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ABSTRACT
Given N, choose a number randomly. Evens are chosen without
replacement and odds are chosen with replacement. Repeat this
process for as many times as there are naturals. Assess the expected
value for the probability even in the resultant set. Then consider
this question for the same process instead iterating only as many
times as there are even members. Solutions are proposed in terms
of the Lambert W function.

CCS CONCEPTS
• Mathematics of computing → Probabilistic algorithms; Per-
mutations and combinations.
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1 INTRODUCTION
1.1 A Rigorous Application of Infinitesimals in

Probability Theory, by Example.
In many areas of mathematics, such as in calculus, we find our-
selves able to successfully wield infinitesimals. In 1961, the first
rigorous description of calculus in terms of infinitesimals was given
by Abraham Robinson [13]. The application to other areas has
been accumulating evidence though this is not without opposition;
specifically, to the application of infinitesimals as probabilities [3].
A counter to the objections of Pruss, 2014 [11], is provided by the
authors Benci, Horsten, and Wenmackers [1]. Bottazzi and Katz [3]
provide counters for many critiques against the use of infinitesimals
in probability, including critiques by Parker [10], Pruss, 2018 [12],
and Williamson [15]. The authors Calude and Dumitrescu provide
a counter [4] for a critique by Williamson [15].

The authors Calude and Dumitrescu also contribute what they
claim to be an acceptable framework for infinitesimals in probability
[4]. Wenmackers provides a review [14] of the book by Vieri Benci
and Mauro Di Nasso, in which the authors develop their approach
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to infinitesimals and claim to develop a framework for measuring
the size of countable sets [2]. Other applications of infinitesimals
include the authors Fiaschi’s and Cacoccioni’s application to game
theory [7], and the author Jacobs’ application to computer science
[9].

The authors Benci, Horsten, and Wenmackers [1] provide an ex-
tensive discussion on the de Finetti lottery, a problem that requires
random sampling from the naturals. A random sampling from the
naturals requires infinitesimals. This paper is important because it
provides both a question requiring random sampling from N and
the methods for obtaining solutions. This demonstration of there
existing solutions seems to provide strong evidence in favor of
the rigorous applications of infinitesimals to probability theory, by
example.

2 METHODS
2.1 Bottom-up Computation.
Given N, choose a number randomly. Evens are chosen without
replacement and odds are chosen with replacement. Repeat this
process for as many times as there are naturals. Assess the expected
value for the probability even in the resultant set. Then consider
this question for the same process instead iterating only as many
times as there are even members.

Algorithm 1 Bottom-up: An experimental approach.
1: Create an arrary of size n, beginning at 1.
2: Choose a number from the array randomly.
3: If the number chosen is even, remove it from the array.
4: Else return the number.
5: Repeat steps (2-4) n times.
6: Count the even members remaining and divide by array length;

store this value in a variable (M).
7: Repeat steps (1-6) as many times as desired (X), each time

adding the final value to (M).
8: Divide (M) by (X).
9: Output: expected probability of an even in a set that results

from this process.

In the bottom-up approach taken below we consider the iterative
process for only as many times are there are members in the set at
hand, and then to scale it up such that the number of iterations for
this process is equal to exactly the number of naturals.

Consider the set {1}. There is one member and this process
iterates only once. We draw from the set, a "1" is drawn, the "1" is
replaced, and the resultant set is the same with 𝑃𝑒𝑣𝑒𝑛 = 0.

Consider the set {1, 2}. For two drawings with replacement,
there are 22 = 4 possible outcomes: 1,1; 1,2; 2,1; and 2,2. In our case,
however, not all arrangements are valid: if a "2" is drawn on the
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Table 1: Resultant Sets and Likelihood an Even is Drawn if
to Draw From the Resultant Set

r 𝑅 𝑃𝑒𝑣𝑒𝑛

1,1 {1, 2} 1
2

1,2 {1} 0
2,1 {1} 0

Table 2: Probability of Occurrence for Each Arrangement

r 𝑃𝑟

1,1 ( 12 )
2 = 1

4
1,2 ( 12 )

2 = 1
4

2,1 ( 12 ) (
1

2−1 ) =
1
2

first turn, it is removed from the set, and cannot again be drawn
on the second turn. Thus, these are the sets that result, 𝑅, along
with their associated probability even (Table 1). The probability
of a given arrangement, 𝑃𝑟 , is calculated in Table 2. The expected
value for the probability even for a set containing only {1, 2} is
𝜇𝑃𝑒𝑣𝑒𝑛 = ( 12 ∗ 1

4 ) + (0 ∗ 1
4 ) + (0 ∗ 1

2 ) =
1
8 .

In general, for a set of size 𝑛, there are 𝑛𝑛 total arrangments, 𝑟 ,
though not all are valid. Exact values for the expected probability
even for a set of size 𝑛 that have been calculated are given below
(Fig. 1). As can be seen, you can also start at 0 instead of 1 (e.g.
{0}, and then {0, 1}, and so forth.), giving a similar graph with
values equal to the those when starting at 1, for even n. The mean
probability even, 𝜇𝑃𝑒𝑣𝑒𝑛 , is given by taking the sum of the products
of the probability even in a set that results from a given arrangement
and the probability of occurrence for that arrangement.

𝜇𝑃𝑒𝑣𝑒𝑛 =
∑︁

𝑃𝑒𝑣𝑒𝑛 ∗ 𝑃𝑟 (1)

Figure 1: For a set of size n, starting at 0 or 1. Note that the
smoothed lines between noninteger values are not precise,
but serve to help visualize the behavior.

Instead of resolving this question for when the number of itera-
tions are equal to the number of naturals, we can instead begin to

resolve the question for when the number of iterations are equal to
the number of evens. We do this by drawing instead 𝑛

2 times when
n is even. For example, for a set {1, 2}, we only draw once. Meaning
that we will draw either a 1 or a 2. If we draw a 1 the set that results
is {1, 2}, with 𝑃𝑟 = 1

2 and 𝑃𝑒𝑣𝑒𝑛 = 1
2 . If we draw a 2, then the set

that results is {1}, with 𝑃𝑟 = 1
2 and 𝑃𝑒𝑣𝑒𝑛 = 0. The expected value

for the probability even then is 𝜇𝑃𝑒𝑣𝑒𝑛 = ( 12 ∗ 1
2 ) + ( 12 ∗ 0) = 1

4 . A
comprehensive graph is given below (Fig. 2).

Figure 2: Bottom-up plots for when the number of iterations
equal the numbers ofmembers (lower) and when the number
of iterations equal the number of even members (upper).

2.2 Top-down Computation.
Consider a variant of the iterative process described where we begin
with the unit interval and this defines the fixed size of N. Instead
of taking our iterations one by one, let us take them at once and
then separate off the evens. This reduces the interval by 1

2 and our
value for 𝑃𝑒𝑣𝑒𝑛 = 0.

If instead we take our iterations over two turns, then on the
first turn we will take an interval of size 1

2 and 𝑃𝑒𝑣𝑒𝑛 = 1
2 so that

1
2 ∗ 1

2 = 1
4 even members will be removed. The interval remaining

is 1− 1
4 = 3

4 . The number of even members remaining is 1
2 −

1
4 = 1

4 .

The 𝑃𝑒𝑣𝑒𝑛 value of the remaining interval is
1
4
3
4
= 1

3 . For the second

iteration we again take an interval of size 1
2 . This time 𝑃𝑒𝑣𝑒𝑛 = 1

3
so that 1

2 ∗ 1
3 = 1

6 even members will be removed. The interval
remaining is 3

4−
1
6 = 7

12 . The number of evenmembers is 1
4−

1
6 = 1

12 .

Then 𝑃𝑒𝑣𝑒𝑛 in the remaining interval is
1
12
7
12

= 1
7 ≈ .143.

If we take our total number of interations over 3 turns this value
becomes 22

127 ≈ .173. As we take our total number of iterations
over more and more 𝑥 turns, the interval over which we are taking
our turns grows smaller and smaller until the interval ceases to be
and we are taking our turns over single values. For a number of
iterations equal to the number of naturals, as 𝑥 → inf, this iterative

sequence appears to become 𝑊 ( 1
𝑒
)

1+𝑊 ( 1
𝑒
) ≈ 0.2178117 where𝑊 (𝑥)

is the productlog or Lambert W function1. If instead we take the

1This constant appears to arise as a minimum value that results in the value being
an optimal choice for bin packing in the work of José Correa and Michael Goemnans
[5, 6], and as a boundary point in chaotic systems in the work of A.C. Fowler and M.J.
McGuinness describing the Lorenz Equations [8].
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number of iterations to equal the number of evens, then as 𝑥 → inf
this sequence appears to become 𝑊 (1)

1+𝑊 (1) ≈ 0.361896.2

The above iterative process is described as simultaneous, or
mutual, recurrence relations3 where 𝑘 = 1 for N and 𝑘 = 1

2 for
{2𝑛 : 𝑛 ∈ N}: 

𝑎0 =
1
2 − 𝑘

2𝑥
𝑏0 = 1 − 𝑘

2𝑥
𝑎𝑛+1 = 𝑎𝑛 − 𝑎𝑛∗𝑘

𝑏𝑛∗𝑥
𝑏𝑛+1 = 𝑏𝑛 − 𝑎𝑛∗𝑘

𝑏𝑛∗𝑥

(2)

At the first step we have:

𝑎0
𝑏0

=

1
2 − 𝑘

2𝑥

1 − 𝑘
2𝑥

(3)

At the second step we have:

𝑎1
𝑏1

=

( 12 − 𝑘
2𝑥 ) −

( 12 −
𝑘
2𝑥 )∗𝑘

(1− 𝑘
2𝑥 )∗𝑥

(1 − 𝑘
2𝑥 ) −

( 12 −
𝑘
2𝑥 )∗𝑘

(1− 𝑘
2𝑥 )∗𝑥

(4)

This expression as continues at later steps can be reduced to:

lim
𝑛→∞

𝑎𝑛

𝑏𝑛
=

1
2 − 𝑧

1 − 𝑧
(5)

where 𝑧 is the limit of the continued expansion. Then we solve for
the closed form of the limit of the expansion, which is the number
of evens removed in the context of 𝑘 = 1.

1
2 − 𝑧

1 − 𝑧
=

𝑊 ( 1𝑒 )
1 +𝑊 ( 1𝑒 )

→ 𝑧 =
1
2
−
𝑊 ( 1𝑒 )

2
≈ 0.360768 (6)

The number of evens remaining is: 𝑊 ( 1
𝑒
)

2 ≈ 0.139232. The expected

value for the probability even is given as:
𝑊 ( 1𝑒 )

2
1
2+

𝑊 ( 1𝑒 )
2

=
𝑊 ( 1

𝑒
)

1+𝑊 ( 1
𝑒
) .

3 DISCUSSION
In the bottom-up approach taken we considered the iterative pro-
cess for only as many times as there are members in the set at
hand, and then to scaled it up such that the number of iterations
for this process is equal to exactly the number of naturals. This
can be achieved experimentally with Algorithm 1 or by Equation 1
resulting in exact solutions.

In Figure 1, the expected probability even is calculated for a set
of size n, starting at 1 and also for a set of size n, instead starting
at 0. This gives a similiar graph with values equal to those when
starting at 1, for even n. As mentioned previously, the smoothed
lines between noninteger values are not precise, but serve to help vi-
sualize the behavior. The topic of non-integer values of the iterative
disposal processes examined is an area of future interest.

Figure 2 presents another look at the graph from Figure 1, high-
lighting the values that are equal, at even n, regardless of whether
the set starts at 0 or 1. The graph also depicts the curve that results

2The constant 𝑊 ( 1𝑒 )
1+𝑊 ( 1𝑒 )

is calculated to nine decimal places, 0.217811705, at 𝑥 = 109

and the constant 𝑊 (1)
1+𝑊 (1) is calculated to ten decimal places, 0.3618962566, at the same

𝑥 .
3A direct solution here is desirable.

when instead choosing a number of iterations equal to the number
of even members. A topic of odd integer values of the iterative
disposal process examined when the number of iterations are equal
to the number of even members is an area of future interest.

In the top-down computation, a variant of the iterative process
was considered by starting with the unit interval and letting that
define the fixed size of N. Instead of taking the iterations one by
one, we took them at once and then separated off the evens. In
successive considerations, we take our iterations instead over two
turns, and later over three turns, and so forth. As we take our total
number of iterations over more and more turns, the interval over
which we are taking our turns grows smaller and smaller until the
interval ceases to be and we are taking our turns over single values.
Doing so allows us to effectively transform this process into the
desired iterative disposal process, and to address the questions of
the expected probability of an even in a set that results from these
processes.

The solutions arising from the top-down computation were ref-
erenced to a known constant value from publications in the topic
of bin packing [5, 6] and the Lorenz Equations [8]. The top-down
method can be expressed as simultaneous, or mutual, recurrence
relations from which a direct solution is desirable.

Closer inspection of the recurrence relation allows consideration
of this relation as a limit, which is set equal to the expected closed
form when the number of iterations equal the number of naturals.
This permits an expected closed form for the expected number of
evens removed and consequently the expected number of evens
remaining.

4 CONCLUSIONS
Many critiques to the application of infinitesimals in probability
have been published, including those by: Pruss 2014 [11], and 2018
[12]; Parker [10]; and Williamson [15]. These objections have been
met by many including: Benci, Horsten, and Wenmackers [1]; Bot-
tazzi and Katz [3]; and Calude and Dumitrescu [4]. Benci, Horsten,
and Wenmackers discuss another example that requires infinitesi-
mals because it requires random sampling from N, the de Finetti
lottery [1].

This paper provides a question that requires a random sampling
from N, and because of this, also requires infinitesimals. This paper
is interesting because it provides methods for obtaining the solu-
tions to these problems, and by doing so seems to provide strong
evidence in favor of the application of infinitesimals to probability.

In pursuit of direct solutions, one may wish to consider alterna-
tive iterative disposal processes. One such process requires drawing
always from the original set, instead of the set that results after
each iteration, while still drawing evens without replacement and
odds with replacement.

The development of new frameworks for infinitesimals[2], in-
cluding to probability theory [4], to game theory [7], and to com-
puter science [9], are all promising developments. Iterative disposal
processes are useful in that when they are applied to the set of
naturals, and the parity of the remaining members is questioned,
solutions exisiting seem to contribute to the growing body of knowl-
edge supporting the successful applications of infinitesimals to
probability.
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