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ABSTRACT
Recent studies have shown that gut microbiome is associated with
colorectal cancer (CRC) progression and anti-cancer therapy ef-
ficacy. This study aims to optimize the ridge, elastic net, and
lasso regularized generalized linear models (GLM), widely used
for supervised machine learning, for multiclass classification tasks
(healthy/adenoma/carcinoma). The models are applied to a bench-
mark gut microbiome dataset using raw and transformed data. A
cross-validation procedure is used to select an optimal value for
the shrinkage parameter, _. The results show a higher accuracy
of the ridge and elastic net models compared to the lasso model.
We confirm known associations of several microbiome genera with
CRC and adenoma. These findings are expected to contribute to the
definition of CRC-microbiome signatures to be further validated in
microbiome-related therapy studies.
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1 INTRODUCTION
Colorectal cancer (CRC) is considered one of the most highly spread
malignant tumors, and the third in the global mortality rate ranking
[1]. The development of colorectal cancer occurs gradually, starting
with the appearance of hyperproliferation that leads to the forma-
tion of adenomas and, in the most severe cases, leads to degradation
to the stage of carcinomas [2]. Recently it has been concluded that
one of the main factors that affect the development of colorectal
cancer is the gut microbiome, so the interest in its study has in-
creased among researchers. The human intestine is populated by
more than 1000 different species of these symbiotic microorganisms,
which play a crucial role in maintaining the optimal conditions of
the environment they inhabit, as well as serving as neutralizers of
pathogens that can enter the body from the outside environment,
helping in defense against invaders [3]. The intestinal microbiome
contributes to the appearance and development of CRC when it
loses the ability to control the homeostasis of the environment,
promoting the production of cancer-associated metabolites and
the immune response and increasing the synthesis of genotoxic
virulence factors [4]. In studies that have been carried out by ob-
serving different groups of individuals, it has been noticed that
CRC patients showed an abnormal structure of the gut microbiome,
compared to healthy individuals who presented a normal structure
[5].

Microbiome data analysis is challenging due to some data char-
acteristics such as high dimensionality, sparsity, zero inflation,
and compositionality. Appropriate statistical and machine learning
methods are required to properly analyze these data and to select
the most relevant features that play a role in separating patient
groups.

Recent research has demonstrated the effectiveness of regular-
ized regression models to select microbial features that are associ-
ated with the development of colorectal cancer and other diseases
[6–8]. However, it is important to note that each study has its own
limitations, and that further research is needed to validate these
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findings and identify potential biomarkers for the early detection
and prevention of colorectal cancer.

Our study aims to explore regularized generalized linear models
(GLM), widely used for supervised machine learning, for multiclass
(healthy/adenoma/carcinoma) classification, and feature selection
tasks. The results obtained are expected to provide insight into the
role of the gut microbiome in CRC progression and treatment.

2 METHODS
2.1 The data
In this study, we used microbiome 16S data from Zeller et al. [5],
which focuses on the association of gut microbiome with CRC. The
data considered for analysis consisted of Operational Taxonomic
Unit (OTU) counts from 129 samples, from which 38 were adenoma
samples, 41 were carcinoma, and 50 were healthy subjects. OTUs,
with a relative frequency of counts smaller than 0.0001 among all
samples, were not included in the analysis. The relative abundance
for each OTU was calculated by dividing the sum of the counts
from all samples by the overall sum of counts. This resulted in the
final 153 genera, which could then be used for statistical analysis.

2.2 Modeling
In this study, we applied regularized GLMs [9], including
the ridge, lasso, and elastic net estimators, for multiclass
(healthy/adenoma/carcinoma) classification tasks.

Let us consider a model with a univariate response 𝑌 =

(𝑌1, . . . , 𝑌𝑛)⊤ and 𝑝-dimensional covariates 𝑋 = (𝑥1, . . . , 𝑥𝑝 )
where for 𝑖 ∈ {1, . . . , 𝑝}, 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑛)⊤ as 𝑔(𝐸 [𝑌𝑖 |𝑋𝑖 = 𝑥]) =

𝛽0 +
𝑝∑
𝑖=1

𝛽 𝑗𝑥 𝑗 where 𝑔(·) is a real-valued and known link function,

𝛽0 is an intercept and the covariates 𝑥𝑖 are either fixed or random.
An implicit assumption of GLM is that 𝐸 [𝑌𝑖 |𝑋𝑖 = 𝑥] depends on
𝑋𝑖only through the function 𝑔. That is, the (conditional) probability
or density of 𝑌 |𝑋 = 𝑥 is of the form 𝑝 (𝑦 |𝑥) = 𝑝𝛽0,𝛽 (𝑦 |𝑥) .

Since our categorical response variable 𝑌 has more than two
levels (𝐾 > 2), we used a multinomial logistic regression, where,

𝑃 (𝑌 = 𝑗 |𝑥) =
𝑒𝑥𝑝

{
𝛽0𝑦 + 𝑥⊤𝛽𝑦

}∑𝐾
𝑗=1 𝑒𝑥𝑝

{
𝛽0𝑗 + 𝑥⊤𝛽 𝑗

} , 𝑗 = 1, . . . , 𝐾 − 1 (1)

The regularized estimator for GLMs is constructed by adding a
penalty to the (scaled) negative log-likelihood, which is

𝜌 (𝑥,𝑦) = 𝜌𝛽0,𝛽1 (𝑥,𝑦) = − 𝑛−1
𝑛∑︁
𝑖=1

𝑙𝑜𝑔(𝑝𝛽0,𝛽 (𝑌𝑖 |𝑋𝑖 ) (2)

The ridge regression [10] then defined as

𝛽0 (_) , 𝛽 (_ ) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽,𝛽0

{
𝜌 (𝑥,𝑦) + _

𝑝∑︁
𝑖=1

𝛽2𝑗

}
(3)

where _ is a tuning parameter.
The ridge estimator shrinks the coefficients of correlated predic-

tors equally toward zero but not reaching zero. To identify essential
predictors and reduce the number of predictors in a GLM, the lasso
estimator [11] can be used. It is defined as

𝛽0 (_) , 𝛽 (_) = 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽,𝛽0

{
𝜌 (𝑥,𝑦) + _

𝑝∑︁
𝑖=1

��𝛽 𝑗 �� }
(4)

where _ is a tuning parameter. Unlike ridge regression, as the
penalty term increases, the lasso estimator is an alternative to the
stepwise regression method and can create a smaller model with
fewer predictors.

When there are several highly correlated variables, it is recom-
mended to use the elastic net estimator [12], a hybrid of ridge and
lasso regularizations. For 𝛼 strictly between 0 and 1, and nonnega-
tive _, the elastic net estimator is defined as

𝛽0 (𝛼, _) , 𝛽 (𝛼, _)

= 𝑎𝑟𝑔𝑚𝑖𝑛
𝛽,𝛽0

{
𝜌 (𝑥,𝑦) + _

(
𝛼

𝑝∑︁
𝑖=1

��𝛽 𝑗 �� + (1 − 𝛼)
𝑝∑︁
𝑖=1

𝛽2𝑗

)}
(5)

where _ and 𝛼 are tuning parameters. This estimator is like lasso
when 𝛼=1, and when 𝛼 shrinks towards zero, it approaches ridge
regression.

Regularized GLMs were applied to the microbiome 16S dataset
[5] The analysis was performed in the R software through the
glmnet package [13]. The glmnet function standardizes the predic-
tors and response by normalizing and centering them before the
analysis, but the result is back transformed in the original scale.
To select an optimal value for the tunning parameter, _, a 10-fold
cross-validation procedure was performed. For each _, a predictive
model is fitted in the training set (60% of the data) and then used
to predict the outcome value of each sample in the test set (40%).
The model with optimal _ that gives the best accuracy is used for
future prediction.

When regularization methods are applied to microbiome data,
the random partitioning of the data is of concern. Thus, the impact
of data partitioning in cross-validation on the _ selection was fur-
ther investigated by repeating the cross-validation procedure ten
times. In each cross-validation, training and validation sets were
built randomly and differently. The analysis is performed on stan-
dardized (mean 0 and standard deviation 1) and centered log ratio
(CLR) transformed data.

3 RESULTS AND DISCUSSION
The first aim of this work was to estimate the optimum _ value
which gives the highest model accuracy or lowest mean squared
error (MSE). It is known that different values of _ give different
coefficient estimates. The 10-fold cross-validation procedure per-
formed to select an optimal value for the shrinkage parameter _ on
standardized and CLR transformed data showed that _ was quite
similar for all models (Table 1; Figure 1). Using the cross-validation
results, we get the optimum values for _ given in table 1.

Using glmnet, we easily visualized how the estimates for the
coefficients vary depending on _ in a sample (Figure 2). As it can be
seen, for ridge the number of non-zero coefficients do not change
for all the _ values and represents the number of predictors in the
model. The lasso approach tends to “shrink” the coefficients to zero
as _ increases, clearly shown by the numbers in the upper part
of the plot. Going from ridge to lasso, as 𝛼 increases, the number
of non-zero coefficients significantly reduce from 153 to 18 for all
three classes.

The coefficients from the ridge and elastic net regression models
showed that in both healthy and adenoma groups, the genera which
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Figure 1: Plots of the cross-validated estimate of MSE as a function of log(_) value for ridge (left), elastic net (𝛼 =0.6) (center),
and lasso (right), results from CLR transformed data. The upper part of the graphs gives the number of non-zero coefficients
for a given value of log(_). The gray bars at each point give the MSE ± the standard error for a specific _. The dashed lines give
the position of the smallest MSE.

Figure 2: The coefficients for the three categories of the response (response 1=adenoma; response 2=cancer; response 3=healthy)
obtained by ridge (above) and LASSO (below) for the Zeller et al., 2014 CLR transformed data, plotted versus log _. The upper
part of the plot gives the number of non-zero coefficients in the model for a given log _.

most contributed to the model (retaining non-zero coefficients) be-
long to Actinobacteria and Proteobacteria phyla. In contrast, for the
carcinoma group, the genera from Bacteroidetes and Fusobacteria
were the most informative to the model. Similar results are reported
from other studies [5, 14] where Fusobacteria were associated with
the CRC phenotype.

The MSE estimates indicate that ridge outperforms the elastic
net and lasso GLMs showing a lower MSE (Table 1). The CLR
transformation yielded better results, lower MSE, compared to the
normalized transformation of the data. As 𝛼 increases the MSE
tends to increase, showing that when more coefficients estimates
are put to zero the accuracy of the model decreases for the dataset
in use.

To visualize the performance of the models, we plotted the ROC
curves for all classes (adenoma, carcinoma, healthy) using the ROCR
R package (Figure 3). From these plots we can see that the ridge
and the elastic net models have a better performance compared to
the lasso model, especially for the adenoma class.

Our results are in line with other studies which have reported
that ridge regression may perform slightly better to lasso regular-
ization in microbiome data modelling [15, 16] in some scenarios.

However, many studies that applied regularized regression mod-
els in predicting microbial taxa associated with colorectal cancer,
reported a great performance with very high accuracy for lasso
[17–19]. These findings show that the choice between lasso and
ridge regression in modeling microbiome data may depend on the
specific research question and dataset characteristics. In our case
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Table 1: Summary results for the ridge, elastic net, and lasso GLMs performed on normalized and CLR transformed data (𝛼 and
_ are the parameters that control the mixing between the ridge and the lasso, and the severity of the penalty, respectively).

Normalized data CLR transformed data

Regularized 𝛼

_

optimum MSE
_

optimum MSE

Ridge 0 0.059 0.519 0.173 0.461
Elastic net 0.2 0.094 0.584 0.190 0.538

0.4 0.036 0.635 0.151 0.537
0.6 0.092 0.615 0.165 0.531
0.8 0.062 0.653 0.191 0.564

Lasso 1 0.049 0.654 0.190 0.563

Figure 3: Plot of the ROC curves for all classes (class 1=adenoma; class 2=carcinoma; class3=healthy) for ridge, elastic net
(𝛼 =0.6), and Lasso.

the lasso penalty might be too stringent in this dataset leading to
a very sparse solution and decreased accuracy. Ridge regression
can outperform lasso in classification accuracy but maybe not in
identifying features, because all are used in the end for the classifi-
cation, and comparing features’ importance between models is not
straightforward.

Our future work will focus on validating the models in a larger
dataset where data from other studies and populations are included.
We also aim to add the coda-lasso approach [20] in our analysis to
count for the compositional nature of microbiome data correctly.

4 CONCLUSIONS
Our findings suggest that ridge and elastic net models can outper-
form lasso when applied to 16S microbiome data. Despite that, we
recommend that in the search for an accurate sparse and inter-
pretable solution researchers consider factors such as the number
of predictors, the sample size, and the desired level of sparsity in
the final model when selecting a regularization method.
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