroutine (without the callees) exceeds some fixed
percentage ψ of the total time spent in the program or if the subroutine transitively calls other
hot subroutines up to some point determined by the compilation budget. The rest of this section
contains a detailed description of how the aforementioned procedures work. The specifics of the
algorithm are thus divided into three components:

(1) DetectHot: the procedure that constructs breadcrumb trails using the call graphG and the
partial context-sensitive profile P , described in Section 3.3.

(2) InlineHot and InlineCold: the modified inlining algorithm guides its inlining decisions
using the breadcrumb-trail information, described in Section 3.5.

(3) IsHot: the procedure that uses the breadcrumb trails to separate callees of a compilation
unit into hot and cold subroutines, described in Section 3.6.

3.1 Call Trees

To precisely define breadcrumb trails, we first express what we presume under the term call tree.
Notation. Before we define call trees, we adopt the following scheme
for referring to nodes within trees. Let us assume that every node in the
tree is associated with some subroutine s (multiple nodes may be asso-
ciated with the same subroutine). The notation ηs1,s2, ...,sn

then refers
to a node that is reached by starting from the root of the tree (whose
subroutine is s1) and following the sequence of nodes whose subrou-
tines are s2, s3, and so on, until reaching a node whose subroutine is sn .
In other words, we treat the tree as a prefix tree [73] and the sequence s1, s2, . . . , sn as the prefix
stored in the tree. For our purposes, the node ηs1,s2, ...,sn

will represent a call stack of subroutines.
This is illustrated in the adjacent figure.

The notation η or ηx , which does not have a sequence in the subscript, refers to any node in the
tree and is used when the prefix of the node is not important in the discussion. When the subscript
is a single-element sequence, we take care to disambiguate what we mean in the text.
Call graphs. For a specific call graph G, we rely on a function calleesG (s ) that returns the set of
subroutines that s can invoke, according to the call graph G. Note that, in the previous example,
calleesListing 1 (foreach) consists of F.apply and G.apply.

calleesG (s ) ≡ {s2 : s → s2 ∈ E} where G = (S,E ⊆ S × S ) (1)

For readability, we omit the index G later in the text—we always mean “the G that is compiled.”
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We define the root of a call tree as the ancestor node of all the other nodes (common infimum):

root (N ,E) = inf
E∗

N . (2)

We now introduce two partial orders on (infinite) graphs. The subset relation between graphs
C1 = (N1,E1) and C2 = (N2,E2) is defined as follows:

(N1,E1) ⊆ (N2,E2) ≡ N1 ⊆ N2 ∧ E1 ⊆ E2. (3)

Graph C1 = (N1,E1) nests within the graph C2 = (N2,E2) if and only if E1 and E2 induce partial
orders onN1 andN2 (i.e.,C1 andC2 are directed acyclic graphs),C1 andC2 share a common infimum
(i.e., they have a common root), andC1 is a subset ofC2 (note that notation root (N ,E) implies that
the unique least element of N exists, further implying that C1 and C2 must be connected and
acyclic):

(N1,E1) � (N2,E2) ≡ root (N1,E1) = root (N2,E2) ∧ (N1,E1) ⊆ (N2,E2). (4)

The subset and nests-within relations are illustrated by the examples in the following figure. The
graph G1 (which consists of two disconnected components) is not a call tree, but is a subset of the
call treeC2. The call treeC3 is nested withinC4, but the call treeC5 is not nested withinC6, because
they do not share a common root.

Call trees. Next, we introduce the term call tree. Informally, a call tree is a prefix tree of all the
possible call stacks of a given program.

Let a program P = (G, e ) consist of the call graph G and the entry-point subroutine e . The
unfolding of a program P, U (P ) is a tuple (N ,E) composed of a set of nodes N and a set of edges
E, in which the root node corresponds to the entry point e of P , each node ηe, ...,sn

corresponds
to a call stack ending with the subroutine sn = sub (ηe, ...,sn

), and the set of children of ηe, ...,sn
is

ηe, ...,sn,sn+1 such that sn+1 ∈ calleesG (sn ).

U (P ) ≡ (N ,E ⊆ N × N ) where ηe ∈ N ∧(
sn+1 ∈ calleesG (sn ) ⇔ (

ηe, ...,sn
∈ N ⇔ ηe, ...,sn,sn+1 ∈ N

)) ∧(
sn+1 ∈ calleesG (sn ) ⇔ (

ηe, ...,sn
∈ N ⇔ ηe, ...,sn

→ ηe, ...,sn,sn+1 ∈ E
)) (5)

Note that any call tree C is nested within the unfolding U (P ) of the program, that is, C �U (P ).
The following figure shows two call graphs, and their corresponding call-tree examples, For a

call graph on the left, the corresponding call tree is finite, while in case of the call graph on the
right, because it contains a cycle, a call tree is potentially infinite, which we demonstrate on the
rightmost tree in the figure.

Example. The previous figure illustrates call trees and the unfolding of a program on several
examples. These examples correspond to the program from Listing 1. The leftmost tree represents
the unfolding of a program, and the remaining two trees represent the examples of the call trees,
which nest within the first tree.
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3.2 Breadcrumb Trails

Now, we define the breadcrumb trails.
Informally, they are similar to call
trees, except they do not need to start
with the entry point of the program.
In other words, they do not need to
be nested in a call tree per Equa-
tion (4). Instead, a breadcrumb trail

of the program P is any finite, connected subgraph of some call tree of the program P . We define
the set of breadcrumb trails of program P as follows (below, ℵ0 is the size of the set of natural
numbers N, so we use |N | < ℵ0 to say “finite”):

�(P ) ≡ {(N ,E) : |N | < ℵ0 ∧ E ⊆ N × N ∧ ∃x ,x = root (N ,E) ∧ ∃C ∈ �(P ), (N ,E) ⊆ C}. (6)

By Equation (6), a breadcrumb trail β is generally not a call tree, and its main restriction is that
the children of each node η are from callees (sub (η)). The breadcrumb trail β = (N ,E) is, however,
a tree, with a well-defined root root (N ,E). A node in the breadcrumb trail is called a breadcrumb.
Note, that a breadcrumb trail is not just a call tree because each node in the call tree must contain
all the callees of the corresponding subroutine, whereas in a trail it does not.

Consider the example breadcrumb trails shown below. The trail with the min root leads up to
F.apply, while the trail with the foreach root leads to both F.apply and G.apply—both of them
serve as recipes for finding the hot subroutines starting from specific calls. In this article, the use-
case for breadcrumb trails is, loosely speaking, to transitively connect a call to its “hot” callees, that
is, subroutines in which most execution time is spent. However, the definition does not mandate
that the subroutines are “hot”—a breadcrumb trail could be used for other purposes, too.

Note that, in the figure, some nodes are annotated with the
orange color. The root is always annotated with orange, but
any other node of the breadcrumb trail can also be annotated.
These annotated nodes are called graft points, and the respec-
tive trails are called annotated breadcrumb trails. The set of
annotated breadcrumb trails of a program P are defined as
follows:

�(P ) ≡ {(N ,E,γ ) : (N ,E) ∈ �(P ) ∧ γ ⊆ N ∧ root (N ,E) ∈ γ }. (7)

In the remaining text, we will use the term trail to refer to anno-
tated breadcrumb trails. The purpose of the graft points will be to
annotate the places where two trails can be grafted to each other.
Operations. We now define operations on the annotated bread-
crumb trails, which are central in the rest of the algorithm. Assume
that we have a relatively short breadcrumb trail—it only describes
the path to the hot code from callers that are “very close.” Given
such a trail τ = (N ,E,γ ) that starts with root (τ ) = root (N ,E), it is
of interest to expand it with a calling context �1, . . . , �n . The opera-
tion �, called breadcrumb-trail expansion, produces a new trail that
starts with a chain of nodes that correspond to �1, . . . , �n and in which node �n points to root (τ ).
The restriction here is that �n calls sub (root (τ )). In the adjacent figure, the trail rooted at foreach
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is expanded to a trail rooted at main, allowing the hot code to be detected from “further away.”

(N ,E,γ ) � 〈�1,..., �n〉 ≡ ({η�1 ,...,η�1, ..., �n
} ∪ N0, {η�1 � η�1, �2 ,...,η�1, ..., �n

� root (N0,E0)} ∪ E0,η�1 ∪ γ0)

N0 = {η�1, ..., �n,s1, ...,sn
: ηs1, ...,sn

∈ N } γ0 = {η�1, ..., �n,s1, ...,sn
: ηs1, ...,sn

∈ γ }
E0 = {η�1, ..., �n,s1, ...,sn

→ η�1, ..., �n,s1, ...,sn,sn+1 : ηs1, ...,sn
→ ηs1, ...,sn,sn+1 ∈ E}

(8)

In Equation (8), existing nodes are renamed so
they include the �1, . . . , �n prefix, and a new set of
nodes and directed edges is additionally included
for each call in the calling context �1, . . . , �n .

Assume now that we have several trails that con-
tain a breadcrumb for the same subroutine s . When
considering which callees in s are “important” (as
explained later), one needs to inspect the bread-

crumbs for s in all such trails. This is inconvenient—it is much easier for a compiler to inspect
a single breadcrumb whenever it needs to decide is “important.” Therefore, we define another
breadcrumb-trail operation η , called grafting, which attaches a trail (Nξ ,Eξ ,γξ ) to a nodeη within
another trail (N ,E,γ ). In the adjacent figure, grafting adds the callsite of G.apply to the foreach
node within the min trail. The grafting in this particular example is correct, albeit not too useful
in practice—in our program, method G.apply is obviously never invoked from the calling context
that starts with min.

More formally, given a target trail τ = (N ,E,γ ), its breadcrumb ηs1, ...,sn
∈ γ and a trail

ξ = (Nξ ,Eξ ,γξ ) such that sub (ηs1, ...,sn
) = sub (root (ξ )), i.e., sn = sub (root (Nξ ,Eξ )), the graft-

ing ξ ηs1, . . .,sn
τ produces a copy of τ in which the node ηs1, ...,sn

has an additional subtree from ξ
for each child node ηsn,c2 ∈ children(root (ξ )) such that �ηs1, ...,sn,c2 ∈ children(ηs1, ...,sn

), while all
the subtrees of the children ηc ∈ children(root (ξ )) for which ∃ηs1, ...,sn,c2 ∈ children(ηs1, ...,sn

) are
recursively grafted.

(Nξ ,Eξ ,γξ ) ηs1, ...,sn
(N ,E,γ ) ≡ (N ∪ N0,E ∪ E0,γ ∪ γ0) where root (Nξ ,Eξ ) = sn ηs1, ...,sn

∈ γ
N0 = {ηs1, ...,sn,c2, ...,cm

: ηsn,c2, ...,cm
∈ Nξ } γ0 = {ηs1, ...,sn,c2, ...,cm

: ηsn,c2, ...,cm
∈ γξ }

E0 = {ηs1, ...,sn,c2, ...,cm
� ηs1, ...,sn,c2, ...,cm,cm+1 : ηsn,c2, ...,cm

� ηsn,c2, ...,cm,cm+1 ∈ Eξ }
(9)

If we adopt the convention that (Nξ ,Eξ ,γξ ) ∪ (N ,E,γ ) ≡ (Nξ ∪ N ,Eξ ∪ E,γξ ∪ γ ) and that
root (Nξ ,Eξ ,γξ ) ≡ root (Nξ ,Eξ ), then we can define grafting more concisely as follows:

ξ ηs1, ...,sn
(N ,E,γ ) ≡ (ξ � 〈s1, ... , sn−1〉) ∪ (N ,E,γ ) where root (ξ ) = sn ηs1, ...,sn

∈ γ . (10)

Table 1 summarizes the most important symbols introduced so far. Having defined the basic
trail operations, we can now describe the hot-code detection algorithm.

3.3 Hot-code Detection

We established that the code from Algorithm 1 separates the call-graph into hot and cold regions.
The hot regions of the call graph consist of code that is frequently executed, along with the calling
context that is sufficiently large to include the relationships required for code optimizations. The
purpose of the breadcrumb trails from the previous section is to delimit these hot regions.

The breadcrumb trails that delimit the hot code, which the scheduling algorithm relies on, must
be derived from the program’s execution profile. Consider the task of constructing the trails from
a fully context-sensitive profile—one way to achieve this would be to create trails for the set of
calling contexts whose execution count is above a thresholdψ and to then graft them all together.
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Table 1. Summary of Key Symbols from Sections 3.1 and 3.2

Symbol Name Meaning

(G, e ) Program Call graph G with a distinguished entry-point e .

calleesG (s ) Callees (Equation (1)) Set of subroutines that can be invoked from a subroutine s in a

call-graph G (i.e., outgoing edges of s ).

ηs1, . . .,sn Node (in a tree structure)
A node that corresponds to a call stack of subroutines s1, s2,

. . . , sn in the call-tree (or a trail) rooted at s1.

C1 �C2 Nests within (Equation (4)) Tree C1 nests within the tree C2 if they have the common root,

and tree C1 is a subset of C2.

U (G, e )
Unfolding of a program

(G, e ) (Equation (5))

Tree in which the root is the entry point e , and each node

ηe, . . .,sn has a set of children ηe, . . .,sn ,sn+1, where

sn+1 ∈ calleesG (sn ).

C (G, e ) Call tree
Prefix tree of all the possible call stacks of a given program

(G, e ).

�(G, e )
Breadcrumb trails
(Equation (6))

Set of finite trees β = (N , E ) such that β is a subset of some

call tree C , i.e., β ⊆ C (G, e ).

�(G, e ) Annotated trails (Equation (7)) Set of trees τ = (N , E, γ ), such that each trail β = (N , E ) is

annotated with a set of graft points γ ⊆ N .

τ � 〈�1, ..., �n 〉 Trail expansion (Equation (8)) Operation that attaches the calling context �1, ..., �n on top of

the root of the trail τ .

ξ ηs1, ...,sn
τ Trail grafting (Equation (9)) Operation that attaches the trail ξ to an existing node

ηs1, ...,sn within another trail τ .

However, the input to our algorithm is a partially context-sensitive profile. The hottest calling
contexts in such a profile are typically too short to connect code regions in a useful manner, so
the corresponding trails must be expanded until the covered part of the call tree is sufficiently
large for subsequent compiler optimizations to potentially improve performance. The algorithm
is thus posed with several challenges: selecting a good set of initial calling contexts, choosing the
beneficial calling contexts to speculatively expand across, and knowing when to stop the expansion
� and grafting operations. We call this part of the algorithm hot-code detection.
High-level description. The algorithm starts by selecting a set of initial hot contexts and converts
them to trails. These trails are grafted together wherever this is possible. The following process
is then repeated until reaching a termination condition (Section 3.4): The most favorable trail is
selected and expanded across calling contexts in which it is hot. These expanded trails are then
grafted into other trails from the trail set or placed back into the trail set if grafting is not possible.

Example detection. Consider the scenario in the preceding figure. The initial set of profiles (on
the left) is partially context-sensitive, so some profiles have the context length n = 1, and some
haven = 2. The algorithm first picks calling contexts whose profile-counts exceed a predetermined
valueψ : these are foreach→F.apply→‘<‘ and foreach→G.apply→‘>‘. These calling contexts
are then converted to the initial set of breadcrumb trails. In the next step, each trail ξ is grafted onto
nodes ηs1, ...,sn

of other trails such that sub (root (ξ )) = sub (ηs1, ...,sn
)—in the preceding example, the

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.



20:14 M. Vukasovic and A. Prokopec

first foreach trail (which calls F.apply) is grafted to the second foreach (which calls G.apply).
The algorithm then searches the profiles to identify the possible callers of foreach, determines
that min and max are the most common callers, and expands foreach along each of these calling
contexts. The two aforementioned steps, grafting and expansion, are repeated consecutively until
the algorithm decides that it ran out of budget. In this example, the algorithm stops after producing
two trails that are rooted at the min and max subroutines.

Note that the calling contexts in the previous example are sufficiently long to allow static anal-
ysis to determine that G.apply is never called from min and that F.apply is never called from
max. In other words, the resulting trails are not always nested within a minimum call tree. We
do not remove unreachable calls during hot-code detection, because compilers have optimizations
that remove such calls after callees get inlined into a single compilation unit [43, 84, 87, 112, 118];
moreover, state-of-the-art inlining algorithms use dataflow analyses to simplify the call tree before
inlining happens [62, 81, 97, 107]. In other words, we later ensure that the inliner neither inlines G.
apply from min’s calling context, nor F.apply from max’s calling context, even though the trails
contain these calls. Therefore, we do not simplify the trails during hot-code detection, since in our
implementation, the inliner prunes the trail later.
Trail-set operations. To formally describe the algorithm, we define two convenience operations

on sets of trails, called union-grafting ∪ and self-root-grafting ∇root . Union-grafting operation
merges two sets of trails together, while the self-root-grafting operation grafts a single trail from
the set onto other trails from the same set.

To determine the order in which certain operations are performed, we will choose a specific
ordering for the nodes within trails and the trails within trail sets. Let �X �ord be a sequence of
elements from the set X , which are ordered according to the total order ord:

�X �ord ≡ 〈x1, . . . ,xn〉 : xi ∈ X ∧ xi <ord x j ⇒ i < j ∧ |X | = n. (11)

Next, let pre(τ ) be the total order of the nodes in trail τ , induced by the left-to-right preorder
traversal of τ . The preorder is the lexicographic ordering of the call stacks represented by the
nodes:

ηs1,1, ...,s1,n1
<pre(τ ) ηs2,1, ...,s2,n2

≡ s1,1 . . . s1,n1 <lex s2,1 . . . s2,n2 . (12)

As an example, the figure below shows the node ordering of a trail with five nodes:

Union-grafting ∪ relies on the right-associative helper operation , which is similar to the graft-
ing operation η , the difference being that it grafts to all possible graft points instead of a specific

point η. In other words, given a graftee trail ξ = (Nξ ,Eξ ,γξ ) and a target trail τ = (N ,E,γ ), ξ τ
grafts ξ to all candidate graft-points in τ , i.e., to all graft-points that represent the same subroutine
as the root of ξ . The graft-points are ordered in preorder traversal of the trail τ .

The following figure shows two examples of the operation. On the left, the trail s3 → s6 is
grafted to both graft points s3 of the target trail. On the right, the trail s3 ← s2 → s7 cannot be
grafted to any graft points in the target trail, because the target trail has no graft point with s2.
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The definition of the operation uses a helper function д to recursively graft at all candidates:

ξ (N ,E,γ ) ≡ g(ξ , (N ,E,γ ),γ )

g(ξ , (N ,E,γ ),B) ≡
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ξ ηlast
g(ξ , (N ,E,γ ),B \ ηlast) if B � ∅ ∧ sm,nm

= sub(root (Nξ ,Eξ ))

g(ξ , (N ,E,γ ),B \ ηlast) if B � ∅ ∧ sm,nm
� sub(root (Nξ ,Eξ ))

(N ,E,γ ) otherwise

where �B�pr e (N ,E,γ ) = 〈ηs1,1, ...,s1,n1
, ... ,ηsm,1, ...,sm,nm

〉 ηlast = ηsm,1, ...,sm,nm
.

(13)

Finally, to establish an ordering on sets of trails, we define the ordering lex on trails τ1 and τ2 as
the lexicographic ordering of the lists obtained with a preorder traversal of the nodes of τ1 and τ2:

(N1,E1,γ1) <lex (N2,E2,γ2) ≡ �N1�pre(N1,E1,γ1 ) <lex �N2�pre(N2,E2,γ2 ) . (14)

In Equations (12) and (14), we defined lexicographic orderings to order the nodes and the trails, as
this allows defining subsequent operations deterministically. Without any loss of generality, we
could have picked different orderings, but in the formalization, we adhere to lex for simplicity.

Union-graft operation ∪. Assume that we want to create a union of two sets of trails X and Y
but to avoid having multiple trails with the same root subroutine in the result. The union-graft
operation achieves this by grafting trails from X to trails in Y wherever possible and then creating
a union with the remainder. An example of X ∪ Y is shown in the following figure:

To union-graft a trail set X into a trail set Y , the set X can be separated into two sets X0 and X1,
so trails from X0 can be grafted to trails in Y0 ⊆ Y , and trails from X1 cannot be grafted to trails
in Y . The union-graft operation grafts each trail ξi ∈ X0 to the graft sites within trails τj ∈ Y0 in
the lexicographic order of the trails ξi . The result of the grafting is unified with the remainders
Y1 = Y \ Y0 and X1 (below, ·∪ is disjoint union):

X ∪ Y ≡
⎧⎪⎨⎪⎩
X1 ∪ Y1 ∪

(
{ξ1 ... ξn τ1} ∪

(
X0 ∪ (Y0 \ {τ1})

))
if Y0 � ∅

X1 ∪ Y1 if Y0 = ∅

where X = X0 ·∪ X1 Y = Y0 ·∪ Y1 �X0�lex = 〈ξ1, ... , ξn〉 �Y0�lex = 〈τ1, ... ,τm〉

X0 = {ξ ∈ X : ∃τ ∈ Y , ξ τ � τ } Y0 = {τ ∈ Y : ∃ξ ∈ X , ξ τ � τ }.

(15)

The preceding definition says the following: For all the trails ξ ∈ X that can be grafted to at least
one trail τ ∈ Y , graft them to all trails τ ∈ Y to which they can be grafted. Leave the remaining
trails ξ ∈ X unchanged and produce a union of all these trails.

Self-root-graft operation ∇root . Self-root-graft operation takes a single trail set T as an input
and grafts one of its trails τ0 to the roots of other trails from T . In Equation (16), it is defined as
following: If there is a candidate trail τ0 in T that can be grafted to a root of another trail, then
it is grafted to the roots of any such trail from T . Otherwise, the result is the original trail set T .
The self-root-graft operation is illustrated in the following example, in which trail s2 ← s1 → s3 is
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grafted onto the roots of two other trails, but not onto any other graft points with the subroutine s1:

∇rootT ≡
⎧⎪⎪⎨⎪⎪⎩
{ξ0

root(τ )
τ : τ ∈ R (ξ0,T )} ∪ (T \ R (ξ0,T )) 〈ξ0, ... , ξn〉 = �{ξ ∈ T : R (ξ ,T ) � ∅}�lex

T otherwise

where R ((Nξ ,Eξ ,γξ ),T ) = {(N ,E,γ ) ∈ T : τ � (Nξ ,Eξ ,γξ ) ∧ root (N ,E) = root (Nξ ,Eξ )}.
(16)

The fix-point (fix ∇root ) (T ) represents the limit of the repetitive application of the self-root-
grafting operation for the trail set T . Below, notation ◦n represents n applications of a function
(limn�∞ is a ε-definition of the limit on a metric d (X ,Y ) that is 0 if and only if X = Y and is a
positive constant otherwise):

(fix ∇root ) (T ) = lim
n�∞

(◦n ∇root ) (T ). (17)

Consider the previous example with the self-root-graft operation. If we apply it one more time,
then the trail s1 → {s5, s2, s3} will be grafted onto the root of the remaining trail with the same

root subroutine s1 (s1 → {s7, s1, s2, s3}), but subsequent applications of ∇root have no effect. In that
example, the limit exists and n = 2. We now show that the limit always exists.

Lemma 3.1. The fixpoint (fix ∇root ) (T ) exists for all T and is reached in a finite number of steps.

Proof. Consider the grafting operation ηs1, ...,sn
: By Equation (9), given two input trails, the

result of the operation is a single trail. By examining the first case in Equation (16), we note that
the resulting set is always smaller for this case, because we picked the trail ξ0 in a way that there
is a set od trails τ , which share the same root subroutine as ξ0, which allows the grafting. Thus, the

cardinalities of the trail sets in the sequence (◦i ∇root ) (T ) are strictly monotonically decreasing.
Consequently, the second case must be eventually applied (because the trail-set size cannot be less

than 1), so there is an n for which (◦n+1 ∇root ) (T ) = (◦n ∇root ) (T ), which implies that the limit

exists and that the fixpoint is equal to (◦n ∇root ) (T ). �

Lemma 3.2. Each trail (N ,E,γ ) in (fix ∇root ) (T ) has a unique root subroutine.

Proof. By Equation (16), the fixpoint cannot be reached if there are remaining candidates ξ0

for grafting. As long as two trails in (◦i ∇root ) (T ) share the root subroutine, the first case applies,

and there is a candidate ξ0 such that R (ξ0, (◦i ∇root ) (T )) � ∅, so (◦i+1 ∇root ) (T ) � (◦i ∇root ) (T ).
Table 2 contains the most important symbols presented in Section 3.3. �

Algorithm. Having defined the necessary machinery, we can now formally and concisely describe
the hot-code detection algorithm that was outlined in the earlier example. The DetectHot proce-
dure, shown in Algorithm 2, first picks a set of hot contexts from the profile Π and converts them
to a trail setT0 in line 1. The concrete steps for this are abstracted in the procedure InitialTrails.
Since the trails in T0 correspond directly to profiles, it is usually possible to graft some of them
together, as seen in the previous example. This initial grafting repetitively picks some trail fromT0

and grafts it onto the remaining trails (the self-root-grafting operation ∇root ). The initial-grafting

is represented with the operation fix ∇root in line 2, and it produces the trail setT . The algorithm
then creates an empty trail set F and proceeds as follows: As long as a termination condition De-
tectionDone is not met, the algorithm selects a trail τ according to some policy TopTrail in
line 5 and calls a procedure CallingContexts to identify the set Γ of calling contexts that call
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Table 2. Summary of Key Symbols from Section 3.3

Symbol Name Meaning

�X �ord
Ordering of the set X
(Equation (11))

Sequence of elements from set X , ordered by the total

order ord .

ξ τ
Graft-to-all operation
(Equation (13))

Operation that grafts the trail ξ to all candidate graft

points in τ .

X ∪ Y
Union-graft operation
(Equation (15))

Grafts a subset X0 ⊆ X of trails from X to Y wherever

possible and then returns a union with the remaining

trails X \ X0.

∇r oot T
Self-root-graft operation
(Equation (16))

Picks a trail τ0 from the trail set T and grafts it to other

trails from T that have the same root subroutine.

(fix ∇r oot ) (T ) Fixpoint of ∇r oot
(Equation (17)) The limit of the repetitive application of the

self-root-graft.

sub (root (τ )) in line 6. The trail τ is expanded along each of the calling contexts c ∈ Γ to a new
context τ � c . The algorithm only keeps the expanded trails τ � c that pass the Accept predicate,
thus forming the set of expanded trails Tτ ,Γ (line 7). If the trail set Tτ ,Γ is empty, then this means
that τ could not be expanded further, so τ is union-grafted into the set of final trails F in line 8,
which prevents its further consideration. Otherwise, the trail set Tτ ,Γ must be union-grafted back
into the trail set T . To ensure that each trail τ ∈ T refers to a unique method sub (root (τ )), the
algorithm must graft the trails whenever possible. The merging of Tτ ,Γ and T is thus represented

with the union-graft operation ∪. The set H of hot subroutines is derived from T in line 14.

3.4 Hot-code-detection Policies

ALGORITHM 2: DetectHot Procedure

input : program call graph G, profile Π
output : hot roots H , trail set T

1 T0 = InitialTrails(Π);

2 T = (fix ∇root ) (T0);

3 F = ∅;

4 while ¬ DetectionDone(T , F ) do

5 τ = TopTrail(T \ F );

6 Γ = CallingContexts(τ , Π, G);

7 Tτ ,Γ = { τ � c : c ∈ Γ, Accept(τ � c) };

8 if Tτ ,Γ = ∅ then F = {τ } ∪ F ;

9 else

10 T = T \ {τ };
11 T = Tτ ,Γ ∪ T ;

12 end

13 end

14 H = { sub (root (τ )) : τ ∈ T };

The code in Algorithm 2 includes several proce-
dures that drive the behavior of hot-code detec-
tion: InitialTrails, DetectionDone, TopTrail,
CallingContexts, and Accept. A specific combi-
nation of implementations of these procedures is
called a hot-code-detection policy. Different policies
result in different instantiations of the algorithm,
and we show our choice next. In this section, we
explain the policy components, and we present the
specifics of the key procedures in Appendix D.1 to
facilitate the algorithm implementation.

InitialTrails creates a set of initial trails from
the profile Π. We use a constant ψ to set the
lower bound for the profile’s contribution to the
total hotness of a program. The constant ψ is
tuned on a set of benchmarks to achieve the best
performance, as explained in Section 5.6. Next,
DetectionDone is true once all trails from T are

finalized. This is ensured by our choice of Accept.
CallingContexts procedure. The root of every trail represents the root subroutine of a compi-
lation unit, which can be extended along a particular calling context. The set of all possible calling
contexts can be determined by examining all the profile entries in the profiles Π. We identify the
subset Π |c of profile entries in Π that refer to callsite executions specifically. For a specific trail τ ,
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the set callerProfiles is determined as those entries from Π |c that end with a subroutine sn , which
calls the subroutine root(τ ) in the call-graph G.

The total amount of time spent in the code represented by the trail τ is the sum of the time spent
when that trail τ is invoked from each of its calling contexts. When extending the trail τ , we would
like to retain the extensions τ � c across those calling contexts c such that a significant portion
of the time is spent in τ when called from c . Note that the information about the amount of time
spent in a trail when called from a particular calling context is not included in the profile Π—the
profile only includes the execution counts of individual points in the program. Therefore, we need
to somehow estimate the portion of the trail τ ’s hotness that belongs to a particular extension τ �c .

For this reason, the CallingContext procedure additionally computes an attenuation factor

ac (τ ) ∈ [0, 1] of each context c = 〈s1, ... , sn〉, which is an estimate of the portion of τ ’s hotness
that is the result of being called from the calling context c . The attenuation factor is calculated
as a ratio of the hotness of one calling context c that calls root(τ ) and the hotness sum of all such
contexts. Importantly, this is just an estimate based on the partially context-sensitive profiles.
The hotness counts hc in the numerator and h in the denominator denote only how many times

the trail was called and serve as a proxy for the amount of time spent in those calls. Consider the
following example:

In the preceding figure, the trail s3 ← s2 → s4 (on the left) has the calling contexts s0 → s1,
s5 → s6, and s7 → s8, with hotness h1, h2, and h3, respectively. The attenuation factors of these
different calling contexts of the subroutine s2 are computed as the ratio of a calling-context hotness
and the sum of the hotness of all three calling contexts. Hotness of a trail is computed by summing
up the hotness of its breadcrumbs, and weighting them using the attenuation factors.
Trail hotness. Hotter trails should generally have a greater likelihood of being considered for
expansion and should get expanded across more calling contexts. The trail hotness is a function
χ : �(P ) → R+0 that maps a trail to a non-negative real value. It is defined as the recursive hotness
sum of all the breadcrumbs in the trail τ , where each subtree is weighted with the graft-point
attenuation ατ Next, we explain the auxiliary functions α and κ.

Graft-point attenuation of a trail τ is a function ατ : N → [0, 1] that maps each node to a real
value between 0 and 1. The purpose of ατ is to partially decrease the hotness of some parts of
the trail when it gets extended along a calling context. For the initially created trails, the attenua-
tion factor is set to 1 to all the graft-point nodes. After the grafting operation ξ ηρ is performed,
the attenuation factor of the resulting trail graft points is inherited from the input trails. In other
words, the attenuation factor of the root of the ξ trail, which is being grafted is set to the value
of the graft point of the corresponding node of the target trail ρ. All the other attenuation factors
in trail ξ are inherited from the input ξ trail. When a trail ρ is expanded using a calling context c ,
the algorithm computes the attenuation factor ac (ρ) for that particular extension in the Calling-
Context procedure, as previously described. This is the attenuation factor for the root of ρ trail,
while the attenuation factor for the root of the expanded trail is set to 1.

Breadcrumb hotness of a trail τ = (N ,E,γ ) is a function κτ : N → N0, which maps each node
to its estimated count. Initially, all the nodes corresponding to the end of a calling context have
the hotness set to h from the profile entry the trail is constructed from. When expanding ρ trail
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Table 3. Summary of Key Symbols from Section 3.4

Symbol Name Meaning

Π Profile
Set of profile entries. Profile entry is a pair (L, h) of a

calling context L = �1, ... , �n and its execution count h.

Π |c Callsite profiles Subset of entries in Π that represent callsite executions.

ψ Hotness threshold Value above which a hotness entry is considered hot.

InitialTrails(Π) Initial-trails heuristic Creates an initial set of trails for a profile Π.

DetectionDone(T, F) Termination heuristic Determines if the hot-code detection must terminate.

callerProfiles(τ , Π, G ) Caller-profile set
Returns a set of profile entries from Π |c that invoke the

root subroutine of the trail τ in the call graph G .

CallingContexts(τ , Π, G ) Calling-context set
Returns the calling contexts in callerProfiles(τ , Π, G )
(i.e., the same profile entries but without hotness).

a�1, ..., �n (τ ) Attenuation factor
Estimated hotness percentage of a trail τ when the trail

τ is invoked from the calling context �1, ... , �n .

ατ (η ) Graft-point attenuation Maps each trail node η to an attenuation value in [0, 1].

κτ (η ) Breadcrumb hotness Maps each trail node η to the hotness of that node.

χ (τ ) Trail hotness Estimated hotness of the entire trail τ .

�T �hotter
Hotness-ordered trail set
(Equation (18))

Sequence of trails from T , ordered by the hotter

relation.

TopTrail(T ) Top-trail heuristic Returns the hottest trail from the set of trails T .

ν (τ ) Trail size Code-size estimation for the trail τ .

ζ (τ ) Recursion penalty Recursion penalty for the trail τ .

Accept(τ ) Acceptance heuristic Decides whether to retain a trail τ after expansion.

with a calling context c , nodes that originate from ρ inherit the original hotness, and all the nodes
corresponding to c have their hotness set to 0. When grafting is performed, the hotness of the
grafted nodes is added together where possible and inherited otherwise.
TopTrail predicate. To decide which trails are most promising, the algorithm relies on the hot-
ness of the individual profiles. The trail hotness χ induces a total order hotter on the set of all trails
T, where the tie-breaker is the lexicographic order of τ1 and τ2 (see Equation (14)):

τ1 <hotter τ2 ≡ χ (τ1) > χ (τ2) ∨ (χ (τ1) = χ (τ2) ∧ τ1 <lex τ2) . (18)

The TopTrail procedure then simply takes the first trail from T according to the hot order.
The Accept predicate. While our policy always works on the hottest trail, it is preferable to
eventually process trails that are less hot, but smaller. For this reason, the Accept predicate must
prevent further expansion of the hottest trail once the trail grows too large. To assess how large
the trail is, we define a metric ν that sums the code sizes of all the subroutines in the trail.

It is useful to restrict the amount of recursion in the trail. To achieve this, we define the func-
tion ζ that computes the sum of 2recursionDepth of all the nodes in the trail, multiplied by a small,
experimentally determined constant kr ec .

Let the relative hotness be the hotness of the trail χ (τ ) divided by the approximation of the total
time spent in the program (i.e., the sum of all the hotness counts from the profile Π). The extended
trail is accepted if its relative hotness decremented by the recursion penalty ζ (τ ) is larger than the
threshold function that depends on the size of the trail τ . Table 3 contains an overview of the key
symbols and procedures from Section 3.4.

3.5 Inliner Modifications

After the hot-code detection from Algorithm 2 produces the trail set T that corresponds to hot
compilation units, the compiler’s inlining algorithm, which creates the individual compilation
units, can exploit the information in the trail set T . Some inlining algorithms maintain a call-tree
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data structure [33, 97, 114] (sometimes called inlining plan and inlining tree), while others
work directly on the call graph [39, 96, 104, 109]. The decisions about expanding the compila-
tion unit across the call graph or the call-tree data structure are often driven by cost-benefit
analyses [33, 39, 45, 53, 62, 104].

While we speculate that the cost-benefit analysis of most inliners can be improved by using the
hotness information in the trails, in this section, we demonstrate how we augmented a concrete
inlining algorithm that is used in the Graal compiler [97]. This inliner maintains the inlining tree

data structure, which is a finite tree nested within some call tree C , as defined by Equation (4).

�(P ) ≡ {(N ,E) : |N | < ℵ0 ∧ E ⊆ N × N ∧ ∃C ∈ �(P ), (N ,E) �C} (19)

The inlining tree is (1) expanded until the inliner decides that a sufficiently large part of the call tree
is covered. After that, the inliner (2) decides which parts of the inlining tree will be inlined into the
compilation unit. Finally, the inliner (3) optimizes the inlining tree by pruning some branches, i.e.,
it attempts to find another inlining tree nested within the current one. These steps are repeated
until a termination condition is satisfied—we summarize them in Algorithm 3.

During the expansion phase, the inliner repetitively selects a leaf node of the inlining tree and
adds its child nodes. Algorithm 4 shows an individual inlining-tree expansion step—starting from
the root, it keeps descending to the child with the highest priorityφ until finding some nodeηs1, ...,sn

that does not have children. If that leaf node does not have any callsites, then its priority φ is −∞.
Otherwise,φ of a leaf node is defined as its benefit divided by code size, where the benefit correlates
with the call frequency. Priority φ of an inner node is equal to that of the child ηc with the largest
priority φ, decreased by a penalty function that depends on the size of the respective subtree. To
ensure that less frequent callees that are closer to the root compilation unit are not overlooked, the
penalty term decreases the likelihood of exploring huge subtrees that have a high frequency [97]:

φGraalVM (η,θ ,G ) ≡

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

−∞ ηsn � ηsn+1 � EG

benefit(η)�codeSize(η) ηs1, ...,sn,sn+1 � Nθ ∧ ηsn � ηsn+1 ∈ EG

max
η�ηc ∈Eθ

φGraalVM (ηc ,θ ,G ) − penalty(η) otherwise

where η = ηs1, ...,sn θ = (Nθ ,Eθ ) G = (NG ,EG ).
(20)

The modifications that we describe in this section apply to the InlineHot procedure from Algo-
rithm 1. The InlineCold procedure corresponds to the unmodified version of the inliner.

ALGORITHM 3: GraalVM Inliner [97]

input : program call graphG, entry-point e
output : IR u of the root compilation unit

1 θ = ({ηe },∅);

2 while ¬ InliningDone(G, θ ) do

3 θ = Expand(G, θ );

4 θ = Inline(θ );

5 θ = Optimize(θ );

6 end

7 ηu = root (Nθ ,Eθ ) where θ = (Nθ ,Eθ );

8 u = GetIR(ηu );

ALGORITHM 4: Expand Step [97]

input : call graph (N ,E), inlining tree θ
output : expanded inlining tree θ

1 η = root (N ,E) where θ = (Nθ ,Eθ );

2 while {ηc : η � ηc ∈ Eθ } � ∅ do

3 η = arg maxη�ηc ∈Eθ
φ (ηc ) y

4 end

5 ηs0, ...,sn = η;

6 Nc = {ηs0, ...,sn,sn+1 : ηsn � ηsn+1 ∈ E};
7 Ec = {ηs0, ...,sn � ηs0, ...,sn,sn+1 : ηsn � ηsn+1 ∈ E};
8 θ = θ ∪ (Nc ,Ec );

Expansion modifications. The inliner has a limited budget for inlining-tree expansion, so inlin-
ing relies considerably on expanding the “most beneficial” parts of the inlining tree. We therefore
bias the priority function φ so the inlining-tree nodes that correspond to nodes of some trail are
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expanded with a higher likelihood. The rationale for this is that they are more likely to transitively
invoke “hot code,” which should be inlined into the root compilation unit. Our modification defines
a new priority function φInlineHot, which multiplies the default priority with an experimentally de-
termined constant kbonus whenever the node in the inlining-tree can be matched to some trail:

φInlineHot (ηs1, ...,sn
,θ ,G ) ≡ φGraalVM (ηs1, ...,sn

,θ ,G ) ·
⎧⎪⎨⎪⎩
kbonus ∃(Nτ ,Eτ ,γτ ) ∈ T ,ηsm, ...,sn

∈ Nτ

1 otherwise
.

(21)
Due to the penalty term in the priority function φGraalVM, the bonus merely biases the expansion
around the “hot code” represented by the trails but does not completely prevent the exploration
of the “cold” callees.
Budget modifications. When compiling hot compilation units, we change the parameters of the
inliner to increase the code-size budget available for inlining. As described in the related work cited
in Reference [97], the inliner uses the following threshold function that can prevent expansion,
depending on the total code size ν of the entire inlining tree (as defined by Equation (35)):

benefit(η)�codeSize(η) ≥ eν (θ )/r . (22)

Next, the inliner uses the following threshold function to decide whether to inline a callee compi-
lation unit η into the root compilation unit of the call tree θ , which is the caller of η:

benefit(η)�codeSize(η) ≥ t1 · 2(codeSize(root(θ ))+codeSize(η))/t2 . (23)

We experimentally tune the parameters r , t1, and t2 to increase the size of the hot compilation units
and to consequently improve performance on a set of programs, as described in Section 5.2.
InlineCold modifications. The only change in the inlining for cold compilation units is that we
prevent the inlining of subroutines in the setH from Algorithm 2, which were previously compiled
as hot compilation units. The expansion priority of calls to subroutines sn ∈ H is set to −∞:

φInlineCold ≡
⎧⎪⎨⎪⎩
−∞ sn ∈ H
φGraalVM (ηs1, ...,sn

,θ ,G ) otherwise
. (24)

In addition, the Inline step from Algorithm 3 is modified to never inline a call to sn ∈ H .

3.6 Hot-callee Classification

After the compiler inlines some of the callees into a hot subrou-
tine, there will generally exist some remaining callsites in the cor-
responding compilation unit. Some of these callees may be “cold”
and not beneficial for inlining, but some of them may be “hot”
callees that were not inlined due to insufficient budget. Such “hot”
callees should be recursively compiled as hot compilation units.
The IsHot procedure from Algorithm 1 needs to decide whether a
given callee of the compilation unit should be placed onto the hot
or onto the cold compilation queue.

Consider the example in the adjacent figure, where an inlining tree is shown with rectangles,
and the trails are shown with circles. The trail s1 ← s3 → s8 is matched against the root of the
inlining tree, and the corresponding nodes of the inlining tree are shaded in yellow. The non-
matched (cold) parts of the inlining tree are shaded in white—the node s4 is not matched to any
node in the trail, but its callee s2 can be matched to another trail s5 ← s2 → s7. We classify such
callees as hot—for example, if s5 does not get inlined, then it will be recursively compiled as hot.
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Table 4. Summary of Key Symbols from Sections 3.5 and 3.6

Symbol Name Meaning

�(P ) Inlining tree (Equation (19)) Data structure maintained by the inliner for the program P .

φGraalVM
GraalVM node priority

function (Equation (20))
Function that calculates the node priority using heuristics in

GraalVM [97].

φInlineHot
InlineHot node priority

function (Equation (21))
Function that increases an inlining-tree-node priority if it is

marked as hot.

φInlineCold
InlineCold node priority

function (Equation (24))
Function that modifies an inlining-tree-node priority if it is

marked as cold.

T ↓
ηs1, ...,sm , ...,sn

Trail-matching operation
Operation that finds a trail in the trail set T containing the

longest suffix of the call sequence ηs1, ...,sm , ...,sn .

τ � ηs1, ...,sm Trail-cut operation
Operation that produces a new trail that contains only a

subtree of the τ trail starting from the node ηs1, ...,sm .

The trail for the hot callee ηs1, ...,sn
is determined with a combination of trail matching and trail

cutting operations. First, we find a matching trail for ηs1, ...,sn
in the trail-setT , and we then cut that

trail at the subtree that corresponds to the call sequence s1, ... , sn . The trail-matching operation ↓
matches a node from the inlining tree, with a call sequence s1, ... , sm , ... , sn , to a trail τ from the
trail set T , such that τ contains the longest suffix of that call sequence. For the initial set of hot
subroutines H from Algorithm 2, the association is straightforward, since each s ∈ H corresponds
to a trail τ ∈ T . However, a hot call to a subroutine s may not have a corresponding trail—for this
reason, we implemented a trail-cutting operation. Given a breadcrumb trail τ and its node ηs1, ...,sm

,
the trail-cut operation � produces a new trail that consists only of the subtree starting at ηs1, ...,sm

.
Definitions and details of both operations are presented in Appendix D.2.

The trail-matching and trail-cutting are illustrated in the following example. The longest trail-
match in the set T for the calling context 〈s5, s3, s1〉 is the leftmost trail in the figure, because that
trail contains the longest suffix of s5, s3, s1. The resulting trail is then cut on the right side of the
figure, at node ηs3,s1,s2 , and this yields the trail s5 ← s2 → s7. Both operations as well as other key
symbols from Sections 3.5 and 3.6 are presented in Table 4.

3.7 Parameter Summary

In Table 5, we listed the key parameters ψ , kbonus , and kr ec , which the proposed algorithm intro-
duces. Constant ψ is a limit that a profile’s hotness must exceed to be included in the initial set
of hot profiles, compared to the overall hotness of the program. Constant kr ec serves as a multi-
plier for calculating the recursion penalty of a trail. The details of how we used these constants in
the algorithm’s policy can be found in Appendix D.1. kbonus is a constant for multiplying a default
inlining-tree-node priority for every node that can be matched to a trail, according to Equation (21).
All these constants are tuned for the best performance on a set of benchmarks, and the results are
presented in Section 5.6. Notably, since different compilers and inliners have different IR designs
and enact different optimizations, their cost and benefit models differ, so we expect that the algo-
rithm parameters need to be re-tuned for each specific environment.
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Table 5. Summary of the Key Introduced Parameters

Symbol Name Meaning

ψ Hotness threshold Value above which a hotness entry is considered hot.

kr ec Recursion constant Constant used for restricting the amount of recursion in a trail.

kbonus
Expansion bonus
(Equation (21)) Bonus for expanding an inlining-tree node matched to a trail.

Table 6. Summary of the Existing Inliner Parameters in GraalVM

Symbol Name Meaning

r
Expansion inertia base
(Equation (22))

Parameter that impacts the amount of call-tree expansion,

which the inliner performs.

t1
Relative benefit coefficient
(Equation (23))

Parameter driving the benefit threshold for deciding whether a

method should be inlined.

t2
Base target spending
(Equation (23))

Parameter limiting the budget that the inliner has available for

inlining.

This section also contains the key parameters already included in the inliner, and they are listed
in Table 6. We tuned them to show that our algorithm does not show better performance only for
a subset of the parameter values. As a result of the experiments, we chose the values that give us
good performance, but we also demonstrate that our algorithm works well for the other parameter
values. These results are presented in Section 5.2.

4 IMPLEMENTATION

The algorithm presented in Section 3 was described on an abstract level, and it can be implemented
in most concrete compilers. To evaluate the algorithm, we implemented it inside the ahead-of-
time Graal compiler for the GraalVM Native Image [120] and applied it to concrete programs and
benchmarks. More precisely, we modified the compile queue within the existing compiler, added
a phase to analyze the input profiles, and used it to improve the decisions of the existing inliner.

We start with an overview of the existing compiler inside GraalVM and the existing profile-
guided optimization support in GraalVM’s ahead-of-time compilation mode in Sections 4.1 and 4.2.
Then, in Sections 4.3 and 4.4, we discuss the data structures and the details of our implementation.
If the reader wishes to see an example execution of the proposed algorithm, Appendix A illustrates
compilation of a method from mnemonics benchmark.

4.1 System Overview

AOT compilation is a set of techniques for compiling and optimizing the entire program before
the execution of the program begins. GraalVM Native Image [120] is an ahead-of-time compiler
in GraalVM, in which we implemented the algorithm that is the subject of this article. GraalVM
Native Image compiles the input program to a platform-specific executable, called native image

(NI). The input to the Native Image is the set of class-files that contain the Java bytecode [1] that
represents the program and the name of the method that is the program entry point.

JIT is a substantially different compilation paradigm, in which the compilation is performed
during the execution of the program, and is done only selectively on a subset of methods. The
execution of the program usually starts in the first stage of the compiler, e.g., an interpreter. After
the method gets invoked a certain number of times, or after the total amount of the time spent in the
method exceed a specific threshold, that method is placed on the compilation queue and eventually
compiled. HotSpot [95] is one of the virtual machines that uses the JIT compilation approach.
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Fig. 4. Example graal IR for the

Optional.ofNullable method.

In the GraalVM ecosystem, both Native Image and HotSpot
use Graal as the optimizing compiler. After the Graal com-
piler loads the bytecodes of the program, parses them, and
creates the corresponding intermediate representation

(IR) [67], it applies numerous optimization phases to the pro-
gram IR. Graal is, in principle, an intraprocedural optimizing
compiler—every method of the program is parsed as a sepa-
rate compilation unit, and all subsequent optimization phases
are separately applied to each compilation unit. However, a
single compilation unit may comprise several methods, be-
cause the compiler can decide to inline some of the callees.
Graal IR. The intermediate representation in the Graal com-
piler is a directed graph data structure that simultaneously
models the control-flow and dataflow dependencies between

individual execution steps [67], similar to the sea-of-nodes representation [58]. Figure 4 shows the
corresponding Graal IR for the JDK 8 Optional.ofNullable method [18]. The method is defined
as follows:

<T> Optional <T> ofNullable (T x) { return x == null ? EMPTY : new Optional <>(x); }

Inlining and node source positions. The Graal compiler transforms the aforementioned IR
in a sequence of transformation phases, one of which performs inlining [97]. In the previous
ofNullable example, the invoke node represented the constructor call, which merely assigns
the parameter to one of the fields of the Optional object. Typical heuristics inline this constructor
due to its small size [96], and the resulting state of the IR is shown in the following figure.

The invoke node that represents the Optional con-
structor call was replaced with the body of the constructor,
which is in this case a single store node. We use this ex-
ample to explain the concept of a node source position in
Graal. The Java bytecode of each method is a linear list
of instructions [75], each of which has a unique bytecode

index (BCI), which is the offset of the instruction in bytes.
For a particular method, BCIs start from zero and go up to
the BCI of the last instruction. Every node in the IR is as-
sociated with the bytecode instruction that it was created
from. Therefore, every node has a method-BCI pair that
denotes where it came from. However, nodes can originate from callees that were inlined into the
compilation unit, and for this reason, Graal assigns a list of method-BCI pairs to each node, which
represents where the node was inlined from. This list is called the node source position. In the pre-
ceding example, the node source position of the new node is ofNullable:7, because this particular
node was not inlined (i.e., it comes from the root method of the compilation unit). The node source
position of the store node is ofNullable:9,<init>:0, since that node was inlined from the call
at ofNullable:9, and is the first instruction in the constructor <init> of the Optional class.

The calling context is the node source position of the invoke from which a particular node
is inlined. For the store node in the example, ofNullable:9 is its calling context. The term
calling context is overloaded, because it also denotes the call stack that exists during the program
execution and which invokes the compilation unit that corresponds to the top frame of the call
stack—to disambiguate, we say call stack when we mean the latter.
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The build process in Native Image. Image-
building consists of several main steps: (1) points–

to-analysis, which includes class initialization and heap snapshotting, (2) compilation, and (3) im-
age-heap writing [120]. The points-to analysis step determines the set of reachable classes and
methods [113], which is called the hosted universe. The points-to analysis also initializes the static
fields of some classes. The compilation step then, starting from the entry points, recursively com-
piles the methods from the hosted universe one-by-one in a manner that corresponds precisely
to lines 13–20 in Algorithm 1. Finally, the image-writing step creates a binary with the compiled
code and the initial state of the heap (which comprises the objects that are transitively reachable
from the static fields of the initialized classes).

Extensions in this work: the compilation is separated into two rounds, the first compiling

hot methods and the second compiling cold methods.

4.2 Overview of Profile-Guided Optimizations (PGO) in Native Image

On HotSpot, the program is profiled while it is interpreted and before it is JIT-compiled [15, 50,
80, 122]. Since method inlining (which by definition introduces calling-context sensitivity into the
compilation unit) is only performed during JIT compilation, the profiles collected by the interpreter
are not context-sensitive—the interpreter maintains the same set of profile counters for a partic-
ular method, regardless of who the caller is. In AOT compilation, however, the entire program is
compiled before the program starts executing, and there is typically no interpreter available. For
this reason, GraalVM Native Image supports two modes of compilation—instrumentation image,
in which the binary is instrumented with the code that collects the profiles, and the optimization

image, in which the binary does not have any profiling code. The program is first compiled into the
instrumentation image, which is executed once to collect the profile information. The profile infor-
mation is dumped to a file when the instrumentation-image program exits. Then, the program is
compiled into the optimization image, which optionally takes the file with the profile information.
This profile information is then used to guide the decisions in various compiler optimizations.
Types of profiled events. Specific instructions of interest in the profiled program are called events.
To minimize the performance overhead of profiling, most VMs track only those events that are
considered useful in improving the effectiveness of compiler optimizations. GraalVM Native image
collects profile information for three different types of events:

— Method entries. Records the number of times that a method M is entered. The method M
may be inlined into a calling context C , in which case this event type represents method’s
hotness within the calling context C .

— Conditional branches. Records the number of times that each branch of a conditional (an
if or a switch statement) was executed. Each branch of the conditional is associated with
a BCI within the method M , which may be inlined into a calling context C .

— Virtual dispatches. Keeps an array of counters, each for one potential receiver type at the
virtual callsite, and records the number of times that each concrete receiver type was invoked.
The callsite is associated with a BCI in M , which may be inlined into a calling context C .

Extensions in this work: The virtual-dispatch profile for each callsite in hot code is re-

stricted to the callees that appear on the breadcrumb trail instead of being taken directly

from the input profile.

Obtaining profiles. In Native Image, the profiling is based on instrumentation—the IR of each
compilation unit is modified to include nodes that collect counts for the previously enumerated
events. Each node that is inserted into the IR represents a sequence of instructions that updates the
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counter for the event associated with the corresponding node source position. Each node source
position of a profiling node is mapped to a unique identifier, which is used as an index in a counter
array. Since the node source position includes the calling context within the current compilation
unit, the count associated with every event is context-sensitive.

Extensions in this work: Partially context-sensitive profiles are effectively made longer

using the proposed breadcrumb trails approximation.

The Native Image developers decided not to use atomic counters in Native Image PGO. The
rationale behind this decision was twofold: First, the extensive measurements revealed that the
errors introduced by non-atomic counters are small, while the overhead of atomic counters is
considerable compared to non-atomic ones; and, second, optimization decisions that are made
based on counter values are in most cases heuristics and thus approximate. Furthermore, non-
atomic counters in Native Image may lose some updates but cannot lose all of them—every calling
context that was executed in the instrumentation image always has a non-zero profile count. The
associated calling contexts contain all the methods from the program traces. Finally, our goal was
to compare our proposed technique against the existing PGO in Native Image without changing
the instrumentation mechanism, so modifying the existing counter infrastructure was out of scope.

The adjacent example shows the IR after the insertion
of two prof-cond nodes (one for each branch following
the if node 2), which represent increments of the coun-
ters 1,468 and 1,469, respectively. In the later compilation
phases, these nodes are replaced with low-level memory
loads and stores that increment the respective counter.
The profiling nodes for event types such as virtual
dispatches also count the corresponding receiver types
and are lowered to code that maps the receiver type to
its entry. Once the instrumentation image of the program
completes execution, the values of these counters are
dumped to the disk into a file, which is consumed by the
optimization image.

The profile format corresponds to the formal input of the algorithm, as described in Section 3.
Each counter is associated with the node source position of the corresponding instrumented node.
The first location in the node source position always corresponds to the root method of the com-
pilation unit, and the last location is the method-BCI pair of the instruction that the instrumented
node was parsed from.

One of the main reasons that the Native Image implementers decided to use only partially
context-sensitive profiles is that the collection has a relatively low performance overhead and
that the memory consumption of the counters is low. While this instrumentation contains the ex-
act number of times that an event was executed in a given partial calling context, its downside is
that the partially contextual profiles can be polluted in compilation units that have many callers,
because the profile counts are aggregated across all callers. This, in turn, leads to incorrect inlin-
ing decisions. The length of partial calling contexts can be increased by doing more inlining in the
instrumentation image, but this “works” only to a certain degree, as we show in Section 5.5.
Applying profiles. Native Image already relied on PGO prior to our work in the following
manner: The nodes in the Graal IR are augmented with additional information, such as the
probability that a particular branch is taken at a particular if node or the probability of a
particular receiver type appears at a particular invoke node. This information is calculated from
the counts in the profiles and (when present) is used to guide existing Graal optimizations with
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knowledge about the program’s execution. For example, branch probabilities are used to compute
basic block frequencies that guide path duplication [88] and loop transformations, and receiver
type probabilities are used in callsite devirtualization [78, 97]. In this section, we explain how the
partially context-sensitive profiles are applied to the IR in Native Image.

The bytecode-parsing phase, which constructs the IR of each method in the native-image
program, is the first phase in which the profiles are applied. During bytecode parsing, the profiles
are applied in a context-insensitive manner, because the IR of a particular method is parsed, and
no inlining occurred so far. Inlining, a later phase in the pipeline, applies the profiles in a context-
sensitive manner, with the purpose of helping the inliner make better decisions.

The two main steps of the inlining phase in GraalVM, as explained in Section 3.5, are expansion
and inlining. Native Image applies the context-sensitive profiles during the expansion step of the
inliner—in each of the callee methods, the branch probabilities of all if nodes and the receiver-
type probabilities of all invoke nodes are computed using only those profile entries that match
the calling context of the respective callee in the inlining tree, as explained next.
Profile-application example. Consider the adjacent fig-
ure, where the profiles from the instrumentation run were
applied to the compilation unit ofNullable of the opti-
mization image. The purple node 13 denotes the probabil-
ity of taking the true branch at the if node 2, which can
be utilized by various optimizations. For example, the in-
lining phase can now conclude that it is very unlikely that
the constructor call at the invoke node 5 in the false
branch will be called, so there is very little benefit from
inlining it. However, subsequent code-motion phases can
decide to move the highly frequent load node 3 to the po-
sition before the if node 2, since speculative prefetching
can result in a performance improvement [65, 100].
Querying profiles. The optimization-image compilation needs to map node source positions to
execution counts. When the calling contexts within each compilation unit of the instrumentation
image exactly correspond to the calling contexts of the optimization image, this mapping is trivial.
However, the calling contexts generally differ between the instrumentation and the optimization
image, due to different inlining decisions—the reason for this is that the inlining decisions are
driven by the profiling information.

In Native Image, when querying the execution counts for the (shorter) node source position
�1, . . . , �n , the rule is to add together the counts associated with all (longer or equal) node source
positions �1, . . . , �n , . . . , �m (wherem may be equal to n, i.e., there is an exact match). The rationale
for this is that all longer or equal calling contexts from the instrumentation image may correspond
to the queried calling context. However, when a node source position �1, . . . , �n does not have an
equal or longer match in the set of profiles, in Native Image, the rule is to add together all the
profiles with shorter calling contexts.

Notably, these two rules were chosen as approximations by the Native Image developers. Gener-
ally, global analyses of the call graph and the profile set can result in better approximation schemes,
but that is outside of the scope of this work—here, we outline how the existing profiling system
works and do not change the default profile-querying schemes when implementing our algorithm.
Implementation inputs. The input to our implementation is the hosted universe that is
produced by the points-to analysis step of the Native Image build (as explained in Section 4.1),
represented with the HostedUniverse class in Native Image; the set of entry-point methods of
the program, each represented by the HostedMethod class; and the set of pairs consisting of a
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node-source-position and an integer (i.e., the PGO profile). This input closely corresponds to the
input of Algorithm 1 from Section 3—notably, the hosted universe contains the call graph defined
in Section 3.1, along with the set of reachable classes and their fields.

4.3 Data Structures for the Code Analysis

The previous two sections gave an overview of GraalVM, Native Image, and the existing profile-
guided optimizations within Native Image. In the rest of the sections, we focus on our contribution
and present our implementation of the new techniques proposed in the article. In this section, we
present the implementation of the main data structures that we use for the code analysis. To explain
the implementation, written in the Java programming language, we define the main fields of each
of the data structures, and we show their most important methods.

class Breadcrumb {

HostedMethod method;

Map <Integer , Breadcrumb []> callsites;

Breadcrumb parent;

GraftPoint graftPoint ;

}

class GraftPoint {

double attenuation;

}

Listing 3. Breadcrumb Data Type.

Data type Breadcrumb. Listing 3 shows the imple-
mentation of a breadcrumb, i.e., a node in an anno-
tated breadcrumb trail as defined by Equation (7).
The node corresponds to a single subroutine in the
program (stored in the field method). It contains a
reference to a parent node (field parent), which rep-
resents the caller of the node’s subroutine in a given
trail. The callsites map matches a bytecode index
of each callsite in the node’s method to the list of the

nodes corresponding to the methods that can be invoked at the callsite. The rationale for having
the list is that each bytecode index may represent a virtual call, which can dispatch to more than
one method. Each breadcrumb has a non-null GraftPoint object if that breadcrumb represents
a point for a grafting operation, as explained in Section 3.2. The GraftPoint object contains the
attenuation field, which models the graft-point attenuation function of the associated trail, as
formally explained in the definition in the Appendix D.1.
Data type Trail. In Listing 4, we present the concrete implementation of a breadcrumb-trail data
type, which was formally defined by Equation (7) for annotated trails, in Section 3.2.

A trail is a tree that consists of breadcrumb nodes. The root breadcrumb (field root) corresponds
to the method of the corresponding compilation unit. Every other breadcrumb has exactly one
parent and the arbitrary number of children (Listing 3). A trail contains a mapping grafts from
methods to all the breadcrumbs in the trail that correspond to the respective method and that
have GraftPoint objects. This map is used to optimize the trail-grafting operation defined by
Equation (9). Finally, to model various trail-related functions defined in Section 3, a Metrics object
is associated with each trail. This object contains the total hotness field, which represents the
hotness function χ (τ ) from Equation (34); the size field, which represents the ν (τ ) size function
from Equation (35); and the recursion field, which maps each method to its greatest recursive
depth in the respective trail and which is used to implement the penalty ζ (τ ) from Equation (36).

Listing 4 also contains methods that implement the three main operations defined on trails.
These operations are already formally defined in Section 3.2. Method createInitial conceptually
corresponds to the operation (∅,∅,∅) � 〈�1, . . . , �n〉 of extending an empty trail with a calling
context, as defined by Equation (8). It takes a Profile object (consisting of a calling-context and the
corresponding count value) as an input; its output is a new trail object, in which each breadcrumb
coincides with a location from the input calling-context. The profile count is used for the initial
hotness metrics of the created trail. Trail size and recursion depth are computed from the context
input. The root of the resulting trail is a new graft point with the attenuation 1.0.

Method expand performs the expansion operation on this trail object and implements the
� operation from Equation (8). The profile argument of the method contains the context for
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expansion and the profile count of that context. For each location in the context, we create a new
breadcrumb and update grafts similarly to the construction of a new trail.

class Trail {

Breadcrumb root;

Map <HostedMethod , Breadcrumb []> grafts;

Metrics metrics;

static Trail createInitial(Profile profile);

Trail expand(Profile profile);

Trail graft(Trail graftee);

}

class Metrics {

long hotness;

int size;

Map <HostedMethod , Integer > recursion;

}

class Profile {

Location [] context;

long value;

}

class Location {

HostedMethod method;

int bci;

}

Listing 4. Trail Data Type.

The graft method implements the
grafting operation from Equation (9)—
it grafts the input trail (graftee) onto
this trail. The grafting can only oc-
cur on those graft-point breadcrumbs
from the target trail this whose method
corresponds to the root method of the
graftee trail—the graftsmap allows ef-
ficiently retrieving this subset. For this
reason, the grafting of the same graftee
can occur more than once within a single
trail. For each graft point, the graftee
trail is copied and attached to the respec-
tive graft point. The metrics of the re-
sulting trail are updated with the met-
rics of the grafted trail. The total hot-
ness of the grafted trail is complemented
with the hotness of the graftee multi-
plied with the attenuation of the graft
point where the grafting happened, as
per Equation (34). The remaining two metrics, size and recursion, are updated in a similar man-
ner that ensures the Equations (35) and (36) are satisfied.
The TrailSet data structure. During the execution of the algorithm in Listing 2, the Detection-
Done call in line 4, the TopTrail call in line 5, the addition of the current trail τ to the finalized set
F in line 8, removal of the current trail τ from the set T in line 10, and the union-graft operation
in line 11 are executed multiple times. Using a naive set encoding, each of these operations would
takeO (n) computational steps, where n is the total number of trails in the set. To reduce their com-
putational overhead, the implementation uses the TrailSet data structure shown in Listing 5.

class TrailSet {

PriorityQueue <Trail > queue;

HashSet <Trail > finalized;

HashMap <HostedMethod , Set <Trail >> candidates ;

boolean isFinalized ();

Trail popHottest ();

int unionGraft (Trail graftee);

void graftToRoots(Trail trail);

}

Listing 5. TrailSet Data Type.

The TrailSet contains a priority
queue, a hash-set of finalized trails,
and a candidates hash-map that maps
each method to a set of trails that contain
that method in at least one graft-point.
The non-finalized trails are in the queue,
and finalized trails are in the finalized
hash-set, so in the notation of List-
ing 2, T ≡ queue ∪ finalized and
F ≡ finalized.

The TrailSet data structure includes several methods. The isFinalized method checks if the
queue is empty, which effectively executes the DetectionDone policy from Equation (31) inO (1)
time. The popHottest method uses the queue to extract the hottest trail in O (logn) time and
is used to implement the TopTrail policy (the ordering is determined by the hotness metric of
the trails, as per Equation (34)). The candidates allows finding all candidate graft points in all
trails in O (C ) time, where C is the size of the resulting set, so the overall computational time of
union-grafting ∪ (as defined by Equation (15)) only depends on the size of the resulting trails. The
finalized hash-set is used to extract the final set of trails (set H from Listing 2).
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4.4 Implementation Details

The preceding sections showed how the implementation of the algorithm in Native Image corre-
sponds to the formalization from Section 3 but left out details such as how the hotness of a calling
context is computed and how the set of calling contexts is determined (i.e., the CallingContexts
policy). We now show how our implementation computes the hotness of virtual and direct callsites
and how it estimates the hotness value of the individual breadcrumbs. Finally, we show how to
determine the calling contexts and the attenuation values of each method.
Determining the hotness of virtual callsites. For each calling context ending with a virtual
call, Native Image PGO data maps every concrete method to the invocation count of that method:

π (�1 . . . �n ) = {(s,N ) : s ∈ implementations(target(�n ))}. (25)

Above, the target(�n ) is the base method for the dispatch at the virtual callsite �n , and implemen-

tations is a function that returns the set of methods that implement the base method. This profile
entry has two interpretations, depending on when it is used. When creating a set of initial trails, a
breadcrumb that gets created from a virtual call has its hotness increased by the sum of the invo-
cation counts of all the possible concrete methods (because all of them contribute to the hotness
of the trail):

h�1, ..., �n
=

∑
(s,N )∈π (�1 ...�n )

N . (26)

When extending a breadcrumb trail rooted at a subroutine s with a calling context that ends with
a virtual call, the invocation count that contributes to the hotness is the count for the method s:

h�1, ..., �n |s = N such that (s,N ) ∈ π (�1, . . . , �n ). (27)

Thus, when creating the initial set of trails in line 1 of Listing 2, Equation (26) determines the
hotness of the callsite that is a virtual call. When extending the top trail in line 7 of Listing 2,
Equation (27) determines the hotness of the callsite that represents a virtual call.
Example. To illustrate the preceding equations, con-
sider the running example from Listing 1 and its calling
context foreach:3 in the adjacent figure, which ends
with a virtual call to apply. The apply is a base method,
and its concrete implementations are F.apply and G.
apply. If this context is used to create an initial trail, then both the F.apply and the G.apply
invocation counts contribute to hotness. However, if a trail that consists of a single breadcrumb
F.apply is extended with its calling context foreach:3, then only F.apply’s invocation count
contributes to hotness, because G.apply is not invoked in the extended trail.
Determining the hotness of direct callsites. Unlike the virtual callsites, the direct callsites
do not have the invocation-count records in Native Image PGO. The hotness of a direct call at
location �n in the calling context �1, . . . , �n−1, �n must be computed from the branch probabilities
of the subroutine sn that corresponds to the last location �n of the calling context. To do this, we
first extract the set Π�1, ..., �n−1,sn |B of the profile entries �1, . . . , �n−1, �

′
n that end with a location

�′n that is inside the subroutine sn , such that �′n is the location of a branch instruction. We then
use the ControlFlowGraph class of the Graal compiler [13] to create a control-flow graph of the
subroutine sn , in which the basic block sn-relative frequencies are computed using the branch
execution counts from Πsn |B . The sn-relative frequency of the basic block that contains the direct
call �n is then multiplied with the invocation count of sn to obtain the count in the respective
calling-context:

h�1, ..., �n−1, �n |s = N�1, ..., �n−1 |sn
· f (CFG (sn ,Π�1, ..., �n−1,sn |B ), �n ). (28)
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Above, CFG returns the control-flow graph of the subroutine sn for the branch profiles Πsn |B , f
retrieves the sn-entry-point-relative frequency of the basic block that contains the location �n in
the given control-flow graph, and N�1, ..., �n−1 |sn

is the number of times that the method sn is entered
from the calling context �1, . . . , �n−1, which ends with a call to sn . This hotness value is used both
when creating an initial set of trails and when extending existing trails.

Example. To illustrate Equation (28), consider the run-
ning example from Listing 1 again and its calling con-
text main:7,min:13, which ends with a direct call to
foreach. To compute the hotness of the direct call to
foreach at main:7,min:13, we extract the set of branch
profiles Πmain:7,min |B that correspond to calling contexts
of the form main:7,min:X, where min:X is any loca-
tion in min. The branch profiles in Πmain:7,min |B are
then used to create a control-flow graph of min and
a mapping from basic blocks to their frequencies rel-

ative to the entry point to min. We use this mapping to obtain the min-relative frequency
f (CFG (min,Πmain:7,min |B ), min:13) of the basic block that contains the location min:13 of the
direct call and multiply it with the number of times Nmain:7 |min that the method min was entered
from main:7. The result is the hotness of the direct call at main:7,min:13.
Estimating the attenuation of a calling context. As we have just previously shown, in our im-
plementation, direct calls are not represented in the profiles, so the attenuation-factor calculation,
defined in Equation (33), must be modified to include those direct calls in the denominator:

a�1, ..., �n
(τ ) ≡

h�1, ..., �n |τ∑
L∈directCallers(τ ) hL |τ +

∑
(L,hL |τ )∈callerProfiles(τ ) hL |τ

. (29)

Above, the denominator is the sum of the hotnesses hL |τ of contexts L that directly call τ (as per
Equation (28)) and the hotnesses hL |τ of contexts L that indirectly call τ (as per Equation (27)). The
direct-call hotness and attenuation-factor calculations are cached to decrease the overhead.
Determining the calling contexts. To compute the set directCallers(τ ), our implementation pre-
processes the IR of the methods in the HostedUniverse and creates a mapping from each method
to the list of its callsites—this callee-to-callsite table contains both the direct and the virtual call-
sites. The mapping is also used to implement the CallingContexts policy from Section 3.4.

5 EVALUATION

The main objective of the evaluation is to compare the performance of the proposed ahead-of-
time inlining and compilation-scheduling algorithm with the existing state-of-the-art inliner that
is used in GraalVM [97] (Section 5.1). To demonstrate that the comparison is fair, we inspect a
range of parameters that affect inlining—for both algorithms, we find the parameter values that
give the best possible performance (Section 5.2). Furthermore, the evaluation shows that the new
inlining algorithm achieves improved performance with a minimal compiled-code size increase
(Section 5.3).

To characterize how the different components of the algorithm affect peak performance of com-
piled programs, we then analyze the impact of those different algorithm components. In Section 5.5,
we evaluate how the average length of the partial contexts correlates with the peak performance
of compiled programs. Then, in Section 5.6, we show how heuristics such as the inlining-budget

boost and the trail expansion formally defined in Section 3.2 affect the peak performance and how
we tuned the threshold for the initial set of hot contexts.
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Fig. 5. Warmup curves on native image.

In Section 5.7, we explain the performance differences between ahead-of-time and just-in-time
compilation with GraalVM, and we demonstrate that some of the differences are not due to the
inlining decisions. Appendix B contains a case-study in which we explain how our proposed inlin-
ing algorithm deals with the problems that were described in Section 2 on the example of a flame
graph of the mnemonics benchmark.

Table 7. Number of Iterations per Benchmark

Benchmark NI Iterations JVM Iterations

h2 10 16

fj-kmeans 20 40

mnemonics 20 60

par-mnemonics 20 60

philosophers 15 30

reactors 10 10

rx-scrabble 80 150

scala-stm-bench7 30 60

scrabble 60 250

apparat 10 20

kiama 40 120

scalac 40 120

scaladoc 40 120

scalap 120 250

scalariform 40 120

tmt 12 16

Experimental setup and methodology.

Benchmarking was conducted on an Intel Xeon
E5-2699v3 CPU with 18 cores and hyperthread-
ing, with 264 GB main memory and tmpfs file
system, running Oracle Linux Server release
6.10. During the experiments, turbo boost was
disabled and we set the frequency of all CPU
cores to 2.3 GHz to eliminate the effects of
dynamic frequency scaling. All experiments
were conducted as follows: For each data point,
we did five separate measurements in different
process instances, running different GraalVM
Native Image (Native Image 20.3.0-dev (Java 8,
revision: 7955c628b5c) with the default garbage
collector) configurations, or JVM (depending on
the specific experiment). Within each process
instance, we repeatedly executed the benchmark
for a predefined number of repetitions N , where
N was selected on a per-benchmark basis to
ensure that the steady state is reached before
60% repetitions are completed. We considered
the benchmark steady once it ran for at least 20 seconds and after the coefficient of variance
reaches a threshold [74]. Warmup time for GraalVM Native Image is shorter than the warmup time
on JVM. There are only several initialization steps of the image heap executed at runtime before
the main method of the benchmark is invoked [120]. Figure 5 demonstrates that a benchmark’s
running time becomes stable after only a couple of iterations. The number of repetitions of
each benchmark for Native Image and JVM is shown in Table 7. We then computed the average
execution times across the last 40% repetitions of all five measurements. In the results, we also
show the standard deviation, except when presenting the impact on the code size (where the
results were stable and the standard deviation was insignificant).
Workloads. We used 16 benchmarks from DaCapo [46], Scalabench [108], and Renaissance [99]
benchmarking suites that Native Image was capable of compiling. A subset of benchmarks from
Renaissance suite (mnemonics, par-mnemonics, and scrabble) on which we performed the anal-
ysis conduct the data manipulation using Java 8 Streams. The rx-scrabble benchmark solves
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Table 8. Benchmark Running Time

Benchmark Default PGO PGO-AOT-Inline GraalVM-JIT C2-JIT

h2 13,348 ms 10,200 ms 10,496 ms 6,526 ms 6,464 ms

fj-kmeans 4,709 ms 4,493 ms 4,456 ms 1,824 ms 1,919 ms

mnemonics 9,065 ms 5,812 ms 4,215 ms 2,723 ms 6,048 ms

par-mnemonics 8,329 ms 5,401 ms 3,988 ms 2,295 ms 5,111 ms

philosophers 23,889 ms 23,056 ms 23,010 ms 16,320 ms 5,809 ms

reactors 35,213 ms 31,133 ms 31,104 ms 17,985 ms 20,914 ms

rx-scrabble 406 ms 335 ms 320 ms 291 ms 330 ms

scala-stm-bench7 3,812 ms 3,089 ms 1,814 ms 1,603 ms 1,480 ms

scrabble 87 ms 63 ms 49 ms 43 ms 144 ms

apparat 13,283 ms 8,133 ms 8,374 ms 5,526 ms 9,860 ms

kiama 400 ms 342 ms 313 ms 210 ms 287 ms

scalac 1,539 ms 1,206 ms 1,174 ms 1,009 ms 1,241 ms

scaladoc 1,312 ms 1,011 ms 946 ms 855 ms 1,180 ms

scalap 189 ms 159 ms 155 ms 107 ms 128 ms

scalariform 544 ms 463 ms 461 ms 345 ms 458 ms

tmt 17,875 ms 10,159 ms 10,108 ms 7,025 ms 10,970 ms

the same problem as does the scrabble benchmark but relies on the RxJava framework to do
so. The philosophers benchmark solves the dining philosophers concurrency problem using the
ScalaSTM framework, which is also used for the scala-stm-bench7 workload. The reactors
benchmark consists of a message-passing workload, while the fj-kmeans benchmark performs
K-means algorithm using the Fork/Join framework. DaCapo benchmark h2 executes a set of data-
base transactions. The apparat benchmark from the Scalabench suite optimizes files with specific
extensions, and kiama consists of a language-processing workload. The scalac, scaladoc, and
scalap benchmarks represent the Scala compiler, the Scala documentation generator, and the de-
coder for the pickled classfile information, respectively. The scalariform benchmark is a code
formatter for programs written in Scala, and tmt embodies a tool for the unlabeled-code analysis.

5.1 Comparison with Other VMs and Inlining Algorithms

In the main experiment, we compare the performance of the five configuration runs. Three of
them represent the native-image runs (default-ee, pgo-ee, pgo-aot-inline-ee), while the remaining
two configurations stand for the HotSpot runs (graalvm-ee-jit, c2-jit). The default-ee configura-
tion does not include any PGO, pgo-ee uses the existing profile-guided optimizations of Native
Image (described in Section 4.1), and pgo-aot-inline-ee uses our new profile-driven compilation-
scheduling and inlining algorithm on top of the existing profile-guided optimizations of Native
Image. In this experiment, we used the fixed values of the inlining parameters in all of the config-
urations. The fourth configuration graalvm-ee-jit represents HotSpot JVM that uses the the Graal
Enterprise Edition compiler in JIT mode and the fifth configuration c2-jit assumes HotSpot JVM
using the default JIT server (C2) compiler.

The results of all five configurations are shown in Table 8, such that each column represents the
results of one configuration in the following order: default-ee, pgo-ee, pgo-aot-inline-ee, graalvm-

ee-jit, and c2-jit. Compared to the default-ee configuration, the proposed algorithm brings improve-
ments between 10%–55% in 14 benchmarks, and in two benchmarks, the improvements are less
than 10%.
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Fig. 6. Benchmark running time (lower is better).

The difference between pgo-ee and pgo-aot-inline-ee configurations is more relevant, since it di-
rectly shows impact of our new inliner compared to the previous use of the profiles. This is why
we single out these two configurations and present their results also in Figure 6. The x-axis shows
the benchmarks on which we conducted the main experiment. The plot contains two bars per
benchmark, and each bar represents the results of a benchmark run with one of the two config-
urations. All performance results are normalized against the pgo-ee configuration and presented
on the y-axis. The proposed algorithm has the best improvements on the benchmarks scala-stm-
bench7, mnemonics, par-mnemonics, and scrabble, improving their runtime by about 40%, 27%,
26%, and 22%, respectively. The kiama and scaladoc benchmarks are improved in the range of
5%–10%, while the range of improvement for rx-scrabble, scalac, and scalap benchmarks is
between 2.5% and 5%. Five benchmarks show the improvement up to 1%, and in two benchmarks
(h2 and apparat), we observed a slowdown of less than 3%.

5.2 Impact of the Inlining Parameters on Performance

To make sure that the performance of the configurations is fairly measured and compared, we ran
the experiments with different parameters with an impact on the expansion and inlining during a
method compilation and analyzed the results. In this article, we refer to the procedure of searching
for the best inliner parameter values as tuning. Inliner tuning is an iterative search process whose
goal is to find the combination of the parameters that leads to the best peak performance of the
programs compiled with that inliner.
Tuning of the Inlining Parameters. The tuning process is conducted on parameters r , t1, and t2
from Equations (22) and (23). These parameters directly impact the amount of inlining in compila-
tion units—expansion inertia base-value r drives the amount of call-tree exploration that the inliner
performs, while relative benefit coefficient t1 and base target spending t2 drive the benefit threshold
for deciding whether a method should be inlined, effectively limiting the budget that the inliner
has available for inlining [97]. The inliner explores a larger part of the call tree for higher values
of r and tends to make larger compilation units for smaller values of t1 and larger values of t2.

We tuned the parameters r , t1, and t2 separately, as follows: For the tuning of each parameter
P , we first set the value of all the other parameters to their default values, which were previously
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tuned for the existing Graal’s inliner [97]. We then used a variant of the simplex algorithm [25, 61]
to determine the range in which the optimal value of the currently-tuned parameter P is, keeping
all the other parameters locked. Starting from the initial value P0, we explored the values P0±ϵ · 2i

at each step i until finding a range with an inflection point, that is, [P0 − ϵ · 2j , P0 + ϵ · 2i ] such that
exists k for which P0 ± ϵ · 2k has a better fitness value than the boundaries of the range. For the
fitness, we used the geometric mean across all benchmarks. Then, we divided that range into 10
to 15 equidistant steps and searched for the optimal fitness within these steps.

The fitness on individual benchmarks for the parameter r , while all other parameter values are
locked, can be seen on the x-axis of Figure 7. We note that the process of tuning the parameters
individually could be improved by multidimensional tuning of all the parameters, but we note that
we had to build the native images of all the benchmarks for every datapoint (both the instrumen-
tation and the optimized image), and simultaneous multi-parameter tuning would be much more
expensive (it exceeded the amount of machine time available to us).

The process of tuning is performed using the same methodology and setup described in the
beginning of Section 5. For each value of the parameter, we performed five separate measurements
in different process instances, running the two main GraalVM Native Image configurations (pgo-ee

and pgo-aot-inline-ee). Based on this tuning procedure, we chose the values r = 550, t1 = 0.0002,
and t2 = 300 as defaults for our modified inliner.
Expansion-inertia Base Value. This parameter directly affects the amount of the call tree that
gets explored before the inliner decides which parts of the explored call tree must be inlined and
corresponds to the value r from Equation (22). We found that this parameter has the most signifi-
cant impact on the performance of the inliner. In what follows, we show the effect of this parameter
on the pgo-ee and the pgo-aot-inline-ee configurations.

Each plot in Figure 7 compares the performance of one of benchmarks for the two main run
configurations across the interesting range of parameters. The x-axis represents the values of the
expansion-inertia base value, while the y-axis shows the running time of the benchmark in the
corresponding plot. The running time is expressed in milliseconds. We analyzed these plots to
determine the best choice for the default parameter value. For the majority of the benchmarks,
both configurations achieve the best performance when the parameter is between 400 and 550,
with a few benchmarks achieving better performance between 1,000 and 1,300. The new inliner
achieves better performance for all parameter values on 11 benchmarks; on reactors it achieves
better performance for most parameter values; on apparat it achieves the same or better perfor-
mance depending on the specific parameter values; on fj-kmeans and philosophers it achieves
approximately the same performance across all parameter values; and is strictly worse on h2.

Figure 8 compares the best performance for some parameter value, chosen separately for each
of the two configurations (i.e., the result of tuning each inliner on each benchmark separately).
The different benchmarks are shown on the x-axis, and the normalized running time is shown
on the y-axis (a lower value means better performance). The reference value 1.0 is the pgo-ee

configuration, which does not use our new compilation and inlining policy. The pgo-aot-inline-ee

configuration (the proposed inliner) achieves better peak performance on the 11 benchmarks and
a similar performance on 3 benchmarks. These individually tuned results are relevant for AOT
compilation, since offline compilation of different programs allows tuning the parameters for each
program independently (this is less applicable to online JIT compilations).

5.3 Impact on the Compiled-code Size

We next demonstrate that the previously shown performance improvements incur an acceptable
increase in compiled-code size. The goal is to validate that increasing the budget only for the hot
compilation units does not significantly impact the compiled-code size, as argued in Section 3.
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Fig. 7. Tuning results for the expansion-inertia base value parameter (pgo-aot-inline-ee (×) vs. pgo-ee

(◦))(lower is better).

Figure 9 compares the compiled-code size with the pgo-aot-inline-ee configuration against the
compiled-code size with the pgo-ee configuration. We also compare the proposed algorithm against
the approach of globally increasing the inlining budget for all the compilation units (i.e., not just
the hot ones), which is represented by the pgo-enhanced-inlining-budget-ee configuration.

The x-axis shows the benchmarks, and the y-axis shows the compiled-code size. Each bench-
mark is associated with one bar for each configuration. The results are normalized against the
pgo-ee configuration, which has the least amount of inlining. With our new inliner, the compiled-
code size is increased in the range from 0.8% on the par-mnemonics benchmark, up to 9% on
rx-scrabble, compared to the pgo-ee. However, for 10 out of the 16 benchmarks, the size is in-
creased only up to 2.5%. When increasing the inlining budget globally, the size-increase goes up
to 2.5×. The smallest increase for pgo-enhanced-inlining-budget is around 9% for par-mnemonics,
for which we witnessed the lowest size-increase for pgo-aot-inline-ee as well. However, the aver-
age size-increase for pgo-enhanced-inlining-budget configuration is approximately 2×, which we
consider large. We conclude that the size increase of 0.8%–9% in the case of the pgo-aot-inline-ee

configuration (the proposed algorithm) is not significant and is acceptable in practice.
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Fig. 8. Running time for per-benchmark-optimal expansion-inertia base values (lower is better).

Fig. 9. Compiled-code size (lower is better).

5.4 Impact on the Compile Time

In this section, we present the impact of our algorithm on the compile time. Even though the com-
pilation is performed ahead-of-time, and it is not crucial to keep the compilation overhead low, we
demonstrate that the overhead is reasonable. Figure 10 compares the compilation time for pgo-aot-

inline-ee configuration against the compilation time for pgo-ee configuration. The x-axis contains
the benchmarks, and the y-axis shows the normalized compilation time. Each bar represents a
compilation time of a benchmark run with a specific configuration. The results are normalized
against the pgo-ee configuration. Our inlining algorithm increases the time of the compilation up
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Fig. 10. Compilation time (lower is better).

to 23%, as observed on the example of the apparat benchmark. For 12 out of the 16 benchmarks,
compile time is increased in range from 2.8% to 10%.

5.5 Impact of Context Length on Performance

One of the aims of the proposed algorithm is to utilize context-sensitive profiling information to
improve inlining decisions. Context length is the number of locations in the calling-context of a
profile entry. Longer contexts usually result in more precise profiling information. By varying the
average context length of the input profiles, we show that there exists a dependency between the
context length and the performance of the new inliner. The context lengths were varied by limiting
the inlining depth in the instrumentation image and simultaneously boosting the inlining budget.
For each benchmark, the depth was varied until boosting the inlining budget no longer resulted in
longer average context lengths (the limit on the average context length eventually occurs because
virtual calls cannot be inlined in the instrumentation image).

Figure 11 shows the subset of benchmarks on which we observed a noticeable impact of varying
the context lengths. Our performance evaluation showed less effect on the rest of the benchmarks.
The plots contain the performance data for the average context-length in the range from 1 up to
the longest average context length we provided from the partial contextual information (3–4, de-
pending on the benchmark). The apparat and scala-stm-bench7 benchmarks have the largest
variation: 35%–40% higher performance with average context length between 3 and 3.5, compared
to using context-insensitive profiles. The scrabble benchmark shows an improvement of approx-
imately 18%, tmt 12%, scalap goes up to 8%, while on the remaining benchmarks in Figure 11, the
improvement is 4%–5% when the more precise profiles are present.

5.6 Impact of the Inliner Heuristics on Performance

In the following experiments, we assessed the impact of the specific algorithm features on the
benchmark performance. In each experiment, we present results on a subset of benchmarks that
show the greatest impact of the specific component of the algorithm.
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Fig. 11. Context-length impact on the benchmark running time (lower is better).

Table 9. Transitively Compiling Hot Callees as

Hot Compilation Units

Benchmark Hot Callees No Hot Callees

scaladoc 938 ms 968 ms

scalap 157 ms 160 ms

mnemonics 4,208 ms 5,853 ms

par-mnemonics 4,003 ms 5,441 ms

reactors 30,582 ms 31,442 ms

scrabble 49 ms 63 ms

rx-scrabble 315 ms 323 ms

Transitive compilation of the hot callees

with the increased inlining budget. After a
method is compiled, its remaining non-inlined
callees become the next compilation units. We re-
fer to their compilation as transitive. These callees
are compiled as either hot, with the increased
compilation budget, or as cold, with the default
budget—the specifics of deciding are explained in
Section 3.6. In this experiment, we compared the
proposed algorithm against a variant in which
the IsHot policy from Equation (39) is replaced
with simply IsHot = ⊥. In Table 9, column titled
“Hot Callees” shows results of our unmodified al-

gorithm, while the second column titled “No Hot Callees” shows performance when all callees are
treated as cold. The improvement of the IsHot heuristic from Equation (39) is in the range of 22%
to 28% in case of the Stream-based benchmarks, while for the other benchmarks, the improvement
is up to 5%.
Trail expansion. The proposed algorithm iteratively expands the initial set of trails across the
possible calling contexts. The details of this process are explained in Section 3.4, and the Call-
ingContexts policy is defined by Equation (32). In this experiment, we disable the expansion by
changing that policy to CallingContexts = ∅. Note that by excluding expansion from the algo-
rithm, the set of hot compilation units contains only the methods that are the roots of the calling
contexts of the initially chosen profile entries. Figure 12 compares the benchmark running time
when the trail expansion is disabled (red curve) and the default setup with the trail expansion
enabled (blue curve). The figure presents the initial hot-context threshold tuning process. Regard-
less of the threshold value, running time for benchmarks Apparat, Kiama, Scalariform, Scalac,
Scaladoc, and Scrabble is strictly better when the expansion is active. Comparing the peak per-
formance on both curves shows that the benchmarks profit up to 20% from this feature.
Size of the initial hot contexts set. The constantψ from Equation (30) represents the proportion
of total time that needs to be spent in a given profile entry to consider that entry hot for the initial
set of profiles. In this section, we show that there is a range of optimal values of ψ when trail
expansion is turned on; when the trail expansion is disabled, however, the optimal values ofψ are
in a much narrower range, which varies across benchmarks.
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Fig. 12. Tuning the initial hot-context threshold (with expansion × vs. without expansion ◦; lower is better).

Figure 12 contains a subset of the benchmarks that were particularly affected by the value ψ
and shows how the different values of ψ affect performance. The x-axis contains the range of
values of ψ , while the y-axis represents the running time. The greater threshold ψ implies less
initial hot compilation units, i.e., less compilations with the increased inlining budget. Increasing
ψ above a certain value leads to having no hot compilation units, which is the equivalent of the pgo-

ee configuration. Based on the experiments with most benchmarks, we found that when the trail

expansion is turned off, the optimal values ofψ lie on the range of 0.05% up to 0.5%—in this range,ψ
varies the performance of the no-expansion variant by up to 10%. On most benchmarks, decreasing
the amount of hot compilations below a certain threshold negatively affects the performance, as
there are too many trails, and the best performance for the no-expansion variant is achieved for
ψ between 0.12% and 0.15% (though, some of the benchmarks, as kiama, profit from the greater
initial set of hot contexts). However, the range of optimal values ofψ for the variant that does use

trail expansion is between 0.08% and 0.25% on most of the benchmarks, which indicates that trail
expansion makes the algorithm less sensitive to the choice ofψ .

5.7 Performance Differences between GraalVM on HotSpot and Native Image

As shown in Figure 6, when the Graal compiler is used on the JVM (HotSpot or OpenJDK, which
use just-in-time compilation), the performance is noticeably higher compared to GraalVM Native
Image (which uses Graal in an ahead-of-time compilation mode). Despite the improvements of our
inliner on GraalVM Native Image, there is still potential for achieving performance that is closer to
that of GraalVM on the JVM. Aside from opportunities for better inlining decisions, we point out
that there are other reasons for the observed performance difference between HotSpot and Native
Image. In this section, we present the features and optimizations that are implemented differently
in these two VMs (or not supported at all on Native Image). This is not a comprehensive overview
of the differences in Graal’s compilation on the JVM and on Native Image, but it shows some of
the differences—in several cases, we analyze their performance implications by disabling specific
features and optimizations on the JVM.
Snippets. Snippets are a mechanism in the GraalVM compiler used to express (in a restricted sub-
set of Java) low-level implementations of high-level operations [111]. For example, instanceof
(runtime type-check) against a class without subclasses can be expressed as a read of the object’s
header and a comparison against a constant. Similarly, a call to System.arraycopy (which copies
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Fig. 13. Difference in the copyOf snippet implementation on native image and JVM (flame graph fragment).

elements between two arrays) can be expressed as a loop directly in the compilation unit that calls
arraycopy and can be optimized when the arrays are not aliased and their types known. Most
snippets are architecturally independent due to being expressed in a high-level programming
language. However, they can contain platform-specific building blocks, in the form of special
“intrinsic method calls” that map to, e.g., machine instructions, so snippet implementations vary
across compiler configurations, underlying hardware platforms, and the VMs.

Table 10. Impact of Array Copy Snippets in the Graal Compiler

on the JVM

Benchmark Default No arraycopy No arraycopy & copyOf

kiama 210 ms 278 ms 295 ms

mnemonics 2,723 ms 2,863 ms 5,470 ms

par-mnemonics 2,295 ms 3,604 ms 4,398 ms

scalap 107 ms 111 ms 113 ms

scrabble 43 ms 44 ms 47 ms

tmt 7,025 ms 7,905 ms 8,049 ms

Consider the method Arrays.
copyOf from the JDK, which dupli-
cates a given array, and its intrin-
sifications on HotSpot (JVM) and
on Native Image. Figure 13 contains
call frames from the flame graphs
of the mnemonics benchmark, both
when Graal is used on HotSpot and
within Native Image. Each frame in
a call stack is a compilation unit,
such that the callee units are placed
on top of their caller units. The call
stack in Figure 13 contains the compilation unit for the ArraySpliterator.forEachRemaining
method from the Java Stream library. In the case of the Native Image flame graph, there is a sepa-
rate frame for the copyOf, which is a specialized Native Image subroutine that does the array allo-
cation and copying—the snippet merely calls the proper built-in method. On the JVM, there is no
separate call—the snippet embeds the duplication logic directly into the IR of forEachRemaining.
While for larger arrays, there is usually no observable performance difference between the two
versions, for a lot of copyOf calls on smaller arrays, this results in a noticeable overhead.

In Table 10, we show the performance differences on six benchmarks on which we observed
the highest impact of disabling Graal’s snippets for System.arraycopy and Arrays.copyOf on
the JVM. We realize that disabling these two snippets does not precisely correspond to the Native
Image version, because the native C++ JVM implementation of arraycopy is different than the
implementation of the arraycopy foreign call on Native Image. However, this experiment shows
the magnitude of the impact that arraycopy and copyOf snippets have on these benchmarks.
Garbage Collection. The Java programming language uses garbage collection (GC) as the auto-
matic memory-management technique. The JVM provides multiple GC implementations in each
JDK version. We ran the benchmarks on GraalVM Enterprise Edition running on JDK 8, which
by default uses the Parallel Garbage Collector [19]. Parallel GC freezes the application threads
while performing the collection. However, unlike the Serial GC, which was the default in early
JDK versions, Parallel GC uses multiple threads to perform garbage collection, which improves
its throughput. The default garbage collector in Native Image VM is a serial garbage collector—it
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pauses the application threads but uses a single collector thread [21]. Although the serial GC im-
plementations on JDK 8 and on Native Image are different, it is useful to compare the performance
of benchmarks running on JDK 8 with the Parallel GC and the Serial GC, as this gives a rough
estimate of how much a different GC implementation would affect Native Image. Table 11 shows 4
benchmarks on which the Parallel GC considerably improves performance. The greatest impact on
the benchmark’s running time was observed for the scrabble benchmark—around 35%. Parallel
GC speeds up most of the remaining 12 benchmarks by up to 5%.

Table 11. Comparisons of Garbage

Collectors with the Graal Compiler

on the JVM

Benchmark Parallel GC Serial GC

scrabble 43 ms 68 ms

scalac 1,009 ms 1,141 ms

reactors 17,985 ms 22,718 ms

kiama 210 ms 243 ms

Speculative Optimizations. JIT compilation on the JVM
uses speculative optimizations that speculate about the char-
acteristics of the values in the program to optimize the code
better and improve performance. Each speculative code op-
timization is preceded by a computationally inexpensive
check that confirms that the speculation is valid. If the check
fails, then executing the optimized code would be incorrect,
so a deoptimization is triggered—the execution is transferred
to the interpreter, and the code is compiled again later, but
with less speculations [65, 71]. AOT compilation on Native
Image does not support deoptimization and therefore does no speculation. In this section, we show
that speculations improve JVM performance on a subset of benchmarks.

Table 12. Impact of Speculative Optimizations in the

Graal Compiler on the JVM

Benchmark Speculations ON Speculations OFF

apparat 5,526 ms 5,942 ms

h2 6,526 ms 6,647 ms

mnemonics 2,723 ms 2,849 ms

scalac 1,009 ms 1,053 ms

scalap 107 ms 116 ms

tmt 7,025 ms 7,963 ms

We identified three speculative optimiza-
tions in the Graal codebase for which we ob-
served the highest impact: speculative guard
motion [65] (which generalizes guard condi-
tions to make them more loop-invariant [22]),
optimistic aliasing analysis (which speculates
that two pointers do not represent the same
object), and speculative type-checking (which
speculates that simpler type-check implemen-
tations can be tried first). These optimizations
are also used on Native Image, but without the
“speculation” part—they will never create a de-

optimization point. To bring JVM closer to Native Image, we turned off the speculation in these op-
timizations (the optimizations are still enabled, but the maySpeculate calls return false, whereas
in the default JVM setup maySpeculate returns false for a specific code location only after that
location previously caused a deoptimization). Table 12 shows six of our benchmarks on which
we observed a clear slowdown when disabling speculations: apparat, h2, mnemonics, scalac,
scalap, and tmt. On these, slowdowns from disabling the aforementioned speculations range
from 13% to 2%.

5.8 Profiling Impact on the Performance

To conclude the evaluation, we present the impact of the profiling on the compile time and the run-
ning time of the benchmarks. As we explained in Section 4.2, in GraalVM Native Image, profiling is
realized in a separate compilation mode—by building an instrumentation image. The compilation
pipeline in the instrumentation-image-build process contains a phase, which inserts the counter
nodes in the IRs of each compilation unit. The profiles are obtained by running the instrumentation
image. Compiling a program with the input profiles is a separate process, performed by building
an optimization image. In the previous experiments in Section 5, we presented different aspects
of the performance of the optimization image. While the algorithm presented in this article does
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not change how the profiling itself is performed in GraalVM Native Image, we demonstrate how it
affects the compile time and the running time of the instrumentation image on a set of benchmarks.

Table 13. Profiling Impact on the Compile and

Running Time

Compile Time Running Time

Benchmark Default Profiling Default Profiling

h2 36.6 s 46.1 s 13.3 s 23.6 s

mnemonics 20.2 s 25.7 s 9.6 s 21.7 s

reactors 26.4 s 34.6 s 35.2 s 141.3 s

scalac 119.1 s 164.2 s 1.5 s 5.7 s

scalariform 38.4 s 46.3 s 0.5 s 1.1 s

Table 13 demonstrates the impact of
the profiling on the representative bench-
marks from Renaissance, DaCapo, and
Scalabench suites. To underline the effect
of the instrumentation pass, we compare
the time necessary to build and run the
instrumentation image against the default
image, which does not include any profile-
guided optimizations. The performance of
the benchmarks with the default configu-
ration, in terms of running the default im-
age, are presented and compared to the
other configurations in Section 5.1. We observe that the instrumentation affects the compile time
up to 30% for most of the benchmarks. However, on some benchmarks such as scalac, we observed
the increase of 37%. The instrumentation may introduce the slowdown in the running times of the
benchmarks up to 4×, which we recorded for reactors benchmark. Since the profiling is per-
formed to a separate binary and run as a separate process, performance of the optimized image
is not affected by the longer time needed to build and run an instrumentation image. We believe
that improving the process of obtaining the profiles is possible, but it is out of scope of this article.
Another benefit of having a separate process to collect the profiles is that, once they are stored to
a file, the same file can be used for multiple optimization-image builds, i.e., compiling a program
in an optimized configuration does not require compiling it and running in the instrumentation
mode in case there is at least one profiling file for the same program from the previous builds.

6 DISCUSSION

The goal of this section is to discuss how the proposed algorithm in this article can be adapted
to other compilers. For this purpose, we chose the two most commonly used environments—
LLVM [7] and GCC [2]. To examine how our algorithm could be reused in LLVM and GCC, we focus
on the profiling infrastructure, intermediate representation, detection of the frequently executed
code, profile-guided optimizations, and the inlining optimization. To be clear, we did not reimple-
ment or evaluate our algorithm in LLVM or GCC—the objective of this discussion is to demonstrate
that our algorithm could be used in other compilers and to put our work into a broader context.

6.1 GCC

IR. GCC uses three major intermediate representations: GENERIC [4], GIMPLE [5], and RTL [6].
GENERIC is a tree-like language-independent representation of a program used by a compiler’s
front end. The midend of the compiler uses GIMPLE, a tree-like representation derived from
GENERIC, in three-address form, as an additional restriction. GIMPLE tree is later on transformed
into an SSA form, on which the majority of the optimizations is performed, including inlining. The
last representation, RTL, is a low-level representation corresponding to a target architecture.
Hot-code detection. Many optimizations in GCC benefit from the information about the hotness
of the code [79]. In GCC, hotness is determined on the basic-block level. A number of optimizations
such as function inlining, block reordering, and loop unrolling, use the specific predicate, which
indicates whether a basic block can be considered as hot, cold, or never executed. This predicate is
used mostly to avoid aggressive optimizations on rarely executed blocks. When the profiling infor-
mation is available, a predicate is set for each basic block based on the frequency of its execution
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from the profiles, i.e., the hotness of the block. Predicates for hot, cold, and non-executed code are
determined based on the thresholds that the block frequency must exceed and which can be tuned.
Profiling infrastructure. Similar to GraalVM Native Image, the profiles are collected and used
in the following manner [24]: The program is first compiled with a flag that enables the profiling-
by-instrumentation-phase. The output of running the resulting binary is a file containing the in-
strumentation profiles, which will be used as the input of the second compilation of the program.
The instrumentation counters are placed in a program’s CFG and produce the profiles containing
the information about the number of function invocations, number of executions of basic blocks,
number of executions of each edge in CFG (and therefore the corresponding basic blocks), from
which the probabilities of taking a branch are derived [79].
Inlining optimization. The inliner relies on the bin pack algorithm. It uses numerous metrics
such as the maximal size of a compilation unit, maximal size of the inlining candidates, the growth
of large functions, and so on, to prioritize the inlining alternatives before reaching a limit [79].
When the profiling information is available, the inlining-candidate callees are prioritized according
to a cost-benefit function that uses the hotness profiles and the growth of the function in which
the inlining happens.

6.2 LLVM

IR. LLVM IR [11] is a strongly typed low-level, three-address representation in SSA form, which
allows unstructured control flow and uses phi values when merging control paths. Transforming
Graal IR to LLVM IR is a straightforward process, and all the basic compiler optimizations that
work on the Graal IR can be implemented on the LLVM IR with a similar level of effort.
Hot-code detection. The inliner relies on several parameters to determine the threshold for de-
ciding whether the code is hot or cold. Optimizations rely on the hot-code classification when the
higher optimization levels are enabled. Hot/cold-splitting optimization uses the edge profiles to
classify basic blocks of the current compilation unit into hot and cold. This is also useful for the
optimizations such as function inlining and outlining, for which the LLVM implements outlining
of the cold regions from the hot code [86].
Profiling infrastructure. Profiling is traditionally enabled through the instrumentation tech-
nique. Profiles that can be collected and exploited contain the information about the hotness of
the invoked functions and edges, and receiver types and the number of their occurrences for the
virtual invocations, similarly to the profiling information in GraalVM Native Image. It is possible
to collect both the context-insensitive and callsite-aware profiles [12].
Inlining optimization. The inliner uses the hotness heuristic to filter out cold indirect calls and to
focus on inlining the hot ones [8, 9]. Target methods corresponding to the most frequent receiver
types from the virtual profiles are placed as direct calls if they exceed the set hotness thresh-
olds [40]. The block-level hotness information is exposed to the inliner, which uses this informa-
tion by defining the callsite hotness thresholds globally and relatively to the function entry [10].
Cost-benefit analysis takes into account the size of the callee-candidates and the function in which
the inlining takes place. Heuristics are used to compute the cycle savings per call site and also to
limit the amount of recursive inlining. Substantial amount of inlining budget is directed towards
more aggressively and precisely performing the inlining optimization around the hot code.

6.3 Discussion

Above, we briefly described the relevant aspects of LLVM and GCC. In the following, we discuss
how our algorithm could be potentially applied to those compilers.

Our hot-code-detection algorithm finds the hot inlining trails by expanding hot calling contexts
in the profiles. In our implementation, input for the hot-code detection is a set of profiles that
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determine the basic-block frequency and the call-target probability on the indirect calls. The
profile data in GCC and LLVM environments contains the same kind of information. They support
performing the instrumentation after the inlining phase, which as a consequence has that the
calling contexts from the profiles are partially context-sensitive [27]. Our proposed hot-code
detection algorithm can be applied to GCC’s and LLVM’s profiling data to produce the inlining
trails. The trails can then be used to determine which callees are in the hot calling contexts and
adjust the hotness predicate for the corresponding basic blocks accordingly.

Both described environments use hot-code-region-detection within multiple optimizations.
They enable compiling the hot code and optimizing it with modified budget. Hotness informa-
tion can be used in inlining, as well as to drive the budget of other optimizations. Both compilers
define specific threshold values based on which an execution is considered as frequent or not. The
thresholds used in our algorithm can be tuned to align with those.

Improving the inlining heuristics using the information of the code hotness is a topic of inter-
est in the LLVM and GCC communities [3]. Generally, the aim is to improve the interprocedural
optimizations by exploiting the hotness information, which is where the breadcrumb trails may
be of assistance because they connect multiple subroutines. The inlining heuristics in GraalVM,
GCC, and LLVM use the cost-benefit analysis that takes into account numerous metrics such as
the size and the growth of the compilation unit to calculate the cost. Since both GCC and LLVM
emphasize benefits of using the code hotness to prioritize the inlining of a hot call, our modifi-
cation to the existing inliner, which assumes giving a greater inlining budget to such calls, can
be easily incorporated. The inlining budget itself is determined through a different set of inliner
parameters, defined by the heuristics of the inliner. Therefore, the inlining parameters would have
to be tuned for the peak performance with the rest of the compiler’s optimization infrastructure.

7 RELATED WORK

In this section, we present a survey of the related work on the profiling, and the usage of the profil-
ing information to aid compilation, inlining heuristics, and other compiler optimizations. We first
present an overview of the common profiling techniques and their evolution over time. We then re-
view the prior work that focused on acquiring and applying partially contextual profiling data and
on the approximation of fully context-sensitive profiling data using partial profiling information.
Finally, we compare our compilation technique with alternative techniques and optimizations that
rely on profiles, with a special emphasis on inlining algorithms. Additionally, this section contains
an extension of the Graal intermediate representation explanation from Section 4.1.
Profiling strategies. One of the earliest uses of profiling was described by Knuth [83], who de-
fined the profile as a set of execution counts collected during the runtime of the program. Over time,
the notion of profiles was expanded to include any metric that describes the program behavior and
that was collected during the execution of the program. The inception of profiling has raised the
questions of how the profiles can be exploited to optimize the execution of computer programs,
which information they should contain, and on how to decrease the cost of profile collection [102].

Broadly speaking, profiling can be classified as either instrumentation-based or sampling-based.
So far, numerous authors have observed that the exhaustive instrumentation (i.e., instrumentation
of all the code of the program) provides more precise data compared to the sampling-based pro-
filing [56, 64]. Some versions of the Netbeans IDE [17] and the Eclipse Test and Performance Tool
Platform [14] come with the instrumentation-based profiling tools. However, the instrumentation
is usually not suitable for online collection of the profiles, because it imposes a high overhead
on the performance [116]. According to Arnold et al. [36], the instrumentation can degrade
performance by between 30% and 1000%. The GraalVM Native Image, in which we implemented
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our algorithm, assumes the offline profile collection, which is why it is acceptable to use the
instrumentation to gather more accurate execution counts of the profiled events.

Some GCC compiler [56] and LLVM [94] extensions can consume profiles from external tools
to assist compiler optimizations. Most compiler optimizations benefit from the profiling data: in-
lining [54], block ordering, path-duplication [88], register allocation [70], and many others [98].
The ahead-of-time Scala Native compiler [110] supports instrumentation-based profiling and uses
profiles to guide optimizations such as devirtualization, method duplication, and block placement.
Profiler Classification. Another method of classification is based on whether a profiler uses
an online or an offline profiling scheme [117]. Offline profiling assumes collecting profiles in the
separate program runs after which there is a compilation process using them. AOT compilers
usually exploit offline profilers. The GCC compiler has a mode for producing instrumented binaries
for profile collection and can use these profiles when creating the optimized binary [20]. Online
profiling is performed during the same program run and is mostly exploited by JIT compilers. Most
VMs use JIT compilation, do profiling in the first stage [15, 23, 50, 80, 122], and in some cases also
profile their JIT-compiled code [49]. Flückiger et al. [72] proposed two-tier JIT compilation for R
language that uses instrumentation in the first tier to optimize default code and a sampler on the
optimized code to trigger reoptimization in the second tier with more type-specific code. Unlike
gprof, which is primarily used to profile programs that are AOT compiled, most of the profilers,
such as Valgrind [28], Java Mission Control [26], JProfiler, YourKit, hprof, and perf, are not tightly
coupled with either AOT or JIT compiled code. In other words, they can profile both. Jikes RVM [32,
34] uses an instrumentation-sampling framework to perform profile-guided optimizations such as
method splitting [52], method inlining, loop unrolling, and code motion.
Partial profiling information. While the exhaustive instrumentation enables the highest accu-
racy, it usually benefits only applications that need very precise information, such as intrusion
detection or debugging [48]. Several authors investigated the question of whether incomplete pro-
filing information can be sufficiently precise for common compiler optimizations and how profiles
can be approximated [31, 89, 90]. It was observed that keeping the full calling contexts starting from
the root of the program does not have a substantial impact on the profile-guided optimizations,
and furthermore, storing fully calling-context-sensitive profiles increases the footprint of the data
structures that stores the profiles. Various authors therefore argued for having length-bounded
calling contexts [31, 101].Ausiello et al. [37] collected the profiles with the calling contexts of
length at most k , using a data structure called k-calling-context forest (kCCF), which consumes
less space. The authors concluded experimentally that shorter calling contexts of k between 10
and 20 are typically sufficient to detect the most important control-flow paths. While the Native
Image PGO supports efficient generation of partial calling contexts, it also dictates the value of k .
As shown in Section 5.5, the average value of k is between 3 and 5 (depending on the workload),
even though individual calling contexts can be several times longer.

Serrano and Zhuang [106] obtain partial call traces using hardware-level tracing and use them
to reconstruct calling context information. In their technique, partial traces are merged if they
contain a significant overlap. The result of the merge is a partial calling-context tree (PCCT),
which is similar to our trail data structure from Listing 4.

Although Serrano and Zhuang solve a problem that is similar to ours (merging smaller PCCTs
into larger PCCTs corresponds to our trail grafting), there are four important differences between
our proposed technique and the technique due to Serrano and Zhuang:

(1) In our input profiles from Native Image PGO, there is no overlap for the same position in the

activation tree. One node in the activation tree is always represented by exactly one profile
entry. This is because Native Image PGO obtains profiles by instrumenting each compilation
unit with unique counters, and each node in the activation tree is covered by exactly one
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compilation unit. While randomly collected trace samples exhibit overlaps to some degree,
in our profiling data, for an entry with the calling context �1, . . . , �m , . . . , �n , there is no entry
�m , . . . , �n , . . . , �p that could be an overlap in the activation tree.

(2) Due to the differences in the inputs, the design of the two algorithms is different. While the
technique due to Serrano and Zheng finds overlaps between the profiles to merge the partial
call trees together, the profiles in our technique have no overlaps, so their technique cannot
be applied directly to our input profiles. Instead, our technique extends the partial contexts
by determining the possible callers. This makes the reconstruction problem considerably
harder, in our view.

(3) The length of the traces that are available to us are typically shorter than those in Serrano
and Zhuang’s technique. As we show in Section 5.5, the average context length is between
3 and 4 call frames, while the length of the contexts in Serrano and Zhuang’s technique
depends on the hardware-sampling window size and therefore can reach much longer paths
(their paper mentions path sizes of up to 32). The reason is that the Native Image PGO cuts a
partial context at a virtual call (which the inliner cannot inline in the instrumentation image,
because this image does not have a profile input).
There is a considerable consequence of having longer calling contexts—Serrano and Zhuang
report that for partial call trails of length 16 and above, over 80% of reconstructed calling
contexts have single callers, and of length 32 and above, that percentage is even greater and
exceeds 90%. However, they observed that the percentage is significantly smaller for shorter
call trails. Our technique is tailored to reconstructing call trees from shorter contexts, and
as such has to deal with multiple callers more often (which is challenging).

(4) Finally, because we perform the expansions more aggressively, we dedicate a large part of
the work to approximating the frequencies of the individual nodes in the reconstructed trail
(i.e., partial call tree) to determine which of the possible callers more signifficantly contribute
to the hotness of the code and to aid the inliner with more precise frequency information
later. In particular, we introduce the attenuation factors (Equation (33)) each time we extend
the trail upwards to address the fact that the hotness of a trail is the sum of the hotnesses
across each caller.

Profiles in hot-code detection and inlining. Profiling is widely used to assist various compiler
optimizations [20, 29, 34, 56, 72, 103]. While it is difficult to present a complete account of all
the optimizations that benefit from profiling information, path duplication [88], inlining [33, 54],
polymorphic inlining [76, 78], speculative code motion [65], function outlining [123], register al-
location [69], and profile-driven code motion [57] are only some of the notable examples. In this
section, we focus primarily on hot-code detection and on using profiles to guide inlining decisions.

Mytkowicz et al. [93] used hot-method detection as a criteria for evaluation Java sampling pro-
filers. This metric is important, since incorrect hot-method identification results in spending the
optimization budget in code that is not frequently executed. The importance of hot-code detection
was emphasized by Kistler et al.’s work [82] on continuous re-optimization of the hottest code. To
identify the hot code and inline the relevant callsites, Krintz [85] extended JikesRVM [29] with both
online and offline profile collection and used the combined profiles to annotate the hot methods,
and the callsites to inline. In that work, the estimation of method hotness is calculated based on the
method invocation count, and the inlining of hot callsites is based on context-insensitive decisions.

A number of inlining heuristics do cost-benefit analyses to decide whether to replace a callsite
with the body of the target subroutine [8, 33, 51, 53, 54, 59, 97, 104, 105, 124]. While some inliners
mainly use static information such as the size of the methods [96], bypassing profiles usually leads
to poor performance. In most compilers, inliners rely on frequency and receiver-type profiles.
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Arnold et al. [33] compared the performance of various inlining techniques and remarked that
when the only information at disposal is static, all the callsites of the same method are either
inlined or not, regardless of the callsite frequency. The other approaches they evaluated used pro-
filing information to compute the inlining benefit. Their results show that more context-sensitive
information allows an inliner to make better decisions and achieve better peak performance. Schei-
fler’s global inlining algorithm [104] prioritizes the inlining of the most frequently executed meth-
ods while ensuring that the global code-size constraints are not violated—the (context-insensitive)
invocation frequency is obtained from the profiling runs of the program.

A compilation technique by Suganuma et al. [115] relies on a hybrid form of profiling to detect
the most important parts of the program and to optimize them more aggressively. They use the
simplest heuristics based on the static information to optimize the smallest methods, while the
expensive optimizations such as inlining are conducted selectively on hot program sections. Their
sampling technique determines the hot methods that should be compiled, and these methods are
subsequently instrumented to obtain more precise profile information about the hot code. The
profiles that they gather are context-insensitive, which impacts their precision.

Inlining is hindered by indirect calls (i.e., virtual dispatches), which are common in object-
oriented and functional languages—since the call target is not known, inlining cannot be done
accurately. This problem is ameliorated by profiling the receiver types at individual indirect call-
sites. As described by Grove et al. [76] and Hölzle et al. [78], polymorphic inlining can significantly
improve program performance. However, polymorphic inlining is only as good as is the quality of
the profiles, and on larger workloads, context-insensitive profiles have a tendency to get more and
more polluted. The experiments done by Grove et al. [76] indicate that context-sensitive receiver-
type profiles significantly improve the performance on the larger workloads. In our solution, trail
expansion is performed directly from the profiles and, as such, works correctly. However, trail-
grafting operation can attach more callees to a trail that would normally be callable for that callsite,
but we rely on the inliner to prune those extra callees by considering only callees that were seen
according to the receiver-type profile.

Instead of designing the algorithm with fixed inlining parameter values for all workloads,
Cooper et al. [60] proposed having program-specific inlining decisions and heuristics. They de-
scribed a system that adaptively tunes the inlining parameters for a specific program by efficiently
searching the parameter space and have demonstrated that having program-specific heuristics and
parameters results in best overall inliner performance.

Møller and Veileborg [92] present a static analysis algorithm for optimizing JDK 8 Streams li-
brary, whose goal is to transform functional Stream expressions to manually written loop equiva-
lents. Their system works by identifying the Stream operation and then performing ahead-of-time
inlining of its functions. It exploits the observation that, usually, the entire construction and exe-
cution of a Stream pipeline is located in a single compilation unit, then inlines all of the methods
into that compilation unit and performs escape analyses and read-write eliminations to simplify
the Stream operation into a simple loop. Møller and Veileborg demonstrated on simple Stream pro-
grams that their algorithm produces the correct result. In our work, we strived to provide library-
agnostic inlining improvements, and we based the inlining decisions on partially context-sensitive
profiles—we did not employ any library-specific knowledge or static analyses. We believe that in-
lining and compilation scheduling can be further improved by integrating Møller and Veileborg’s
analysis into trail-expansion heuristics, but we leave that to future work.

8 CONCLUSION

We presented a new algorithm that modifies the compilation schedule and the inlining decisions
of an ahead-of-time optimizing compiler with the aim of improving program performance without
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significantly increasing the size of the generated machine code. The algorithm utilizes the partially
context-sensitive profiles, collected during offline profiling runs, to reconstruct call-tree fragments,
called trails, which lead to hot parts of the program, and it uses these trails to influence the inlining
behavior. We formally presented the algorithm and then described the implementation in GraalVM
Native Image, a state-of-the-art ahead-of-time compiler for the Java programming language.

Evaluation on standard benchmark suites shows performance improvements in the range of
2.5%–40%, with only 2 out of 16 benchmarks from the evaluation showing a small slowdown of less
than 3%. The size of the generated code is increased by 0.8%–9%, and in 10 out of 16 benchmarks, the
increase is less than 2.5%. We conducted several additional experiments that show the breakdown
of performance impacts and the impact of the various parameters on performance.

The algorithm can be implemented in most other optimizing compilers and is generally useful
for other programming languages and runtime environments. Our formalization separates the
algorithm from the policies that it can be tuned with, which simplifies the exploration of better
policies and heuristics. For example, we believe that augmenting the policies in the algorithm with
interprocedural analyses can result in additional performance improvements, but we leave these
investigations to future work.

APPENDICES

A COMPILATION UNIT EXAMPLE

Fig. 14. Inlining tree fragment for the encode
method from the mnemonics benchmark.

Having demonstrated the algorithm on a sim-
ple example, we illustrate its execution on the
mnemonics benchmark from the Renaissance
benchmarking suite [99]. Our algorithm identi-
fied 12 hot methods for compilation, one of
them being org.renaissance.jdk.streams.Mne-
monicsCoderWithStream.encode. In this section,
we show the compilation of the encode method and
how the trail is applied to the inlining tree.

Figure 14 shows a fragment of the inlining tree of
the encode method, created by the Graal compiler’s
inlining algorithm, and visualized with the Ideal

Graph Visualizer (IGV) tool [121]. Several nodes
were zoomed in and highlighted to make their cap-
tions more readable. The caption of each node con-
sists of the node’s unique ID, followed by a string
Sg and the node-count of the respective method,
name of the method, and the exploration priority
of the inlining tree node (in square brackets). The
root node corresponds to encode, and its direct
child nodes correspond to a set of callees of encode.
One such callee method is ReferencePipeline.
collect, which has children of its own, for exam-
ple, the method AbstractPipeline.evaluate from the figure. Further down, one child of the
evaluate method is the node for the TerminalOp.evaluateSequential method. These nodes
represent the hottest parts of the trail and lead to the method that contains the main loop of the
JDK Stream operation.

We next consider the trail that corresponds to the hot compilation unit encode. Figure 15
contains the nodes of the trail that directly correspond to the highlighted inlining tree nodes
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Fig. 15. Part of a trail for encode method from mnemonics benchmark.

in Figure 14. The highlighted nodes in Figure 15 show some of the relevant metrics such as the
attenuation factor ac , breadcrumb hotness κ, total subtree hotness χ , and the size ν expressed
as the IR node count. The trail contains all the highlighted nodes from the inlining tree, in the
same caller-callee order—exploration priority is boosted for all the inlining-tree nodes that can
be mapped to the trail nodes.

In Figure 14, the exploration priority of these “on-trail” nodes is P = 0.29384, which is noticeably
higher than the surrounding nodes, whose priority is in the 0.026 to 0.049 range. This larger value
is a consequence of the modified expansion priority φ from Equation (21)—it forces the inliner to
prioritize the exploration along the corresponding call chain and to explore the tree deeper around
this region. Importantly, the exploration of other parts of the inlining tree still takes place, since
the penalty function from Equation (20) reduces the exploration of subtrees that become too large.

B CASE STUDY: INLINING SCHEDULE IN THE MNEMONICS BENCHMARK

In this section, we analyze the impact of the proposed algorithm on the mnemonics benchmark.
The aim is to demonstrate how our algorithm works on a real-life example from the evaluation
benchmark. Figures 16 and 17 contain the most important parts of the flame graph for the AOT-
compiled mnemonics benchmark, with and without the proposed inlining algorithm, respectively.

We use this example to illustrate the effect of two specific features of the proposed inliner: (1) We
identify the compilation units that are hot and boost their compilation budget, and (2) we change
the compilation order, which leads to a different set of compilation units. In both cases, we show
how these features affect the benchmark by highlighting the relevant frames in the call stacks. To
see the effect of increasing the inlining budget in hot compilation units, consider the call stack
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Fig. 16. Part of a flame graph for mnemonics benchmark with the proposed inlining algorithm.

Fig. 17. Part of a flame graph for mnemonics benchmark with the original native image inliner.

on the left in Figure 16, in which the method ArraySpliterator.forEachRemaining is a hot
compilation unit. The new inlining algorithm performs more aggressive inlining in this compila-
tion unit—all the callees are inlined into forEachRemaining, except for the arraycopy snippet,
as explained in Section 5.7. However, without the proposed algorithm, several callee methods, i.e.,
AbstractPipeline.copyInto (as well as their callees) remain separate compilation units in the
flame graph, as shown in Figure 17 in the call stack on the left.

To see the effect of modifying the compilation order, note that the set of compilation units dif-
fers between the flame graphs in Figures 16 and 17. In the version with the proposed inlining and
compilation-scheduling algorithm (Figure 16), the ReferencePipeline.collect compilation unit
in the right call stack has a single remaining callee—method ReduceOp.evaluateSequential. In
the standard version, this evaluateSequential is not a standalone compilation unit and is instead
inlined in ReferencePipeline.collect method, which then runs out of compilation budget be-
fore inlining HashMap$EntrySpliterator.forEachRemaining.

C INLINER CHALLENGES FROM A USER PERSPECTIVE

In this section, we give several classes of code patterns that pose particular challenges to inlin-
ing algorithms. Our emphasis is on object-oriented and functional programming languages. Our
goal is to illustrate some of the inlining problems from a programmer’s perspective and provide
possible mitigations that a programmer can apply (when the inlining algorithm is not sufficiently
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sophisticated to apply them automatically). The suggested mitigations are not exhaustive, and the
examples are not comprehensive—they are based on our own experience and performance analy-
ses of individual programs.
Frequency profiles are polluted. Since inlining decisions are typically heavily guided by ex-
ecution frequency profiles, a common problem is that the frequency information of a callsite is
imprecise. Consider a frequency profile on a control-flow construct such as a loop. If the subrou-
tine that the loop belongs to is called from many different callsites, then the frequency of the loop
may vary for the different callers, but a context-insensitive profile will only report the average
frequency. In such cases, we consider the frequency profile polluted. If the profile pollution results
in an underestimate of the call frequency, then a performance critical call might not get inlined.

Listing 6. Quicksort Algorithm.

Example: Listing 6 shows an implementa-
tion of the quicksort algorithm in the Scala pro-
gramming language. The implementation con-
sists of two functions sort and part. The part
function partitions the subsequence using the
last element as the pivot and places elements
smaller than the pivot to the left of the subse-
quence and the larger elements to the right of
the subsequence. The sort function partitions
its subsequence by invoking part and then re-
cursively invokes sort on the partitions.

The while loop in the part function is in-
voked many times recursively and for progres-
sively shorter and shorter subsequences. Since
most of the calls to part are near the leaves of
the recursion tree, the averaged loop frequency
is heavily biased towards those shorter loops.

An inliner may therefore decide not to inline the swap call inside the loop body, which consider-
ably changes the performance of the compiled code.

Mitigation: The programmer can artificially introduce context-sensitivity into the code by repli-
cating the code parts, depending on the context in which they execute. In the concrete example in
Listing 6, the programmer can repeat the while loop inside two branches, separated by a condition
such as hi - lo < THRESHOLD. This ensures that the two copies of the loop get attributed with
separate frequency profiles, which subsequently biases the inliner to inline the swap call at least in
the hotter loop. Alternatively, the programmer can use metaprogramming facilities to declare the
part function as a C macro, C++ template, or a Scala macro, and then instantiate its body twice,
calling a different instantiation, depending on the difference between hi and lo.

Listing 7. Scala HashSet#foreach.

Receiver-type profiles are too polluted. To be able
to inline indirect calls, an inliner speculates on what the
target subroutine is—it chooses several likely targets and
emits code that checks what the target address (or re-
ceiver type) is and then inlines that implementation into
the branch in which the check passes. By doing so, the
inliner bets that this branch will be entered in most cases.
The success of this technique depends on the quality of
the call target profile—if the profile is too polluted, then
the speculations done in the compiled code are rarely correct.
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Example: Each collection in the Scala standard library has a foreach function that applies a
user-specified function to each element of the collection. Listing 7 shows the foreach function of
the HashSet collection, which traverses an array of entries and applies the user function f to each
non-empty array entry. A call to function f is indirect, because the concrete implementation is
unknown—an inliner must therefore rely on the receiver-type profile to devirtualize the call to f.
Since foreach is one of the most commonly used collection operations in Scala, the receiver-type
profile is as a rule polluted in all but the simplest programs.

Mitigation: The programmer must reduce the amount of profile pollution—one approach is to
use metaprogramming when designing the library so common functions (such as the foreach)
are implemented as Scala macros or C++ templates, which reinstantiate the code at each callsite. If
the call to foreach is itself indirect, then users can manually insert a receiver-type-check for the
types they expect to be common at a particular callsite and cast the receiver down to a concrete
type before calling a function such as foreach. In the example in Listing 7, the user can also use
an iterator and a while loop instead of the foreach, as that either eliminates the indirect call to
the function f or creates a separate callsite for profiling, thereby reducing profile pollution.

Listing 8. Scala TraversableOnce#foldLeft.

Nested polymorphic inlining spends too

much budget. The aforementioned profile-
based devirtualization technique gets rid of in-
direct calls by inlining several likely targets
and dispatching between them based on a
receiver-type-check. The number of likely tar-

gets is small (usually up to three), but this still results in a code-bloat as the polymorphic inlining
gets deeper. Since each level in the inlining tree speculates on more than a single implementation,
each of which can contain nested indirect calls, the number of inlined combinations grows expo-
nentially, even though only some paths in the inlining tree are actually executed at runtime. Most
inliners are bounded by the size of the compilation unit, so the code-bloat forces them to stop
before attempting to inline other parts of the call tree. Code-bloat also affects other size-driven
optimizations.

Example: Listing 8 shows the implementation of the foldLeft operation for the
TraversableOnce interface, which covers collections defined solely in terms of their foreach
function. The foldLeft folds over the collection elements by starting from a zero element z
and successively applying the operator op to the folded value and the collection element. The
foldLeft calls foreach, passing it a function that calls op and updates the folded value result.
Since both the foreach and the op call are indirect (the former because the type of this varies
and the latter because the user-specified op parameter varies), several concrete targets are inlined
for foreach, and then several concrete targets for op are recursively inlined for each of the
speculated foreach targets.

Mitigation: If the language supports metaprogramming, then the programmer may again resort
to macros to force instantiation. In the example in Listing 8, by defining foldLeft as a macro or
a template makes the receiver of foreach and the op target visible, so the compiler can convert
those indirect calls to direct calls. Even if those receivers are not visible, instantiating the foldLeft
code at the callsite results in a new profiling point, which reduces pollution.
Low frequency callee code can optimize code of a high frequency callee. The bias that
an inliner typically has towards high-frequency calls can spend the inlining budget before
low-frequency calls are inlined. Some of the low-frequency calls may introduce additional type
information that can enable subsequent optimizations, so not inlining them results in suboptimal
performance.
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Example: The Scala aggregate function, shown in Listing 9, is a collection operation that
generalizes foldLeft and can have a parallel implementation. By default, it is implemented in
terms of foldLeft in the TraversableOnce interface.

The signature of aggregate takes the zero-element z as a by-name argument, meaning that the
argument is not immediately evaluated at the callsite—a function that represents the callsite-side
expression is passed instead. In the main function, the aggregate function is used to return the
sum of the lengths of all arguments. Here, the zero-element 0 is not immediately computed but
is instead passed as a function that returns 0. Consequently, even if the foldLeft from Listing 8
is inlined into the compilation of aggregate and simplifies to a simple while loop, the call to the
function representing the by-name parameter z might not get inlined. Due to the use of erasure
to implement genericity in Scala, if the by-name parameter z is not inlined, then it is returned
as a boxed value of type java.lang.Integer. The boxed value subsequently causes boxing and
unboxing in the while loop, which hurts performance at the place where most of the time is spent.
Were the z call inlined, the compiler could more easily apply optimizations such as escape analysis.

Listing 9. Scala TraversableOnce#
aggregate.

Mitigation: The library designers should avoid
by-name arguments (i.e., the =>B functions, which
lazily evaluate the argument when referenced) and use
by-value arguments instead. In the example in List-
ing 9, using B instead of =>B might have arguably been
a better choice. More generally, if a low-frequency
call is direct, then the user can force the inlining by
using an @inline annotation when available. Without
flow-sensitive analyses in the inliner, there is not
much else that a user can do.
Low frequency callee has hot code. Another common problem for call-frequency-based inliners
is to inline calls that happen infrequently, but which themselves contain a lot of hot code (for
example, a high-frequency loop). If the callee receives parameters from the caller that devirtualize
callsites in the callee or enable escape analysis of the parameters allocated at the callsite, then not
inlining such a low-frequency callee is typically detrimental to performance.

Example: The foldLeft function from Listing 8 manifests this problem—its foreach function is
called only once from its body, but the foreach itself contains a high frequency loop whose body
has several indirect calls that involve the parameters passed at its callsite.

Mitigation: For direct calls, the programmer may resort to metaprogramming or to the @inline
compiler hint, when available. In the example in Listing 8, it is beneficial for the library designer to
override foldLeft in heavily used collections so it contains a while loop instead of a foreach call.
Another way to mitigate indirect calls is to speculate on the type of this in the programming lan-
guage itself—the frontend compiler for a programming language that supports metaprogramming
may speculatively instantiate all foreach implementations that are macros (to aid the inliner of
the optimizing compiler of the runtime environment).

D ALGORITHM DETAILS

This section contains the details of the policies used in the algorithm to detect the most frequently
executed code and to approximate longer partially context-sensitive profiles based on the input
profiles. We also explain in detail the classification of the callees as either hot or cold. These algo-
rithm components are introduced in Sections 3.4 and 3.6.

D.1 Hot-code-detection Policies Details

This section contains the definitions and the details of the key procedures for the hot-code detec-
tion from Algorithm 2, based on which we define a hot-code-detection policy.
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Equation (30) formally describes creating a set of initial trails from the profile Π. We define a
constantψ ∈ [0, 1] and mandate that the profile’s contribution hI to the overall hotness exceedsψ .

InitialTrails(Π) ≡
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(N ,E,γ ) : (〈�1, ... , �n〉,hI ) ∈ Π ∧ hI∑
(L,h)∈Π

h
> ψ

⎫⎪⎪⎪⎬⎪⎪⎪⎭
where N = {η�1 , ... ,η�1, ..., �n

} E = {η�1 � η�1, �2 , ... ,η�1, ..., �n−1 � η�1, ..., �n
} γ = {η�1 }

(30)

DetectionDone becomes true when all the trails from T end up in the final set F , as per
Equation (31).

DetectionDone(T , F ) ≡ T \ F = ∅ (31)

This termination condition therefore assumes (1) that F grows monotonically and (2) that T
eventually stops growing.
CallingContexts procedure. Represents a set of all the calling contexts from the profile en-
tries, which can be used for extending a trail, and is defined in Equation (32). We identify the subset
Π |c of profile entries in Π that refer to callsite executions specifically. For a specific trail τ , the set
callerProfiles is determined as those entries from Π |c that end with a subroutine sn and call root(τ )
in the call-graph G (below, η1 � η2 ∈ G where G = (N ,E) is short for η1 � η2 ∈ E).

callerProfiles((N ,E,γ ),Π,G ) ≡ {(〈s1, ... , sn〉,h) : (〈s1, ... , sn〉,h) ∈ Π |c ∧ sn � root (N ,E) ∈ G}
CallingContexts(τ ,Π,G ) ≡ {L : (L,h) ∈ callerProfiles(τ ,Π,G )} (32)

To estimate the portion of the trail τ ′s hotness for a particular extension τ � c the Calling-
Context procedure computes an attenuation factor ac (τ ) ∈ [0, 1] of each context c = 〈s1, ... , sn〉.
Below, the numerator is the hotness of one particular calling context c = 〈s1, ... , sn〉 that calls
root(τ ), and the denominator is the hotness sum of all the calling contexts L that call root(τ ).

as1, ...,sn
(τ ) ≡

hs1, ...,sn∑
(L,h)∈callerProfiles(τ ,Π,G ) h

where (〈s1, ... , sn〉,hc ) ∈ Π (33)

We will use the same example figure from Section 3.4 (presented above) to illustrate the defini-
tions of the attenuation factor, trail hotness, and breadcrumb hotness.

Trail s3 ← s2 → s4 (on the left) has the calling contexts s0 → s1, s5 → s6, and s7 → s8, with
hotness h1, h2, and h3, respectively. The attenuation factors of these different calling contexts are
computed using the Equation (33). To compute the hotness of the trail, we need to sum together
the hotness of the breadcrumbs but weigh them using the attenuation factors. We define three
functions to serve this purpose: graft-point attenuation α , which records the attenuation factor
when the trail gets extended; breadcrumb hotness κ, which records the hotness of the individual
node; and the trail hotness χ . To illustrate this, we use the example from the preceding figure. In
the figure, the root attenuation α (ηs2 ) of the trail s3 ← s2 → s4 is 1, but after the trail is extended,
the attenuation of that node becomes h1/h1+h2+h3. Next, the hotness κ of an individual breadcrumb
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ηs0,s1 is inherited from the calling context hotness h1. The hotness χ of the trail is computed recur-
sively by summing the hotness of the children and the current node and multiplying it with the
attenuation α .
Trail hotness. The trail hotness is a function χ : �(P ) → R+0 that maps a trail to a non-negative
real value. For its definition, we use the auxiliary functions α and κ.

Definition D.1. Graft-point attenuation of a trail τ is a function ατ : N → [0, 1] that maps each
node to a real value between 0 and 1. For any trail τ = (N ,E,γ ), ατ (η) = 1 for all the nodes that
are not graft-points, i.e., η � γ . For graft-points η ∈ γ , the algorithm incrementally constructs ατ

when the trail τ is created. The rules are as follows:

— For all the trails that are initially created from some profile entry (〈�1, ... , �n〉,h) ∈ Π (see
Equation (30)), the algorithm sets ατ (η�1 ) = 1. That is, attenuation is 1 on new trails.

— For every trail τ = (N ,E,γ ) that is the result of grafting ξ ηs1, ...,sn
ρ (see Equation (9)),

where ξ = (Nξ ,Eξ ,γξ ) and ρ = (Nρ ,Eρ ,γρ ): If η ∈ γρ , then ατ (η) = αρ (η); otherwise, if
ηsn,d2, ...,dm

∈ γξ , then ατ (ηs1, ...,sn,d2, ...,dm
) = αξ (ηsn,d2, ...,dm

). That is, attenuation is inherited
from the inputs.

— For every trail τ = (N ,E,γ ) that is the result of extension ρ � c , where ρ = (Nρ ,Eρ ,γρ ) and
c = 〈�1, ... , �n〉, the algorithm computes an attenuation factor ac (ρ) for each context c (as
defined in Equation (33)) when the context c is created in the CallingContexts procedure
in line 6 of Algorithm 2. Then, for the root graft-point ατ (root (N ,E)) = 1; for the previous
root ατ (η�1, ..., �n,sub(root (Nρ ,Eρ )) ) = ac ; and for all other ηs1, ...,sm

∈ γρ , ατ (η�1, ..., �n,s1, ...,sm
) =

αρ (ηs1, ...,sm
) That is, the ατ of the graft-point that was previously the root is set to the value

ac , and the attenuation of the remaining graft-points is kept unchanged.

Definition D.2. Breadcrumb hotness of a trail τ = (N ,E,γ ) is a function κτ : N → N0, which
maps each node to its estimated count. The algorithm constructs κτ when τ is created, as follows:

— For all the trails that are created from a profile entry (〈�1, ... , �n〉,h) ∈ Π (see Equation (30)),
the hotness of the deepest node is κτ (η�1, ..., �n

) = h, and κτ (η) = 0 for all other nodes.
— For every trail τ = (N ,E,γ ) that is obtained by grafting ξ ηs1, ...,sn

ρ (see Equation (9)),

where ξ = (Nξ ,Eξ ,γξ ) and ρ = (Nρ ,Eρ ,γρ ): If ηsn,c2, ...,cm
∈ Nξ and ηs1, ...,sn,c2, ...,cm

∈ Nρ ,
then κτ (ηs1, ...,sn,c2, ...,cm

) = κξ (ηsn,c2, ...,cm
) + κρ (ηs1, ...,sn,c2, ...,cm

); if ηsn,c2, ...,cm
∈ Nξ and

ηs1, ...,sn,c2, ...,cm
� Nρ , then κτ (ηs1, ...,sn,c2, ...,cm

) = κξ (ηsn,c2, ...,cm
); otherwise, κτ (η) = κρ (η).

I.e., the hotness of the grafted nodes is added together where possible and inherited other-
wise.

— For every trail τ = (N ,E,γ ) that is produced by the extension ρ � c , where ρ = (Nρ ,Eρ ,γρ )
and c = 〈�1, ... , �n〉: Nodes that originate from ρ inherit the hotness, i.e.,κτ (η�1, ..., �n,s1, ...,sn

) =
κτ (ηs1, ...,sn

). The newly created nodes κτ (η�1, ..., �i
) have their hotness set to 0.

Definition D.3. The trail hotness χ is then defined as the recursive hotness sum of all the bread-
crumbs in the trail τ , where each subtree is weighted with the graft-point attenuation ατ :

χ (τ ) ≡ ατ (root (N ,E)) · 
�
�
κτ (root (N ,E)) +

∑
τc ∈subtrees(τ )

χ (τc ) �
�

where τ = (N ,E,γ )

subtrees (τ ) = {(Nηc
,Eηc
,γηc

) : root (N ,E) � ηc ∈ E} Nηc
= {ηx ∈ N : ηc ≤E∗ ηx }

Eηc
= {ηx � ηy ∈ E : ηx ,ηy ∈ Nηc

} γηc
= {ηx ∈ γ : ηx ∈ Nηc

}.

(34)
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The Accept predicate. Accept predicate prevents the expansion of trails after they reach the
size limit. We calculate the size of a trail according to the following equation:

ν (N ,E,γ ) ≡
∑

ηs1, ...,sn ∈N

codeSize(sn ). (35)

Trail recursion is restricted with the function ζ that computes the sum of 2recursionDepth of all the
nodes, multiplied by a small, experimentally determined constant kr ec (in the following, δx,y is the
Kronecker delta function, i.e., 1 when x = y and 0 otherwise):

ζ (N ,E,γ ) ≡ kr ec ·
∑

ηs1, ...,sn ∈N

2recursionDepth(s1, ...,sn ) − 1 where recursionDepth(s1, . . . , sn ) =
∑

i ∈{1, ...,n−1}
δsi ,sn

(36)
As per Equation (37) the extended trail is accepted if its rel-

ative hotness decremented by the recursion penalty ζ (τ ) is
larger than the threshold function. The threshold function de-
pends on the size of the trail τ and is illustrated in the plot
below. The threshold is a small, experimentally determined
constant kh if the trail size ν (τ ) is small—hence, small trails
are almost always expanded. However, after the size ν (τ ) ex-
ceeds the value ks + kh · (kb − ks ), the threshold starts rising
linearly. A large trail can only be expanded if it is “very hot,”
but the likelihood of expansion eventually approaches zero as
the size of that trail approaches the constant kb .

Accept(τ ) ≡ χ (τ )∑
(L,h)∈Π

h
− ζ (τ ) > threshold(τ ) where threshold(τ ) = max

(
kh ,

ν (τ ) − ks

kb − ks

)
(37)

Lemma D.4. The left-hand side expression
χ (τ )∑

(L,h )∈Π
h
−ζ (τ ) from Equation (37) is asymptotically smaller

than the the right-hand side expression threshold(τ ) for any call graph G and profile set Π.

Proof. For any call graphG, each call tree is either finite or infinite. If call trees are finite, then
the trail size is bound (by Equation (7)), which imposes an upper bound on the χ (τ ) in the left-
hand-side expression. If the call trees are infinite, then the trail size is not bound, but the call tree
must contain recursive calls. The trail hotness χ (τ ) and size ν (τ ) grow linearly with each recursive
call, but the penalty ζ (τ ) grows exponentially. Since the right-hand-side expression does not have
any penalty, it is asymptotically larger than the left-hand side. �

Theorem D.5. When executed with the hot-code detection policies from Equations (30)–
(32), and (37), Algorithm 2 terminates for any input call graph G and set of profiles Π.

Proof. We consider whether the repetitive steps in Algorithm 2 terminate. The operation

fix ∇root terminates in a finite number of steps, as was already shown by Lemma 3.1.
This leaves us with the while-loop in line 4. To show that this loop eventually terminates, we

show that the condition T \ F = ∅ from Equation (31) eventually holds. Consider the set T \ F . In
each loop iteration, a trail τ is picked, and a set of strictly larger trails is created when extending τ
across its calling contexts in line 7. The trail τ is then either excluded from T in line 10 or placed
into F , meaning that it is no longer considered a top trail. We are left with a trail T \ F that does
not contain τ , but may instead contain a subset of trails that are strictly larger than τ . If the loop
iterations are repeated sufficiently many times, then the Accept predicate from Equation (37) will
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eventually be false for all trails in T \ F as a consequence of Lemma D.4. Thus, eventually T \ F
stops growing. Moreover, this causes F to eventually start strictly growing, since each trail τ from
T is eventually picked by TopTrail and moved to F . Therefore, the DetectionDone condition is
eventually satisfied, and this terminates the algorithm. �

D.2 Hot-callee Classification Details

This section contains the definitions and details of the trail-match and trail-cut operations intro-
duced in Section 3.6, which are omitted there for simplicity.

Definition of the trail-matching operation ↓ in Equation (38) says the following: Given a trail set
T and a node ηs1, ...,sm, ...,sn

of the inlining tree, find a trail that contains the longest suffix of the
call sequence s1, ... , sm , ... , sn .

T ↓ ηs1, ...,sm, ...,sn
≡ arg max

(Nτ ,Eτ ,γτ )∈T ,∃ηsm , ...,sn ∈Nτ

n −m such that {(Nτ ,Eτ ,γτ ) ∈ T : ∃ηsm, ...,sn
∈ Nτ } � ∅

(38)
In the best case, the result of trail-matching is the same trail τ that the current hot compilation of
s1 starts with, i.e., root (Nτ ,Eτ ) = ηs1 . Otherwise, the matching between the inlining tree and the
original trail τ is interrupted (indicating that some of the calls in the call sequence s1, ... , sm , ... , sn

are cold), and some node of the inlining tree (which comes after that interruption) matches a trail
that starts with the node ηsm

(indicating that sm−1 � sm is a call from a cold to a hot subroutine).
A callee in the final inlining tree is considered hot if and only if there exists a matching trail:

IsHot(η) ≡ ∃τ ∈ T ,τ = T ↓ η. (39)

To ensure that InlineHot from Section 3.5 works, we additionally need to associate a trail to each
hot compilation. For the initial set of hot subroutines the association is straightforward, and for
the transitive hot compilations, we use the trail-cut operation.

Trail-cut operation � is formally defined in Equation (40) Given a breadcrumb trail τ =
(Nτ ,Eτ ,γτ ) and its node ηs1, ...,sm

∈ Nτ , the operation cuts the trail in half, such that the resulting
trail is the subtree starting at node ηs1, ...,sm

.

(Nτ ,Eτ ,γτ ) � ηs1, ...,sm
≡ (N ,E,γ ) where ηs1, ...,sm

∈ Nτ

N = {ηsm, ...,sn
: ηs1, ...,sm, ...,sn

∈ Nτ } γ = {ηsm, ...,sn
: ηs1, ...,sm, ...,sn

∈ γτ }
E = {ηsm, ...,sn

� ηsm, ...,sn,sn+1 : ηs1, ...,sm, ...,sn
� ηs1, ...,sm, ...,sn,sn+1 ∈ Eτ }

(40)

Callee trail. The trail for the hot callee ηs1, ...,sn
is determined with a combination of trail matching

and trail cutting. First, we find a matching trail for ηs1, ...,sn
in the trail-set T , and we then cut that

trail at the subtree that corresponds to the call sequence s1, ... , sn :

calleeTrail(T ,ηs1, ...,sm, ...,sn
) ≡ (

T ↓ ηs1, ...,sm, ...,sn

) � ηsm, ...,sn
where ηsm, ...,sn

∈ (
T ↓ ηs1, ...,sm, ...sn

)
.

(41)
A hot compilation unit whose root subroutine corresponds to some callee η of the previous hot
compilation unit is always associated with a trail determined by the expression calleeTrail(T ,η).

REFERENCES

[1] Oracle Company. 2015. Java Virtual Machine Specification (Java SE 8 Edition): Chapter 4, the Class File Format.

[2] Free Software Foundation. 2018. GCC.

[3] Free Software Foundation. 2018. GCC 8 Changes.

[4] Free Software Foundation. 2018. GCC GENERIC.

[5] Free Software Foundation. 2018. GCC GIMPLE.

[6] Free Software Foundation. 2018. GCC RTL.

[7] LLVM Project. 2018. LLVM.

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.



Exploiting Partially Context-sensitive Profiles to Improve Performance of Hot Code 20:59

[8] LLVM Project. 2018. LLVM Cost-Benefit Estimation Implementation at GitHub. Retrieved from https://github.com/

llvm-mirror/llvm/blob/88ab6705571782fa664ecfa71b2f959a0daf2d78/lib/Analysis/InlineCost.cpp

[9] LLVM Project. 2018. LLVM Inliner Implementation at GitHub. Retrieved from https://github.com/llvm-mirror/llvm/

blob/6f1d64eb934e12ca5e8dcd378f88d1e6b80e8c55/lib/Transforms/IPO/Inliner.cpp

[10] LLVM Project. 2018. LLVM Inlining Parameters.

[11] LLVM Project. 2018. LLVM Language Reference Manual.

[12] Pavel Kosov and Sergey Yakushkin. 2020. LLVM PGO Instrumentation: Example of CallSite-Aware Profiling.

[13] Oracle Company. 2021. Control-flow-graph analysis in the Graal codebase. Retrieved December 7, 2021 from

https://github.com/oracle/graal/blob/5708f348ad6a49511f0e3caf5314d72ca8c017e7/compiler/src/org.graalvm.

compiler.nodes/src/org/graalvm/compiler/nodes/cfg/ControlFlowGraph.java

[14] Eclipse Foundation. 2021. Eclipse Test and Performance Tool Platform. Retrieved December 8, 2021 from http://

archive.eclipse.org/archived%5C_projects/tptp.tgz

[15] Oracle Company. 2021. HotSpot Runtime Overview.

[16] LLVM Project. 2021. LLVM profile-guided optimizations. Retrieved December 6, 2021 from https://clang.llvm.org/

docs/UsersManual.html#profile-guided-optimization

[17] Oracle Company. 2021. Netbeans: Open source Java profiler. v6.7.

[18] Oracle Company. 2021. OpenJDK 8 Optional Class.

[19] Oracle Company. 2021. Parallel Garbage Collector.

[20] IBM Corporation. 2021. Profile-Guided Optimization (PGO) using GCC.

[21] Oracle Company. 2021. Serial Native Image Garbage Collector.

[22] Oracle Company. 2021. Speculative guard motion in GraalVM. Retrieved May 27, 2021 from https://

github.com/oracle/graal/commit/6dcc8e4a57d23e7aaf85eeb8dae7ef501b59c18b#diff1e4c4d8dd65775bb5c116be6e862

315ddebf9b0d84aec949a79af159ef899df4

[23] Google LLC. 2021. V8 Engine.

[24] Martin Jambor, Jan Hubicka, Richard Biener, Martin Liska, Michael Matz, and Brent Hollingsworth. 2022. PGO

in GCC 11. Retrieved from https://documentation.suse.com/sbp/server-linux/single-html/SBP-GCC-11/index.html#

sec-gcc11-pgo

[25] George B. Dantzig. 1990. Origins of the simplex method. In A History of Scientific Computing. Association for Com-

puting Machinery, New York, NY, 141–151. Retrieved from https://doi.org/10.1145/87252.88081

[26] Oracle Company. 2023. Java Mission Control.

[27] LLVM Project. 2023. LLVM PGO Context Sensitivity.

[28] Valgrind Developers. 2023. Valgrind.

[29] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J.-D. Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind,

S. F. Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E.

Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. 2000. The Jalapeño virtual machine. IBM Syst. J. 39, 1 (Jan. 2000),

211–238. DOI:https://doi.org/10.1147/sj.391.0211

[30] Glenn Ammons, Thomas Ball, and James R. Larus. 1997. Exploiting hardware performance counters with flow and

context sensitive profiling. SIGPLAN Not. 32, 5 (May 1997), 85–96. DOI:https://doi.org/10.1145/258916.258924

[31] Glenn Ammons, Jong-Deok Choi, Manish Gupta, and Nikhil Swamy. 2004. Finding and removing performance bottle-

necks in large systems. In Proceedings of the European Conference on Object-Oriented Programming. Springer, 172–196.

[32] Matthew Arnold, Stephen Fink, David Grove, Michael Hind, and Peter F. Sweeney. 2000. Adaptive optimization in

the Jalapeño JVM. SIGPLAN Not. 35, 10 (Oct 2000), 47–65. DOI:https://doi.org/10.1145/354222.353175

[33] Matthew Arnold, Stephen Fink, Vivek Sarkar, and Peter F. Sweeney. 2000. A comparative study of static and profile-

based heuristics for inlining. In Proceedings of the ACM SIGPLAN Workshop on Dynamic and Adaptive Compilation

and Optimization (DYNAMO’00). ACM, New York, NY, 52–64. DOI:https://doi.org/10.1145/351397.351416

[34] Matthew Arnold, Michael Hind, and Barbara G. Ryder. 2002. Online feedback-directed optimization of Java. In Pro-

ceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

(OOPSLA’02). Association for Computing Machinery, New York, NY, 111–129. DOI:https://doi.org/10.1145/582419.

582432

[35] Matthew Arnold and Barbara G. Ryder. 2001. A framework for reducing the cost of instrumented code. In Proceedings

of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’01). Association for

Computing Machinery, New York, NY, 168–179. DOI:https://doi.org/10.1145/378795.378832

[36] Matthew Arnold and Barbara G. Ryder. 2001. A framework for reducing the cost of instrumented code. SIGPLAN Not.

36, 5 (May 2001), 168–179. DOI:https://doi.org/10.1145/381694.378832

[37] Giorgio Ausiello, Camil Demetrescu, Irene Finocchi, and Donatella Firmani. 2012. K-calling context profiling. SIG-

PLAN Not. 47, 10 (Oct. 2012), 867–878. DOI:https://doi.org/10.1145/2398857.2384679

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.

https://github.com/llvm-mirror/llvm/blob/88ab6705571782fa664ecfa71b2f959a0daf2d78/lib/Analysis/InlineCost.cpp
https://github.com/llvm-mirror/llvm/blob/6f1d64eb934e12ca5e8dcd378f88d1e6b80e8c55/lib/Transforms/IPO/Inliner.cpp
https://github.com/oracle/graal/blob/5708f348ad6a49511f0e3caf5314d72ca8c017e7/compiler/src/org.graalvm.compiler.nodes/src/org/graalvm/compiler/nodes/cfg/ControlFlowGraph.java
http://archive.eclipse.org/archived%5C_projects/tptp.tgz
https://clang.llvm.org/docs/UsersManual.html#profile-guided-optimization
https://github.com/oracle/graal/commit/6dcc8e4a57d23e7aaf85eeb8dae7ef501b59c18b#diff1e4c4d8dd65775bb5c116be6e862315ddebf9b0d84aec949a79af159ef899df4
https://documentation.suse.com/sbp/server-linux/single-html/SBP-GCC-11/index.html#sec-gcc11-pgo
https://doi.org/10.1145/87252.88081
https://doi.org/10.1147/sj.391.0211
https://doi.org/10.1145/258916.258924
https://doi.org/10.1145/354222.353175
https://doi.org/10.1145/351397.351416
https://doi.org/10.1145/582419.582432
https://doi.org/10.1145/378795.378832
https://doi.org/10.1145/381694.378832
https://doi.org/10.1145/2398857.2384679


20:60 M. Vukasovic and A. Prokopec

[38] John Aycock. 2003. A brief history of just-in-time. ACM Comput. Surv. 35, 2 (June 2003), 97–113. DOI:https://doi.org/

10.1145/857076.857077

[39] Andrew Ayers, Richard Schooler, and Robert Gottlieb. 1997. Aggressive inlining. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’97). ACM, New York, NY, 134–145. DOI:https:

//doi.org/10.1145/258915.258928

[40] Ivan Baev. 2015. Profile-based Indirect Call Promotion. Retrieved from https://llvm.org/devmtg/2015-10/#talk3

[41] J. Eugene Ball. 1979. Predicting the effects of optimization on a procedure body. In Proceedings of the SIGPLAN Sym-

posium on Compiler Construction (SIGPLAN’79). ACM, New York, NY, 214–220. DOI:https://doi.org/10.1145/800229.

806972

[42] Thomas Ball and James R. Larus. 1994. Optimally profiling and tracing programs. ACM Trans. Program. Lang. Syst.

16, 4 (July 1994), 1319–1360. DOI:https://doi.org/10.1145/183432.183527

[43] Rajkishore Barik and Vivek Sarkar. 2009. Interprocedural load elimination for dynamic optimization of parallel

programs. In Proceedings of the 18th International Conference on Parallel Architectures and Compilation Techniques

(PACT’09). IEEE Computer Society, 41–52. DOI:https://doi.org/10.1109/PACT.2009.32

[44] Edd Barrett, Carl Friedrich Bolz-Tereick, Rebecca Killick, Sarah Mount, and Laurence Tratt. 2017. Virtual machine

warmup blows hot and cold. Proc. ACM Program. Lang. 1, OOPSLA, Article 52 (Oct. 2017), 27 pages. DOI:https:

//doi.org/10.1145/3133876

[45] Yosi Ben Asher, Omer Boehm, Daniel Citron, Gadi Haber, Moshe Klausner, Roy Levin, and Yousef Shajrawi. 2008.

Aggressive Function Inlining: Preventing Loop Blockings in the Instruction Cache. Springer Berlin, 384–397. DOI:https:

//doi.org/10.1007/978-3-540-77560-7_26

[46] Stephen M. Blackburn, Robin Garner, Chris Hoffmann, Asjad M. Khang, Kathryn S. McKinley, Rotem Bentzur, Amer

Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han Lee,

J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanović, Thomas VanDrunen, Daniel von Dincklage, and Ben Wie-

dermann. 2006. The DaCapo benchmarks: Java benchmarking development and analysis. SIGPLAN Not. 41, 10 (Oct.

2006), 169–190.

[47] Michael D. Bond and Kathryn S. McKinley. 2007. Probabilistic calling context. In Proceedings of the 22nd Annual ACM

SIGPLAN Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA’07). Association

for Computing Machinery, New York, NY, 97–112. DOI:https://doi.org/10.1145/1297027.1297035

[48] Michael D. Bond and Kathryn S. McKinley. 2007. Probabilistic calling context. SIGPLAN Not. 42, 10 (Oct. 2007), 97–112.

DOI:https://doi.org/10.1145/1297105.1297035

[49] Dries Buytaert, Andy Georges, Michael Hind, Matthew Arnold, Lieven Eeckhout, and Koen De Bosschere. 2007. Using

HPM-sampling to drive dynamic compilation. In Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-

Oriented Programming Systems, Languages and Applications (OOPSLA’07). Association for Computing Machinery,

New York, NY, 553–568. DOI:https://doi.org/10.1145/1297027.1297068

[50] Kevin Casey, David Gregg, M. Anton Ertl, and Andrew Nisbet. 2003. Towards superinstructions for Java interpreters.

In Software and Compilers for Embedded Systems, Andreas Krall (Ed.). Springer Berlin, 329–343.

[51] Dhruva R. Chakrabarti and Shin-Ming Liu. 2006. Inline analysis: Beyond selection heuristics. In Proceedings of the

International Symposium on Code Generation and Optimization (CGO’06). IEEE Computer Society, Washington, DC,

221–232. DOI:https://doi.org/10.1109/CGO.2006.17

[52] Craig Chambers and David Ungar. 1991. Making pure object-oriented languages practical. In Conference Proceed-

ings on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA’91). Association for Computing

Machinery, New York, NY, 1–15. DOI:https://doi.org/10.1145/117954.117955

[53] P. P. Chang and W.-W. Hwu. 1989. Inline function expansion for compiling C programs. SIGPLAN Not. 24, 7 (June

1989), 246–257. DOI:https://doi.org/10.1145/74818.74840

[54] Pohua P. Chang, Scott A. Mahlke, William Y. Chen, and Wen-mei W. Hwu. 1992. Profile-guided automatic inline

expansion for C programs. Softw. Pract. Exper. 22, 5 (May 1992), 349–369. DOI:https://doi.org/10.1002/spe.4380220502

[55] Pohua P. Chang, Scott A. Mahlke, and Wen-Mei W. Hwu. 1991. Using profile information to assist classic code

optimizations. Softw. Pract. Exper. 21, 12 (Dec. 1991), 1301–1321. DOI:https://doi.org/10.1002/spe.4380211204

[56] Dehao Chen, Neil Vachharajani, Robert Hundt, Shih-Wei Liao, Vinodha Ramasamy, Paul Yuan, Wenguang Chen,

and Weimin Zheng. 2010. Taming hardware event samples for FDO compilation. In Proceedings of the 8th Annual

IEEE/ACM International Symposium on Code Generation and Optimization (CGO’10). Association for Computing Ma-

chinery, New York, NY, 42–52. DOI:https://doi.org/10.1145/1772954.1772963

[57] Cliff Click. 1995. Global code motion/global value numbering. In Proceedings of the ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI’95). ACM, New York, NY, 246–257. DOI:https://doi.org/10.

1145/207110.207154

[58] Cliff Click and Michael Paleczny. 1995. A simple graph-based intermediate representation. In Proceedings of the ACM

SIGPLAN Workshop on Intermediate Representations (IR’95). ACM, New York, NY, 35–49. DOI:https://doi.org/10.1145/

202529.202534

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.

https://doi.org/10.1145/857076.857077
https://doi.org/10.1145/258915.258928
https://llvm.org/devmtg/2015-10/#talk3
https://doi.org/10.1145/800229.806972
https://doi.org/10.1145/183432.183527
https://doi.org/10.1109/PACT.2009.32
https://doi.org/10.1145/3133876
https://doi.org/10.1007/978-3-540-77560-7_26
https://doi.org/10.1145/1297027.1297035
https://doi.org/10.1145/1297105.1297035
https://doi.org/10.1145/1297027.1297068
https://doi.org/10.1109/CGO.2006.17
https://doi.org/10.1145/117954.117955
https://doi.org/10.1145/74818.74840
https://doi.org/10.1002/spe.4380220502
https://doi.org/10.1002/spe.4380211204
https://doi.org/10.1145/1772954.1772963
https://doi.org/10.1145/207110.207154
https://doi.org/10.1145/202529.202534


Exploiting Partially Context-sensitive Profiles to Improve Performance of Hot Code 20:61

[59] Keith D. Cooper, Mary W. Hall, and Linda Torczon. 1992. Unexpected side effects of inline substitution: A case study.

ACM Lett. Program. Lang. Syst. 1, 1 (Mar. 1992), 22–32. DOI:https://doi.org/10.1145/130616.130619

[60] Keith D. Cooper, Timothy J. Harvey, and Todd Waterman. 2008. An adaptive strategy for inline substitution. In

Proceedings of the Joint European Conferences on Theory and Practice of Software 17th International Conference on

Compiler Construction (CC’08/ETAPS’08). Springer-Verlag, Berlin, 69–84. Retrieved from http://dl.acm.org/citation.

cfm?id=1788374.1788381

[61] George B. Dantzig, Alex Orden, and Philip Wolfe. 1955. The generalized simplex method for minimizing a linear

form under linear inequality restraints. Pacific Journal of Mathematics 5, 2 (1955), 183–195.

[62] Jeffrey Dean and Craig Chambers. 1994. Towards better inlining decisions using inlining trials. In Proceedings of the

ACM Conference on LISP and Functional Programming (LFP’94). ACM, New York, NY, 273–282. DOI:https://doi.org/

10.1145/182409.182489

[63] David Detlefs and Ole Agesen. 1999. Inlining of Virtual Methods. Springer Berlin, 258–277. DOI:https://doi.org/10.

1007/3-540-48743-3_12

[64] M. Dmitriev. 2004. Selective profiling of Java applications using dynamic bytecode instrumentation. In Proceedings of

the IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS’04). 141–150. DOI:https:

//doi.org/10.1109/ISPASS.2004.1291366

[65] Gilles Duboscq, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Speculation without regret: Reducing deop-

timization meta-data in the graal compiler. In Proceedings of the International Conference on Principles and Practices

of Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’14). Association for Computing

Machinery, New York, NY, 187–193. DOI:https://doi.org/10.1145/2647508.2647521

[66] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck.

2013. An intermediate representation for speculative optimizations in a dynamic compiler. In Proceedings of the 7th

ACM Workshop on Virtual Machines and Intermediate Languages (VMIL’13). Association for Computing Machinery,

New York, NY, 1–10. DOI:https://doi.org/10.1145/2542142.2542143

[67] Gilles Duboscq, Thomas Würthinger, Lukas Stadler, Christian Wimmer, Doug Simon, and Hanspeter Mössenböck.

2013. An intermediate representation for speculative optimizations in a dynamic compiler. In Proceedings of the 7th

ACM Workshop on Virtual Machines and Intermediate Languages (VMIL’13). ACM, New York, NY, 1–10. DOI:https:

//doi.org/10.1145/2542142.2542143

[68] Evelyn Duesterwald and Vasanth Bala. 2000. Software profiling for hot path prediction: Less is more. In Proceedings

of the 9th International Conference on Architectural Support for Programming Languages and Operating Systems (ASP-

LOS’00). Association for Computing Machinery, New York, NY, 202–211. DOI:https://doi.org/10.1145/378993.379241

[69] Josef Eisl, Matthias Grimmer, Doug Simon, Thomas Würthinger, and Hanspeter Mössenböck. 2016. Trace-based

register allocation in a JIT compiler. In Proceedings of the 13th International Conference on Principles and Practices

of Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’16). Association for Computing

Machinery, New York, NY, Article 14, 11 pages. DOI:https://doi.org/10.1145/2972206.2972211

[70] Josef Eisl, Stefan Marr, Thomas Würthinger, and Hanspeter Mössenböck. 2017. Trace register allocation policies:

Compile-time vs. performance trade-offs. In Proceedings of the 14th International Conference on Managed Languages

and Runtimes (ManLang’17). ACM, New York, NY, 92–104. DOI:https://doi.org/10.1145/3132190.3132209

[71] Stephen J. Fink and Feng Qian. 2003. Design, implementation and evaluation of adaptive recompilation with on-stack

replacement. In Proceedings of the International Symposium on Code Generation and Optimization: Feedback-Directed

and Runtime Optimization (CGO’03). IEEE Computer Society, 241–252.

[72] Olivier Flückiger, Andreas Wälchli, Sebastián Krynski, and Jan Vitek. 2020. Sampling optimized code for type feed-

back. In Proceedings of the 16th ACM SIGPLAN International Symposium on Dynamic Languages (DLS’20). Association

for Computing Machinery, New York, NY, 99–111. DOI:https://doi.org/10.1145/3426422.3426984

[73] Edward Fredkin. 1960. Trie memory. Commun. ACM 3, 9 (Sep. 1960), 490–499. DOI:https://doi.org/10.1145/367390.

367400

[74] Andy Georges, Dries Buytaert, and Lieven Eeckhout. 2007. Statistically rigorous Java performance evaluation. In

Proceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages and

Applications (OOPSLA’07). Association for Computing Machinery, New York, NY, 57–76. DOI:https://doi.org/10.1145/

1297027.1297033

[75] James Gosling. 1995. Java intermediate bytecodes: ACM SIGPLAN Workshop on Intermediate Representations

(IR’95). SIGPLAN Not. 30, 3 (Mar. 1995), 111–118. DOI:https://doi.org/10.1145/202530.202541

[76] David Grove, Jeffrey Dean, Charles Garrett, and Craig Chambers. 1995. Profile-guided receiver class prediction. In

Proceedings of the 10th Annual Conference on Object-Oriented Programming Systems, Languages, and Applications

(OOPSLA’95). Association for Computing Machinery, New York, NY, 108–123. DOI:https://doi.org/10.1145/217838.

217848

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.

https://doi.org/10.1145/130616.130619
http://dl.acm.org/citation.cfm?id=1788374.1788381
https://doi.org/10.1145/182409.182489
https://doi.org/10.1007/3-540-48743-3_12
https://doi.org/10.1109/ISPASS.2004.1291366
https://doi.org/10.1145/2647508.2647521
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/2542142.2542143
https://doi.org/10.1145/378993.379241
https://doi.org/10.1145/2972206.2972211
https://doi.org/10.1145/3132190.3132209
https://doi.org/10.1145/3426422.3426984
https://doi.org/10.1145/367390.367400
https://doi.org/10.1145/1297027.1297033
https://doi.org/10.1145/202530.202541
https://doi.org/10.1145/217838.217848


20:62 M. Vukasovic and A. Prokopec

[77] Martin Hirzel and Trishul Chilimbi. 2001. Bursty tracing: A framework for low-overhead temporal profiling. In

Proceedings of the 4th ACM Workshop on Feedback-Directed and Dynamic Optimization (FDDO’01). Citeseer, 117–126.

[78] Urs Hölzle and David Ungar. 1994. Optimizing dynamically-dispatched calls with run-time type feedback. In Proceed-

ings of the ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI’94). ACM, New

York, NY, 326–336. DOI:https://doi.org/10.1145/178243.178478

[79] Jan Hubicka. 2005. Profile driven optimisations in GCC. In GCC Summit Proceedings. Citeseer, 107–124.

[80] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. 1997. Back to the future: The story of squeak,

a practical smalltalk written in itself. In Proceedings of the 12th ACM SIGPLAN Conference on Object-Oriented Pro-

gramming, Systems, Languages, and Applications (OOPSLA’97). Association for Computing Machinery, New York,

NY, 318–326. DOI:https://doi.org/10.1145/263698.263754

[81] Suresh Jagannathan and Andrew Wright. 1996. Flow-directed inlining. In Proceedings of the ACM SIGPLAN Con-

ference on Programming Language Design and Implementation (PLDI’96). ACM, New York, NY, 193–205. DOI:https:

//doi.org/10.1145/231379.231417

[82] Thomas Kistler and Michael Franz. 2003. Continuous program optimization: A case study. ACM Trans. Program. Lang.

Syst. 25, 4 (July 2003), 500–548. DOI:https://doi.org/10.1145/778559.778562

[83] Donald E. Knuth. 1971. An empirical study of FORTRAN programs. Softw. Pract. Exp. 1, 2 (1971), 105–133. DOI:https:

//doi.org/10.1002/spe.4380010203

[84] Thomas Kotzmann and Hanspeter Mossenbock. 2007. Run-time support for optimizations based on escape analysis.

In Proceedings of the International Symposium on Code Generation and Optimization (CGO’07). IEEE Computer Society,

Washington, DC, 49–60. DOI:https://doi.org/10.1109/CGO.2007.34

[85] C. Krintz. 2003. Coupling on-line and off-line profile information to improve program performance. In International

Symposium on Code Generation and Optimization (CGO’03). 69–78. DOI:https://doi.org/10.1109/CGO.2003.1191534

[86] Aditya Kumar. 2019. Hot Cold Splitting Optimization Pass In LLVM. Retrieved from https://llvm.org/devmtg/2019-

10/talk-abstracts.html#tech8

[87] Anatole Le, Ondřej Lhoták, and Laurie Hendren. 2005. Using inter-procedural side-effect information in JIT opti-

mizations. In Compiler Construction, Rastislav Bodik (Ed.). Springer Berlin, 287–304.

[88] David Leopoldseder, Lukas Stadler, Thomas Würthinger, Josef Eisl, Doug Simon, and Hanspeter Mössenböck. 2018.

Dominance-based duplication simulation (DBDS): Code duplication to enable compiler optimizations. In Proceed-

ings of the International Symposium on Code Generation and Optimization (CGO’18). ACM, New York, NY, 126–137.

DOI:https://doi.org/10.1145/3168811

[89] Roy Levin, Ilan Newman, and Gadi Haber. 2008. Complementing missing and inaccurate profiling using a minimum

cost circulation algorithm. In Proceedings of the 3rd International Conference on High Performance Embedded Archi-

tectures and Compilers (HiPEAC’08). Springer-Verlag, Berlin, 291–304.

[90] Matthew Arnold and Peter Sweeney. 2000. Approximating the Calling Context Tree Via Sampling. IBM.

[91] Scott Milton and Heinrich (Heinz) Schmidt. 1994. Dynamic Dispatch in Object-Oriented Languages. (March 1994).

[92] Anders Møller and Oskar Haarklou Veileborg. 2020. Eliminating abstraction overhead of Java stream pipelines us-

ing ahead-of-time program optimization. Proc. ACM Program. Lang. 4, OOPSLA, Article 168 (Nov. 2020), 29 pages.

DOI:https://doi.org/10.1145/3428236

[93] Todd Mytkowicz, Amer Diwan, Matthias Hauswirth, and Peter F. Sweeney. 2010. Evaluating the accuracy of Java

profilers. ACM SIGPLAN Not. 45, 6 (2010), 187–197.

[94] Diego Novillo. 2014. SamplePGO: The power of profile guided optimizations without the usability burden. In Pro-

ceedings of the LLVM Compiler Infrastructure in HPC (LLVM-HPC’14). IEEE Press, 22–28.

[95] Michael Paleczny, Christopher Vick, and Cliff Click. 2001. The Java HotSpot server compiler. In Proceedings of the

Symposium on JavaTM Virtual Machine Research and Technology Symposium (JVM’01). USENIX Association, Berkeley,

CA, 1–1. Retrieved from http://dl.acm.org/citation.cfm?id=1267847.1267848

[96] Simon Peyton Jones and Simon Marlow. 2002. Secrets of the Glasgow Haskell compiler inliner. J. Funct. Program. 12,

5 (July 2002), 393–434. DOI:https://doi.org/10.1017/S0956796802004331

[97] Aleksandar Prokopec, Gilles Duboscq, David Leopoldseder, and Thomas Würthinger. 2019. An optimization-driven

incremental inline substitution algorithm for just-in-time compilers. In Proceedings of the IEEE/ACM International

Symposium on Code Generation and Optimization (CGO’19). IEEE Press, Piscataway, NJ, 164–179. Retrieved from

http://dl.acm.org/citation.cfm?id=3314872.3314893

[98] Aleksandar Prokopec, David Leopoldseder, Gilles Duboscq, and Thomas Würthinger. 2017. Making collection oper-

ations optimal with aggressive JIT compilation. In Proceedings of the 8th ACM SIGPLAN International Symposium on

Scala (SCALA’17). ACM, New York, NY, 29–40. DOI:https://doi.org/10.1145/3136000.3136002

[99] Aleksandar Prokopec, Andrea Rosà, David Leopoldseder, Gilles Duboscq, Petr Tuma, Martin Studener, Lubomír Bulej,

Yudi Zheng, Alex Villazón, Doug Simon, Thomas Würthinger, and Walter Binder. 2019. Renaissance: Benchmarking

suite for parallel applications on the JVM. In Proceedings of the ACM SIGPLAN Conference on Programming Language

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.

https://doi.org/10.1145/178243.178478
https://doi.org/10.1145/263698.263754
https://doi.org/10.1145/231379.231417
https://doi.org/10.1145/778559.778562
https://doi.org/10.1002/spe.4380010203
https://doi.org/10.1109/CGO.2007.34
https://doi.org/10.1109/CGO.2003.1191534
https://llvm.org/devmtg/2019-10/talk-abstracts.html#tech8
https://doi.org/10.1145/3168811
https://doi.org/10.1145/3428236
http://dl.acm.org/citation.cfm?id=1267847.1267848
https://doi.org/10.1017/S0956796802004331
http://dl.acm.org/citation.cfm?id=3314872.3314893
https://doi.org/10.1145/3136000.3136002


Exploiting Partially Context-sensitive Profiles to Improve Performance of Hot Code 20:63

Design and Implementation, Kathryn S. McKinley and Kathleen Fisher (Eds.). ACM, 31–47. Retrieved from http://dblp.

uni-trier.de/db/conf/pldi/pldi2019.html#ProkopecRLD0SBZ19

[100] Rodric M. Rabbah, Hariharan Sandanagobalane, Mongkol Ekpanyapong, and Weng-Fai Wong. 2004. Compiler

orchestrated prefetching via speculation and predication. SIGPLAN Not. 39, 11 (Oct. 2004), 189–198. DOI:https:

//doi.org/10.1145/1037187.1024416

[101] Steven P. Reiss and Manos Renieris. 2001. Encoding program executions. In Proceedings of the 23rd International

Conference on Software Engineering (ICSE’01). IEEE, 221–230.

[102] Alan D. Samples. 1991. Profile-driven Compilation. Technical Report. University of California, Berkeley, Department

of Electrical Engineering and Computer Sciences.

[103] Aibek Sarimbekov, Philippe Moret, Walter Binder, Andreas Sewe, and Mira Mezini. 2011. Complete and platform-

independent calling context profiling for the Java virtual machine. Electron. Notes Theor. Comput. Sci. 279, 1 (2011),

61–74. DOI:https://doi.org/10.1016/j.entcs.2011.11.006

[104] Robert W. Scheifler. 1977. An analysis of inline substitution for a structured programming language. Commun. ACM

20, 9 (Sep. 1977), 647–654. DOI:https://doi.org/10.1145/359810.359830

[105] Manuel Serrano. 1997. Inline Expansion: When and How? Springer Berlin, 143–157. DOI:https://doi.org/10.1007/

BFb0033842

[106] Mauricio Serrano and Xiaotong Zhuang. 2009. Building approximate calling context from partial call traces. In Pro-

ceedings of the International Symposium on Code Generation and Optimization. 221–230. DOI:https://doi.org/10.1109/

CGO.2009.12

[107] Andreas Sewe, Jannik Jochem, and Mira Mezini. 2011. Next in line, please!: Exploiting the indirect benefits of in-

lining by accurately predicting further inlining. In Proceedings of the Compilation of the Co-located Workshops on

DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11, & VMIL’11 (SPLASH’11 Workshops). ACM, New York, NY,

317–328. DOI:https://doi.org/10.1145/2095050.2095102

[108] Andreas Sewe, Mira Mezini, Aibek Sarimbekov, and Walter Binder. 2011. Da capo con scala: Design and analysis of a

scala benchmark suite for the Java virtual machine. In Proceedings of the ACM SIGPLAN Conference on Object-Oriented

Programming, Systems, Languages, and Applications (OOPSLA’11). 657–676.

[109] Denys Shabalin. 2020. Just-In-Time Performance Without Warm-Up. IINFCOM, Lausanne, 165. http://infoscience.epfl.

ch/record/275338

[110] Denys Shabalin and Martin Odersky. 2018. Interflow: Interprocedural flow-sensitive type inference and method du-

plication. In Proceedings of the 9th ACM SIGPLAN International Symposium on Scala (Scala’18). Association for Com-

puting Machinery, New York, NY, 61–71. DOI:https://doi.org/10.1145/3241653.3241660

[111] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas Stadler, and Thomas Würthinger. 2015.

Snippets: Taking the high road to a low level. ACM Trans. Archit. Code Optim. 12, 2, Article 20 (June 2015), 25 pages.

DOI:https://doi.org/10.1145/2764907

[112] Lukas Stadler, Thomas Würthinger, and Hanspeter Mössenböck. 2014. Partial escape analysis and scalar replacement

for Java. In Proceedings of Annual IEEE/ACM International Symposium on Code Generation and Optimization (CGO’14).

ACM, New York, NY, Article 165, 10 pages. DOI:https://doi.org/10.1145/2544137.2544157

[113] Codruţ Stancu, Christian Wimmer, Stefan Brunthaler, Per Larsen, and Michael Franz. 2014. Comparing points-to

static analysis with runtime recorded profiling data. In Proceedings of the International Conference on Principles and

Practices of Programming on the Java Platform: Virtual Machines, Languages, and Tools (PPPJ’14). Association for

Computing Machinery, New York, NY, 157–168. DOI:https://doi.org/10.1145/2647508.2647524

[114] Edwin Steiner, Andreas Krall, and Christian Thalinger. 2007. Adaptive inlining and on-stack replacement in the

CACAO virtual machine. In Proceedings of the 5th International Symposium on Principles and Practice of Programming

in Java (PPPJ’07). ACM, New York, NY, 221–226. DOI:https://doi.org/10.1145/1294325.1294356

[115] Toshio Suganuma, Toshiaki Yasue, and Toshio Nakatani. 2002. An empirical study of method inlining for a Java

just-in-time compiler. In Proceedings of the 2nd Java Virtual Machine Research and Technology Symposium. USENIX

Association, 91–104.

[116] Omri Traub, Stuart Schechter, and Michael D. Smith. 2000. Ephemeral Instrumentation for Lightweight Program Profil-

ing. Unpublished Technical Report, Department of Electrical Engineering and Computer Science, Harvard University,

Cambridge, MA.

[117] April W. Wade, Prasad A. Kulkarni, and Michael R. Jantz. 2017. AOT vs. JIT: Impact of profile data on code quality.

SIGPLAN Not. 52, 5 (June 2017), 1–10. DOI:https://doi.org/10.1145/3140582.3081037

[118] Mark N. Wegman and F. Kenneth Zadeck. 1991. Constant propagation with conditional branches. ACM Trans. Pro-

gram. Lang. Syst. 13, 2 (Apr. 1991), 181–210. DOI:https://doi.org/10.1145/103135.103136

[119] John Whaley. 2000. A portable sampling-based profiler for Java virtual machines. In Proceedings of the ACM Confer-

ence on Java Grande (JAVA’00). Association for Computing Machinery, New York, NY, 78–87. DOI:https://doi.org/10.

1145/337449.337483

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.

http://dblp.uni-trier.de/db/conf/pldi/pldi2019.html#ProkopecRLD0SBZ19
https://doi.org/10.1145/1037187.1024416
https://doi.org/10.1016/j.entcs.2011.11.006
https://doi.org/10.1145/359810.359830
https://doi.org/10.1007/BFb0033842
https://doi.org/10.1109/CGO.2009.12
https://doi.org/10.1145/2095050.2095102
http://infoscience.epfl.ch/record/275338
https://doi.org/10.1145/3241653.3241660
https://doi.org/10.1145/2764907
https://doi.org/10.1145/2544137.2544157
https://doi.org/10.1145/2647508.2647524
https://doi.org/10.1145/1294325.1294356
https://doi.org/10.1145/3140582.3081037
https://doi.org/10.1145/103135.103136
https://doi.org/10.1145/337449.337483


20:64 M. Vukasovic and A. Prokopec

[120] Christian Wimmer, Codrut Stancu, Peter Hofer, Vojin Jovanovic, Paul Wögerer, Peter B. Kessler, Oleg Pliss, and

Thomas Würthinger. 2019. Initialize once, start fast: Application initialization at build time. Proc. ACM Program.

Lang. 3, OOPSLA, Article 184 (Oct. 2019), 29 pages. DOI:https://doi.org/10.1145/3360610

[121] Thomas Wuerthinger, Christian Wimmer, and Hanspeter Moessenboeck. 2008. Visualization of program dependence

graphs. Compiler Construction, L. Hendren (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 193–196.

[122] Thomas Würthinger, Christian Wimmer, Christian Humer, Andreas Wöß, Lukas Stadler, Chris Seaton, Gilles Du-

boscq, Doug Simon, and Matthias Grimmer. 2017. Practical partial evaluation for high-performance dynamic lan-

guage runtimes. In Proceedings of the 38th ACM SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI’17). ACM, New York, NY, 662–676. DOI:https://doi.org/10.1145/3062341.3062381

[123] Graham Yiu. 2017. Partial Inlining with Multi-region Outlining based on PGO Information. https://reviews.llvm.org/

D38190

[124] Peng Zhao and José Nelson Amaral. 2004. To Inline or Not to Inline? Enhanced Inlining Decisions. Springer Berlin,

405–419. DOI:https://doi.org/10.1007/978-3-540-24644-2_26

Received 21 January 2022; revised 1 July 2023; accepted 17 July 2023

ACM Transactions on Programming Languages and Systems, Vol. 45, No. 4, Article 20. Publication date: November 2023.

https://doi.org/10.1145/3360610
https://doi.org/10.1145/3062341.3062381
https://reviews.llvm.org/D38190
https://doi.org/10.1007/978-3-540-24644-2_26

