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ABSTRACT

Gait analysis has become an important tool in clinical practice for
monitoring disease progression and evaluating therapeutic inter-
ventions. However, a subject’s gait characteristics can be affected
by physical characteristics such as age and height, which can inter-
fere with accurate comparisons between subjects. MLR normaliza-
tion has been shown to be effective in reducing interference from
subject-specific physical properties, but non-linear effects can still
impact the results. In this study, the independent variables were
transformed to improve normalization performance, and the results
indicate that using MR normalization with data transformation can
effectively de-correlate physical characteristics from gait variables,
improving the model fit and augment the capability to compare
subjects with varying physical characteristics. This study provides
valuable insights into the use of MLR models for gait normalization,
with potential applications in clinical practice and research.
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1 INTRODUCTION

Gait analysis has become an increasingly important tool in clinical
practice due to its potential to provide an objective assessment of
gait impairment [1]. Gait analysis involves measuring various spa-
tiotemporal parameters related to an individual’s walking pattern,
such as stride length, step width, cadence, and walking speed. These
parameters can be used to monitor disease progression, evaluate
therapeutic interventions, and identify gait abnormalities in various
conditions, such as Parkinson’s disease [2].

However, a subject’s gait characteristics can be affected by vari-
ous factors, such as age, height, weight, and walking speed, which
can interfere with accurate comparisons between individuals [3, 4]
. To address this issue, researchers have employed various normal-
ization techniques to reduce the impact of subject-specific physical
properties on gait measures [5, 6]. Among these techniques, multi-
ple linear regression (MLR) normalization has been shown to be
effective in reducing interference from subject-specific physical
properties and their gait variables, in comparison to other methods
like dimensionless equations and detrending techniques [7]. How-
ever, MLR models are limited in their ability to capture non-linear
effects [8], which can impact the accuracy of gait normalization.

To address this limitation, independent variables can be trans-
formed to improve normalization performance, reduce correlations
between subject-specific physical characteristics and gait features,
and decrease the dispersion of gait data between subjects during
walking. Transformations such as logarithm, square root, square,
or cube can improve the model fit and correct violations of the
model assumptions [9]. In this study, the independent variables
were transformed using various mathematical functions to assess
the impact of independent variable transformations on MLRmodels
for gait normalization.

Previous studies have identified age, height, weight, sex, walking
speed, and stride length as variables significantly affecting gait data
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[3, 10–14]. Therefore, as in [6], these variables were considered in-
dependent variables in this study. The proposed approach involves
transforming the independent variables using various mathemati-
cal functions, such as natural logarithm, square root, square, and
cube, and comparing the performance of MLR models before and
after the transformations.

The paper is structured as follows: Section 2 describes the gait
data and the proposed gait normalization approach. Section 3
presents the results and discussion, including the impact of the
independent variable transformations on MLR models for gait nor-
malization. Section 4 outlines the conclusions and future directions
for this research, emphasizing the potential of using transformed
independent variables in MLR models for improving gait normal-
ization accuracy in clinical practice and research.

2 MATERIALS AND METHODS

2.1 Gait Data

This study utilized gait data from 36 healthy adults with ages rang-
ing from 20 to 85 years, weights ranging from 48.9 to 94.2 kg, and
heights ranging from 1.53 to 1.89 meters, as reported in a previous
study [6]. To collect gait data, two Physilog®sensors (Gait Up®,
Switzerland) were attached to the dorsum of each shoe using elastic
bands. The participants were instructed to walk a 60-meter contin-
uous course, which consisted of a 30-meter corridor with one turn,
at a self-selected speed.

Various spatial, temporal, and foot clearance gait variables were
assessed from the participants’ gait data, including: speed (veloc-
ity of one stride), cycle duration (duration of one stride), cadence
(number of strides per minute), stride length (distance between
successive initial ground contacts using the same foot), stance (per-
centage of stride that the foot is on the ground), swing (percentage
of stride that the foot is in the air), loading (percentage of stance
between the heel strike and the foot placed fully on the ground),
foot flat (percentage of stance where the foot is fully on the ground),
pushing (percentage of stance between the foot fully positioned
on the ground and the toe leaving the ground), double support
(percentage of stride that both feet touch the ground), peak swing
(maximum angular velocity during swing), strike angle (angle be-
tween the foot and the ground when the heel hits the ground),
lift-off angle (angle between the foot and the ground when the toes
are leaving the ground), maximum heel (maximum height above the
ground reached by the heel), maximum toe clearance 1 (maximum
height above the ground reached by the toes after maximum heel
strike), minimum toe clearance (minimum height of the toes during
the swing phase), and maximum toe clearance 2 (maximum height
above the ground reached by the toes just before heel strike).

2.2 Multiple Regression Normalization with

data transformations

The MR Normalization with data transformation was carried out
through the following steps:

• Scatter plots were created to visually examine the relation-
ships between variables.

• Independent variables (𝑋 ) underwent quadratic (𝑋 2), cubic
(𝑋 3), square root (

√
𝑋 ), inverse (1/𝑋 ), natural logarithm

(𝑙𝑛(𝑋 ), and natural base elevation to a power (𝑒𝑋 ) transfor-
mations. This resulted in new predictors that were functions
of the existing variables. Pearson correlation coefficients
were used to assess the associations between the original
and new predictors with the gait variable. Predictors with a
significant Pearson coefficient correlation at the 0.10 level
were selected for the next step.

• Regression models were developed for all possible combi-
nations of the selected predictors. Variance inflation factors
(VIFs) were calculated to ensure that multicollinearity was
absent from the models. Any models with a VIF greater than
3.3 were excluded [15].

• Akaike’s information criterion (AIC) and adjusted 𝑅2 metrics
were used to identify the best-fit model. Only themodels that
had significant variables were taken into consideration. For
each best-fit regressionmodel, a normal quantile-quantile (Q-
Q) plot of the residuals and a residual plot were generated to
verify the assumptions of normality of regression residuals
and homoscedasticity, respectively. Standardized residual
values were assessed to identify influential outliers.

• The best-fit regression models were used to normalize each
gait variable by dividing the value of the original dependent
gait variable 𝑦𝑖 , by the predicted gait variable 𝑦𝑖 . This results
in a new value, 𝑦𝑁

𝑖
, which represents the normalized gait

variable for the 𝑖𝑡ℎ observation within each subject.
The linear regression model’s effectiveness in de-correlating gait

parameters through normalization was evaluated using both Pear-
son (linear) and Spearman (ranking-based) correlation coefficients
before and after normalization.

Additionally, the subject group was randomly split into two
subgroups with age, height and speed differences, and the Mann-
Whitney U Test was employed to examine differences between them.
This was done to evaluate the capability of MR normalization with
and without data transformations to facilitate the comparison of
gait variables between cohorts with diverse physical characteristics.

3 RESULTS AND DISCUSSION

3.1 Multiple linear regression models

Table 1 displays the results of multiple linear regression models
with and without data transformation, including the independent
variables, AIC, and adjusted 𝑅2 values. Comparison of the AIC and
adjusted 𝑅2 values indicates that data transformation improves the
model fit, particularly for cycle duration, cadence, foot flat, push-
ing, double support, peak swing, strike angle, and maximum heel
clearance. Foot flat was the only gait variable that did not show
improvement in these two metrics. Interestingly, no significant
Pearson coefficient correlation at the 0.10 level was found between
all speed variables (original and transformed) and foot flat, and
therefore, the speed (or other variables obtained by transforma-
tion) were not included in the final model. The lack of significant
correlation between speed variables and the dependent variable
suggests that speed may not be a crucial factor in predicting foot
flat. For maximum Toe Clearance 1, no significant Pearson coef-
ficient correlation at the 0.10 level was found for all original and
transformed independent variables. As per the proposed approach,
gait MR normalization is not necessary in this case.
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Table 1: Independent variables present in the multiple regression models without data transformation [6] and with data

transformation, for the gait variables. The adjusted (Adj) R squared and Akaike information criterion (AIC) are shown.

MR normalization MR normalization with data transformation

Gait

variable

Independent

variables

AIC Adj R square Independent variables AIC Adj R square

Temporal Variables

Cycle
duration

𝐴, 𝐻, 𝑉 -143.7 0.771 𝐴3, 𝐻3, 𝑙𝑛 (𝑉 ) -144.8 0.803

Cadence 𝐴, 𝐻, 𝑉 197.8 0.776 𝐴3, 𝐻3,
√
𝑉 193.3 0.802

Stance 𝑉 146.6 0.227 1
𝑉

148.1 0.238
Swing 𝑉 146.6 0.227 1

𝑉
148.1 0.238

Loading 𝑉 , 𝑆, 𝑊 154.3 0.363 𝑆,
√
𝑊 154.4 0.346

Foot Flat 𝐴, 𝑉 , 𝑊 190.0 0.662 1
𝐴
, 𝑊 2, 1

𝑉
183.7 0.717

Pushing 𝐴, 𝑉 , 𝑊 181.5 0.600 1
𝐴
, 𝑙𝑛 (𝑉 ) 178.5 0.624

Double
Support

𝑉 187.9 0.227 1
𝑉

186.3 0.308

Spatial Variables

Stride
Length

𝐴, 𝐻, 𝑉 -126.3 0.928 𝐴3, 𝐻3,
√
𝑉 -130.9 0.937

Peak Swing 𝑉 340.0 0.570 1
𝑉

337.7 0.598
Foot Clearance Variables

Strike Angle 𝐻, 𝑆, 𝑆𝐿 195.2 0.515 1
𝐴
,
√
𝐻, 𝑆, 1

𝑆𝐿
186.3 0.560

Lift-off-
Angle

𝐴, 𝑆𝐿 214.5 0.767 𝐴3, 𝑙𝑛 (𝑆𝐿) 211.9 0.783

MaxHC 𝐴, 𝐻, 𝑆 -147.3 0.449 𝐴3, 𝑆 -151.8 0.501
MaxTC1 𝑆𝐿 -170.2 0.006 - - -
MinTC 𝐴 -244.6 0.426

√
𝐴 -246.8 0.427

MaxTC2 𝐴, 𝑆, 𝑆𝐿 -180.9 0.734
√
𝐴, 𝑆, 𝑆𝐿 -181.0 0.735

MaxHC: Maximum Heel Clearance; MaxTC1: Maximum Toe Clearance 1; MinTC: Minimum Toe Clearance; MaxTC2: Maximum Toe
Clearance 2. The independent variables are age (A), height (H ), speed/velocity (V ), sex (S), weight (W ) and stride length (SL).

Although the sample size of 36 subjects in this study may limit
the accuracy of the regression models obtained in [6] the results
show that the multiple linear regression models developed are com-
parable in their ability to accurately predict outcomes to previously
published regression models, such as those presented in [3, 12]
. This suggests that the improvement observed by applying data
transformation may be observed in other samples as well.

3.2 Decorrelation through normalization

Table 2 presents the Spearman coefficients correlations between
physical characteristics, speed, and stride length with gait variables.
Normalization with MLR without data transformation of height and
weight resulted in a significant Spearman coefficient correlation
with peak swing and strike angle, respectively. However, the MLR
with transformation proved to be better not only in improving the
model fit but also in de-correlating physical characteristics from
gait variables.

The MR normalization approach effectively de-correlated data
from physical characteristics, speed, and stride length, reducing
the correlation coefficient from |𝜌 | < 0.87 to |𝜌 | < 0.46. Additionally,
MR normalization with data transformation further reduced the
correlation coefficient to |𝜌 | < 0.31. This suggests that using data

transformation during MR normalization is more effective in elim-
inating the influence of physical characteristics on gait variables,
resulting in a better model fit.

3.3 Gait Differences between Two groups of

Healthy Subjects

Table 3 summarizes the subject demographics and walking speeds
of the two groups randomly split. No statistically significant differ-
ences were found for weight and sex. It should be noted, however,
that the group was divided randomly while ensuring that there
was a statistically significant difference in age, weight, and speed
between the groups.

Table 4 provides a detailed comparison of gait variable values
between Group 1 and Group 2 in their raw form, as well as after
being normalized using MR normalization alone and MR normaliza-
tion with data transformation approaches. The statistical analysis
revealed significant differences in cycle duration, cadence, pushing,
stride length, lift-off angle, maximum heel, minimum toe clearance,
and maximum toe 2 between the two groups. These differences
can primarily be attributed to variations in age, height, and walk-
ing speed, as both groups were composed of healthy individuals.
However, after applying normalization using either approach, no
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Table 2: Spearman correlation coefficients (𝝆) for the data before (raw), after normalization using multiple linear regression

models without data transformations (NL), and after normalization using multiple linear regression models with data transfor-

mations (NLT)

Gait Variable Age Height Weight Sex Speed Stride length

RAW NL NLT RAW NL NLT RAW NL NLT RAW NL NLT RAW NL NLT RAW NL NLT

Cycle
Duration

-.39 -.01 .03 .49 .03 -.01 .37 .10 .05 .24 -.10 -.01 -.36 .04 .06 .08 .31 .28

Cadence .39 .01 -.04 -.50 -.04 .01 -.37 -.14 -.07 -.24 .11 .05 .35 -.02 -.03 -.08 -.29 -.25
Stance .16 .02 .02 -.05 .08 .07 .13 .16 .13 -.06 -.01 -.02 -.34 .08 .09 -.31 .07 .07
Swing -.16 -.05 -.03 .05 -.07 -.06 -.13 -.14 -.13 .06 .01 .03 .34 -.09 -.08 .31 -.07 -.05
Loading -.19 -.03 .10 .04 .13 -.31 -.33 .10 -.12 .30 .03 -.25 .26 -.02 -.06 .26 .07 .05
Foot Flat .49 .07 .01 -.23 -.09 -.08 .40 .00 .01 -.16 -.21 -.24 -.72 -.24 -.17 -.67 -.22 -.19
Pushing -.52 -.10 -.01 .24 .05 -.21 -.30 -.03 -.27 .09 .00 -.11 .74 .23 .09 .69 .19 .03
Double
Support

.15 .01 -.01 -.03 .07 .07 .18 .08 .09 -.13 -.16 -.16 -.41 .07 .08 -.35 .06 .06

Stride Length -.58 -.12 -.02 .61 .10 .00 .12 .10 .05 .18 -.06 -.07 .87 .13 .05 – – –
Peak Swing -.24 .08 .00 .04 -.33 -.25 -.20 -.29 -.18 .09 .03 .14 .70 .00 .00 .56 -.04 -.07
Strike Angle -.48 -.26 .02 .30 -.03 -.04 -.27 -.46 -.25 .37 -.06 -.12 .49 -.04 -.01 .61 .05 .06
Lift-Off
Angle

.75 .05 .05 -.51 -.17 -.14 .05 -.11 -.15 -.26 .12 .23 -.73 .15 .12 -.85 .00 -.04

MaxHC -.56 -.08 -.03 .56 .07 .19 .25 .01 .08 .54 -.02 -.04 .22 .13 .13 .44 .15 .16
MaxTC1 .17 .00 – -.07 .09 – .10 .12 – -.01 .06 – -.23 -.02 – -.16 .09 –
MinTC .61 -.08 -.13 -.36 -.06 -.02 .08 -.05 -.05 -.27 -.18 -.16 -.39 -.10 -.08 -.46 .00 .03
MaxTC2 -.72 .03 -.02 .56 -.04 -.02 -.05 -.20 -.10 .45 -.02 -.02 .53 -.09 -.12 .73 -.02 -.02

Bold values indicate Spearman correlation coefficients significant at the 0.05 level (2- tailed).

Table 3: Comparison of Physical Characteristics and walking Speed Measures between Two Randomly Split Groups

Group 1 Group 2

Median [Minimum, Maximum] Median [Minimum, Maximum] p-value

Age (years) 70.5 [26,35] 34.5 [20, 77] 0.0008*
Height (m) 1.63 [1.53, 1.78] 1.71 [1.53, 1.89] 0.0128*
Weight (kg) 66.9 [48.9, 94.2] 70.25 [53.0, 86.5] 0.6923*
Speed (m/s) 1.24 [0.88, 1.66] 1.38 [1.17, 1.79] 0.0142*
Male (%) 50% 22.3% 0.0698+

* Mann-Whitney U test. + Fisher Exact T Test

significant differences were found except for stride length. This
finding corroborates previous studies, such as [2, 3], which have
demonstrated that normalizing gait variables through linear regres-
sion models can enhance the ability to compare individuals with
different physical characteristics and walking speeds. Furthermore,
while there was a statistical difference in stride length after MR
normalization, no such difference was observed after MR normal-
ization with data transformation, which can be attributed to the
high correlation between stride length and age, height, and walking
speed.

4 CONCLUSION

The study’s findings demonstrate that using data transformations
during MR normalization can effectively improve the de-correlation
of spatial, temporal, and foot clearance gait variables from physical

properties, walking speed, and stride length when compared to MR
normalization alone. This improvement enhances the capability
to compare individuals with different physical characteristics and
walking speeds, thereby improving the accuracy of conclusions
drawn about their gait patterns. It is important to acknowledge that
this study is limited by the size of the dataset, potentially hindering
its ability to comprehensively capture the variability in gait and
physical characteristics within the population. In order to validate
and generalize the findings of this study, it would be highly valuable
to incorporate a larger and more diverse dataset in future research.

Previous studies, such as [2, 7], have highlighted the potential
of using machine learning techniques for gait classification based
on MR normalized gait variables. This approach has shown higher
accuracy compared to using raw data. As a potential area for future
research, exploring the impact of different data transformations on
MR normalization and assessing their potential for improving the
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Table 4: Comparison between the values of gait variables in Group 1 and Group 2. Mann-Whitney U test p-values are shown for

raw gait data, the MR normalized gait (NL) and MR normalized gait with data transformation.

Gait Variable p-value Gait Variable p-value
RAW NL NLT RAW NL NLT

Cycle Duration 0.0279 0.0738 0.1101 Stride Length 0.0003 0.0218 0.0967
Cadence 0.0279 0.0517 0.1032 Peak Swing 0.0905 0.6693 1.0
Stance 0.2892 0.9621 0.9874 Strike Angle 0.0689 1.0 0.7397
Swing 0.2892 0.9118 1.0 Lift-Off Angle 0.0001 0.3038 0.3843
Loading 0.716 1.0 0.1892 MaxHC 0.0099 0.1329 0.1592
Foot Flat 0.0689 0.5583 0.4572 MaxTC1 0.6239 0.8868 0.8371
Pushing 0.0498 0.937 0.8868 MinTC 0.0218 0.7397 0.8371
Double Support 0.5166 0.937 0.8868 MaxTC2 0.0005 0.5373 0.4383

performance of machine learning-based gait classification models
could be a valuable endeavor.

Overall, the findings of this study provide valuable insights into
the potential use of MLR models for gait normalization in both
clinical practice and research settings. By employing MR normal-
ization with data transformation, researchers and clinicians can
obtain more accurate and reliable information about gait patterns,
which can aid in the diagnosis and treatment of various gait-related
conditions. Furthermore, the findings highlight the potential for
MLR models to be used in combination with machine learning tech-
niques to further enhance the accuracy of gait classification and
monitoring.
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