N)
s CHERIoT: Complete Memory Safety for Embedded Devices

Saar Amar* David Chisnall* Tony Chen
saaramar5@gmail.com David.Chisnall@cl.cam.ac.uk tonychen@microsoft.com
Microsoft Microsoft Microsoft

Tel Aviv, Israel Cambridge, UK Redmond, Washington, USA

Nathaniel Wesley Filardo* Ben Laurie Kunyan Liu*
nwif20@cam.ac.uk benl@google.com kunyanliu@microsoft.com
Microsoft Google Microsoft
Cambridge, UK London, UK San Diego, California, USA
Robert Norton* Simon W. Moore Yucong Tao
robert.norton@microsoft.com Simon.Moore@cl.cam.ac.uk Yucong.Tao@microsoft.com
Microsoft University of Cambridge Microsoft

Cambridge, UK Cambridge, UK Mountain View, California, USA

Robert N. M. Watson Hongyan Xia™
robert.watson@cl.cam.ac.uk Jerryxia32@gmail.com
University of Cambridge Arm Ltd.

Cambridge, UK

ABSTRACT

The ubiquity of embedded devices is apparent. The desire for in-
creased functionality and connectivity drives ever larger software
stacks, with components from multiple vendors and entities. These
stacks should be replete with isolation and memory safety tech-
nologies, but existing solutions impinge upon development, unit
cost, power, scalability, and/or real-time constraints, limiting their
adoption and production-grade deployments. As memory safety
vulnerabilities mount, the situation is clearly not tenable and a new
approach is needed.

To slake this need, we present a novel adaptation of the CHERI
capability architecture, co-designed with a green-field, security-
centric RTOS. It is scaled for embedded systems, is capable of
fine-grained software compartmentalization, and provides affor-
dances for full inter-compartment memory safety. We highlight
central design decisions and offloads and summarize how our pro-
totype RTOS uses these to enable memory-safe, compartmentalized
applications. Unlike many state-of-the-art schemes, our solution
deterministically (not probabilistically) eliminates memory safety
vulnerabilities while maintaining source-level compatibility. We
characterize the power, performance, and area microarchitectural
impacts, run microbenchmarks of key facilities, and exhibit the

“These authors made significant contributions to the design and implementation
without which the project would not have been possible.
TWork conducted while at Microsoft.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO °23, October 28—November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614266

641

Cambridge, UK

practicality of an end-to-end IoT application. The implementation
shows that full memory safety for compartmentalized embedded
systems is achievable without violating resource constraints or real-
time guarantees, and that hardware assists need not be expensive,
intrusive, or power-hungry.

ACM Reference Format:

Saar Amar, David Chisnall, Tony Chen, Nathaniel Wesley Filardo, Ben
Laurie, Kunyan Liu, Robert Norton, Simon W. Moore, Yucong Tao, Robert
N. M. Watson, and Hongyan Xia. 2023. CHERIoT: Complete Memory Safety
for Embedded Devices. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO °23), October 28—November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/
3613424.3614266

1 INTRODUCTION

The attack surface of embedded devices is no longer limited to
physical attacks, in an increasingly connected world. From con-
sumer electronics (smart watches, WiFi chips) to security-critical
devices (self-driving vehicles, aviation and smart grids) and more
recently IoT applications, physical isolation is rarely the boundary
in modern day embedded devices. With the increase of connectiv-
ity comes combinatorial growth of the attack surface. Sadly, the
resource constraints and the low-level programming environment
mean solving even the most basic problem of memory safety still
poses as a monumental challenge. Worse, the gap between the at-
tack surface area and the level of defense widens further when such
embedded devices are deployed into complicated multi-tasking sce-
narios with a Real-Time Operating System (RTOS) and multiple
software stacks from different vendors.

Even though researchers have disclosed an alarming number
of memory vulnerabilities in recent years [6, 11, 15], the lessons
learned from desktop and server systems do not directly translate
to embedded systems. Page table techniques, sanitizers, dynamic

https://orcid.org/0009-0006-2679-6504
https://orcid.org/0000-0001-6060-0153
https://orcid.org/0009-0008-9204-7047
https://orcid.org/0009-0002-9698-1503
https://orcid.org/0000-0002-3490-3473
https://orcid.org/0009-0007-2071-6750
https://orcid.org/0000-0002-6095-6405
https://orcid.org/0000-0002-2806-495X
https://orcid.org/0009-0004-2055-8092
https://orcid.org/0000-0001-8139-8783
https://orcid.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613424.3614266
https://doi.org/10.1145/3613424.3614266
https://doi.org/10.1145/3613424.3614266
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613424.3614266&domain=pdf&date_stamp=2023-12-08

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

instrumentation, higher-level languages and so forth all violate at
least one of the real-time, code size, power and compatibility re-
quirements. Instead, the industry has taken an incremental, largely
reactive, approach: architectural extensions are modest, narrowly
scoped, and heavily constrained by compatibility concerns. These
extensions often lack in scalability, generality and language-level
tooling, forcing developers back to manual software assertions and
code analysis tools, which show limited effectiveness.

Such an astounding security gap must be bridged before we push
for even more sophisticated networks among embedded devices. In
this paper, we start from the CHERI (Capability Hardware Enhanced
RISC Instructions) [27] Instruction Set Architecture (ISA) and in-
vestigate its applicability and limitations in resource-constrained
scenarios. To address shortcomings of prior attempted adaptations,
we co-design a new compartment isolation software model with
novel architectural extensions, capability encodings, and micro-
architectural accelerations. In tandem, these features, combined
with a trusted compartment switcher software routine and partially-
trusted memory allocator and scheduler compartments, guarantee
complete, deterministic inter-compartment memory safety. Such a
strong guarantee comes at a reasonable performance cost while not
sacrificing C/C++ source-code level compatibility and real-timeness
of the system.

The contributions of this paper are:

(1) An embedded-systems architecture designed to support a
(co-designed) RTOS offering complete and deterministic com-
partmentalized memory safety.

(2) Architectural extensions and hardware acceleration for tem-
poral memory safety of cross-compartment references and
the RTOS’s shared heap allocator.

(3) Performance evaluation of two embedded cores with differ-
ent design tradeoffs.

(4) Evaluation of area, power and critical-path of hardware as-
sists for a production-quality core.

2 BACKGROUND

We quickly review compartmentalization, memory safety, CHERI,
and how the CHERIOT software stack uses these mechanisms before
discussing the novel aspects of our architecture. This whirlwind
tour is requisite, as CHERIOT is thoroughly co-designed, above
and below the traditional architectural boundary. Very few of its
interesting aspects stand alone; most act, at least somewhat, in con-
cert. We believe this is the only way to achieve efficient robustness
against a strong threat model, instead of being a temporary setback
to attackers and/or useful only for debugging. An overview of the
RTOS is available [3] as is the full source code [1].
The core design principles for the CHERIoT platform are:

o Support the principle of least privilege, down to fine-grained
permissions on individual objects (or fields of those objects)
within the system.

e Support the principle of intentional use, down to ensuring
that individual memory accesses may happen only when
presenting a pointer that authorizes the specific operation.

e Provide abstractions that can be surfaced directly in C-like
languages, for example protecting objects, not pages, and

642

Saar Amar et al.

communicating via function calls between compartments,
not marshaled messages, at the lowest levels.

e Avoid requiring any structures in hardware that would in-
troduce nondeterministic latency, for example by requiring
caches for hot paths and having slow paths for cache misses
as with a conventional MMU and page-table walker.

e Avoid requiring any structures in hardware that would sig-
nificantly increase the area or power consumption to the
degree that it would significantly impact cost or applicable
target domains, such as large associative lookups in an MPU
or TLB.

2.1

A real-time system is one in which the latency of operations is
bounded and can be reasoned about. For some applications, those
bounds must be very low. From a hardware perspective, the la-
tency of operations should not depend on the data being processed
and must not depend on other bits of system state. Cores aimed at
real-time applications cannot, for example, provide virtual memory
that requires traversing page tables on TLB miss because this intro-
duces nondeterminism in memory latency that can be impossible
to reason about. Similarly, such systems typically eschew caches.

The CHERIOT system is designed such that none of the hardware
operations have nondeterministic latency (though, as a microar-
chitectural optimization, some may have small variation in cycle
time). In addition, we provide extensions that allow software to
enforce which code may run with interrupts disabled, which makes
it tractable to reason about worst-case latency even in the presence
of components provided by mutually distrusting suppliers.

Real-time requirements

2.2 Software Compartmentalization

Compartmentalization refers to an engineering practice of par-
titioning a system with the aim of limiting the propagation of
damage or malfunction. For software, a compartment is, at least, a
collection of code and data, some of which is meant to be private.
Compartmentalization then often manifests as “mutual distrust™
every compartment considers other compartments, and the sur-
rounding world more generally, to be potentially malicious. The
source of this potential malice takes many forms, which includes
the inevitability of bugs, untrusted software origins, low quality
pre-bundled drivers from toolkits, software supply chain attacks,
etc. Other compartments are assumed not just to contain possi-
ble bugs but also to actively attack, possibly collaboratively, other
compartments in any way possible.

In order for compartments to be useful, however, they must in-
teract with each other and/or the outside world, trustworthy or not.
Towards that end, compartments also declare exports: procedures
and/or (references to) data deliberately offered to the broader world.
The data within a compartment may include imports: references to
exports from other compartments. Even for related compartments
(say, A importing B’s export), it must be possible to limit the conse-
quences of such relations (continuing the example, A is not licensed
to any other part of B, even other exports, that it did not import).

A compartmentalized system will have universally trusted com-
ponents (the “Trusted Computing Base” or TCB) that enforce the

CHERIoT: Complete Memory Safety for Embedded Devices

isolation of, and mediate the controlled sharing between, compart-
ments. These are high-value targets, able to jeopardize aspects of
correctness for any or all parts of the system, and, so, should be
minimized and carefully audited.! In practice, the TCB is a com-
bination of (micro-)architecture, hardware offloads, and software.
The (micro-)architecture provides omnipresent, local invariants:
things true on a per-instruction basis. Trusted software constructs
and enforces global invariants: properties impractical to check in
hardware. Offloads sit somewhere in the middle, making a series of
localized changes in the service of these global invariants. We shall
see that each aspect plays an important role in CHERIoT security.

Our CHERIoT RTOS offers a compartmentalization model of
code and data and a traditional multi-threaded time-sharing model
of execution. Its threads and compartments are orthogonal. At any
time, the processor is running one thread in one compartment and
has access to that compartment’s code and data memory and that
thread’s stack memory and register file. Multitasking scheduling
facilities allow the core to change threads, and cross-compartment
procedure calls and returns cause it to change compartments.

Compartmentalization is a critical security technology because
it protects against unknown attacks by limiting the blast radius of
a compromise. Even formally verified systems can contain security
vulnerabilities as a result of incomplete specifications or flaws in
the underlying axioms. Safe language code can have security bugs
from compiler bugs or the interactions with systems (such as most
forms of I/O) that are outside of the language’s abstract machine.

Even with safe languages, components may come from mutually
distrusting sources or with different regulatory requirements. For
example, a safety-critical component may need to guarantee that
no other software on the system can interfere with its operation.
At the same time, the network stack for connecting an IoT device
to a back-end service may need to protect TLS client keys and
similar from bugs in the rest of the system. In today’s systems,
this compartmentalization is often achieved by providing multiple
microcontrollers, each with separate SRAM, which both adds to the
cost and limits flexibility: adding a new isolated concern requires
building a new device or weakening security.

2.3

We define memory safety relative to a compartmentalization model
built on mutual distrust. In this model, beyond static sharing by
export and import, objects may be dynamically shared between
mutually distrusting compartments merely by passing a pointer
as part of a cross-compartment call. A compartment may contain
code written in any language (including assembly, which does not
provide an object model), and so memory safety as enforced by the
RTOS and architecture is restricted to the cross-compartment case.
Each compartment must have the tools that it needs to guarantee
that no other compartment may violate its object abstractions. For
example, for any object owned by compartment A, compartment B
must not be able to: O Access that object unless passed a pointer to
it. @ Access outside the bounds of the object given a valid pointer to
that object. ® Access the object (or the memory that was formerly

Memory Safety

“Trusted” in TCB should be read with resignation and aspiration, not as a pronounce-
ment of fitness for purpose. Merely moving code into a box labeled “TCB” does not
improve system security.

643

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

used for the object) after the object has been freed. @ Hold a pointer
to an object with automatic storage duration (‘on-stack’ object) after
the end of the call in which it was created. ® Hold a temporarily
delegated pointer beyond a single call. ® Modify an object passed
via immutable reference. @ Modify any object reachable from an
object that is passed as a deeply immutable reference. ® Tamper
with an object passed via opaque reference. Compartmentalized
memory safety is guaranteed regardless of whether the object (or
mere memory) is in static data, on the stack, or within the heap.
Additionally, compartments may use the same facilities to
achieve defense in depth against bugs within themselves. For exam-
ple, all code in a compartment is permitted to access all of its globals
(simply by naming them) but our C/C++ compiler can enforce its
object model, even when pointers to globals are exposed to C/C++
code, and so protects against bounds errors even on private globals.
In our software stack, the heap allocator (Section 5.1) is a separate
compartment and all guarantees related to heap objects hold for all
code outside of said allocator. It is impossible to forge a pointer to
a heap object, use out-of-bounds accesses to jump from one heap
object to another, or use a heap object after it has been freed.

2.4 Capability Systems and CHERI

A capability is an unforgeable token, which, when presented, can
be taken as incontestable proof that the presenter is authorized to
have some specified access to the object named in the token [23].
Capability systems define an architectural protection model using
graphs of objects (including agents) and the capabilities they hold;
the model is largely dual to that of access control lists.?

A CHERI memory capability is a particular kind of architecturally
guarded fat pointer. Each capability is an integer memory address
augmented with bounds and permissions (read, write, execute, etc.)
as well as an out-of-band validity tag bit to enforce its integrity
and unforgeability. A CHERI ISA then enforces that each memory
access is authorized via a valid capability in a register: the target
address must be within bounds and the operation must be permitted.
Avoiding an associative lookup, the specific register holding the
authorizing capability must be cited by the instruction stream, just
as most of today’s ISAs cite integer addresses in registers.

Unlike architectural protection mechanisms like segmented
memory or Memory Management Unit (MMU) protection tables,
which rely on software-managed indirection tables, CHERI capabili-
ties are values that flow through the system. The CHERI ISA offers
guarded manipulation instructions for capabilities, allowing the
construction of less-privileged capabilities from more-privileged
ones, but not the reverse. In summary: the bounds may be narrowed,
but neither widened nor displaced; permissions may be shed but
not regained; and tag bits may be cleared but never set.

2.5 Compartmentalization With CHERI

CHERI capabilities overtly address several concerns of compartmen-
talized memory safety: @ If software sets the bounds of a pointer

2Capability systems can be thought of as being “row-wise” representations of systems’
abstract access control matrix [16]. Their representations of authority — capabilities
— are located within the acting (subject) entities and serve to name the acted-upon
(object) entities. By contrast, systems built around access control lists (ACLs) are
“column-wise” representations, locating authority with the acted-upon entities with
ACL entries naming the acting entities.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

to an object, no subsequent action on that pointer will access any
adjacent object; similarly, removing write permission renders a
pointer permanently read-only. These actions are per-pointer and
allow software to enforce its (sub)object model’s boundaries. @ Ab-
sent a capability to an object, software cannot access it, even if it
knows the address. In fact, for a CHERI program, the accessible
register file defines the root set of capabilities. The program’s total
authority is completely captured by this set and those that can be
(transitively) loaded through them. A program is free to reduce its
authority, by deriving suitably narrowed capabilities and erasing
the progenitors. Subsequent computation can then act arbitrarily
only on the selected subset of resources (to which capabilities exist).

CHERI also adds affordances for “non-monotonic transfers of
control”, allowing a program to restore (part of) its earlier authority
while atomically transferring control to a pre-arranged point in the
code.? As is only sensible, these transfers are themselves managed
by capabilities. A capability to perform such a transfer is opaque, in
that its bearer may not load additional capabilities through it, and
exercising its authority implies relinquishing program control. More
generally, CHERI provides a ‘sealing’ mechanism for constructing
opaque capabilities, which may later be ‘unsealed’; again, both
actions are authorized by capabilities [27].

Extending CHERI to address the more subtle points of com-
partmentalization, specifically those concerning deep immutability
and temporal notions like object lifetime and delimited sharing,
constitutes the bulk of our effort. These extensions are the key
innovations of CHERIoT s capability system and enable its RTOS
to offer its complete compartmentalized memory safety.

2.6 RTOS Implementation

Before finally turning to our architecture in detail, it is worth briefly
summarizing how our RTOS uses the architecture to make the
model concrete. CHERIoOT’s RTOS defines a compartment to be a
contiguous region of code and intra-compartment global data. Com-
partments’ global data may include imports of other compartments’
designated exports. Compartments, possibly provided by multiple
and mutually-distrusting parties, are statically linked together into
a single system image; imports of exports are resolved at this time.

At run-time, threads begin within particular compartments (at
their designated entry points). While running within a compart-
ment, absent any intra-compartment special handling, the program
counter capability grants access to all of the compartment’s code.
Similarly, an ABI-reserved register, the globals pointer, holds a ca-
pability granting access to all of the compartment’s data. RTOS
primitives, totaling a little over 300 hand-written instructions, en-
force calling into and returning from compartment entry points,
as well as preemptive multitasking, with proper switching of com-
partment contexts.

CHERIoT also inherits from CHERI its 1-bit information flow
control scheme, which classifies capabilities as “global” or “local”.
Capabilities may transition from global to local, but not the reverse,
and storing a local capability requires that the authority bear the
Store Local permission. The RTOS marks all stack pointers local and

3 An imperfect analogy can be made to architectures with protection rings and banked
registers. Therein, a more-privileged ring may configure the architecture to create a
designated entry point for entry from less-privilege rings and may use its banked view
of registers to hold (pointers to) sensitive state inaccessible to the lesser ring(s).

644

Saar Amar et al.

Permission
GL Global

Applied to Permits

Load / Store value Storing cap. via non-SL cap.
LD Load data Load address Loads (inc. of caps if MC)
SD Store data Store address Stores (inc. of caps if MC)
MC | Memory Cap. Load/ store address Capability load / store

SL Store Local Store address Stores of non-global caps
LG Load Global Load address Loads of caps with GL LG
LM Load Mutable Load address Loads of caps with SD, LM

EX Execute Jump targets Instruction fetch

SR System Regs. Program Counter Access to special registers
SE Seal cseal authority Sealing with given otype
Us Unseal cunseal authority Unsealing with given otype

For software use

uo User perm. 0
Table 1: Summary of capability permissions.

ensures that only stack pointers permit storing of local capabilities.
This prevents references to the stack from being captured in globals
or heap memory, which © permits stack reuse across compartments,
and @ enables ephemeral delegation of capabilities by marking them
local. (See Section 5.2.)

3 THE CHERIOT ARCHITECTURE

We now turn our attention to our new CHERIoT hardware platform.
It revises aspects of the CHERI architecture, improves upon the
earlier CHERI-64 capability encoding [29], and incorporates CPU
extensions that are foundational for full memory safety.

3.1 Novel features in CHERIoT

The most straightforward changes in CHERIOT are to architectural
aspects of CHER], tailoring for our software model. We focus first
on model changes, leaving changes to capability representation to
Section 3.2.

3.1.1 Tailored Capability Permissions. CHERIoT heavily revises
the ontology of permissions found within CHERI capabilities. These
changes are driven from two different, conflicting needs: our soft-
ware model requires new expressiveness and yet we must minimize
the number of bits used within a capability. We begin by removing
some unused expressiveness from existing CHERI architectures:

e We drop the unused cinvoke instruction and permission.

e The separate load-capability and store-capability permis-
sions are combined into one bit, MC, which modifies the ex-
isting load and store permissions to permit loads and stores
of capabilities. We did not find it useful to be able to have
different access permissions for capabilities and data, other
than being able to permit data access but prohibit loads and
stores of capabilities.

e Capabilities may not simultaneously permit execution and
stores, guaranteeing WeX at the hardware level (though
retaining the ability for JITs to have separate writeable and
executable pointers to the same memory).

e We separate the permissions used for sealing from mem-
ory related permissions because their bounds and address
refer to a distinct namespaces (otypes rather than memory
addresses).

The last two points necessitate three different capability roots for
writable memory, executable memory and sealing. On CPU reset, all
three roots are present in registers. Early-boot software is expected
to use these to build narrower capabilities around the system before
erasing the roots.

CHERIoT: Complete Memory Safety for Embedded Devices

Our software model demands two new permissions:

e Recall from section 2.6 that the RTOS uses CHERI’s local/-
global information flow control to limit off-stack storage of
capabilities. We extend this with a new permission, Load
Global (LG), that acts recursively: capabilities loaded via a
capability without LG will have LG cleared and are marked
local. Thus, one can delegate a capability to the root of a com-
plex data structure and ensure that any capabilities thence
loaded can be held only in registers and on the stack. When
the callee returns, its stack will be cleared, ensuring that
these capabilities are not captured.

e Similarly, we have a Load Mutable (LM) permission that
permits read-only sharing by clearing LM and store permis-
sions on loaded capabilities. This feature is present in ARM
Morello but has not previously been featured in a CHERI
RISC-V architecture.

The full set of CHERIOT permissions is shown in table 1.

3.1.2 Sentries for Interrupt Control. In an embedded system, partic-
ularly one without atomic operations (optional in RISC-V), software
often needs to disable interrupts for short periods. In conventional
RISC-V, this is accomplished by setting or clearing an interrupt-
enabled bit in a control register. In a CHERI system, access to con-
trol and status registers (CSRs) is protected by the access-system-
registers permission (SR). This permission gives a large degree of
control and so we considered separating out the ability to toggle
interrupt status into a separate permission.

We realized that, for auditing, it is far more useful to know which
code runs with interrupts disabled than it is to know which code
may toggle interrupts. CHERI provides a mechanism for guarded
control flow: sealed entry (“sentry”) capabilities. These are sealed
with a specific object type and are unsealed automatically when
used as a jump target, but are otherwise unusable. We extended this
mechanism to provide three sentry types: one enables interrupts,
one disables interrupts, and one makes no change to interrupt pos-
ture. On a jump-and-link instruction, the link register is written
with the sentry type that sets interrupt posture to its current value.*
This makes it easy to grant a compartment the right to call a par-
ticular function with interrupts disabled, without allowing it to
arbitrarily disable interrupts (thereby risking system availability).

3.2 CHERIoT capability encoding

Previous CHERI work for embedded devices [2, 29] (see Section 8)
directly apply the CHERI Concentrate [26] encoding scheme, from
64-bit systems, to 32-bit addresses, without exploring further opti-
mizations. Notably, the 11-bit permission field, with its orthogonal
bits, was retained. As a consequence of this and other inefficient
uses of bits, the precision of bounds is significantly reduced. The
T and B fields can drop to as low as 3 bits, leading to an average
memory fragmentation of 2% = 12.5% for padding and alignment,
unacceptable for memory-constrained systems. We now show how
CHERIoT addresses these inefficiencies, arriving at an encoding
(fig. 1) that optimizes for the typical embedded programming model.

4Two more sentry ‘otype’s are reserved for return-address sentries, one of each in-
terrupt posture. Later revisions of CHERIoT will distinguish forward and backward
control-flow arcs.

645

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

31 30 25 24 22 21 18 17 9 8 0

R| p6 |o’3| E4 | B9 T9

a’32

R reserved bit

p a 6-bit compressed permissions field

o a 3-bit ‘object type’ (‘otype’) used to seal capabilities
E a 4-bit exponent used for the bounds encoding

B a 9-bit base used for the bounds encoding

T a 9-bit top used in the bounds encoding

a the 32-bit address of the capability

Figure 1: CHERIoT capability format

s ¢ v % Implied perms.

mem-cap-rw [GL| 1 | 1 [sL[wm[LG] LD, MCSD
mem-capro [GL| 1 [0 [1 [Lm[Lg] 1D MC
mem-cap-wo [GL[1 [0 [o[o]o] spmc
mem-no-cap [GL| 1 [0 [0 [LD[SD] None
executable |GL| 0 [1 [sR]LM|LG| EX.LD, MC
sealing [GL[0 [0 [U0[sE[Us| None

Figure 2: Compressed permission formats

3.2.1 Permission encoding. Most significantly, we introduce per-
mission compression. As outlined above (Section 3.1.1), we have
identified and removed combinations of permissions that are un-
wanted. We now exploit the interdependence of some permissions
to achieve a very compact encoding of our 12 architectural permis-
sions (Table 1) into 6 bits (Figure 2).

We encode the permissions in six different ‘formats’, with each
granting some number of permissions implicitly and encoding the
optional permissions that make sense given the implied permis-
sions. This encoding eliminates useless permission combinations.
For example, executable capabilities have the implicit permissions
required by the ABI for PC-relative addressing, and may option-
ally grant access to system registers. Capabilities may transition
between formats if the permissions are reduced during execution.

As a minor optimisation, we re-ordered the architectural view of
permissions to place permissions that we anticipate will be most
commonly cleared (GL, LG, LM and SD) in the lowest bits. Masks
for clearing these may be constructed using a single compressed
RISC-V instruction.

3.2.2 Sealing and sentries. CHERIOT reduces the ‘otype’ field, used
to seal a capability, to three bits.> We observed in practice that

SWhile this may seem like a severe limitation, given our goal of fine-grained com-
partmentalization, the RTOS is able to bootstrap a virtualized sealing mechanism
that, while not identical to CHERI’s architectural seals, suffices in all cases we have
encountered so far.

MICRO ’23, October 28—-November 01, 2023, Toronto, ON, Canada

a=|awpp=al[31:e+9] | apiqg=ale+8:¢e] | ale—1:0]
b= atop + cp B9 0’e
t= atop + Ct T9 O’e
amid<B? T<B? Ch Ct

no no 0

no yes 0] 1

yes no -1 -1

yes yes -1 0

Figure 3: CHERIoT bounds decoding.

software does not use the same type for both executable and data
capabilities. We enshrine this partition in the encoding, with two
disjoint sets of 7 ‘otype’ values (0 denotes unsealed), with the set
selected by the execute permission. Five of the executable otypes
are consumed by (or reserved for) sentries, leaving two for software
use. None of the data otypes has significance to hardware; our RTOS
allocates four for core components, leaving 3 for other use.

3.2.3 Revised Bounds Encoding. We use a simplified variant of
CHERI concentrate to encode the bounds as 2¢-aligned values rela-
tive to the address for some exponent, e. Figure 3 shows how the
base, b, and top, ¢, are decoded by inserting B and T at bit e into a
and replacing the lower e bits with zeros. The corrections cp, and ¢t
account for the possibility of b and ¢ being in different 2¢-aligned
regions from a. With this encoding, objects of up to 511 bytes can al-
ways be represented precisely, whereas larger objects require their
bounds aligned according to the value of e necessary to accommo-
date their length. To allow the root capabilities to encompass the
entire address space an E value of oxr represents an exponent of 24;
other values map directly to their unsigned binary interpretation.

Compared to CHERI concentrate this encoding compromises
representable range for extra precision and reduced complexity. By
representable range we mean the range within which the address
can move while preserving the same decoded bounds. If the ad-
dress moves outside of this range the capability is invalidated. C
/ C++ programs may perform pointer arithmetic that takes the
address outside the object bounds, although strictly speaking this
is undefined behaviour except in the case of one byte past the
end. While the CHERI concentrate encoding goes to considerable
lengths to guarantee a minimum representable range beyond the
object bounds, the CHERIoT encoding has no such guarantee: in
the worst case the representable range is equal to the object bounds,
and in all cases addresses below the base are invalid. In the corpus
of embedded code that we have compiled so far (including some
comparatively large codebases, such as the TPM reference stack
and mBedTLS) we have not found this to be a problem. We con-
sider the reduced compatibility an acceptable compromise for the
increased precision and reduced complexity. We hypothesise that
embedded code is relatively careful about pointer semantics due to
being required to execute on more diverse architectures.

Finally, we implemented encoding and decoding in Sail [4] and
used its SMT solver backend to check some important properties of
the encoding scheme. For brevity, we do not elaborate further here.

646

Saar Amar et al.

All of these optimisations combined give our encoding a 9-bit
precision in the T and B fields. We consider this critical in reduc-
ing the average internal memory fragmentation to & ~ 0.19%,
an acceptable cost. In fact, our encoding still has one unused bit
available, which could be used for expansion of precision, otypes
or new permissions.

3.3 Temporal safety acceleration

The existing CHERI ISA itself does not provide any mechanism for
temporal safety. However, prior work [25, 28, 31] has revealed an
important insight: that pointer unforgeability and monotonicity
offer a foundation for efficient enforcement of temporal safety by
means of pointer revocation. The deterministic spatial safety from
CHERI hardware enables temporal safety schemes that are also de-
terministic, that is, references to recycled memory are guaranteed to
have been removed prior to reuse. On conventional architectures, in
contrast, there is no distinction between pointers and integers and
so no guarantee that pointers are derived monotonically. Therefore,
temporal safety operating using only conventional architectural
mechanisms is probabilistic at best, and the probability can be
reduced dramatically by targeted attacks.

Previous CHERI-based temporal safety work has been approach-
ing acceptable performance with reasonable overheads, but uses
mechanisms unavailable to embedded systems. Primarily, they im-
plement load and/or store barriers with the MMU, taking advantage
of already-incurred overheads and variable latencies within the sys-
tem. For performance, enforcement of temporal safety is batched,
with memory ‘quarantined’ until enforcement finishes; quaran-
tined memory remains accessible to software. This necessitates a
weaker security model, differentiating between UAF accesses to
quarantined memory and “use after reallocation” accesses to reused
memory; only the latter can be guaranteed to be prohibited. Instead,
our CPU pipeline offers hardware-assisted temporal memory safety
with a stronger security model and without need of an MMU.

3.3.1 Heap revocation bits. As with prior work, we introduce ‘re-
vocation’ bits to heap allocation granules. Each granule has a corre-
sponding revocation bit, indicating whether this granule belongs to
a memory chunk that has been freed and so should not be accessed.
We pick 8 bytes as an allocation granule due to capability alignment;
this adds SRAM overhead of s_is = 1.56% for each heap memory
granule. A larger granule size, for a smaller revocation bitmap, is
possible, at the cost of some allocations requiring more padding.

We emphasize that this overhead applies only to heap memory.
While the simplest approach would be to associate all SRAM with
revocation bits, other designs are possible. To name a few design
points, the SoC architecture may statically associate only some
SRAM with revocation bits, may offer a fixed amount of revocation
SRAM to be configurably associated with primary SRAM, or may
be able to configurably partition a single SRAM bank into data and
revocation regions. Software can ensure that the heap occupies
only regions associated with revocation bits and can prefer to place
irrevocable resources — code, global data, and thread stacks - in
regions without. Thus, the actual SRAM overheads can be much
smaller, since heap is only a fraction of the total memory usage of
embedded systems, all the way down to none at all if memory is
strictly statically allocated.

CHERIoT: Complete Memory Safety for Embedded Devices

Fetch Decode —— Execute —| Memory (—| Writeback

T - T Ed
. .
| , \ .

Main L
_|__sram

SRAM
/‘\ ~
I ~ AN

Revocation

Background Background
load base check

Figure 4: Hardware load filter in a 5-stage pipeline. Arrows indicate pipeline
flow whereas dotted arrows indicate SRAM requests and responses.

The revocation bit area is memory-mapped and the RTOS build
system and loader ensure that only the heap allocator compartment
has access to this region. Upon a ree(y call, the allocator sets the
corresponding revocation bits then zeros the freed memory. As with
prior work, freed memory is quarantined until the allocator knows
there are no outstanding references, at which time the revocation
bits are reset and the memory is available for reuse. Unlike prior
work, our processor pipeline directly consults these revocation bits!

3.3.2 Hardware load filter. We implement a hardware load filter for
all capability load instructions. Upon every cic scd, offset(scsy, the base
of the capability to be moved intoscs is computed and the associated
revocation bit is looked up. If the revocation bit is set, this capability
points to freed memory and must be invalidated (by clearing at least
the tag) before register writeback. This mechanism assumes spatial
safety: because the allocator has bounded its returned pointer to a
particular object, all derived, usable references to that object will
have bases within that object.®

We exploit the fact that embedded memory is commonly tightly
coupled with the CPU, so the revocation bit lookup can be intro-
duced with minimal cycle latency. If an additional read port is
dedicated to the revocation bit lookup, the load filter can be im-
plemented without any pipeline stalls in a classic 5-stage pipeline,
shown in Figure 4. Here, the capability load instruction initiates a
memory read operation in EXE, and gets the response in MEM. The
MEM stage computes the base of the loaded capability and initiates
a revocation bit read, and gets the revocation bit in WR. WR then
strips the tag right before register writeback if the bit is set. The
load filter fits in the 5-stage pipeline nicely, as the MEM stage of
a CHERI CPU already contains full bounds check logic for certain
instructions and finding the base would not be on the critical path.

The load filter is a powerful addition that maintains a crucial
invariant: no capabilities that point to freed memory can be loaded
into registers. Interestingly, this invariant brings a much simpli-
fied version of capability revocation than existing CHERI temporal
safety work: sweeping memory to invalidate stale capabilities (ca-
pabilities pointing to freed memory with revoca