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ABSTRACT
The landscape of modern computers is undoubtedly heterogeneous,
as all computing platforms integrate multiple types of processing
units and hardware accelerators. However, the entrenched program-
ming models focus on using only the most efficient processing units
for each code region, underutilizing the processing power within
heterogeneous computers.

This paper simultaneous and heterogenous multithreading
(SHMT), a programming and execution model that enables opportu-
nities for “real” parallel processing using heterogeneous processing
units. In contrast to conventional models, SHMT can utilize hetero-
geneous types of processing units concurrently for the same code
region. Furthermore, SHMT presents an abstraction and a runtime
system to facilitate parallel execution. More importantly, SHMT
needs to additionally address the heterogeneity in data precision
that various processing units support to ensure the quality of the
result.

This paper implements and evaluates SHMT on an embedded
system platform with a GPU and an Edge TPU. SHMT achieves up
to 1.95× speedup and 51.0% energy reduction compared to GPU
baseline.
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1 INTRODUCTION
The integration of graphics processing units (GPUs) and hardware
accelerators for artificial intelligence (AI) and machine learning
(ML) or Digital Signal Processing (DSPs) brings heterogeneous
computing models into all types of modern computers, ranging
from wearable devices, mobile phones, and personal computers
to data center servers. Famous, commercialized examples include
Tensor Cores (TCs)[76, 77] or Ray Tracing Cores (RT Cores)[12] on
NVIDIA GPUs, Tensor Processing Units (TPUs) on Google Cloud
servers [46, 48, 49], Neural Engines on Apple’s iPhones [8], Edge
Tensor Processing Units (Edge TPUs) on Google Pixel Phones.
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Through implementingmore efficient architectures processingmod-
els for target applications domains, heterogeneous computing re-
sources help address the issue that general-purpose CPUs alone
can not afford the desired performance for modern workloads, in-
cluding artificial intelligence (AI), machine learning (ML), reality,
or gaming applications.

Recent research projects have proved that many co-processors
and hardware accelerators can perform the same functions at sim-
ilar orders of magnitude [20, 22, 25, 37, 39, 40, 59, 67, 68], despite
their differences in processing models and design agendas. Theo-
retically, the system can simultaneously use these heterogeneous
processors to maximize throughputs and minimize latency and
energy consumption. However, conventional programming frame-
works, including domain-specific languages, can only delegate a
code region exclusively to one kind of processor, leaving other
computing resources idle without contributing to the current func-
tion [1, 74, 88].

This paper presents SHMT, simultaneous and heterogeneous
multithreading, to evaluate the performance and tackle the chal-
lenges of simultaneously using heterogeneous computing resources.
Unlike conventional programming and execution models that focus
on using the most efficient computing resources and exploiting
homogeneous parallelism within the identified type of computing
resources for each function, SHMT can break up the computation
from the same function to multiple types of computing resources
and exploits heterogeneous types of parallelism in the meantime.

Figure 1 illustrates the advantage of SHMT against the conven-
tional execution model. Figure 1 assumes a program containing
five primary functions, A to E, and five computing resources, in-
cluding CPUs, GPUs, and three accelerators. Figure 1(a) presents
the execution flow in conventional programming models that del-
egate the function to the most efficient processing units. Though
conventional models can exploit parallelism within the same type
of processors, conventional models still let other resources idle or
make no progress to the current program. The program seems to
use multiple types of hardware concurrently through programming
techniques like software pipelining. Figure 1(b) assumes the pro-
gram can progress with partial results and pipeline the execution of
different functions on different hardware units. However, as each
function takes a different amount of time to generate partial re-
sults, the imbalance of execution can still lead to waste. SHMT,
as Figure 1(c) depicts, allows function B to use GPUs and other
accelerators. As a result, SHMT can significantly improve hard-
ware utilization and lead to better end-to-end latency and energy
consumption.

Enabling SHMT is challenging in the following aspects. First, as
heterogeneous computing resources use diverse programming mod-
els (e.g., vector processing in GPUs and matrix processing in Tensor
Cores), SHMT must present some mechanism that can describe
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Figure 1: The execution model of (a) conventional heterogeneous computers (b) conventional heterogeneous computers with
software pipelining, and (c) SHMT.
and divide equivalent operations and data on different computing
resources. Second, unlike traditional programming systems that
delegate each code region to a single type of hardware, SHMT must
be able to coordinate the execution on heterogeneous hardware
efficiently. Finally, and probably the most challenging, as various
hardware units deliver results at different levels of quality, SHMT
must assure the outcome without incurring significant overhead.

The SHMT framework proposed three components to address the
challenges above. First, SHMT promotes a set of virtual operations
(VOPs) and High-Level Operations (HLOPs) as an intermediate
between programming languages and hardware instructions/oper-
ations to facilitate task matching and distribution. Second, SHMT
presents a runtime system that dynamically adjusts the workloads
on various hardware units to maximize hardware efficiency while
allowing flexibility in scheduling policies. Finally, SHMT presents
a low-overhead scheduling policy that considers both results and
performance.

This paper develops the proposed SHMT framework on an em-
bedded system platform equipped with a multi-core ARM processor,
an NVIDIA GPU, and an Edge TPU. SHMT achieves up to 3.92×
speedup and 2.07× on average. With our proposed quality assur-
ance mechanisms, SHMT still achieves 1.95× speedup on average.
SHMT also reduces energy consumption by 51%.

In presenting SHMT, this paper makes the following contribu-
tions.

• SHMT presents a new parallel programming and execution
model that distinguishes itself from prior work as SHMT
uses heterogeneous hardware concurrently to accomplish
parallel tasks from the same piece of code.
• SHMT evaluates and demonstrates the potential of lever-
aging hardware using heterogeneous programming models
using a real system platform.
• SHMTpresents an abstraction andmechanisms to coordinate
concurrent execution on heterogeneous hardware compo-
nents.
• SHMT proposes a low-overhead mechanism and scheduling
policy to ensure the quality of results.

2 BACKGROUND AND MOTIVATION
In modern heterogeneous computers, two technology trends make
sense of SHMT: first, the ubiquitous adoption of hardware acceler-
ators. Second, the abilities of hardware accelerators to applications
beyond their original target domains. However, before SHMT, no
existing work tried to have multiple types of accelerators collabo-
rate on the same code region. This section describes the technology
trends and the potential of SHMT.

2.1 Modern heterogeneous components
As Dennard scaling slows, the integration of domain-specific hard-
ware accelerators becomes universal. Most computer systems nowa-
days contain the following domain-specific hardware accelerators.
Graphics processing unit (GPU) Despite the broad spectrum of
applications, GPUs are initially accelerators for computer graphics.
The nature of pixel rendering algorithms makes vector processing
architecture using the single instruction multiple data (SIMD) para-
digm the best fit for the target domain. Modern GPU architectures
natively support computation in single precision (FP32) but also
provide half-precision (FP16) [36] for AI/ML applications.
AI/ML accelerators AI/ML accelerators have become popular in
all types of computer systems to tackle the rapidly growing demand
for AI/ML workloads and offer better energy efficiency and offload-
ing CPUs/GPUs for other workloads. As modern AI/ML models
intensively use matrix algebra, most AI/ML accelerators tailor their
internal architectures with circuits specialized for matrix opera-
tions. Google’s Edge TPUs, data center TPUs, and NVIDIA’s Tensor
Cores [76, 77] are all hardware implementations of frequently used
matrix operations in AI/ML workloads.

Most AI/ML applications are error-tolerant. As a result, the hard-
ware design can further improve performance, power consumption,
and area-efficiency through approximate computing and reduce
data precisions. The early version of Edge TPUs supports only
INT8 precision support and thus can deliver more compelling per-
formance per Watt than the data center TPUs (2 TOPS/W v.s 0.36
TOPS/W for Cloud TPUs). NVIDIA’s tensor cores only natively
support half-precision and Bfloat16 (BF16).
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Other accelerators Computer systems have a long history of
adopting digital signal processors (DSPs) back in the 1970s. DSPs
have again become popular as strong demands in high-bandwidth
communication, teleconferencing, media streaming, and creating
visual and audio inputs/outputs for AI/ML applications. The hard-
ware logic may implement mathematical operations to support Fast
Fourier transforms (FFTs) or finite impulse response (FIR) filters. As
image data contain three bands of 8-byte color descriptions, most
image DSPs only support computation in 24-bit [6, 78]. Google
Visual Core’s Image Processing Unit implements stencil operations
in 16-bit. However, as many DSP applications have strong connec-
tions with AI/ML applications and rely on similar mathematical
functions, SHMT can easily extend the support to DSPs.

Ray Tracing is another emerging type of accelerator that simu-
lates the behavior of lights in the real world to fulfill the demand
for virtual reality and gaming applications. Modern ray-tracing
cores implement logics for bounding volume hierarchy (BVH) tree
traversal [12].

2.2 Generalization of Domain-Specific
Accelerators

Broadening the application of domain-specific accelerators has
two different approaches. First, use the mathematical functions in
DSAs to perform the equivalent operation in an out-of-domain
application. The other approach is to reduce the out-of-domain
problem as a problem inside the accelerator’s target domain. This
section will introduce the recent advances in both directions on
emerging hardware accelerators besides GPUs.

2.2.1 Using mathematical functions in DSAs. As most hardware
accelerators are accelerators for key mathematical operators, the
programmer can change the program implementations to invoke an
accelerator’s hardware operations directly. This approach typically
relies on support from appropriate hardware/software interfaces
and general-purpose programming frameworks. Famous examples
include CUDA and OpenCL which promote general-purpose com-
puting on GPUs (GPGPUs).

In the context of modern AI/ML accelerators, NVIDIA exposes
the MMA instruction support in Tensor Cores through the wmma
interface and cuBLAS library functions. Recent research projects, in-
cluding TCUSCAN [20], TCUDB [40], and RQTPU [37] demonstrate
the use of matrix multiplications on Tensor Cores to accelerate data-
base query operations like reduction, scan, and join. Besides AI/ML
workloads, Google also demonstrates the use of matrix multiplica-
tion in TPUs to accelerate Fourier Transform [22, 68] and facilitate
MRI image reconstruction [67]. GPTPU [39] reverse-engineered
the Edge TPU compiler and built a tensor operator-based program-
ming framework for Edge TPU to accelerate Rodinia benchmark
applications [14].

2.2.2 Reducing the original problem to the accelerator’s target do-
main. The other approach to using domain-specific accelerators is
to reduce the problem as one in the accelerator’s target domain.
In contrast to the method in Section 2.2.1, this approach requires
less programming language or ISA support in exposing the internal
hardware features to programmers.
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Figure 2: The potential speedup of SHMT (and Edge TPU)
relative to GPU-only implementation

Neural Processing Units (NPUs) [3, 25, 66, 71] follow this route
to solve general-purpose problems using NN accelerators. NPUs
leverage universal the approximation theorem [19] in approximat-
ing any given problem/algorithm as an NN model, and thus the
process of solving the original problem becomes an instance of NN
inference. In this paper, we intensively used NPUs as our solutions
for Edge TPU implementations, as implementing the concept of
NPUs can make more efficient use of AI/ML accelerator hardware.
RTNN [111] also follows the same direction but with RT Cores as
the target domain-specific accelerator. RTNN formulates the tree-
based neighbor search algorithms on the BVH tree, thus enabling
the BVH traversal function on RT Cores.

2.3 Potential and challenges of SHMT
With existing efforts of general-purpose computing on hardware
accelerators, multiple types of accelerators can perform the same
function with compelling performance. Figure 2 compares the per-
formance of running the core kernel function in ten applications
using their NPU implementations on Edge TPU against their state-
of-the-art GPU implementations on the GPU of Jetson Nano. If
we offload all kernels to Edge TPU, the performance is 5% slower
than GPUs on average. The average theoretical speedup from con-
ventional approaches that delegate kernels to the best-performing
accelerator is 1.37×.

Using the performance number we gathered from running ex-
periments using GPUs or Edge TPUs, we derived the theoretical
performance gain of SHMT and presented the numbers in Figure 2.
By carefully finding the optimal planning of using GPUs and Edge
TPU simultaneously to share the computation from the same ap-
plication kernel and ignoring all data exchange/transformation
overhead, the average speedup is 3.14×.

However, a systemmust tackle the following challenges to enable
the simultaneous use of multiple types of hardware accelerators
in accomplishing the computation for a compute kernel. First, as
each hardware accelerator has its unique programming interface
and execution model, without appropriate system supports, the
programmer needs to figure out the equivalent set of operations on
various accelerators and manually create multiple threads that map
each partition of computation to different hardware and handle
the data exchange/synchronization. Second, as the microarchitec-
ture and execution model of each hardware accelerator differs, the
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relative performance ratio and data exchange overhead among hard-
ware accelerators change as data sizes or system dynamics change.
Therefore, even if the programmer can partition computation to
simultaneous threads working on different data partitions, the re-
sulting program is not always optimal for the underlying hardware
or cannot guarantee speedup. Finally, unlike homogeneous hard-
ware components that accept data in the same representation and
deliver the result with the same accuracy, heterogeneous hardware
components accept data and deliver results in different formats
and accuracies. As a result, carelessly using heterogeneous hard-
ware components simultaneously can lead to unwanted execution
results.

3 SHMT
In response to the challenges of supporting SHMT, we developed
a system architecture consisting of three main components. First,
SHMT defines an extensible set of hardware-independent virtual
operations (VOPs) that allows heterogeneous hardware to interact
with SHMT software as an intermediate. Second, an SHMT run-
time system that performs the low overhead task scheduling to
manipulate the use of heterogeneous hardware. And finally, run-
time mechanisms to ensure the quality of results. This section will
overview the proposed framework and present our proposed poli-
cies and mechanisms in each component.

3.1 Overview
Figure 3 presents the overview of SHMT. SHMT abstracts its sub-
system as a virtual hardware computing resource offering a rich set
of virtual operations (VOPs) that allows a CPU program to “offload”
computation to this virtual hardware device. The compiler or the
programmer can use VOPs to describe the desired computation for
SHMT. As the adoption of domain-specific languages (e.g., Tensor-
flow or PyTorch) using standard libraries and accelerated libraries
(e.g., cuBLAS, cuDNN) in modern programming languages, we ex-
pect the frontend authoring languages of user programs to remain
the same. Most changes should only occur at the library level.

During the program execution, the runtime system, which acts
as the “driver” of SHMT’s virtual hardware, dynamically parses
the VOPs and gauges the ability of hardware resources to make
scheduling decisions. The runtime system divides a VOP into one or
more high-level operations (HLOPs) to simultaneously use multiple
hardware resources. Each HLOP is a basic scheduling identity in
SHMT and performs a partition of computation for a VOP. The
implementation of each HLOP typically maps to a set of hardware
operations and functions on the target hardware resource. Finally,
the runtime system assigns these HLOPs to the task queues of the
target hardware. As HLOPs are also hardware-independent, the
runtime system can still adjust the task assignment if necessary.

As VOPs and HLOPs provide flexibility in scheduling, SHMT’s
runtime system can easily integrate scheduling policies to improve
performance. This paper presents a quality-aware work-stealing
(QAWS) scheduling policy that has low execution overhead but
helps to maintain quality and balance the workload.

Figure 4 provides an overview from the programmer’s perspec-
tive. We envision the programming interface for general application
programmers to remain the same. The application programmer can
still use domain-specific function calls or library functions at a high
level. In Figure 4, the application programmer invokes the general
matrix multiplication (GEMM) functions that TensorFlow provides
(i.e., tf.matmul). Most application programmers will be unaware of
the following change at the language runtime level: the TensorFlow
implementation of tf.matmul calls the shmt:: matmul() function
that SHMT provides to the system programmer to invoke the VOP
of GEMM. The SHMT internal implementation of shmt::matmul()
will then analyze and decompose the GEMM VOP into HLOPs,
where each HLOP is a native implementation of a chunk of GEMM
computation on the dedicated hardware resource.

Figure 4 presents the programming model of SHMT. In summary,
we have limited the programming efforts as we tried to present an
almost identical programming interface to most programmers. The
implementation of HLOPs also leverages existing support without
burdening most system engineers.

3.2 Virtual Operations (VOPs) and High-Level
Operations (HLOPs)

SHMT tackles the challenge of the heterogeneity from execution
models and data formats using VOPs and HLOPs. VOPs define
the available computation that SHMT can provide to the program
and HLOPs define available operations in the underlying hardware
that SHMT can leverage. In SHMT model, HLOPs without data
dependency can execute simultaneously, regardless of the actual
hardware performing the computation.

3.2.1 Virtual operations (VOPs). VOPs in SHMT is a set of defi-
nitions describing available operations that SHMT’s underlying
hardware can support. VOPs help to abstract the whole SHMT sub-
system as a single but powerful accelerator from the software’s
perspective. The SHMT subsystem is a big umbrella covering all
computing resources that SHMT can use to exercise sub-tasks from
VOPs simultaneously.

Table 1 lists the VOPs that our prototyping SHMT system sup-
ports. As SHMT focuses on the simultaneous use of multiple types
of computing resources, our current list covers the most frequently
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vector tiling
add reduce_sum conv
log relu DCT8x8
max rsqrt FDWT97
min sqrt FFT

multiply sub GEMM
parabolic_PDE tanh Laplaican
reduce_average Mean_Filter
reduce_hist256 Sobel
reduce_max SRAD
reduce_min stencil

Table 1: The VOPs list in either vector or matrix tiling pro-
cessing model types.

implemented supported computation in hardware accelerators. In
our current list, these VOPs can either use an element-wise vector
processingmodel or a tile-wise matrix processingmodel to partition
and parallelize the computation without violating the correctness.

3.2.2 High-level operations (HLOPs). An HLOP in SHMT defines a
subset of a VOP operation that an underlying hardware comput-
ing device can support. An HLOP shares the same opcode as the
supporting VOP. However, unlike a VOP with no assumption/re-
striction on the input/output data sizes, an HLOP defines the data
sizes/granularities and the data types a hardware device can support.
For each VOP, SHMT’s runtime system will dynamically partition
computation tasks and data into HLOPs and assign each HLOP
to an underlying hardware device using the data sizes and the
parallelization model.

If the target device provides native support for an HLOP, the
HLOP’s implementation for such devices can directly invoke the
hardware command. For example, as edge TPU implements con-
volution 2D in hardware, the edge TPU’s HLOP implementation
simply invokes the corresponding hardware function. Otherwise,
the HLOP can still use multiple hardware operations to accomplish
the desired computation on optimal data sizes. For example, the
convolution 2D implementation on a GPU will internally become
a series of vector operations within the HLOP implementation.
For NPUs, the implementation makes an inference through a pre-
trained model that approximates the result of convolution 2D.

3.3 SHMT’s runtime system
In actual system implementation, the SHMT’s runtime system is
a kernel driver of a virtual device. The virtual device driver ac-
cepts VOPs as a subset of its commands and partitions VOPs into
HLOPs on the target hardware devices. SHMT’s runtime system
also provides interfaces for more advanced scheduling policies.
SHMT’s kernel driver maintains a pair of queues for each SHMT-
compatible hardware resource; one serves as the incoming queue
and the other as the completion queue. Upon the initialization of
the SHMT system, each hardware resource’s driver is responsible
for providing SHMT with its list of available HLOPs operations and
their implementations.

3.3.1 HLOP distribution. For each VOP that SHMT receives, the
runtime system figures out available hardware resources to per-
form the VOP, gathers the information regarding the parallelization
method and data partitioning, and consults the scheduler for the
task mapping on hardware resources. If the scheduler suggests
a plan, the runtime system realizes the plan by partitioning the
VOP into HLOPs on devices at supported data sizes. As SHMT
supports a limited number of parallelization models, the runtime
system can apply the template for each parallelization model for
dataset partition, aggregation, and synchronization. SHMT assigns
an HLOP to the target device by sending the HLOP to the device’s
incoming queue. A thread monitoring the queue will work with
the target device’s kernel module and execute the HLOP implemen-
tation whenever the device is available. Once the HLOP finishes,
the thread will move the task to a completion queue that SHMT
runtime system can later dequeue and use for data aggregation and
synchronization purposes.

3.3.2 Data distribution and transformation. In modern heteroge-
neous systems, hardware accelerators are typically separated intel-
lectual property cores or chips that communicate with the main
CPU cores through the system interconnect. Like the idea of pro-
cessor caches, most hardware accelerators also own their private
device memory to facilitate the execution of operations. As each
device’s HLOP accepts fix-sized, fix-shaped data, SHMT’s runtime
system creates memory operations using similar arguments as the
implementation of CUDA’s cudaMemcpy2D that takes the starting
address of the source data structure and use the element size, di-
mensions of each input partition to calculate the effective addresses
of source and target data locations that each HLOP uses. The run-
time system will schedule the data movement using the effective

141



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kuan-Chieh Hsu and Hung-Wei Tseng

addresses between the system’s shared main memory and each
device’s memory location after assigning an HLOP.

Most hardware accelerators optimize their computation models
and architectures for targeted application domains, thus supporting
limited data precisions. Suppose the scheduling policy determines
the use of a target hardware resource as appropriate despite the
potential loss of accuracy. In that case, the runtime system will
perform data type casting through the desired quantization method
before distributing the input data. When the device finishes com-
putation, the runtime system is again responsible for restoring the
result to the data precision that the application desires.

3.4 The basic work-stealing scheduler
Work-stealing is the basic scheduling policy that SHMT uses as
the policy best balances the workload among scheduling targets
with various performances. The scheduler makes an initial plan by
partitioning datasets evenly based on the parallelization model of
the scheduling VOP and assigning each data partition as well as the
computation associated with that partition to a target computing
resource. The runtime systemwill generate and enqueue the HLOPs
corresponding to the computation for each partition to the target
hardware’s incoming queue.When anHLOP completes, the runtime
system also reports to the scheduler.

As heterogeneous computing systems share and synchronize
data at the system’s main memory level, each input and output data
partition should be larger than and bemultiples of themainmemory
page size whenever possible. For example, using themost frequently
used 4KB page size, each partition of floating-point data inputs in
the vector processing model should contain at least 1,024 consecu-
tive elements, and a matrix tile should be at least 1,024 ×1,024 sized.
Partitioning data at larger than page-sized granularities can make
more efficient use of memory bandwidth and avoid redundant page
accesses and write amplification issues.

When the workload is imbalanced, that is, the incoming queue of
a hardware device has more pending items than others, the sched-
uler informs the runtime system to withdraw HLOPs associated
with unprocessed data partitions from the current assignment and
reassign the HLOPs to the hardware with the most empty queue.
The granularities can mismatch between different devices, so the
runtime system may need to further fuse or partition HLOPs.

3.5 Quality-Aware Work-Stealing (QAWS) Policy
This paper proposes an exemplary quality-aware work-stealing
(QAWS) scheduling policy to demonstrate the effect of a first-level
quality control mechanism in the SHMT scheduler and the flexibility
of SHMT in changing scheduling policies. As the microarchitec-
ture of application-specific hardware accelerators aims to provide
just enough result quality for the target workloads, most hardware
accelerators, especially those targeting AI/ML workloads, do not
support the precision modes for exact, general-purpose computing.
Without any quality control mechanism, naively using hardware
accelerators as other general-purpose processors can lead to un-
wanted computation results.

The design of QAWS aims at ensuring the results’ quality of
critical data regions while maintaining low computation overhead
in scheduling. For each input data partition, QAWS samples the data

Algorithm 1 Device Limitation
Input: P, limits

1: 𝑁 ← |P|
2: 𝑀 ← |limits|
3: |Q| ← 𝑁

4: for 𝑖 ← 0 to 𝑁 do
5: 𝑠 ← 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑚𝑜𝑑𝑢𝑙𝑒 (P𝑖 )
6: Q𝑖 ← 𝑀 − 1 ⊲ your default choice
7: for 𝑗 ← 0 to𝑀 do
8: if 𝑠 < limits𝑗 [0] then
9: Q𝑖 ← limits𝑗 [1]
10: 𝑏𝑟𝑒𝑎𝑘

11: return Q

Algorithm 2 Top-K Criticality
Input: P, K,W

1: 𝑁 ← |P|
2: |Q| ← 𝑁

3: |𝑤𝑖𝑛𝑑𝑜𝑤 [] | ←𝑊

4: for 𝑖 ← 0 to 𝑁 do
5: 𝑤𝑖𝑛𝑑𝑜𝑤 [𝑖%𝑊 ] ← 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔_𝑚𝑜𝑑𝑢𝑙𝑒 (P𝑖 )
6: if (𝑖%𝑊 ==𝑊 − 1) 𝑜𝑟 (𝑖 == 𝑁 − 1) then
7: 𝑠𝑜𝑟𝑡 (𝑤𝑖𝑛𝑑𝑜𝑤)
8: for 𝑗 ← 0 to𝑊 do
9: Q𝑖 ← ( 𝑗 < 𝐾) ? 0 : 1
10: return Q

to determine the criticality and assigns computation to a device
accordingly. We leverage the experience from prior works that
consider critical regions as data partitions with the widest value
distributions. In this paper, we examined two policies using sampled
criticalities.

(1) Device-dependent limits This policy determines the sched-
uling on a device using device-dependent limits. Each com-
puting device has a set of acceptable hardware limits based
on the supporting data precision and accuracy. QAWS as-
signs only data inputs lower than the criticality limits to
that computing resource. In the case of work stealing, QAWS
only allows a device to steal HLOPs from another device
with the same or a lower hardware limit.

(2) Application-dependent top−K% criticality This policy
ranks the criticality within a window of data partitions and
schedules top-𝐾% partitions to the most accurate device,
second-L% to the second-most accurate device, and so on.
The threshold values of 𝐾 and 𝐿 are application-dependent.
The programmer or the library composer should provide,
along with each VOP, indicating the percentage of data in-
puts that are generally critical to results in this library func-
tion or the application. In the case of work stealing, QAWS
only allows a device with higher accuracy to steal HLOPs
from another device with the same or a lower accuracy.

Algorithm 1 and Algorithm 2 explain the algorithmic details
of how QAWS assigns computation to a device for two options:
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Algorithm 3 The striding sampling
Input: D, N, s

1: |S| ← 𝑁

2: for 𝑖 ← 0 to 𝑁 do
3: S𝑖 ← D[𝑖 ∗ 𝑠]
4: return S

Algorithm 4 The uniform random sampling
Input: D, N

1: |S| ← 𝑁

2: for 𝑖 ← 0 to 𝑁 do
3: S𝑖 ← D[𝑟𝑎𝑛𝑑𝑜𝑚()]
4: return S

Algorithm 5 The reduction sampling
Input: D, s

1: S← []
2: dims← 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛(D)
3: for 𝑖0← dims0 with step size 𝑠 do
4: for 𝑖1← dims1 with step size 𝑠 do
5: ...

6: S.append(D[𝑖0, 𝑖1, ...])
7: return S

(1) device-dependent limitation and (2) application-dependent top-
K criticality, respectively. In Algorithm 1, P is an array of input
partitions, and limits is an array of paired numbers - the limitation
number of a device and the index of the corresponding device
queue. limits is sorted by the first index in descending order. In
Algorithm 2, the two additional inputs other than P, K, and W, are
the threshold value of top-K and window size W, respectively. Any
given K has to be smaller than the W. And the result array Q from
each algorithm is an array of queues’ index numbers each HLOP
assigns to. For example, in the case of only GPU and Edge TPU
queues present in a SHMT system, the GPU queue has an index
value of 0, and the Edge TPU queue has an index value of 1.

The mechanism that SHMT uses to determine the criticality
leverages the insight of canary input from the input responsive-
ness approximation (IRA) technique [58]. IRA technique proposes
and proves that the computation result using canary input, a small
set of input data, can effectively approximate the overall computa-
tion quality. However, the complete IRA technique requires actual
computations on canary inputs that incur significant performance
overhead at the scheduler’s level. Therefore, SHMT only performs
the input evaluation from IRA and determines the criticality of an
input data partition using two metrics, data range (i.e., maximum
and minimum values) and standard deviation within the region.

As faithfully scanning through the input region increases the
computation overhead, SHMT proposes sampling. We examined
three different sampling mechanisms in this paper.

Algorithms 3, 4, and 5 summarize the three sampling methods
- striding, random, and reduction - QAWS uses, respectively. The
D of all options is the input data partition, the s for Algorithms 3

Figure 5: The SHMT prototype platform

and 5 is a step size, and the N for Algorithms 3 and 4 is the desired
number of samplings.

4 THE SHMT SYSTEM PROTOTYPE
This paper evaluates SHMT using a custom-built prototype with
real hardware components and applications. This section describes
the hardware/software system architecture and the method of in-
corporating NPUs into this platform.

4.1 The system assembly
This paper built an exemplary SHMT prototype using NVIDIA’s Jet-
son Nano and Google’s Edge TPU. Figure 5 shows the photo of
the assembled system. The Jetson Nano module contains a quad-
core ARM A57 processor and 128 Maxwell GPU cores. We connect
an Edge TPU to the system via the m.2 slot on the back of the Jet-
son Nano processor/GPU module. The three types of processing
units, CPU, GPU, and Edge TPU exchange data through the on-
board PCIe interface. The prototype system contains 4 GB 64-bit
LPDDR4 interface at 25.6 GB/s as the main memory. The system’s
main memory hosts the share data among CPU, GPU, and Edge
TPU. Edge TPU additionally contains 8 MB device memory. The
system assembly runs an Ubuntu Linux 18.04 with NVIDIA’s cus-
tomized 4.9.253-tegra kernel. We implemented the virtual SHMT
hardware device as a dynamically loadable kernel module.

We built the prototype using selected components and believe
that this prototype is representative of most use cases for the fol-
lowing reasons. First, the processing power and the available types
of processors and accelerators of this system platform resemble
the hardware components that modern smartphone or mobile de-
vices [31], allowing this platform to assess the real performance
of using SHMT on these scenarios. Second, the ratio of computing
power between Maxwell GPUs and Edge TPUs (472 GLOPS v.s.
4 TOPS) resembles those on data center servers (67 TFLOPS FP32 of
A100 and 275 TFLOPS of TPUv4) [47, 77], allowing this platform to
assess the relative performance of SHMT on cloud servers. Finally,
the most important reason is the availability of the hardware com-
ponents and customizing the software stack. As SHMT requires
changes in kernel modules, the evaluation platform must allow full
control for experimental purposes. However, Google only provides
access to data center TPUs through their cloud platforms without
permitting the creation of customized system modules. We can
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only use the commercially available Edge TPUs to build the proto-
type platforms. Building SHMT using widely available hardware
components will also enable broader applications to the proposed
framework.

4.2 NPU implementations
Edge TPU can either serve as a matrix function accelerator as Sec-
tion 2.2.1 describes or implement an NPU as Section 2.2.2 describes.
In the case of using Edge TPU as matrix accelerators, we leverage
existing library to implement corresponding HLOPs [39].

Edge TPU can naturally implement the concept of NPU as the
target application of Edge TPU is inferencing NN models. Each
HLOP of Edge TPU using NPU mode is a pre-trained model for
the HLOP. Based on the microarchitecture of Edge TPUs, these
HLOP-NN models should (1) use multilayer perceptrons (MLPs)
with convolution and dense operators and 𝑠𝑖𝑔𝑚𝑜𝑖𝑑 or 𝑟𝑒𝑙𝑢 as acti-
vation functions and (2) be the first found and the simplest topology
whenever the learning curve of a full precision TensorFlow model
training significantly improves throughout topology searching.

We use the following steps to construct an NPU model on Edge
TPU.

(1) Construct the training and validation datasets by run-
ning the target algorithm/function using high-performance
CPU/GPU platforms with randomly-generated input data
and collecting the output.

(2) Train the NPU-HLOP model using high-performance
CPU/GPU platforms.

(3) Perform post-training quantization for the trained model
into an Edge TPU-compatible model using TensorFlow Lite
(TFLite) and edgetpu_compiler [30].

(4) Test the Edge TPU-compatible model with validation dataset
again. If the Edge TPU-compatible model’s accuracy is sig-
nificantly lower than its version on the high-performance
platform, we will enable quantization-aware training mode
to re-train the model with weights in 8-bit precisions.

5 RESULTS
SHMT with QAWS achieves 1.95× speedup compared with the
case where we can only offload computation to the fastest accel-
erator. As SHMT leverages low-power hardware accelerators to
assist the program execution along with GPUs, SHMT reduces the
energy consumption by 51.0%. This section describes the speedup,
quality, and energy consumption of SHMT when running various
applications using the prototype Section 4 presents.

5.1 Benchmark applications
Table 2 lists the benchmark applications this paper uses to evaluate
SHMT and the sources of their baseline GPU implementations.
We select these applications as these applications have both high-
performance GPU and NPU implementations that we can gather
from public code repositories through our best-effort search. In
addition, these applications cover multiple application domains,
including image processing, signal processing, physics simulation,
medical imaging, and finance. Without otherwise mentioned, the
default input data size for each benchmark contains 8192×8192
randomly generated floating-point numbers.

Benchmark Category Baseline Implementation
Blackscholes Finance CUDA Examples [74]
DCT8x8 Image Processing CUDA Examples [74]
DWT Signal Processing Rodinia 3.1 [14]
FFT Signal Processing CUDA Examples [74]

Histogram Statistical Opencv 4.5.5 [11]
Hotspot Physics Simulation Rodinia 3.1 [14]
Laplacian Image Processing Opencv 4.5.5 [11]

Mean Filter(MF) Image Processing Opencv 4.5.5 [11]
Sobel Image Processing Opencv 4.5.5 [11]
SRAD Medical Imaging CUDA Examples [74]

Table 2: Table of benchmarks

5.2 Speedup of end-to-end latency
Comparing the end-to-end latency of SHMT with optimized base-
line GPU implementations, SHMT with the best-performing QAWS
policy achieves 1.95× speedup. Figure 6 illustrates the speedup
of SHMT with various scheduling policies. In Figure 6 and the
following sections, we denote the variation of QAWS results as
QAWS-XY where X stands for hardware assignment policies using
(1) Device Limitation or (2)Top-K methods, and Y stands for the
sampling method, either (1)Stridding, (2)Uniform random sampling
or (3)Reduction.

We also include two policies that do not consider the quality of
results, even distribution, and work-stealing, as references. Naively
distributing HLOPs evenly between the GPU and the Edge TPU
would make the performance bounded by the slower hardware and
result in performance loss in 6 out of ten benchmark applications
where Edge TPU’s implementations are slower. In contrast, work-
stealing can achieve 2.07× speedup on average as work-stealing ad-
justs the workloads based on the consumption rate of HLOPs, allow-
ing faster hardware to perform more HLOPs and slower hardware
as an auxiliary device supporting the parallel execution. The per-
formance work-stealing policy also represents the optimal speedup
of SHMT without considering result qualities.

All QAWS policies in this paper sample and adjust workload
distributions on top of the basis of work-stealing. The speedup
that Figure 6 reports for each policy already includes the sampling
overhead. Among all SHMT policies with quality control mech-
anisms, QAWS-TS performs the best and achieves 1.95× speedup
compared with the GPU baseline on average. QAWS-TU seconds at
1.92× average speedup. Compared with the two policies QAWS-LU
and QAWS-LS that use the same sampling mechanism with initial
queue assignment policy using device limitations, the performance
of QAWS-TS and QAWS-TU reveals that “Top-K” is more suitable for
performance-critical workloads. Compared with device limitations,
the rank-based approach in Top-K may increase the amount of data
partitions that Edge TPU can perform in our platform since Edge
TPU can still work on some data partitions with wider value ranges
or variances than its hardware limitation. Regardless of using Top-K
or device limitations, reduction performs the worst due to the rela-
tively higher sampling overhead. As each SHMT policy implements
a subset of IRA-sampling [58], Figure 6 also includes that policy as
another baseline. Implementing the full features of IRA-sampling
will result in a 45% slowdown and render SHMT unusable.
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Figure 6: The application speedup relative to the baseline GPU implementations
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Figure 7: The Mean Absolute Percentage Errors (MAPEs) for SHMT applications

Figure 6 also includes the performance of optimized GPU imple-
mentations with software pipelining as another reference design.
Software pipeline can only achieve 1.25× speedup. For compute-
intensive workloads, software pipelining cannot compete with
SHMT. Software pipelining is effective for Blacksholes and MF
as computation becomes relatively minor in these applications.
However, this is not a limitation of SHMT. SHMT can potentially
parallelize the data preprocessing part to further speed up these
applications if appropriate hardware and algorithm exist.

5.3 Quality of QAWS policies
This section evaluates the quality of results for all proposed QAWS
policies and their sampling mechanisms.We quantitatively measure
result qualities using Mean Absolute Percentage Error (MAPE) and
structural similarity index measure (SSIM). The experimental result
shows all proposed policies can effectively improve the quality of
results to a similar level.

Figure 7 shows the MAPEs of all QAWS mechanisms. In addition
to SHMT policies and the baseline IRA-sampling mechanisms, we
create an “oracle” scenario wherewemanually identify critical input
data regions and assign HLOPs accordingly without considering the
performance. If the program can only use less precise Edge TPUs,
the MAPE is 5.15% on average. With careful manual optimizations,
the MAPE of the Oracle assignment is 1.77%. The MAPE of the
baseline IRA-sampling is 1.85%. Without using any QAWS policies,
the pure work-stealing approach can deliver the result with an
average MAPE of 2.85%.

For the proposed QAWS policies, the MAPEs of all policies are
lower than 2% on average, close to the Oracle assignment and IRA-
sampling. Furthermore, the difference inMAPEs between the QAWS
policy with the lowest and the QAWS policy with the highest end-
to-end latency is a marginal 0.07%, implying that a high-overhead
sampling mechanism is overkill for most cases.

Due to the various result distributions of each application, the
MAPEs across different applications vary significantly. For example,
resulting images of edge detection type of applications, Sobel filter,
and Laplacian, contain vast amounts of near-zero values represent-
ing non-edge areas. Thus, any moderately approximated non-edge
value will contribute a much higher percentage of the error rate to
the overall MAPE. The limitation in dealing with close-to-zero is a
well-known issue of MAPE [53].

To more effectively evaluate the quality of results in image data
containing near-zero values, we introduced SSIM as an additional
metric. SSIM is a measure that predicts perceived visual quality,
and an SSIM score of more than 0.95 is the generally agreed thresh-
old of very good quality. We use SSIM for the six image-related
workloads, DCT8x8, DWT, Laplacian, Mean Filter, Sobel filter, and
SRAD. Figure 8 presents the SSIMs of these applications. All QAWS
policies can maintain higher than 0.97 SSIMs as the average SSIM
results across these applications are 0.9916, 0.9924, 0.9949, 0.9873,
0.9829, and 0.9798 for QAWS-TS, QAWS-TU, QAWS-TR, QAWS-
LS, QAWS-LU, and QAWS-LR, respectively. All QAWS policies can
achieve SSIM results close to the oracle of 0.9957, especially the
top-K QAWS policies. This set of experiments again shows that
using high-overhead mechanisms is not necessary in most cases.
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Figure 8: The Structural Similarity Index Measures (SSIMs) for image-related SHMT applications
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Figure 9: (a) Quality v.s. QAWS sampling rates, (b) Speedup
v.s. QAWS sampling rates

Since all QAWS policies deliver a similar level of result quali-
ties but QAWS-TS obtains the best performance compared with all
QAWS policies, in the rest of the paper, we use QAWS-TS by default.

5.4 QAWS sampling rate
The number of samples during each sampling phase is another
parameter that helps optimize the sampling overhead. Figure 9(a)
and Figure 9(b) show the speedup and MAPEs when the sampling
rate (the portion as samples from the raw datasets) of our best-
performing QAWS-TS changes, respectively. A sampling rate of
2−14 means we select 256 samples from a 2048×2048-sized input.
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Figure 10: Energy consumption and energy-delay products
(EDP)

We changed the sampling rate from 2−21 to 2−14. As SHMT’s policy
already reduces the post-processing after each sample, QAWS-TS
achieves competitive performance regardless of the sampling rate.
However, the MAPEs decrease monotonically until the sampling
rate reaches 2−15. The result suggests that the sampling rate of 2−15
can generate significant enough input samples for QAWS policies
without sacrificing performance gain considerably.

5.5 Energy Consumption
By reducing the total execution time and offloading computation to
a lower-power-consuming Edge TPU, SHMT has a strong potential
for energy saving. We connect the power source of the prototype
through a power meter and collect the periodical measurements
from themeter. Figure 10 reports the breakdown of energy consump-
tion of both GPU baseline and SHMT with QAWS-TS. The same
figure also shows the relative energy-delay products (EDP) of SHMT
with QAWS-TS, compared against the GPU baseline. SHMT with
QAWS-TS reduces energy consumption and EDP by 51.0% and 78.0%
on average, respectively.

The peak power consumptions of three cases including (1) plat-
form idling, (2) GPU baseline, and (3) the SHMT with QAWS-TS
are 3.02 watts, 4.67 watts, and 5.23 watts, respectively. Although
SHMT with QAWS-TS reaches higher peak power since both GPU
and Edge TPU are functioning during runtime than GPU baseline,
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Figure 11: SHMT’s Memory Footprint (Normalized to GPU
Baseline)
Benchmark Communication Benchmark Communication

Overhead(%) Overhead(%)
Blackscholes 0.77% DCT8x8 0.89%

DWT 0.66% FFT 1.03%
Histogram 0.47% Hotspot 1.04%
Laplacian 0.49% MF 0.67%
Sobel 0.79% SRAD 0.59%

GMEAN 0.71%
Table 3: Communication Overhead

on average, the 51.0% energy reduction of SHMT with QAWS-TS
comes from the 1.95× speedup that reduces the period consuming
the power with 5.23 Watt at peak.

5.6 Memory and communication overhead
Figure 11 presents the total memory footprint when running bench-
mark applications at each process’s virtual memory abstraction
level. As the specialized logic in Edge TPUs provides more acceler-
ated functions in hardware, Edge TPUs require less system memory
than equivalent implementations on GPUs. For example, the buffers
in Edge TPU processing elements can replace the memory in storing
the intermediate results of vector products that GPUs require. As a
result, the memory footprint of SHMT counter-intuitively reduces
for applications with significant amounts of HLOPs on Edge TPUs,
despite the additional buffers for inputs to Edge TPUs.

Table 3 describes the communication overhead resulting from
the nature of peripheral devices like Edge TPUs. The computing
resources in SHMT only spend about or less than 1% of the time
waiting for data exchanges for the following reasons. (1) The paral-
lel programming model of SHMT promotes data-parallel algorithms
like matrix semiring tiling ones that implicitly have low data ex-
changes among parallel chunks of computing. (2) The computation
time is relatively longer on each processing resource than the data
exchange time, allowing mechanisms like double buffering to hide
the latency. (3) The amount of HLOPs from each application al-
lows the SHMT runtime system to easily oversubscribe available
processing resources and cover the latency of data exchange.

5.7 Discussion on SHMT’s limitation
Figure 12 shows the speedups of SHMT under QAWS-TS variation
when problem sizes of benchmarks vary. Within the tested problem
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Figure 12: Speedup v.s. problem sizes

size interval, from 4K to 64M, the speedup increases as the problem
size increases. We did not go beyond 64M as the working set size of
GPU kernels in some applications will surpass the physical memory
limitation and crashes, not the limitation of SHMT. SHMT is more
effective for larger problem sizes as larger problem size provides
more parallelism among HLOPs for various devices.

Reviewing the result in Section 5.6 presents, SHMT does not
lead to significant memory and communication overhead if we can
leverage the embarrassingly data-level massive parallelism as the
applications we demonstrated in this paper. Therefore, the adoption
of SHMT simply helps the system to enjoy more parallel processing
resources to tackle larger problem sizeswithout significantly further
burdening the system. In other words, the limitation of SHMT is
not the model itself but more on whether the programmer can
revisit the algorithm to exhibit the type of parallelism (e.g., matrix
tiling [70, 82, 106]) that makes SHMT easy to exploit.

6 RELATEDWORK
Existing runtime for parallel programming on heteroge-
neous systems. Popular domain-specific languages, including Ten-
sorFlow [1] and Pytorch [80], allow the automatic delegation of
domain-specific functions to one particular accelerator. Suppose
the back-end implementation of functions can exploit parallelism
among the delegated type of accelerators. In that case, these frame-
works can concurrently execute pieces of computation on multiple
devices but the same type. These frameworks can also employ
pipeline parallelism to overlap different domain-specific functions
with concurrency. However, none of the existing domain-specific
language frameworks can employ multiple types of accelerators
simultaneously in the manner that SHMT can perform. IR-level opti-
mizations like XLA [65], or model-level optimizations like TVM [15]
and AutoTVM [16] do not consider the simultaneous use of hetero-
geneous devices but can only optimize for a single type of device
for each code region.

Heterogeneous programming frameworks like OpenCL [88] al-
low programmers to compose a single code version but generate bi-
nary running on multiple hardware devices. However, the OpenCL
does not generate code that can simultaneously execute on hetero-
geneous devices. Though programmers can use OpenCL or other
alternatives to create programs running in SHMT model manually,
the resulting program still lacks scheduling flexibility and quality
assurance.

147



MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Kuan-Chieh Hsu and Hung-Wei Tseng

OpenMP [13] provides an automatic parallel programmingmodel
that enables multithreading execution on homogeneous multi-
processors. Through adding pragmas, OpenMP can exploit data-
level parallelism and create homogeneous threads. SHMT can lever-
age the identified data-level parallelism and create parallel exe-
cution using HLOPs to make use of multiple types of hardware.
However, without the abstraction and mechanisms that SHMT
framework presents, existing homogeneous programming frame-
works cannot take advantage of the presence of heterogeneous
hardware.
Existing task distribution solutions for heterogeneous sys-
tems utilizing multiple accelerators in the system use the following
methods.

(1) Partitioning one application and mapping the partitions onto
multiple accelerators of the same type (such as GPUs) in the com-
puter system for concurrent execution [5, 18, 24, 50, 51, 64, 72, 73,
79, 81, 86, 104, 105, 110]. Some works extend the same method to
computer clusters such as distributed deep learning training/infer-
encing [26, 32, 38, 42, 45, 57], federated learning [35, 54, 93, 100], de-
centralized ad-hoc computing [23], inter-datacenter scheduling [83],
and scalable computing on supercomputer environments [84, 94].
Although these methods can achieve higher performance with par-
allel execution of multiple devices of the same type, they do not
consider the simultaneous use of the other types of heterogeneous
accelerators on the same system as SHMT does.

(2) Extending method (1) to multiple accelerators with different
configurations or versions [10, 17, 72, 85, 90, 107] but still falling
into the same type. HDA [56] can configure multiple heterogeneous
dataflow accelerators for different neural-network layers where
each only differs from others with different PE configurations and
connecting topology. HASCO [102] can efficiently generate systolic
array architectures with different configurations for executing var-
ious tensor computation kernels. Again works using this method
do not overcome the challenge of programming model discrep-
ancy among devices. SHMT presents a parallel programming and
execution model addressing this challenge.

(3) Allowing limited concurrent usage of multiple types of ac-
celerators only when the task execution triggers multiple types of
dedicated functions at the same time [9, 55, 91, 98]. However, the
behavior of the program’s execution flow and the diverse charac-
teristics of dedicated functions mapping to DSAs limit the simulta-
neous level of heterogeneous execution. Whereas SHMT provides a
machine-independent programming model for task partitions such
that the concept of SHMT can achieve higher hardware utilization
and allow broader applicability for accelerators.
Heterogeneous computing for AI/ML workloads. The high
computing demands of AI/ML workloads motivating the develop-
ment of AI/ML accelerators provoke many performance optimiza-
tion techniques that utilize heterogeneous accelerators. Examples
are (1) tensor tiling [44, 108, 109], (2) pipelining [29, 101], (3) op-
eration fusing [2, 75], (4) neural architecture searching (NAS) [61–
63, 92, 95], and (5) model quantization/compression [4, 7, 28, 33, 43,
87, 89, 96, 97]. Essentially, these techniques re-consider the computa-
tional graphs of AI/ML workloads for better workload-to-hardware
matchings that exploit parallelisms. SHMT is orthogonal to these
techniques as SHMT allows extensions upon these software-based

optimizations that explore opportunities enabling intra-kernel con-
current utilization on multiple heterogeneous accelerators.
Existing quality assurance policies rely on several methods in-
cluding (1) taking advantage of the precision-tolerable characteristic
of workloads themselves like data precision adaptation on AI/ML
models [4, 33, 96], (2) providing numerical composition solutions
to increase resulting precision such as iterative refinement [34] and
extended precision [27], or (3) performing mixed-precision compu-
tation [21, 52, 69, 99, 103] or providing multi-resolution data [41]
to adjust overall required quality according to needs. Existing ap-
proximated techniques include loop perforation [60] and numerical
approximation. Another example is IRA [58] which uses canary
inputs to dynamically select the most effective approximation tech-
nique for speedup before target output quality (TOQ) violation
happens.

SHMT is orthogonal to these quality assurance policies as our
QAWS policies are low-overhead sampling methods without actual
function execution runs. As long as any aforementioned policy has
low-overhead and can avoid using application-specific prior knowl-
edge to assure quality, they can substitute QAWS as a replaceable
module.

This work needs additional quality assurance simply because
the hardware performs approximate computing rather than the
limitation of the concept SHMT itself. Conventional homogenous
simultaneous multithreading hardware does not need to cope with
quality assurance. In contrast, SHMT has to ensure quality because
of the potential precision mismatch of underlying architectures.

7 CONCLUSION
Modern computer systems are already heterogeneous and consist
of several types of hardware architectures. Conventional execution
models usually under-utilize these hardware devices by only offload-
ing certain workloads that depend on the kernel’s characteristics
and performance requirements.

This paper presents SHMT, a framework for heterogeneous
systems to enable a simultaneous and heterogeneous execution
scheme. SHMT automatically partitions given VOPs of a workload
into HLOPs to allow concurrent execution of these sub-kernels on
heterogeneous devices. By integrating the concept of neural gener-
alization, SHMT enables devices such as Edge TPU that have limited
programming capabilities to contribute their computational powers.
Also, QAWS policy mitigates the precision mismatch issue from
accelerators with low data precision causing the potential result
quality degradation. Throughout the low-overhead re-scheduling
behavior of QAWS introduced on HLOPs, SHMT achieves less than
2% MAPE error across applications on average via prioritizing tasks
over criticality. Also, SHMT achieves 1.95× speedup and 51.0%
energy reduction by enabling simultaneous and heterogeneous
execution of architectures compared to GPU baseline.
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A ARTIFACT APPENDIX
A.1 Abstract
This document describes the artifact of "Simultaneous and Het-
erogenous Multithreading" and the process of reproducing the ex-
perimental results in this paper. To run the benchmarks that this
paper evaluates, the evaluator must have a computer equipped
with (1) NVIDIA’s GPU, (2) Google’s Edge TPU, and (3) capable of
running a Linux distribution supporting the software stacks for the
GPU and Edge TPU. To build a prototype virtual hardware device
that supports SHMT in hardware, the evaluator must also have
a prototype similar to Jetson Nano platform where the platform
contains (1) a Cortex-A57 ARM processor, (2) a 128-core Maxwell
NVIDIA GPU that is capable of running the GPU implementation
of HLOP kernels, and (3) a Edge TPU that is capable of running the
NPU implementation of HLOP kernels.

A.2 Artifact check-list (meta-information)
• Program: Blackscholes [74], Discrete Cosine Transform
(DCT8x8) [74], Discrete Wavelet Transform (DWT) [14], Fast
Fourier Transform (FFT) [74], Histogram [11], Hotspot [14],
Laplacian [11], Mean Filter(MF) [11], Sobel [11], Speckle Reducing
Anisotropic Diffusion (SRAD) [74]
• Compilation: cmake 3.10, gcc 7.5.0
• Data set: Synthetic datasets from each program’s dataset generator.
• Run-time environment: Ubuntu 18.04 with NVIDIA’s customized
4.9.253-tegra kernel, CUDA 10.2, nvidia-docker 20.10.7
• Hardware: A Jetson Nano (4 GB ram) platform equipped with Edge
TPU
• Execution: To reduce the disturbance from another workload, we
recommend running experiments with a sole user.
• Metrics: End-to-end latency (second), Mean Absolute Percentage
Error (MAPE)
• Output: Each benchmark program will display its execution result
through the console or log files.
• How much time is needed to complete experiments (approxi-
mately)?: 1 - 2 hours
• Publicly available?: Yes
• Code licenses (if publicly available)?: We will be using an MIT
license for our code.
• Data licenses (if publicly available)?: The datasets are publicly
available through their original licensing terms.
• Archived (provide DOI)?: https://zenodo.org/record/8210452

A.3 Description
A.3.1 How to access. We archive the source code and workloads at
https://zenodo.org/record/8210452. For the latest version, the user
can access our GitHub page: https://github.com/escalab/SHMT

A.3.2 Hardware dependencies. To build the SHMT prototype sys-
tem, the user will need the hardware components and the construc-
tion guide as Section 4.1 mentions. In summary, the experimental
Jetson Nano-based platform contains the following hardware com-
ponents.

• Processor: Cortex-A57 ARM processor
• DRAM: 4 GB 64-bit LPDDR4
• GPU: 128-core Maxwell NVIDIA GPU
• Edge TPU: M.2 Accelerator A+E key

A.3.3 Software dependencies. The SHMT artifact relies on the fol-
lowing software components.

• CUDA 10.2
• nvidia-docker 20.10.7

Since the SHMT artifact leverages nvidia-docker to avoid manu-
ally installing many software dependencies, the following software
dependencies are required if nvidia-docker is not used during com-
pilation.

• cmake 3.10 or newer
• gcc 7.5.0
• Opencv 4.5.5
• CUDA 10.2
• OpenMP

A.3.4 Models. Since this work implements the Edge TPU ker-
nels using NPU [25] as Section 4.2 mentions, the user can refer
to NPU [25] for how to generate neural-network-based kernel mod-
els. To reduce the workflow time of preparing the Edge TPU kernels,
we prepare pre-trained kernel models under models/ directory for
this particular experiment.

The user can refer to src/Python/generate_kernel_model.py
for more details about the pre-train workflow.

A.4 Installation
Before installing any SHMT software/library, the user should install
the software components as Section A.3.3 mentions. Then, the user
can install the SHMT artifact through the following steps.

git clone https://github.com/escal/SHMT
sh scripts/docker_setup_partition.sh
sh scripts/docker_launch_partition.sh

And within the docker container, do the following steps.
mkdir build
cd build
cmake ..
make -j4

This step will generate the example executable that utilizes SHMT
library.

A.5 Experiment workflow
To run the example executable named gpgtpu, the user can leverage
the existing shell scripts under scripts/ called AE_run.sh to begin
the process.

sh ../scripts/AE_run.sh

A.6 Evaluation and expected results
A.6.1 Evaluate Results. The evaluator can redirect the outputs to
a log file and carefully examine the results.

A.6.2 Expected Results. Compared to the GPU baseline, SHMT
with QAWS-TS policy can offer 1.95× speedup with MAPE equals
to 1.98% on average. Please refer to Section 5 for the expected
results.

A.7 Notes
To build the dependent shared library libgptpu_utils.so from
source code that provides generic APIs interacting with Edge TPU,
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which the artifact already provides under the lib/aarch64 direc-
tory, the user can additionally download the submodules when
cloning the artifact. Please follow the installation instructions un-
der edgetpu/ for more details.

A.8 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-
and-badging-current
• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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