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ABSTRACT
Covert channels enable information leakage between security do-
mains that should be isolated by observing execution differences in
shared hardware. These channels can appear in any stateful shared
resource, including caches, predictors, and accelerators. Previous
works have identified many vulnerable components, demonstrating
and defending against attacks via reverse engineering. However,
this approach requires much human effort and reasoning. With
the Cambrian explosion of specialized hardware, it is becoming
increasingly difficult to identify all vulnerabilities manually.

To tackle this challenge, we propose AutoCC, amethodology that
leverages formal property verification (FPV) to automatically dis-
cover covert channels in hardware that is shared between processes.
AutoCC operates at the register-transfer level (RTL) to exhaustively
examine any machine state left by a process after a context switch
that creates an execution difference. Upon finding such a differ-
ence, AutoCC provides a precise execution trace showing how the
information was encoded into the machine state and recovered.

Leveraging AutoCC’s flow to generate FPV testbenches that
apply our methodology, we evaluated it on four open-source hard-
ware projects, including two RISC-V cores and two accelerators.
Without hand-written code or directed tests, AutoCC uncovered
known covert channels (within minutes instead of many hours of
test-driven emulations) and unknown ones. Although AutoCC is
primarily intended to find covert channels, our evaluation has also
found RTL bugs, demonstrating that AutoCC is an effective tool to
test both the security and reliability of hardware designs.

CCS CONCEPTS
• Security and privacy→ Side-channel analysis and counter-
measures; Tamper-proof and tamper-resistant designs; Information
flow control; • Hardware→ Best practices for EDA.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614254

Figure 1: A microarchitectural covert channel. The Trojan
in the victim process modifies—via permitted operations—
microarchitectural state to encode a secret. The spy process
observes this modification, directly or via a timing difference,
to infer the secret. Sec. 2.1 exemplifies using a covert channel.
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1 INTRODUCTION
The end of Moore’s law has given rise to complex and hetero-
geneous System-on-Chip (SoC) designs, which are composed of
diverse hardware blocks and intricate software systems [5, 10, 18,
22, 40, 54, 57, 60, 62]. Ensuring the security of these systems is
becoming increasingly challenging due to the sheer number of
hardware modules and their interactions [4, 47, 49]. In particular,
microarchitectural covert channels, which exploit hardware state
hidden by the instruction set architecture (ISA)[64], pose a signifi-
cant threat to system security, allowing unauthorized information
flow across security boundaries[33].

Uncovering covert channels in heterogeneous SoCs during sim-
ulation and emulation-based testing is akin to finding a needle in a
haystack, requiring much engineering effort, time, and cleverness
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to create tests that exercise all possible vulnerabilities. Moreover,
upon empirically observing a channel, it is difficult to find the root
cause, as the state that leaks information is often not directly observ-
able [64]. Even when this cause is found, verifying the effectiveness
of RTL fixes is challenging, as design changes may alter the execu-
tion that previously exercised the issue.

Formal property verification (FPV) is a promising alternative to
exhaustively and precisely find covert channels without relying on
tests. However, FPV also presents several challenges, such as a steep
learning curve, the difficulty of formalizing the security problem to
find the desired behavior as property counterexamples (CEXs), and
the exponential growth of FPV tool runtime with the increase in
hardware state size.

Our approach: To tackle these challenges, we present AutoCC, a
novel methodology that frames the problem of finding covert chan-
nels in time-shared hardware (as described in Fig. 1) into an FPV
testbench (FT). We also introduce an automated flow that generates
FTs implementing our methodology by simply providing the path
to an RTL module and a target FPV tool. This systematic approach
enables RTL designers to explore potential data leaks (between
processes that time-multiplex the usage of a hardware IP block)
without needing to reason about which states may leak. Ourmodu-
larmethodology makes it suitable for large designs—circumventing
the exponential state growth. The automatic generation of FTs
makes our methodology accessible to RTL designers without prior
knowledge of formal methods.

The security of a hardware system depends on the security of
each component; AutoCC enables designers to more efficiently and
effectively identify and address covert channels in heterogeneous
SoC designs, enhancing overall system security.

Our main technical contributions are:
• A modular FPV methodology that exhaustively searches
for execution traces within a victim process that lead to
execution differences observable to a spy process.
• An automated procedure to generate an FPV testbench that
applies the above methodology without requiring any up-
front user input or RTL details.
• Uncovering covert channels and hardware bugs in the ma-
ture open-source RISC-V CVA6 core and MAPLE accelerator.

We evaluate and demonstrate that AutoCC’s methodology:
• Exercises previously known and new hardware issues in
minutes (as opposed to hours of stress-test simulation).
• Finds the root cause of a CEX with little engineering effort
since the length of the execution trace is minimal.
• Uncovers experimentally viable covert channels that we can
validate in system-level RTL simulation.
• Validates that the RTL fixes to address covert channels are
effective since they eliminate the CEXs.

2 BACKGROUND AND PRIORWORK
Process isolation is fundamental to system security and the pri-
mary mechanism by which information is confined to appropriate
domains. A covert channel is an information flow that uses a mech-
anism not intended for information transfer [33]; it enables infor-
mation leakage across security boundaries of the operating system
(OS) and between domains that should be isolated— violating the

system’s security policy. For example, a spy process may leverage
a covert channel to extract a secret from a victim process.

Covert channels can be categorized based on the source of their
data leakage. For example, physical channels rely on measurable
changes in the electromagnetic field or power draw to extract infor-
mation [2, 61]. Microarchitectural channels exploit hardware states
invisible to the instruction set architecture (ISA) to enable unau-
thorized information flow [17, 64]. Our work focuses on the latter;
for the rest of the paper, when we say covert channels, we refer
specifically to the microarchitectural ones.

2.1 Covert Channels
Covert channels have been demonstrated via the L1-D [23] and
L1-I caches [1], the last-level cache (LLC) [28, 37], the TLB [20, 25],
the branch predictor [1], and the interconnect [48, 66]. The Spectre
attack [30] famously demonstrated the practicality of covert chan-
nels by combining them with speculation to a so-called transient
execution attack. Similar attacks were later presented by exploiting
additional covert channels [51, 59].

Motivating Example: Let us assume a setup as shown in Fig. 1
to motivate the threat scenario. The victim and the spy are two
applications running concurrently on shared hardware. They are
(supposedly) isolated by a supervisor using an established mecha-
nism for memory protection. However, this security boundary can
be bypassed using a covert channel, for example, by a prime-and-
probe attack on the L1 data cache: the spy first primes the data cache
by accessing each element of a data array with the size of the data
cache (prime buffer), filling the L1 data cache with it. During the vic-
tim’s execution time slice, the embedded (malicious or unwitting)
Trojan encodes a secret S into the microarchitectural state, in this
example, by evicting S cache lines with its own data. Finally, the
spy again accesses its entire prime buffer, measuring its execution
time. Doing so, it observes a latency that linearly depends on the
number of cache misses, through which it can infer the number of
cache lines that the Trojan evicted and thus the victim’s secret S.

Resource Sharing: A microarchitectural covert channel is pos-
sible when the spy and the victim processes share a resource. Ex-
ploitable resources are those holding state that depends on execu-
tion history, and that can impact the timing or behavior of future
instructions. This includes the hardware units mentioned above
and also subtle ones like arbiters, buffers, and FSMs. Regarding how
the processes share the resource over time, we distinguish between
hardware threads simultaneously sharing a resource (e.g., a pipeline
or a shared cache) and software threads time-sharing a resource (e.g.,
time-multiplexing a core or an accelerator) [17]. Our threat model
(detailed in Sec. 3.1) is based on time-shared hardware because (a) it
is common in specialized hardware, and (b) a security domain may
already prefer not simultaneously sharing capacity- or bandwidth-
limited resources (e.g., instruction cache, TLBs, predictors, etc.) to
avoid contention-derived information leakage.

Spy’s Observation Model: For data to leak from the victim to
the spy process, the spy must be able to observe some fraction of the
victim’s execution. Timing channels result from observable timing
differences in the spy’s execution originating from microarchitec-
tural states whose value depends on the victim’s secret [17]. Other
channels might infer the contents of these states directly based
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on the outcomes of executing unauthorized operations. The latter
are frequently regarded as hardware bugs in security literature, as
unauthorized access attempts should not leave traces dependent on
the requested data. As Sec. 3 explains, AutoCC detects differences at
RTL module interfaces, and thus, its observation model is applicable
to all microarchitectural channels.

Victim’s Intent: Regarding the intention of the execution trace
within the victim process that enabled the information leakage,
the literature considers side channels as the subset of the covert
channels where the victim process leaks inadvertently, while the
rest rely on a malicious function—a Trojan—to use the secret in
a specific way that actively leaks information across the security
boundary. Our methodology is agnostic to intent, as it explores
every possible execution that enables the covert channel.

Protections: The literature in security offers two alternative pro-
tections against timing channels: partitioning of hardware resources
and constant-time implementations of cryptography software [11].
In a simultaneous multi-threading processor, hardware partitioning
spatially divides shared resources like caches or prediction tables.
In a time-shared processor, shared resources are temporally parti-
tioned via a flush [64]—this is the mechanism we evaluate in this
work. Constant-time programming does not necessarily mean that
the execution time is deterministic, but that it does not depend on
the secret data [19]. This programming style avoids branches and
array indexing based on secret data. This is done so that benevolent
software does not inadvertently leak information (a side channel).
Our methodology, by default, does not restrict the type of instruc-
tions that can be executed since we focus on finding covert channels
to be closed in hardware. However, a user can also constrain the
FPV environment generated by AutoCC to only explore executions
that are allowed under constant-time programming. Such an envi-
ronment would verify that a hardware design does not leak data
while executing constant-time software. Sec. 5 further discusses the
tradeoffs of protecting against covert channels in hardware versus
restricting the software.

Detection: Information flow security in hardware has been ac-
tively explored since the early 2010s [3, 42, 52, 53, 71]. While these
approaches focus on monitoring and controlling the flow of sen-
sitive data through hardware components to mitigate security
threats, they do so via RTL simulation. As such, they are as ef-
fective as the test cases provided. Although constrained-random
testing and fuzzing can be used to generate a wide range of test
cases [9, 26, 29, 32, 58], they are not as exhaustive as formal meth-
ods. Subtle timing differences can be exploited to extract secrets—if
targeted efficiently, even a binary channel can leak a 256-bit AES
key in under a second for a typical context switch frequency of
1kHz [64]. Thus, formal methods are key to finding every channel.

2.2 Formal Methods for Hardware Verification
The first works to ensure RTL correctness through formal verifica-
tion utilized model checking with SAT solvers and binary decision
diagrams [6, 41, 50]. For a given design under test (DUT), a model
checker generates a state space of all possible executions of the
DUT, given its inputs and the specified assumptions. Assumptions
constrain the state space exploration by preventing some behaviors,
while assertions check that properties hold on all the explored paths.

FPV backend tools use a variety of solver engines [8, 65] to search
for property violations (counterexamples) exhaustively. Bounded
Model Checking (BMC) is the method of choice for many solver
engines today. In BMC, correctness properties are unwound to a
bounded number of transitions 𝑘 , reducing the problem of model
checking to an instance of SAT. For AutoCC, this means proving
the property for all 𝑘-cycle executions of the DUT—every success-
ful proof increments 𝑘 . What does this mean for completeness? A
bounded proof of a property for 𝑘 cycles means that the property
holds for executions of less than or equal to 𝑘 cycles—longer execu-
tions may still result in a property violation. To prove the property
for unbounded executions, 𝑘 must reach a completeness thresh-
old [55]. A naive threshold is the number of states in the model;
a tighter one is the shortest path between the two states furthest
apart in the model [13]. In practice, reaching this completeness
threshold is not always possible; the checker may run out of time
or memory, or the threshold itself may be hard to compute.

Prior work has leveraged FPV for different purposes: RTLCheck
verifies RTL implementations of CPUs against their memory consis-
tency models [39]; ILA generates a Verilog model of the design from
its functional specification and compares it against the RTL imple-
mentation [24]; and AutoSVA checks the liveness properties of RTL
module interactions [47]. Liveness properties specify that “some-
thing good will happen,” e.g., a request is eventually acknowledged,
while safety properties specify that “nothing bad will happen,” e.g.,
a response must have had a request. In the context of covert chan-
nels, we are interested in safety properties that detect data leakage
across processes. Sec. 3 elaborates on how AutoCC frames this
detection as an FPV problem.

Formal methods have also been used to detect security vulnera-
bilities. InSpectre [21] creates formal models of processors to detect
Spectre-like attacks that combine speculative execution and a covert
channel. UPEC [14] uses FPV to detect memory leakages via side
effects of non-permitted operations. However, UPEC is limited to
uncovering memory leakages (e.g., through stale microarchitectural
state) and does not consider leakage due to execution time.

To extend the scope of prior work based on formal methods,
AutoCC uses FPV on hardware RTL to automatically detect mi-
croarchitectural covert channels originating from states whose
value depends on a previous execution and impacts the timing of
future instructions. AutoCC complements empirical covert channel
measurement frameworks such as Channel Bench [16], which show
the (non-)existence of some specific channels, but not all.

3 THE AUTOCC APPROACH
This section first presents the threat model we tackle in this paper,
i.e., time-multiplexed executions of processes on shared hardware.
Sec. 3.2 then describes how we formalize that threat model (into
a problem that FPV engines can solve) in order to discover covert
channels between these processes automatically. Sec. 3.3 explains
how to apply this methodology to an RTL project using our auto-
mated flow, which generates the FPV testbench and tool bindings.
Sec. 3.4 proposes a viable path for applying AutoCC to large projects
via modularity. Finally, Sec. 3.5 introduces two strategies that lever-
age AutoCC to assist the correct design of temporal protections
against covert channels.
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3.1 The AutoCC Threat Model
The AutoCC threat model assumes two processes, an attacker and a
victim, executing on time-shared hardware and separated via a con-
text switch enforced by the operating system (OS). Both processes
are untrusted, and the victim runs in a controlled environment
where the OS restricts with whom the victim may communicate.

The attacker process possesses no special privileges and executes
in a security domain of its own. In theory, no hardware state should
leak data from the victim to the attacker since the processes are
located in different security domains. However, an attacker could
use a covert channel to extract information illegally. Its primary
asset is a Trojan, i.e., a piece of code in the victim process that
enables the data leak (as depicted in Fig. 1).

As a tool for hardware designers, AutoCC’s emphasis is on sen-
sitivity. That is to say, its goal is to expose the full set of possible
covert channels to the designers, who then decide the course of
action (Sec. 5 discusses decision tradeoffs). As such, we place no
constraint on how the secret data is encoded into the state of the
compromised hardware, i.e., the Trojan can be a malicious hidden
function of the victim process or innocent code that leaks data in-
advertently as a side effect of a legitimate operation. Aiming to find
every covert channel—regardless of the intent of the code enabling
it—allows us to prove stronger correctness assertions, i.e., hardware
free of covert channels must also be free of side channels.

We further note that this threat model is not restricted to CPUs.
Accelerators and other specialized hardware blocks are often shared
between processes in a time-multiplexed manner, and they are also
susceptible to covert channels. The operations available to these
specialized hardware blocks can be considered as their ISA [70]. For
the rest of the paper, design under test (DUT) refers to the top-level
module we are testing, regardless of its level of specialization.

3.2 Formalizing the Threat Model for FPV
Having defined the threat model, we now explain how we formalize
it as a problem for FPV by pushing the FPV tool closer and closer
to modeling the scenario described above.
For our formalization, we consider the following definitions:

Definition 1 (State). The state of a DUT is the set of all flip-flops,
registers, and memory cells contained within that hardware module
and its instantiated submodules.

The DUT defines our universe of discourse; any RTL outside of
the DUT is not considered. This distinction is especially relevant
for our discussion on modularity in Sec. 3.4.

Definition 2 (Architectural State). The architectural state (𝑎𝑟𝑐ℎ) of
a DUT is the subset of the state that is readable via ISA instructions.

Definition 3 (Microarchitectural State). The microarchitectural
state (𝜇𝑎𝑟𝑐ℎ) is the subset of the state that is not part of 𝑎𝑟𝑐ℎ (not
directly readable via ISA instructions).

A process executing on a DUT will naturally alter the values of
both 𝑎𝑟𝑐ℎ and 𝜇𝑎𝑟𝑐ℎ. Accordingly, the isolation of these states (to
the processes they belong to) is a responsibility shared by software
and hardware. A well-implemented OS (1) guards the 𝑎𝑟𝑐ℎ that
is only accessible via privileged mode and (2) swaps the values
of 𝑎𝑟𝑐ℎ before another process begins. Well-designed and secure

1 2 3
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Figure 2: Overview of the AutoCC methodology. The victim
processes 𝑃𝛼 and 𝑃𝛽 are free to take on any legal execution for
an arbitrary number of cycles; the inputs to both processes
are symbolic. At the end of this phase 1○, both 𝑎𝑟𝑐ℎ and 𝜇𝑎𝑟𝑐ℎ

of 𝛼 and 𝛽 may differ. The context switch then occurs, and
once it completes at 2○, the 𝑎𝑟𝑐ℎ of both 𝛼 and 𝛽 are the same,
but differences in 𝜇𝑎𝑟𝑐ℎ may remain. (See Fig. 3 for details of
the context switch.) We assert our 𝑎𝑟𝑐ℎ condition once 𝑃𝑠𝑝𝑦
begins execution 3○. Holding inputs to both universes equal,
AutoCC checks whether differences in 𝜇𝑎𝑟𝑐ℎ after the context
switch cause observable differences 𝑃𝑠𝑝𝑦 execution.

hardware will either partition or flush any 𝜇𝑎𝑟𝑐ℎ that could leak
data from one process to another. In these terms, AutoCC assumes
the correctness of the OS and checks the isolation of 𝜇𝑎𝑟𝑐ℎ.

Data Leakage: Two conditions must be met for data leakage to
occur. First, the values of 𝜇𝑎𝑟𝑐ℎ at the beginning of the spy process
are determined from the behavior of the victim process. That is,
based on different values of a victim’s data, there exist at least two
executions of the victim process that lead to different values of
𝜇𝑎𝑟𝑐ℎ. Second, there exist at least two executions of the same spy
program starting from the same values of 𝑎𝑟𝑐ℎ that lead to different
𝑎𝑟𝑐ℎ, solely because of that difference in 𝜇𝑎𝑟𝑐ℎ. The goal is to set up
an environment where the FPV tool explores any possible execution
of victim and spy processes where these conditions are met.

AutoCC achieves this by setting up two instances of the DUT—
universes 𝛼 and 𝛽—as follows (see also Fig. 2): Both universes start
from an identical reset state; Each universe has its own set of input
and output signals; Because each set of input signals is driven
separately by the FPV tool, each universe can take on any legal
execution. (Sec. 3.4 elaborates on what makes an execution legal.)

Fig. 2 also defines three events that occur during the execution
of the DUT. The first event is the end of the victim process (and
the beginning of the context switch), where 𝛼 and 𝛽 can be in any
reachable state after an arbitrary number of cycles. These states
represent all possible executions of the victim process. Although
the start of the context switch may be staggered, the end of it
serves as a synchronization point between 𝛼 and 𝛽 , forcing the two
universes (with hitherto different executions) into convergence.
To do so, the context switch must ensure that upon completion
(1) 𝑎𝑟𝑐ℎ𝛼 and 𝑎𝑟𝑐ℎ𝛽 are identical, and (2) the microarchitectural
flush mechanism has been executed if it exists. With these two
conditions met, 𝛼 and 𝛽 are assumed to now both be executing
the same process, namely the spy process that was just switched
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in. The inputs for both universes are forced equal to ensure that
any observed divergence is only the result of different values of
𝜇𝑎𝑟𝑐ℎ𝛼 and 𝜇𝑎𝑟𝑐ℎ𝛽 . In this post-switch world, we assert that on
every cycle, 𝑎𝑟𝑐ℎ𝛼 and 𝑎𝑟𝑐ℎ𝛽 must be equal.

What would it mean if this assertion were violated? A coun-
terexample (CEX) to this assertion means that on some cycle fol-
lowing the switch, 𝛼 and 𝛽 diverged in an observable way—at the
resolution of a cycle—and that this discrepancy was caused by their
differing executions before the switch. That is to say, there is a
mechanism by which some code in the victim process can affect
the execution of the spy process, i.e., a covert channel. Analyz-
ing the CEX and determining the root of this divergence reveals
how the channel is operated; we showcase how this encoding and
observation occurs in Sec. 4.

Observation Model: In our threat model, the spy is a software
program, so for a covert channel to be exploitable, it must be observ-
able by software. In practical terms, this implies that the program’s
visible state is impacted, which is why Fig. 2 displays an assertion
on 𝑎𝑟𝑐ℎ. However, given the variety of modern hardware designs,
determining which states belong to 𝑎𝑟𝑐ℎ can be unclear, and manu-
ally specifying all the relevant signals becomes tedious. We pose
that as long as there exist ISA instructions that allow a process
to expose any subset of 𝑎𝑟𝑐ℎ to the DUT output interface, we can
assert an equivalent correctness condition just on the DUT outputs
of 𝛼 and 𝛽 without reasoning about their internal signals. Any dif-
ference between 𝑎𝑟𝑐ℎ𝛼 and 𝑎𝑟𝑐ℎ𝛽 on cycle 𝑛 can, by a sequence of
these instructions, be externalized by the FPV tool as a difference in
outputs on cycle 𝑛 +𝑘 for some bounded 𝑘 . This allows the AutoCC
tool to generate an FPV testbench (FT) without user input beyond
providing the path to the DUT. Sec. 3.3 elaborates on how the FT
is generated and how the user might need to manually specify the
subset of 𝑎𝑟𝑐ℎ expected to be handled by the OS.

Modeling the OS: Our threat model assumes that the OS is
trusted and correctly implements the context switch. Rather than
reasoning about the sequence of instructions that the OS uses to
switch between processes, we assume that its goal is achieved by
the end of it. This is represented in Fig. 3 by showing that 𝑎𝑟𝑐ℎ
differences between 𝛼 and 𝛽 and the symbolic 𝑎𝑟𝑐ℎ of the spy (y-
axis) are resolved by the end of the context switch. Although 𝛼 and
𝛽 are in different symbolic 𝑎𝑟𝑐ℎ and 𝜇𝑎𝑟𝑐ℎ during the execution of
the victim process, because we consider that the spy process begins
when the 𝑎𝑟𝑐ℎ is the same in both universes, the FPV tool is only
interested in exploring executions of the victim process that lead
to this condition. The victim process and the OS are only separated
for conceptual purposes, as hinted in Fig. 2 with the dashed line.
In practice, there is no bright line between the execution of the
victim process and that of the OS; we are agnostic to the timing and
specific instruction sequence that lead 𝛼 and 𝛽 to the same 𝑎𝑟𝑐ℎ.
This may result in CEXs that present covert channels that are not
exploitable under a specific OS implementation, but we argue that
it is useful for a hardware designer to be aware of them. Moreover,
in FPV, it is best practice not to overconstrain the model, as this
can miss exploring important behavior.

Measuring Context Switch Latency: For all its advantages,
taking the end of the flush as the synchronization point between
𝛼 and 𝛽 admits one blind spot, as it assumes that the flushes in

Figure 3: AutoCC model of the context switch event. Instead
of enforcing a discrete jump to a sequence of OS instructions,
we simply require that the victim processes in 𝛼 and 𝛽 even-
tually converge to the same 𝑎𝑟𝑐ℎ (indicated here by 𝑃𝛼 and
𝑃𝛽 converging on the 𝑦-axis). This is then the state of the in-
coming spy process. Since the microarchitectural flush is the
last thing that executes before 𝑃𝑠𝑝𝑦 begins, this convergence
must occur by the start of the flush. Note that the flush is
free to start on different cycles in 𝛼 and 𝛽; it is only required
they complete together.

both universes finish on the same cycle. This precludes any CEXs
originating from a difference in the latencies of the flush event itself.
If a Trojan can modulate the flush latency and a spy can observe
the difference, this latency may enable a covert channel. Nonethe-
less, AutoCC can further verify the DUT against this behavior by
considering the start of the flush as the cycle on which 𝛼 and 𝛽

must converge. The flush event may then be considered part of the
spy process, and our existing assertions will generate a CEX for
any differences between the flush event in 𝛼 and 𝛽 .

3.3 FPV Testbench (FT) Generation Flow
To make AutoCC accessible to hardware designers, we have devel-
oped a tool flow that requires minimal effort to set up. It creates—in
under a second—a working FPV testbench (FT) from the path to the
DUT and the choice of target FPV backend (Sec. 3.3.3). This FT has
three major components: (1) a wrapper containing two instances of
the DUT, (2) a property file that defines the properties to be checked,
and (3) a backend-specific command file to invoke the FPV engines
with the appropriate parameters. We implemented this FT genera-
tion flow in Python, leveraging the AutoSVA framework [44, 47] to
parse the DUT interface.

3.3.1 Generating the DUT Wrapper.
Based on the top-level RTL module we set as the DUT (e.g., core,
accelerators, or subset of them), the flow generates an FT in 3 steps.

First, the flow parses the interface signals of the DUT to create
the wrapper’s interface. The input and output signals of the wrapper
are two sets of the DUT signals, each with a unique suffix (e.g., 𝛼
and 𝛽), except for the signals we do not want to replicate, such as
the clock and reset signals.

Second, the flow instantiates the DUT twice—as submodules of
the wrapper—with different names, i.e., 𝑢𝛼 and 𝑢𝛽 .
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Third, it connects each set of the independent, duplicated in-
terface signals to the corresponding submodule and the common,
non-duplicated signals to both submodules. If users want other
interface signals of the DUT not to be replicated (e.g., a debug in-
terface), they can specify them via a Verilog comment (//AutoCC
Common) above each signal. This is equivalent to assuming that an
input signal is equal throughout the entire execution, which may
be useful to deal with illegal inputs, as we elaborate in Sec. 3.4.
Making a signal common to 𝛼 and 𝛽 helps improve the FPV tool
runtime at the cost of not searching the space state derived from
that signal being different in both universes.

3.3.2 Generating the AutoCC Property file.

localparam THRESHOLD = 4;

// eq_cnt counts the number of consecutive cycles the transfer

condition holds since the flush finished

reg [$clog2(THRESHOLD):0] eq_cnt;

wire transfer_cond;

reg spy_mode; //Set when the eq_cnt reaches THRESHOLD

wire spy_starts = transfer_cond && eq_cnt >= THRESHOLD;

wire flush_done = 'x; //Set free by default (anytime) USER may set

the conditions that indicate the flush has finished for both

universes.

always_ff @(posedge clk)

if (reset) begin

spy_mode <= '0;

eq_cnt <= '0;

end else begin

spy_mode <= spy_starts || spy_mode;

eq_cnt <= (flush_done || eq_cnt >0) &&

transfer_cond ? eq_cnt + 1 : '0;

end

// There is an assumption per input signal to the DUT

wire input1_eq = ua.input1 == ub.input1;

assume property (spy_mode |-> input1_eq);

// There is an assertion per output signal of the DUT

wire output1_eq = ua.output1 == ub.output1;

assert property (spy_mode |-> output1_eq);

//If some output signals are grouped by a transaction with a valid

signal , then the assertion for the payload has the valid

signal as a precondition

wire out_transact_valid_eq = ua.out_transact.valid == ub.

out_transact.valid;

assert property (spy_mode |-> out_transact_valid_eq);

wire out_transact_pld_eq = !ua.out_transact.valid || ua.

out_transact.payload ==ub.out_transact.payload;

assert property (spy_mode |-> out_transact_pld_eq);

wire architectural_state_eq = 1'b1; // The USER includes

conditions here based on the architectural state of the DUT

// Conditions to be met before starting spy_mode

assign transfer_cond = architectural_state_eq && input_signal_eq

&& output_signal_eq && out_transact_valid_eq &&

out_transact_pld_eq;

Listing 1: Property file created generated by the AutoCC tool.
It uses the signal that indicates that 𝜇𝑎𝑟𝑐ℎ flush has finished
in both universes, to start the equality condition that defines
the transfer period. After the transfer period is done, the
spy process begins, i,e, inputs are assumed equal in both
universes, and outputs are checked.

Listing 1 shows the template of the property file generated by Au-
toCC. Users are not required to provide a priori information about
the internals of the DUT, as the properties generated solely use in-
terface signals. Properties are written in SystemVerilog Assertions
language (SVA) [27]. Assumptions are generated for DUT inputs
and assertions for DUT outputs.

Transactions: When a valid signal governs a group of signals,
we name it a transaction. We use this valid signal as a precondition
for the properties reasoning about the payload of the transaction.
This means that we do not check whether the payload of an outgo-
ing transaction (from the DUT perspective) changes values while
the transaction is not valid. However, if the RTL module to which
the DUT is outputting wrongly uses an invalid payload, this would
be detected by AutoCC when applied to this incorrect module since
the input payloads are only assumed equal when the input transac-
tion is valid. This careful management of interface transactions is
crucial when verifying a large design via modularity (Sec. 3.4). We
reuse AutoSVA’s method to identify transactions automatically [47].

Defining the Architecture and Flush Conditions: By default,
AutoCC does not identify the 𝜇𝑎𝑟𝑐ℎ flush event or the set of 𝑎𝑟𝑐ℎ
signals. Users can modify these signals depending on the DUT to
determine when a flush is considered finished and which state ele-
ments belong to 𝑎𝑟𝑐ℎ. As we showcase in the evaluation section, we
recommend adding states to the architectural_state_eq con-
dition as CEXs are found to avoid overconstraining in advance.
However, states that are clearly architectural because the OS man-
ages them, e.g., the register file, may be added upfront.

Flush Completion: The flush event can be tricky to nail down
as some DUTs do not have a well-defined signal for when the
flush completes, and some do not have a flush operation at all. For
instance, certain accelerators are designed under the assumption
that when a new process begins utilizing the accelerator, there are
no ongoing operations within its pipeline. That is to say, each stage
of the pipeline must be idle when a new process begins; for these
DUTs, flush completion can simply be defined as an idle pipeline.

Transfer Period: This concept is introduced to ease the defini-
tion of the flush completion on DUTs that have neither a flush nor
an idle signal. The condition defining the transfer period is that for
some cycles after the flush has finished, both 𝑎𝑟𝑐ℎ and the interface
signals are identical for 𝛼 and 𝛽 , giving time for the pipeline stages
in both universes to converge. As shown in Listing 1, the length of
this transfer period is configurable via the THRESHOLD parameter.
In theory, a transfer period of 𝑛 cycles would eliminate CEXs that
could only exercise within the first 𝑛 cycles of the new process. In
practice, as long as 𝑛 remains smaller than the length of the OS
operations between the flush completion and the transference of
control to the spy process, these CEXs would not correspond to
exploitable covert channels. As a heuristic, the length of the transfer
period may be set to the longest path through the pipeline.

Spy Mode: The properties in Listing 1 only apply when the spy
process is executing and the transfer period has elapsed (spy_mode
is asserted). Until then, the inputs to both universes are free to be
different, and the outputs are not checked.

3.3.3 AutoCC’s FPV Backend Support.
The adoption of formal methods is frequently hindered by the ac-
cess to FPV engines, as the need for training to use them effectively.
To ease their usage, our tool also generates the backend-specific
commands and binding files required to use FPV engines—based on
their documentation [8, 65]. We have tested AutoCC with two dif-
ferent backends: JasperGold [7] and YosysHQ’s SBY [65, 67]. Once
the properties and bindings are generated, our tool invokes the
backend to start the property-checking process. Our methodology
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only uses single-cycle properties, which are efficient for FPV en-
gines to verify and are supported by the open-source part of SBY.
Thus, our tool is potentially amenable to an end-to-end open-source
tool flow via SBY when applied to Verilog projects.

3.4 Reducing the State Space via Modularity
Covert channels can potentially be exploited from any state that
a victim touches. Thus, AutoCC should be applied to all the RTL
modules impacted by that software process. Proving the assertions
of Listing 1—or achieving a deep-enough bounded proof—is often
infeasible for SoC designs of realistic size.

The space state exploration in FPV (and thus backend tool run-
time) grows exponentially with the RTL size and the search depth
(time in cycles). As a baseline mitigation, we adopt the standard
technique of minimizing the size of parameterized modules, such as
TLBs, caches, etc [55]. Provided that the downsized module is still
able to exercise all the relevant features, this technique would not
affect the coverage of evaluation. However, this technique is often
not enough to achieve a sufficiently deep bounded proof to provide
confidence in the correctness of the design. To that end, we adopt
two techniques: blackboxing and modularity. (Since blackboxing is
a form of modularity, we discuss them together.)

The implications of both techniques are very similar, but they
differ in the location of the abstracted module. Blackboxing means
that a submodule of the DUT is abstracted away from the verifi-
cation engine, while modularity means that we create a new FT
where the DUT is a submodule of the former top module. In prac-
tice, blackboxing can be thought of as if the submodule was moved
outside the DUT while the wires that connect it to the DUT are
left intact. These wires now become part of the DUT interface and
are subject to the same constraints as the other DUT inputs and
outputs, i.e., upon entering the spy mode, the wires that output the
DUT (and input the blackboxed module) are checked to be equal in
𝛼 and 𝛽 , while the inputs to the DUT are assumed equal.

To the FPV engine, the internals of a blackboxed module do
not exist; it does not follow any state evolution. Thus, a module
should only be blackboxed if the user does not care about any leaks
originating fromwithin it. (This could be because the OS is assumed
to flush the module’s state or the module has already been verified.)

Advantages: First, since the DUT contains less state, the com-
binatorial search size is reduced exponentially. Second, the explo-
ration depth required to exercise the relevant features of the DUT is
reduced since the FPV tool is driving the inputs of the DUT directly.

Disadvantages: The CEXs found are less informative since we
do not know how the inputs of the DUT were produced. For black-
boxing, this refers to the outputs of the blackboxed module, which
drive the rest of the logic within the DUT. Moreover, the CEXs are
more likely to be spurious since inputs to the DUT may be illegal.

Definition 4 (Illegal Input Sequence). An input sequence to the DUT
is considered illegal if it is unreachable when the DUT is instantiated
within the full SoC (driving the DUT inputs).

Based on the above definition, the user could create assumptions
to limit the inputs to legal values, e.g., do not receive a memory
response if a request was not sent. A hardware designer may decide
not to include these assumptions in its RTL module if the rest of
the SoC is untrusted (e.g., resulting from integrating third-party

Algorithm 1: Incremental Flush Signal Construction
𝐹𝑙𝑢𝑠ℎ ← ∅;
𝑟𝑒𝑠𝑢𝑙𝑡 ← FPV(DUT, Flush, AutoCC_FT);
while (result == CEX) do

𝑠𝑡𝑎𝑡𝑒 ← FindCause(𝑟𝑒𝑠𝑢𝑙𝑡);
Insert(Flush, state); // Add to the Flush process
𝑟𝑒𝑠𝑢𝑙𝑡 ← FPV(DUT, Flush, AutoCC_FT);

Algorithm 2: Decremental Flush Signal Construction
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ⊆ 𝜇𝑎𝑟𝑐ℎ;
𝐹𝑙𝑢𝑠ℎ ← 𝜇𝑎𝑟𝑐ℎ;
for (state 𝑖𝑛 𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠) do

Remove(Flush, state);
𝑟𝑒𝑠𝑢𝑙𝑡 ← FPV(DUT, Flush, AutoCC_FT);
if (result != Proof) then

Insert(Flush, state);

IP). Alternatively, one may add individual assumptions to the FT
to limit the inputs to legal values. To ease the modeling of DUT’s
outgoing transactions, our tool flow can also generate that from
AutoSVA annotations [44]. However, we argue that in FPV, it is
good practice to add assumptions and modeling upon encountering
spurious CEXs, as it is a good way to learn about the design and
avoid overconstraining the verification process.

SoC-level Verification: To apply AutoCC at the SoC level, we
recommend first creating FTs for RTL modules with the simplest
interfaces, e.g., modules connected to the network-on-chip (NoC).
This makes it much easier to deal with illegal inputs, as the NoC
protocol is usually well-defined. Our properties in Listing 1 are
designed to be modular so that RTL modules can be independently
verified for the absence of covert channels. However, modularity
results in more effort, not because of creating the FTs (which is
automated in AutoCC), but because the DUT inputs are arbitrarily
driven by the FPV tool, making the CEXs more prone to be spurious.

3.5 AutoCC during RTL Development
Listing 1 properties are expressed using interface signals, making
them implementation-independent. This, along with their modular
nature, allows designers to utilize AutoCC properties for test-driven
development (TDD), where CEXs help to refine the design [56].

TDD is particularly useful for designing the 𝜇𝑎𝑟𝑐ℎ flush mecha-
nism. The overall flushmechanismwould be correct if everymodule
involved in the victim process effectively flushes exploitable 𝜇𝑎𝑟𝑐ℎ
and the orchestration of the flush signals across modules is properly
implemented. We propose two methods that use AutoCC to identify
the minimal set of 𝜇𝑎𝑟𝑐ℎ states that need to be flushed to provide
full temporal partitioning (i.e., no observable differences).

Algorithm 1 incrementally builds the flush mechanism by adding
flushes to the states that cause CEXs to AutoCC properties.

Algorithm 2 starts with the assumptions that the entire 𝜇𝑎𝑟𝑐ℎ
is being flushed and AutoCC properties achieve a proof. Then it
iteratively takes a state from the set of candidates and removes it
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from the flush signal as long as proof is still achieved. The candi-
date set is a subset of flush since there may not be an incentive
to remove a state flush if it does not impact performance. Both
approaches assume that FPV returns in a finite amount of time,
and the user is responsible for determining when a bounded proof
yields confidence.

4 EVALUATION AND RESULTS
This section presents our evaluation of AutoCC on four open-source
projects: 32-bit RISC-V Vscale core [38]; application-class 64-bit
CVA6 core [43, 68]; MAPLE memory access engine [45, 46], and an
accelerator for AES encryption [38]. We chose these projects be-
cause they represent a diverse set of designs in terms of complexity
and pipeline depth. Table 1 lists the valuable CEXs we found. We
consider a CEX valuable if it uncovers (a) a behavioral difference
in the execution of a spy process based on the state left by a victim
process or (b) unexpected or unintended behavior in the RTL based
on legal execution. Alternatively, a spurious CEX is caused by an
illegal input sequence (see Definition 3).

Table 1: Description, DUT execution depth, and FPV tool
runtime (in minutes and hours) of the CEXs found in Vscale
(V), CVA6 (C),MAPLE (M), andAES (A) that uncover hardware
bugs or possible covert channels.

Description Depth Time

V5. Interrupt in the WB stage stalls pipeline 9 < 10 min.

C1. Leaks invalid I-Cache data to the next PC 76 < 30 min.

C2.Wrong transition in the FSM of the PTW 80 < 6h

C3. Valid D$ line after flush caused by PTW 80 < 6h

M2. Leak whether the TLB was disabled 21 < 30 min.

M3. Leak the value of a configuration register 23 < 3h

A1. Request in the pipeline during the switch 42 < 1 min.

Table 1 also shows the depth of the CEX (length of the execution
trace) and the runtime of the FPV tool. Although we have validated
the AutoCC methodology with both SBY and JasperGold, we chose
to perform evaluations with the latter due to familiarity with its
GUI and because we are also evaluating SystemVerilog projects.

During the rest of the section, we walk the reader through the
steps of applying AutoCC to the RTL projects listed above, including
generating the FTs, refining the architectural state signal upon
CEXs, and finding the CEXs indicated in Table 1. In the case of CVA6
and MAPLE, we (a) found hardware bugs and exploitable covert
channels and reproduced a leak in system-level RTL simulation, (b)
fixed these bugs and vulnerabilities in RTL and re-ran AutoCC to
confirm that the CEXs were no longer found, and (c) merged these
fixes into the upstream repositories of these open-source projects.

4.1 The 32-bit Vscale RISC-V core
Step-by-step use-case. Because Vscale is the first DUT presented,
we will walk the reader (as a potential user) through howwe applied
the AutoCC methodology to it (see specific commands on Sec. A.5).

First, we create the FT by running the AutoCC python script indi-
cating the path to the top-level module of Vscale (vscale_core.v).
Second, we start the exhaustive exploration by running JasperGold
and indicating the path to the generated FT. Note that this first run
uses the default values for the flush and architectural state signals
(see Listing 1). The CEXs shown in Table 2 result from iteratively
refining the definition of the architectural state.

Table 2: Description, depth, and FPV tool runtime (in seconds)
of every CEX found in our experiments with Vscale starting
from the default AutoCC FT, in order.

Description Depth Time

V1. Jump to address read from the reg. file 6 <10 sec.

V2. Jump to address read from CSR 6 < 10 sec.

V3. PC different throughout the pipeline 7 < 10 sec.

V4. Decode Stage registers different 7 < 10 sec.

V5. Interrupt in the WB stage stalls pipeline 9 < 100 sec.

V1. The first CEX we observed was caused by a jump to an
address in a register. Recall that the default assertions in the FT
only check whether the output interfaces of the DUT are equal.
Thus, the formal engine searches for an execution path to expose
different internal states at the output interfaces. We refined that
CEX by adding a condition to architectural_state_eq to check
that pipeline.regfile.data is equal in both instances of the
Vscale core. We could have added this condition from the beginning,
but we chose to add them as wewere finding CEXs for three reasons:
(1) because we had not looked inside the core’s internal state before,
and so the CEX helped us find the path to each signal name; (2)
to validate that the methodology can find covert channels based
on an unflushed state; and (3) because it is good practice to start
with the simplest precondition possible to make sure we do not
overconstrain the state exploration.

V2. The second CEX was caused by a jump to a register pre-
viously fetched from the CSR module. The OS is responsible for
protecting and managing the CSR registers, so these should be
considered part of the architectural state. Since the CSR module
contains many registers, it was more convenient to blackbox it and
follow the procedure described in Sec. 3.4.

V3. The third CEX was caused by the PC being different in both
universes, causing the next instruction fetch to have a different
address. We refine this CEX by adding the PC registers along the
core’s pipeline to the architectural state.

V4 & V5. The fourth and fifth CEXs are caused by the fact that
the Vscale core does not have a temporal fence like the version we
used for CVA6 [43]. Particularly, our fifth CEX of Table 2 showed
a case where an interrupting instruction in the write-back stage
of 𝛼—from the execution before the context switch—was causing
stalls in the fetch stage of the pipeline for the spy process. How-
ever, since the OS code that manages the context switch has more
instructions than pipeline stages of Vscale, it seems reasonable to
consider that all instructions inside the pipeline should be equal
in both universes when the spy process is about to start. For this

878



AutoCC : Automatic discovery of Covert Channels in Time-shared Hardware MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

evaluation, we assume a trusted and correct OS. Nonetheless, if an
AutoCC user prefers not to assume that, this CEX could constitute
a covert channel in that threat model.

Bounded proof.After refining the last CEX, the FPV engine kept
searching until it reached our limit of 24 hours. At that moment,
it had reached a bounded proof of depth 21. Since Vscale does not
have caches or deep units, and the previous CEX had depth 9, we
believe it would not find more CEXs even if it ran longer.

4.2 The 64-bit CVA6 RISC-V core
CVA6 is a mature application-class RISC-V core, fully implementing
I, M, A, F, D, and C extensions (ISA v2.3) and three privilege levels
(M, S, U). CVA6 has been taped out numerous times into silicon [12,
15, 34, 69] and offers several cache, MMU, and core configurations,
including 32-bit and 64-bit variants.

Configurations.We used the 64-bit one with all the extensions,
defined by their cv64a6_imafdc_sv39_config_pkg configuration
file. However, we shrank the size of caches (16 lines), TLB (4 lines),
and branch predictor table (16 entries) to reduce the state size while
still exercising their functionality. Leveraging the modularity of
AutoCC, we disabled the floating-point unit to lighten the FPV
process, as this IP block could be evaluated separately. There are
three adaptations of CVA6 that implement different versions of the
fence.t instruction—a 𝜇𝑎𝑟𝑐ℎ temporal partitioning mechanism—
with increasing levels of flush exhaustiveness [63].

Validating previously-found covert-channels. Our work be-
gan with the second implementation—full flush—which clears the
caches, TLBs, branch predictors, and other states in smaller units,
such as arbiters. We set the 𝑓 𝑙𝑢𝑠ℎ_𝑑𝑜𝑛𝑒 condition as the fence.t
has completed in both universes, i.e. when the write-back data
cache (D$) has invalidated its lines. One of the first CEXs we found
(after we added the PC, register file, and CSR into the 𝑎𝑟𝑐ℎ signal)
was caused by executions where 𝛼 had an outstanding AXI (Ad-
vanced eXtensible Interface) request going into the flush while 𝛽
did not. Since the arrival of the flush signal kills all outstanding
AXI transactions, 𝛼 ’s instruction cache (I$), which was making the
request, transitioned to a KILL_MISS state while 𝛽’s remained in
IDLE. This divergence of 𝜇𝑎𝑟𝑐ℎ can lead to an observable timing
difference after the flush event, for instance, by issuing another
cache request. A natural solution is to stipulate that the flush must
first wait for all outstanding AXI requests to be completed. We still
found another CEX after assuming that all AXI requests are satis-
fied before the flush. In this new CEX, the page table walker (PTW)
takes longer to flush in 𝛼 because it had an active memory request
to the D$. These CEXs confirm and extend prior findings about full
flush fence.t in Wistoff et al. [63]. The observation that subtle,
hard-to-find components may produce a covert channel (when not
cleared systematically) was their primary motivation for the third
implementation of CVA6’s 𝜇𝑎𝑟𝑐ℎ flush: microreset.

Evaluating the safest configuration. Unlike the full flush, mi-
croreset targets the entire 𝜇𝑎𝑟𝑐ℎ rather than attempting to identify
a subset of vulnerabilities (only 𝑎𝑟𝑐ℎ is left unflushed). Microreset
also enforces the fence.t latency be independent of any previous
execution, padding it to the worst-case: the latency of a full D$
write-back. Flushing all 𝜇𝑎𝑟𝑐ℎ and padding to a constant latency
is the most thorough temporal partition a designer can do against

covert channels in hardware, so we were not expecting to find any
relevant CEXs; however, we found three, presented below.

C1. First, we found a CEX where an I$ fetch results in an excep-
tion in both 𝛼 and 𝛽 . Since the exception is a valid response for this
transaction, icache_dreq_i.valid is asserted even though the
fetch did not hit the I$. In the frontend, CVA6 loads icache_data
with whatever data payload it receives from the I$, as long as the
response is valid. This payload is an input into the instruction re-
aligner; the crux of the CEX is that the realigner sets its valid signal
(for the output back to the pipeline) based on a bit of this payload
without knowing that the payload came from an invalid I$ line.
The difference in the output of the realigner then results in a PC
mismatch in 𝛼 and 𝛽 . We tentatively fixed this to continue exploring
by zeroing out the data payload if we do not hit in the I$.

C2. Second, we faced a CEX caused by an invalid FSM transition
in the PTW. This CEX begins with a TLB miss in both 𝛼 and 𝛽 , re-
sulting in both universes going on a page table walk; the flush signal
from fence.t arrives while the walk is ongoing. The FSM logic for
the PTW dictates that if the PTW looks up a page table entry (PTE)
when flush gets set, it should wait for a response before going
to IDLE. (The intended transition is PTE_LOOKUP to WAIT_RVALID,
then WAIT_RVALID to IDLE on receiving a valid response.) This is
exactly what 𝛼 does. However, while 𝛽 is in WAIT_RVALID, 𝛽 also
handles an exception, causing flush to get set again. As a result,
𝛽’s FSM transitions to IDLE on the next cycle, terminating the page
walk before it gets a response. We reached out to the CVA6 main-
tainers to discuss this corner case and proposed a fix, which has
been merged upstream. 1 This CEX showcases that AutoCC not
only finds potential covert channels but also errors in the design.

C3. Third, we hit a CEX where 𝛼 observes a chain of events
involving the I$, TLB, PTW, and D$. Initially, the I$ experiences a
miss, whose memory translation also results in a TLB miss. Sub-
sequently, the PTW starts fetching PTEs, which results in a D$
request, right when the flush signal arrives. Although the TLB and
PTW eventually get flushed, the D$ ends with a valid line after the
flush completes. This CEX shows that a sequence of events initiated
before the flush leads to an effect observable after the flush ends,
constituting a potential covert channel. Based on this CEX, we find
that draining D$ transactions after writing back the D$ and before
clearing the design’s flip-flops is insufficient; D$ transactions need
to be drained before and after the write-back. We have made a
corresponding fix for microreset. 2

4.3 The MAPLE Memory-Access Engine
MAPLE is an accelerator for fetching memory patterns that sup-
ports fetching single array elements, array ranges, and indirect
memory accesses. It also contains a memory-management unit
(MMU) for virtual memory translation. In addition to load and
consume operations, the API offered by MAPLE exposes several
registers to configure the hardware queues and the MMU. Particu-
larly, the API offers a init operation to allocate a MAPLE instance
(by mapping its memory-mapped configuration registers into vir-
tual memory), a close operation to de-allocate the instance, and a
cleanup operation to invalidate these configurations and flush the

1https://github.com/openhwgroup/cva6/pull/1184
2https://github.com/pulp-platform/cva6/commit/ae79ec5
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TLB between processes. The cleanup operation is performed as a
first step of the initialization process.

Flush mechanism. We used the FSM that controls the invalida-
tion process to set up the flush signal—when the invalidation state
transitions to idle. Although MAPLE queues could be considered
architecturally visible, these are flushed by the cleanup operation,
so we did not add them in the architectural state condition.

M1. The first CEX we quickly found was caused by several
other requests being in the NoC protocol’s output buffer in 𝛼 when
the flush signal was set. Although this could potentially yield a
covert channel under special timing conditions (an old request being
backpressured from the NoC), we chose to continue exploring CEXs
by assuming that this buffer is empty during the context switch.

M2. The next CEX was caused by the TLB in 𝛼 being disabled
while the TLB in 𝛽 was enabled. The TLB is enabled by default at
reset, but MAPLE’s API allows disabling it. We found from the CEX
trace that the flip-flop of TLB being enabled is not flushed during
the context switch. This flip-flop could be used as a binary covert
channel, provided that the Trojan could disable the TLB and the spy
observe a page fault. We fixed this in MAPLE’s RTL by resetting
this flip-flop during the flush.

M3. The third CEX, found after a couple of hours, was caused
by another register not being flushed. This one is the base address
of the array for which subsequent data fetches can be offloaded to
MAPLE by indicating an array index. To better describe this covert
channel and how to exploit it in practice, we recreate a data leak
with a test written in C.
void leak(int iteration){ // Trojan inside victim 's process

int qid = dec_init ();

uint16 leak_byte = (secret >> (iteration *8)) & 0x00FF;

uint16 offset = leak_byte << 2; // 4-byte aligned

dec_set_array_base(qid , VADDR + offset);

dec_close(qid);

}

// The spy process has an 256- element array allocated using mmap()

to start at VADDR. The array contains consecutive elements

from 0 to 255.

void observe(int iteration){ // Inside Spy Process

int qid = dec_init ();

dec_open_producer(qid);

dec_open_consumer(qid);

// Tells MAPLE to fetch the 0th array element starting from

the configured base address , i.e, array[leak_byte]

dec_load_word_async(qid ,0);

// Consume array value from MAPLE 's queue ,

uint32 spy_byte = dec_consume_word(qid);

recovered = recovered | (spy_byte << (iteration *8));

dec_close(qid);

}

Listing 2: Pseudocode of the program that lets a spy process
recover the secret that a Trojan is actively leaking. MAPLE
has a function (dec_set_array_base) that sets the base
address of an array so that subsequent loads from it are
offloaded to MAPLE by simply indicating the array index
to load (dec_load_word_async). Since AutoCC found that this
base address is not properly flushed, we can use it to leak the
secret. The secret is leaked a byte at a time, by using it as an
offset to set the base address of the array. Since the spy has
allocated an array where array[index]==index, this offset is
inferred from the loaded value.

Exploiting M3 at system-level. Listing 2 shows the leak func-
tion that allows a Trojan to encode a byte of the secret per iteration

and the observe function that allows the spy to recover it. To
evaluate this test3, we first built an RTL simulation environment
of MAPLE integrated with the OpenPiton SoC [4] following the
tutorial in the MAPLE repository. Then, we performed the test
bare-metal using VCS O-2018.09-SP2. It took under a minute for
VCS to simulate the test on the OpenPiton SoC with MAPLE, where
the spy recovers 8 bits per iteration, e.g., a 32-bit secret could be
recovered with 4 iterations in less than 6,000 clock cycles.

Closing the covert channels. We have merged the RTL fixes to
close M24 and M35 covert channels into the upstream repository
of MAPLE. For fabricated chips that include MAPLE [15], these
channels could be closed in software by writing these registers
explicitly to the reset value during the invalidation process.

4.4 An AES Accelerator
The AES accelerator we evaluated takes a 128-bit plain text and a
128-bit key as input and produces a 128-bit cipher text as output. It is
a pipelined accelerator with 40 stages. We applied our methodology
by following the same steps as in the previous section. We first ran
the default FT generated by AutoCC, without specifying the flush
signal. This accelerator does not contain any architecturally visible
state but rather follows a request-response protocol.

A1. We found a CEX at depth 42 in a few seconds; universe 𝛼
contained several ongoing requests, while 𝛽 had none. Since the
flush signal (set free) appeared while the accelerator pipeline in
𝛼 was processing requests, a timing difference appears when 𝛼

eventually responds, and 𝛽 does not.
Using accelerators concurrently. The design of this AES accel-

erator assumes that it will only be used by one process at a time, as
it does not offer any invalidate or flush signals. This would work
well in a scenario where another process cannot use the accelerator
until all the requests have been responded to. This is a reason-
able assumption in the context of a well-programmed allocation
of system resources. Hence, we refined this CEX by defining the
flush signal as the condition of both universes having no ongoing
requests. Once this was added, the tool found full proof in 5 hours.

Heterogeneous SoCsmay lead to subtle vulnerabilities. In the
era of heterogeneous hardware, system designers have to be very
careful when integrating third-party IP blocks, as they might not
be aware of the assumptions made by other designers. Otherwise,
integrating an IP block similar to this AES accelerator (without
hardware invalidationmechanism) in a system that does not assume
the OS to shield the allocation of hardware resources (e.g., waiting
for all ongoing requests) may enable a covert channel.

5 DISCUSSION: HW/SW PROTECTIONS
We understand that security is not the task of hardware alone.
Designers often have to make trade-offs between PPA6 and security;
by identifying covert channels, our methodology helps them make
informed decisions by knowing which hardware blocks, features, or
optimizations may cause data leakage. Our approach also provides
concise traces of the execution that led to a particular state and
how that state led to an observable difference in the spy process.
3github.com/PrincetonUniversity/maple/blob/main/tests/autocc.c
4github.com/PrincetonUniversity/maple/commit/fa614fc
5github.com/PrincetonUniversity/maple/commit/04a54d5
6Performance, power, and area. These are key metrics of a hardware design.
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Tradeoffs: With this knowledge, a hardware vendor can better
decide whether to close the covert channel in RTL or warn against
it on its security specification.7 For example, if a hardware-based
division operation is found to be susceptible to a covert channel
and fixing it would significantly slow down the operation for non-
security-critical applications, the hardware vendor may decide not
to fix it but flag it, so that programmers prioritizing security avoid
using divisions on sensitive data. However, addressing the channel
in hardware may be worth it if it has a minor impact on PPA. This is
the case for the covert channels found in this paper, where enhanc-
ing the existing flush mechanism fixed them with negligible PPA
implications. The hard part of fixing these channels was knowing
about their existence, which is what AutoCC provided.

The Cost of Flushing Microarchitectural State: Although
analyzing the PPA impact of flushing 𝜇𝑎𝑟𝑐ℎ is out of the scope of
this paper, we can make some observations. Flushing 𝜇𝑎𝑟𝑐ℎ may
affect runtime in two ways: (1) the time it takes to flush the state,
and (2) the time it takes to restore the state after the flush. The first
one is impacted by the unit that takes the longest to flush; much of
the state can be flushed in a single cycle, but some units may take
longer (e.g., write-back caches). On the second one, the concern is
the performance loss due to the unavailable state after the context
switch, e.g., more misses may occur because the cache is flushed,
or the branch predictor might need to relearn the branch history.
Prior work found that this impact mostly depends on the period
between context switches and the size of these structures [63]. For
example, since on-core caches are small (typically much smaller
than the program working set [16]), the lines interesting for the
second process are likely evicted by the cache replacement policy
anyway, and so there is no performance impact due to the flush.

We regard the problem of preventing covert channels as a chal-
lenge in hardware-software co-design. Hardware must provide
the means to partition shared resources so that an OS can use these
as necessary when reallocating those resources from one security
domain to another. To that end, AutoCC can assist in designing and
verifying temporal partitioning mechanisms for RTL modules.

6 FURTHER RELATEDWORK
Information flow tracking (IFT) monitors the flow of sensitive data
through hardware components via RTL simulation [3, 42, 52, 53].
Like AutoCC, IFT techniques provide a precise trace of the leakage;
however, they rely on input tests and user-provided security prop-
erties. Prior works in IFT are in part orthogonal to AutoCC since
they focus on SoC-level simulation while AutoCC formally verifies
hardware components—potentially early in the design phase.

Other works in the area of information flow security propose
new hardware description languages that integrate aspects of type
systems to prevent illegal information flows. Caisson [36] statically
analyzes designs written in its language to guarantee noninterfer-
ence. Sapper [35] offers the same static guarantee by automatically
inserting runtime checks into a Verilog design. SecVerilog [71] ex-
tends Verilog with a label-based type system to allow for dynamic
labels that depend on runtime values. All of these approaches must
be applied end-to-end on the entire design and require significant

7This specification informs programmers about which hardware features may leak
data so that they avoid using them if that goes against their security goals.

modification and annotation of existing RTL. This, in turn, requires
reasoning about design internals and their security properties.

Like AutoCC, Simarel [31] uses bounded model checking to
verify relational invariants between core executions. They focus
on inductive invariants to prove information isolation. However,
Simarel generally reasons about flows between levels in a security
lattice, and no testing occurs against a formalized context switch.

While prior work is effective at tracking hardware state being
read and propagated, they do not directly consider how timing in
the program execution may also be used to extract information.

7 CONCLUSION
Our work introduces an FPV-based methodology that, given an
RTL module, exhaustively searches for execution traces of a victim
process that lead to execution differences observable by a suppos-
edly isolated spy process. We demonstrated the effectiveness and
efficiency of this methodology by applying it to four open-source
hardware components. Particularly, we found that AutoCC: (1)
exercises previously-known issues within minutes, compared to
lengthy stress-test simulations or emulations; (2) helps find the root
cause of a CEX with minimal engineering effort due to the short
length of the execution trace; (3) exposes new hardware bugs and
covert channels in the mature RISC-V CVA6 core and the MAPLE
accelerator; (4) uncovers experimentally-viable covert channels as
we reproduced one via system-level RTL simulation; (5) validates
that RTL fixes to close covert channels are effective.

Users: AutoCC holds much value for hardware designers, em-
powering them to systematically search for covert channels in RTL
during or after development. We believe AutoCC is most useful
for developers of RTL modules or for those integrating third-party
modules into a larger system. To make AutoCC accessible and prac-
tical for our potential users, we have: (a) developed an automated
flow to generate FPV testbenches implementing this methodology,
eliminating the need for upfront user input or RTL details; (b) pro-
posed a test-driven approach to assist the design of hardware that
requires temporal isolation, i.e., flushing the 𝜇𝑎𝑟𝑐ℎ state between
processes; (c) open-sourced AutoCC and added its artifact evalua-
tion to showcase how to apply AutoCC to more RTL modules.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact applies the AutoCC methodology to each of the hard-
ware components evaluated in this paper: the 32-bit RISC-V Vscale
core, the 64-bit application-class RISC-V CVA6 core, the MAPLE
memory-access engine, and the 128-bit AES encryption accelerator.
The AutoCC methodology employs formal property verification
(FPV) to exhaustively examine the state of hardware components to
determine whether it may expose a covert channel,i.e., FPV engines
would trigger counterexamples (CEXs) to the AutoCC assertions if
there is any hardware state (left unflushed after a context switch)
that leads to an execution difference observable from the output of
the component.

This artifact evaluation performs three types of tasks: (a) given
an RTL component, AutoCC generates a FPV Testbench (FT); (b)
feeding an FT into JasperGold to obtain CEXs to the properties
generated by AutoCC; (c) reproducing a covert channel that a CEX
uncovered at system-level simulation (not as a standalone hardware
component).

A.2 Artifact check-list (meta-information)
• Data set: The four RTL components we evaluate in this pa-
per serve as the data set. This encompasses the open-source
projects of Vscale, CVA6, and MAPLE, and a 128-bit AES ac-
celerator. Moreover, the OpenPiton repository is used to evalu-
ate MAPLE at SoC-level. These can be accessed in GitHub at:
𝐿𝐺𝑇𝑀𝐶𝑈 /𝑣𝑠𝑐𝑎𝑙𝑒 , 𝑚𝑜𝑟𝑒𝑛𝑒𝑠/𝑐𝑣𝑎6, 𝑃𝑟𝑖𝑛𝑐𝑒𝑡𝑜𝑛𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦/𝑚𝑎𝑝𝑙𝑒 ,
𝑚𝑜𝑟𝑒𝑛𝑒𝑠/𝑎𝑒𝑠 , 𝑃𝑟𝑖𝑛𝑐𝑒𝑡𝑜𝑛𝑈𝑛𝑖𝑣𝑒𝑟𝑠𝑖𝑡𝑦/𝑜𝑝𝑒𝑛𝑝𝑖𝑡𝑜𝑛.
• Run-time environment: Running the FTs generated by AutoCC re-

quires Cadence’s JasperGold tool (JG). Reproducing the covert channel
found with AutoCC requires Synopsys’ VCS simulator.
• Experiments: There are four use cases, described in Section A.5,
which are independent and can be evaluated in parallel.
• Output: Given the Vscale core as input, AutoCCwill generate an FT for

it. This and the FTs of the other components (provided in the AutoCC
github) are fed into JG to obtain some of the CEXs shown in Tables 2
and 1. The system-level RTL simulation of OpenPiton+MAPLE would
output the 32-bit word being transmitted using the covert-channel
uncovered in this paper using AutoCC.
• How much disk space required (approximately)?: 2.5GB.
• Howmuch time is needed to prepare workflow (approximately)?:
Less than 1h.
• How much time is needed to complete experiments (approxi-
mately)?: The longest runs take 6h. The use cases are independent
and can be performed in parallel in four terminals. Note that depending
on the server that JG is running this may affect execution times.

A.3 Description
A.3.1 How to access.
This artifact can be accessed from 𝑔𝑖𝑡ℎ𝑢𝑏.𝑐𝑜𝑚/𝑚𝑜𝑟𝑒𝑛𝑒𝑠/𝐴𝑢𝑡𝑜𝐶𝐶 .
The repository contains a README with detailed instructions for
installing AutoCC and reproducing our results, which we also spec-
ify in this appendix.

A.3.2 Hardware dependencies.
This artifact does not have any specific hardware dependencies.
However, we recommend running on a machine with at least 16
cores to see similar runtimes as the ones we report in the paper.

A.3.3 Software dependencies.
In addition to the source code of AutoCC and the projects to be
tested, this‘ artifact evaluation requires:

• Cadence’s JasperGold (JG), to obtain the CEXs to AutoCC asser-
tions. We have performed our evaluation with version 2021.03,
and we have checked that it also works with version 2019.12.
Other versions would probably work too.
• Synopsys’ VCS Simulator, to reproduce the covert channel on
MAPLE at system-level.

A.4 Installation
Make sure to use 𝑏𝑎𝑠ℎ throughout the installation and evaluation
process. Let’s start by cloning the AutoCC repository:

bash

git clone https :// github.com/morenes/AutoCC.git;

git checkout v1.0; # The release Tag for this artifact

cd AutoCC;

export AUTOCC_ROOT=$PWD;

Point to the JG binary:

which jg;

alias jg='<LIC_PATH >/ jasper_2021 .03/ bin/jg';

# Or the version that you are using

A.5 Experiment workflow and expected results
A.5.1 Vscale: Generating FT and fixing constraints.

Build. Clone the Vscale repo and fix a combinational loop in
the original RTL that prevents JG from running:

cd $AUTOCC_ROOT

git clone https :// github.com/LGTMCU/vscale.git

export DUT_ROOT=$PWD/vscale/src/main/verilog;

./fixes/fix_combo_loop_vscale_rtl.sh

Generate the Vscale formal testbench using AutoCC.

python3 autocc.py -f vscale_core.v -i

vscale_ctrl_constants.vh;

Run JG on the generated testbench:

jg ft_vscale_core/FPV.tcl -proj projs/vscale_init &

CEX V1. The tool should find a CEX (of at least 6 cycles) to the
assertion as__dmem_hwrite in a second of computation time.

Waveform V1. Clicking on the assertion in the GUI opens a
waveform window. To visualize the CEX, we add a list of signals
to the waveform window. We can use the signal list in the file
vscale.sig. To load the signal list, go to File→ Load Signal List,
and select vscale.sig from the sigs folder. In the waveform, we
would see spy_mode starting in cycle 5. Then, hwrite signal is
different in the last cycle because the opcode was different a cycle
before (ctrl.opcode). This is because the PC is different (PC_IF),
since the branch was taken in one universe and not in the other
because the register file data was different (regfile.data).
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Fix V1. As described in the paper, this is an underconstraint in
the testbench, since the testbench does not force the register file
data to be the same in both universes when spy_mode starts. We
fix this by adding conditions to the testbench and re-running JG:
./fixes/fix_underconstrain_vscale.sh;

jg ft_vscale_core/FPV.tcl -proj projs/vscale_fixed &

After refining the CEX, the FPV engine keeps searching until it
reaches the time limit (24h in our evaluation).

A.5.2 CVA6: Uncovering and fixing hardware bugs.

Build. Clone CVA6 and check out the commit without fixes:
cd $AUTOCC_ROOT;

git clone -b autocc https :// github.com/morenes/cva6.git

Run JG on the CVA6 testbench:
jg ft_cva6/FPV.tcl -proj projs/cva6_orig &

CEX C1. The tool should find a CEX to the assertion
as_PC_equal in under 30 minutes with a depth of 76 cycles (this
may vary depending on the JG version).

WaveformC1. Thewaveform can be seen with the list of signals
cva6_c1.sig from the sigs folder.

In the waveform, we would see the pc_q being different because
instr_compressed had a different value. This difference propa-
gated based on garbage data being read from the instruction cache
during an exception.

Fix C1. Zero out data coming from the instruction cache if the
line is not a hit. We apply the fix by checking out a branch with the
patch already included.
cd cva6; git checkout autocc_fix_cex1;

cd ..;

jg ft_cva6/FPV.tcl -proj projs/cva6_c1 &

CEX C2. The tool should have found a CEX to the assertion
as__AXI_ar_valid_equal in under 6 hours with a depth of 80
cycles.

Waveform C2. We add the list of signals cva6_c2.sig
from the sigs folder. In the waveform we would see the
signal ariane1.ex_stage_i.lsu_i.gen_mmu_sv39.i_cva6_mmu.
i_ptw.state_q transitioning from WAIT_VALID to IDLE, which is
an illegal FSM transition caused by ariane1.ex_stage_i.lsu_i.
gen_mmu_sv39.i_cva6_mmu.i_ptw.flush_i being set while the
PTW is waiting for a response.

Fix C2. Update the FSM to remain in WAIT_VALID even when
flush_i is set.9 We verify the fix by checking out a branch with
the patch already included:
cd cva6; git checkout autocc_fix_cex2;

cd ..;

jg ft_cva6/FPV.tcl -proj projs/cva6_c2 &

The previous CEX trace should not be found anymore due to the fix.
We have not continued debugging possible CEXs that may appear
to this or other assertions.

9Fix applied upstream: github.com/openhwgroup/cva6/pull/1184

A.5.3 MAPLE: Engineering a covert channel exploit.

Build. Install OpenPiton with MAPLE inside it:

cd $AUTOCC_ROOT

git clone -b openpiton -maple

https :// github.com/PrincetonUniversity/openpiton.git

cd openpiton;

source piton/ariane_setup.sh;

source piton/ariane_build_tools.sh;

# Building takes ~5-10 minutes

Clone and build the MAPLE repo:

source ../ maple_setup_build.sh

# Building takes ~1 minute

Uncovering a covert channel with AutoCC.. Start by running
MAPLE’s FT on JG:

cd $AUTOCC_ROOT

jg ft_maple/FPV.tcl -proj projs/maple_c1 &

In less than 30 minutes we should find a CEX at depth 21, where
the assertion as__dev1_merger_vr_noc1_val fails. We can con-
tinue with the RTL simulation step while this experiment is running.

Exploiting the covert channel in RTL simulation. Start by
running the attack to reveal the secret key:

cd openpiton/maple;

./ run_test.sh 4;

The recovered secret should be 0xdeadbeef. The reported cycle
count should be less than 6000 cycles.

Closing the covert channel. We now apply the patch to close
the covert channel and run the system-level test again:

git checkout fa614fc;

source ../../ maple_setup_build.sh

./ run_test.sh 4;

The recovered secret should be 0x00000000. This indicates that
the secret cannot be extracted using this channel anymore.

A.5.4 AES Accelerator: Achieving full proof.

Build. Clone the AES repo:

cd $AUTOCC_ROOT

git clone https :// github.com/morenes/aes.git

git checkout AutoCC -AE

Achieving Full Proof. We run JG on the AES testbench, with
the DUT being the RTL of the AES accelerator:

jg ft_aes/FPV.tcl -proj projs/aes &

This testbench already includes the architectural modeling de-
scribed in Sec. 4.4 of the paper to avoid spurious CEXs. The result
of this run should be full-proof, i.e. no CEXs found, in less than 6
hours.
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