
DF-GAS: a Distributed FPGA-as-a-Service Architecture towards
Billion-Scale Graph-based Approximate Nearest Neighbor Search

Shulin Zeng∗
Department of Electronic

Engineering, Tsinghua University
Beijing, China

zengsl18@mails.tsinghua.edu.cn

Zhenhua Zhu∗
Department of Electronic

Engineering, Tsinghua University
Beijing, China

zhuzhenh18@mails.tsinghua.edu.cn

Jun Liu
Department of Electronic

Engineering, Tsinghua University
Beijing, China

liu-j20@mails.tsinghua.edu.cn

Haoyu Zhang
Department of Electronic

Engineering, Tsinghua University
Beijing, China

hy-zhang22@mails.tsinghua.edu.cn

Guohao Dai†
Qingyuan Research Institute,
Shanghai Jiao Tong University

Shanghai, China
daiguohao@sjtu.edu.cn

Zixuan Zhou
Department of Electronic

Engineering, Tsinghua University
Beijing, China

zhouzx21@mails.tsinghua.edu.cn

Shuangchen Li
DAMO Academy, Alibaba Group

Sunnyvale, USA
shuangchen.li@alibaba-inc.com

Xuefei Ning
Department of Electronic

Engineering, Tsinghua University
Beijing, China

foxdoraame@gmail.com

Yuan Xie
ACCESS, HKUST
Hongkong, China

DAMO Academy, Alibaba Group
Sunnyvale, USA

y.xie@alibaba-inc.com

Huazhong Yang
Department of Electronic

Engineering, Tsinghua University
Beijing, China

yanghz@mail.tsinghua.edu.cn

Yu Wang†
Department of Electronic

Engineering, Tsinghua University
Beijing, China

yu-wang@tsinghua.edu.cn

ABSTRACT
Embedding retrieval is a crucial task for recommendation systems.
Graph-based approximate nearest neighbor search (GANNS) is the
most commonly used method for retrieval, and achieves the best
performance on billion-scale datasets. Unfortunately, the existing
CPU- and GPU-based GANNS systems are difficult to optimize the
throughput under the latency constraints on billion-scale datasets,
due to the underutilized local memory bandwidth (5-45%) and the
expensive remote data access overhead (∼85% of the total latency).
In this paper, we first introduce a practically ideal GANNS architec-
ture for billion-scale datasets, which facilitates a detailed analysis
of the challenges and characteristics of distributed GANNS systems.
Then, at the architecture level, we propose DF-GAS, a Distributed
FPGA-as-a-Service (FPaaS) architecture for accelerating billion-
scale Graph-based Approximate nearest neighbor Search. DF-GAS

∗Both authors contributed equally to this research.
†Corresponding authors.

This work is licensed under a Creative Commons Attribution International
4.0 License.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0329-4/23/10.
https://doi.org/10.1145/3613424.3614292

uses a feature-packing memory access engine and a data prefetch-
ing and delayed processing scheme to increase local memory band-
width by 36-42% and reduce remote data access overhead by 76.2%,
respectively. At the system level, we exploit the “full-graph + sub-
graph” hybrid parallel search scheme on distributed FPaaS system.
It achieves million-level query-per-second with sub-millisecond
latency on billion-scale GANNS for the first time. Extensive evalua-
tions on million-scale and billion-scale datasets show that DF-GAS
achieves an average of 55.4×, 32.2×, 5.4×, and 4.4× better latency-
bounded throughput than CPUs, GPUs, and two state-of-the-art
ANNS architectures, i.e., ANNA [23] and Vstore [27], respectively.

CCS CONCEPTS
• Computer systems organization→ Cloud computing.

KEYWORDS
Embedding Retrieval, FPGA, Distributed Architecture, Graph, Ap-
proximate Nearest Neighbor Search

ACM Reference Format:
Shulin Zeng, Zhenhua Zhu, Jun Liu, Haoyu Zhang, Guohao Dai, Zixuan
Zhou, Shuangchen Li, Xuefei Ning, Yuan Xie, Huazhong Yang, and Yu
Wang. 2023. DF-GAS: a Distributed FPGA-as-a-Service Architecture towards
Billion-Scale Graph-based Approximate Nearest Neighbor Search. In 56th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO

283

https://orcid.org/0000-0002-1030-3748
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613424.3614292
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613424.3614292&domain=pdf&date_stamp=2023-12-08

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Shulin Zeng al.

’23), October 28–November 01, 2023, Toronto, ON, Canada. ACM, New York,
NY, USA, 14 pages. https://doi.org/10.1145/3613424.3614292

1 INTRODUCTION
Recommendation systems have been widely deployed in the indus-
try, including Google DCN [41], YouTube [9], Facebook DLRM [35],
and Microsoft Bing [33]. Industrial recommendation systems are
usually composed of two stages: First, retrieval roughly selects
hundreds of candidates from billion-scale databases based on search
algorithms, e.g., approximate nearest neighbor search (ANNS). Sec-
ond, ranking precisely chooses dozens from the selected candi-
dates using learning algorithms, e.g., fully-connected networks
(FCN). ANNS is one of the most commonly used methods for re-
trieval, since it can effectively boost the search throughput with a
slight accuracy loss. Industry giants have deployed different com-
mercial ANNS solutions, such as Google ScaNN [15], Facebook
Faiss [21], Microsoft SPTAG [34], etc. These solutions contain vari-
ous ANNS algorithms, like tree-based methods [16, 46], hash-based
methods [10, 38], product-quantization (PQ) based methods [15, 21],
and graph-based methods [17, 32].

Among different ANNS algorithms, the graph-based ANNS algo-
rithm (GANNS) achieves the best performance with high accuracy
and short search latency [26]. GANNS first maps the features in
datasets to the points of an embedding space and then constructs a
graph using these points offline. During the online search, GANNS
traverses the graph to find the nearest points to the input query that
is also mapped to the embedding space. The search stage mainly
contains three operations: accessing neighbor index lists and fea-
tures, calculating feature distance between query and datasets, and
sorting distance. The first one is amemory-intensive graph traversal
operation, while the others are compute-intensive operations.

One important metric for GANNS is the throughput under the
service-level agreement (SLA) constraint, namely latency-bounded
throughput. On the one hand, improving the throughput, i.e., query-
per-second (QPS), can reduce the operating cost by serving more
requests with fewer servers. On the other hand, tighter latency
constraints can leave more time budget for the ranking stage to
improve final results [8]. To achieve high latency-bounded through-
put, we derive that a practically ideal GANNS hardware architec-
ture should satisfy the following features: First, it should contain
a distributed memory system since billion-scale datasets require
hundreds to thousands GBs of memory footprints; second, the
architecture should enable memory-efficient graph traversing on
both local and remote nodes in distributed systems; third, sufficient
data parallelism is required for efficient processing of the batched
queries.

Unfortunately, existing general-purpose hardware (CPU and
GPU) cannot meet the above requirements with the following chal-
lenges unresolved:

(1) Lowmemory bandwidth utilization for single-node scaling up.
Because of the irregular graph data access, the memory bandwidth
of CPU and GPU are both severely underutilized, i.e., 5-45%, which
introduces extremely long latency. Besides, the lack of sufficient
parallel strategy for the searching flow (especially for the sort-
ing operations) causes the waste of parallel computing capability

of multi-core hardware, further limiting the achievable latency-
bounded throughput.

(2) Long remote data access latency with heavy communication
overhead for multi-node scaling out. Existing distributed GANNS
solutions [13, 14] partition the original full-graph database into mul-
tiple independent sub-graphs, eliminating all the inter-sub-graph
communication overhead (∼85% of the total latency). However,
because the connectivity of the graph deteriorates, the graph par-
tition needs more search steps in sub-graphs to find the nearest
neighbors. As a result, existing graph partition methods introduce
additional computation overhead (4-6×), reducing the throughput
by 3-5×. Thus, there is still much room for optimizing GANNS on
billion-scale datasets.

In this paper, we aim to design a customized architecture for
billion-scale GANNS, with the goals of scaling up, scaling out, and
high performance. To this end, we propose DF-GAS, a Distributed
FPGA-as-a-Service (FPaaS) architecture for accelerating billion-
scale Graph-based Approximate nearest neighbor Search. DF-GAS
is a proof-of-concept implementation of the practically ideal GANNS
hardware architecture with a customized feature-packing Memory
Access Engine (MAE). The contributions of this paper include:

• We introduce a practically ideal architecture for billion-scale
GANNS. The practically ideal architecture facilitates a de-
tailed analysis of the challenges and characteristics of exist-
ing distributed GANNS systems.

• For scaling up, we propose a two-level outstanding request
generation technique to boost the memory-level parallelism.
We also design the intra-Processing Element (PE) pipeline
and the inter-PE out-of-order (OoO) execution flow to im-
prove the memory bandwidth utilization by 36-42%.

• For scaling out, we propose prefetching and delayed process-
ing schemes for remote neighbor lists and features to hide the
long remote access latency. Therefore, the communication
overhead is reduced by 76.2%.

• We build up the first distributed FPaaS system with sub-
millisecond ultra-low latency for billion-scale GANNS. We
propose a hybrid parallel search scheme that exploits both
throughput-optimized full-graph parallel and latency-optimized
sub-graph parallel. Compared with CPUs and GPUs, DF-GAS
achieves at least 92-218× and 135-294× lower latency, respec-
tively.

Comprehensive evaluations onmillion-scale and billion-scale datasets
show that DF-GAS achieves 23.8-233.4×, 1.9-50.8×, 2.1-8.6×, and
1.3-7.5× latency-bounded throughput than CPUs, GPUs, ANNS
accelerators, i.e., ANNA [23] and Vstore [27], respectively.

2 BACKGROUND
2.1 Nearest Neighbor Search
2.1.1 Definition. Nearest Neighbor Search (NNS) aims to find the
most similar result for a query vector 𝑞 ∈ R𝑑 in a given finite set of
base feature vectors 𝑋 ∈ R𝑑 . It can be expressed as:

𝑅 = argmin
𝑥∈𝑋

𝑑𝑖𝑠𝑡 ⟨𝑞, 𝑥⟩ (1)

284

https://doi.org/10.1145/3613424.3614292

DF-GAS MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Find nearest
vectors

1 # Graph ANN Search
2 for i in iterations:
3 Features = GetNborFeature(DataBase, NextP) # graph traverse
4 Features = Deduplication(VisitedList, Features) # filter
5 Scores = DistCal(Features, Input) # distance calculation
6 NextP = Sorting(Queue, Scores) # update topK queue
7 return Result = TopK(Queue) # return final topK candidates

Feature

Base
vectors

(a) Construction stage

Query
vector

(b) Search stage

(c) Search Algorithm Pseudocode

!! ! = 2
"# = 3

"#$% &, (

’s nbor:

&

(

Figure 1: Illustration of GANNS algorithms: (a) the construc-
tion stage, (b) the search stage, and (c) the pseudocode.

Here 𝑑𝑖𝑠𝑡 ⟨𝑞, 𝑥⟩ is the distance metric (e.g., L2 or inner product) to
indicate the similarity between 𝑞 and 𝑥 . Similarly, we denote the
nearest k results as 𝑅𝑘 .

2.1.2 Graph-based ANNS. GANNS algorithms abstract the base
feature vectors as points in a high-dimensional space. Then a con-
struction stage is carried out to construct a graph structure using
these points, whose edges represent relations among points. We
call the 𝑖-th base feature vector and its neighbor indexes as the
feature and neighbor list of the 𝑖-th point in the graph, respectively.

Construction Stage. The construction stage is to connect the
points in the base dataset according to construction strategies, as
shown in Figure 1(a). The main difference among different GANNS
algorithms is the construction strategy. For example, hierarchical
navigable small world (HNSW) [32] adopts an incremental and
relative nearest neighbor [39] based construction strategy. NSG [13]
adopts a pre-built 𝑘NN graph and approximately monotonic search
networks [11].

Search Stage. Most GANNS algorithms adopt the best first
search strategy [40], which requires multiple iterations to approach
the nearest results, as shown in Figure 1(b). For each iteration,
we first select the point closest to the query from the traversed
points. Then, we visit its untraversed neighbors from the neigh-
bor list, which are filtered by a visited list to avoid repeated visits.
Next, we calculate the distances among the query feature and these
neighbors’ features. Finally, we insert the distances and the cor-
responding point indexes into one priority queue. This process is
repeated for 𝑒 𝑓 iterations. Here 𝑒 𝑓 is a hyperparameter to control
the accuracy-speed tradeoff.

2.1.3 Evaluation metrics. The search accuracy of GANNS is evalu-
ated by the recall rate. For the query vector 𝑞, its nearest 𝑘 (top K)
results from ANNS is 𝑅′

𝑘
, Then the recall rate 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 is defined

as:

𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 =

���𝑅′
𝑘
∩ 𝑅𝑘

���
|𝑅𝑘 |

(2)

The search performance is usually evaluated using the query-per-
second (QPS) and latency.

Remote
Memory
Remote
Memory
Remote
Memory
Local
Memory

Memory
Access
Engine Sorting

Stage-1
Sorting
Stage-2

Sorting
Stage-NGraph

database

! Large
distributed memory

" High memory bandwidth

Fast remote access
$ Data parallelism for single-node

% Pipeline parallelism

& Pipeline parallelism for the entire dataflow

Remote
Memory
Remote
Memory
Remote
Memory
Distance
Calc.

PE 0
PE 1

PE B-1
Node 0
Node 1

Node N-1

…

…

Remote
Memory
Remote
Memory
Remote
Memory
Remote
Memory

' Data parallelism for multi-node

Graph
traverse

Figure 2: Practically ideal GANNShardware architecturewith
appropriate data and pipeline parallelism for billion-scale
datasets.

2.2 Cloud FPGAs
Distributed FPaaS [25] has the potential to fulfill all the features re-
quired by the ideal GANNS architecture. First, FPGAswith both dou-
ble data rate memory (DDR) and high bandwidth memory (HBM)
[44] can provide both high memory bandwidth (e.g., 490GB/s) and
large memory capacity (e.g., 40GB). Besides, the sufficient and pro-
grammable on-chip resources of FPGAs enable easy implementation
with appropriate data and pipeline parallelism [48]. Moreover, the
FPaaS platform is naturally scalable in the cloud.

3 MOTIVATIONS AND CHALLENGES
3.1 Practically Ideal GANNS Hardware

Architecture
To maximize the latency-bounded throughput while meeting real-
istic hardware constraints, we introduce a practically ideal GANNS
hardware architecture for billion-scale datasets, as shown in Fig-
ure 2.

On the memory side, the graph database of GANNS usually
contains billions of points, each with a high-dimensional feature
(e.g., 96-128B). Thus, the entire database requires a large distributed
memory with hundreds to thousands of GBs capacity (Figure 2 1○).

On the computation side, the online search stage of GANNS
mainly contains three operations:

• Neighbor lists and feature access (line 3, Figure 1(c)) is a
memory-intensive operation. Traversing the large and dis-
tributed database introduces massive local and remote mem-
ory requests for a single query, demanding an efficient mem-
ory access engine to provide both high memory bandwidth
(Figure 2 2○) and fast remote access (Figure 2 3○).

• Distance calculation (line 5, Figure 1(c)) calculates the
distance between the selected points and the input query.
Since there is no dependency among distance calculations for
different points, an ideal architecture should implement dis-
tance calculation with enough data parallelism (Figure 2 5○)
to match the throughput of graph traversal.

• Distance sorting (line 6, Figure 1(c)) usually runs in a deeply
pipelined manner (Figure 2 4○) with multiple sub-stages to
achieve a balance between performance and resources (e.g.,
insertion sort). Besides, the distance calculation and sorting
can also be overlapped with appropriate pipeline parallelism
(Figure 2 4○) to serve one query inside a single PE.

285

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Shulin Zeng al.

1.0

1.5

2.0

2.5

3.0

3.5

1 2 4 8 16 32

(b
)N

or
m

al
iz

ed
 Q

PS

SIFT10M SIFT1B SPACEV10M SPACEV1B

0%

10%

20%

30%

40%

50%

1 2 4 8 16 32(a
)B

an
dw

id
th

 U
til

iz
at

io
n

Thread Num Thread Num

Figure 3: Characterizations on CPUs. (a) Bandwidth utiliza-
tion and (b) scability with different number of threads.

The single-node ideal architecture can support batch queries
with data parallelism (Figure 2 5○) using multiple PEs. Also, it can
be extended to the distributed system for larger batch sizes using
multi-node data parallelism (Figure 2 6○). Moreover, to overlap
the computation with local/remote communication, there should
be system-level pipeline parallelism (Figure 2 7○) for the entire
dataflow.

In order to implement distributed GANNS systems, we need to
partition the graph-based search and deploy it to amulti-node/multi-
PE system. There exist two partition strategies for running GANNS
in parallel, i.e., full- and sub-graph parallel search (GPS). For the
full-GPS strategy, the graph construction stage is the same as the
original GANNS algorithms. In the search stage, multiple PEs or
nodes share one logical full graph with batch queries, where the
partitioned graphs still retain connectivity with each other. For the
sub-GPS strategy, points of the base dataset are divided intomultiple
separate parts, which are used to construct sub-graphs indepen-
dently. During the search stage, different PEs or nodes perform
searching for the same query on different sub-graphs simultane-
ously. Then the partial results of these sub-graphs are merged to
get the final results.

3.2 Limitation of Existing Work
In this part, we present motivation examples by running state-of-
the-art (SOTA) CPU- [1, 13] and GPU-based design [14] and analyze
their major limitations using the proposed practically ideal GANNS
architecture. The hardware platforms we used are Intel Xeon Gold
5218 CPU andNvidia RTX 3090 GPU. The evaluated datasets include
SIFT [19] and SPACEV [2], with ten million (10M) and one billion
(1B) points. We evaluate million-scale and billion-scale datasets on
a single machine and an eight-node cluster, respectively.

3.2.1 Distributed multi-node design. In the full-GPS strategy, be-
cause of the large number of edges connecting different sub-graphs,
there exist frequent remote data accesses during the search. Our
evaluation shows that the remote communication overhead takes
up 84.1-86.0% of the total latency in existing distributed GANNS sys-
tems. Therefore, the existing distributed GANNS solutions [13, 14]
utilize the sub-GPS strategy. Since there is no connectivity among
sub-graphs in sub-GPS, it eliminates almost all the remote communi-
cation overhead (except for the final merge operation). Considering
a realistic eight-node system with 200Gbps networks, the sub-GPS
outperforms the throughput of full-GPS by ∼1.5× on the SIFT1B
dataset. However, because the sub-GPS strategy loses plenty of
global information with poor connectivity, more search steps are

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+0

1E+2

1E+4

1E+6

(a
)Q
PS

Latency
(m
s)

Batch Num
1 4 16 64 256 1024 4096

Latency:
SIFT10M SIFT1B SPACEV10M SPACEV1BQPS/BW util.:
SIFT10M SIFT1B SPACEV10M SPACEV1B

1000

10

1 0%

10%

20%

30%

40%

50%

(b
)B

an
dw

id
th

 U
til

iz
at

io
n

100

Figure 4: Characterizations on GPUs. (a) QPS and latency
under different batch sizes, and (b) bandwidth utilization
with a 10ms SLA constraint.

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

DDR HBM UDP
(P2P)

UDP
(Switch)

(b
)L

at
en

cy
 (u

s)

Data Size (KB)

0

5

10

15

20

0 16 32 48 64 80 96 112 128

Double Data Rate Memory (DDR)
HIgh Bandwidth Memory (HBM,1 bank)
User Datagram Protocol Network (UDP)

DDR(peak): 19.2GB/s
HBM(1bank, peak): 14.4GB/s

UDP(peak): 12.5GB/s

(a
)B
an
dw
id
th
(G
B/
s)

2-7KB

Figure 5: (a) Bandwidth with different data sizes and (b) mem-
ory access latency of DDR,HBM (1 bank), andUDP on FPGAs.

required to find the nearest neighbors. Such additional computa-
tion overhead can reach 4-6× and reduce the throughput by 3-5×,
meaning that there is still a lot of room for optimization.

3.2.2 CPU-based design. Typical CPU-based systems (e.g., Intel
Xeon Gold CPU) have relatively large memory capacity (e.g., 32-
128GB) but low memory bandwidth (e.g., 38.4-153.6GB/s). We find
that memory access is the bottleneck of GANNS, which takes up
about 80% runtime of the search stage. Moreover, the memory
bandwidth is underutilized (violate Figure 2 2○). Figure 3(a) shows
that the bandwidth utilization is only 8% under the single-thread
execution. Even when running with 32 threads, the bandwidth
utilization only increases by about 5× to 39%. On the one hand,
the conflicts of shared cache resources among multiple cores and
GANNS’s poor spatial and temporal locality (e.g., 15-26% last-level
cache hit rate) lead to frequent DRAM access. On the other hand, the
frequently fine-grained (100-128 Byte) yet random graph traversal
(i.e., the indirect pointer chasing memory access [25]) is unfriendly
to DRAM since it causes the row buffer inside the DRAM to be
repeatedly charged and discharged [31].

For the computation part, the CPU contains tens of cores (e.g.,
8-64) that can be flexibly configured for both data and pipeline
parallelism. However, the CPU-based system cannot support both
of them simultaneously under the batch mode due to the limited
number of cores (violate Figure 2 4○- 7○). Moreover, we observe
extremely poor performance scalability of the CPU-based system,
as shown in Figure 3(b). Taking SIFT10M as an example, the QPS of
eight threads is only 2.0× higher than that of the single-thread exe-
cution. Besides, the 32-thread QPS is about 2.8-3.4× higher than the
single-thread QPS on average, which suggests great optimization
potentials compared with the ideal linear-scaling case.

286

DF-GAS MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Design Space Exploration
& hybrid parallelization

(Sec.6)

Methodology
Key idea:

Improve memory-
level parallelism

(Sec.5.2)
time

bandwidth

utilization: 1/3
time

bandwidth

utilization: 2/3

Challenge-1:
Underutilized

bandwidth

Challenge-2:
Long remote

access latency

Key idea:
Pack remote

access requests
(Sec.5.3) time

opt.

naive

Hardware & Parallel
Configurations

Goal-1:
Scaling up

Goal-2:
Scaling out

Goal-3:
Performance

FPGA Implement.
Target: maximize latency-

bounded throughput

ChallengesGoals Arch.

MAE-Remote
(Sec.5.3)

PE
(Sec.5.4)

MAE-Local
(Sec.5.2)

Figure 6:We aim at designing a customized architecture, DF-GAS, with the goals of scaling up, scaling out, and high performance
for billion-scale GANNS. We propose a feature-packing memory access engine architecture to deal with the challenges of
underutilized bandwidth and long remote access latency. To maximize latency-bounded throughput, DF-GAS is implemented
on the distributed FPGA system by employing system-level DSE with hybrid parallelization.

3.2.3 GPU-based design. GPUs provide massive data parallelism
with thousands of lightweight CUDA cores. Besides, GPUs pro-
vide high memory bandwidth (e.g., Nvidia 3090 provides 936.2GB/s
bandwidth with GDDR6X) with a relatively smaller memory ca-
pacity (e.g., 24GB on Nvidia 3090). However, we observe that the
GPU-based system suffers the same issue as the CPU-based system.
Because GPUs cannot manage the fine-grained yet randommemory
access patterns efficiently, GPU-based GANNS is also bounded by
the memory access, which takes ∼70% of the total runtime, and
the memory bandwidth is underutilized (i.e., 5-40%), as shown in
Figure 4(b).

Furthermore, GPU lacks sufficient pipeline parallelism for sorting
operations and the entire dataflow, since streaming multiprocessors
(SMs) of GPUs are not optimized for pipeline parallelism (violate
Figure 2 4○ 7○). The limited on-chip resources per SM make it diffi-
cult for GPUs to support pipelining, as it introduces heavy inter-SM
communication and synchronization overheads. As a result, GPUs
take 4.2-47.6× latency compared to CPU-based systems, and the
problem will be further exacerbated when the batch size becomes
larger. Figure 4(a) shows that when the batch size increases from
1 to 4096, the latency deteriorates by 5.5×, and the latency will
exceed the 10ms latency constraints when the batch size is larger
than 1024 on the SPACEV1B dataset.

3.2.4 FPGA-based design. Peng et al. [36] propose an FPGA-based
GANNS accelerator for molecular similarity search. However, they
cannot resolve the underutilized memory bandwidth and support
billion-scale datasets (violate Figure 2 1○ 3○ 6○). Kim et al. [22] pro-
pose a GANNS accelerator based on the SmartSSD platform. In
SmartSSD, the DRAM capacity is only 4GB, and the SSD bandwidth
is only 4GB/s, resulting in frequent but costly I/O access between
the SSD and DRAM. Thus, this work can only achieve 75.6 QPS
with 0.94 recall on SIFT1B.

3.3 Challenges of FPaaS-based GANNS Systems
Thanks to the high memory bandwidth of HBM, large memory ca-
pacity of DDR, and high reconfigurability of FPGA, FPaaS becomes
a potential solution for billion-scale GANNS in the cloud. However,
two serious challenges hinder the adoption of FPaaS in GANNS
systems.

3.3.1 Challenge-1: The underutilized local memory bandwidth. In
addition to CPUs and GPUs, accessing fine-grained (e.g., 128B)
and random data can also result in severely underutilized memory
bandwidth (e.g., 4%/6% for DDR/HBM) on FPGAs. We evaluate the
memory access distribution on SIFT10M/1B. Results show that the
total request data size is about 2-7KB per iteration (i.e., red zone in
Figure 5(a)). If we can pack all the requests of each iteration into
an outstanding request from 128B (one request) to 4KB (multiple
requests), the memory bandwidth can be increased by about 13/8×
for DDR/HBM. But there still exists a gap (i.e., 55-65%) from the
peak memory bandwidth.

3.3.2 Challenge-2: The long remote access latency and heavy com-
munication overhead. To process billion-scale datasets, it is non-
trivial to deal with the long remote access latency on the distributed
FPaaS system. Figure 5(b) presents the latency of local and remote
memory access. The latency of the remote access using the user
datagram protocol (UDP) network stack [4] is about 3-8× than that
of the local access. Besides, the round-trip remote access latency
reaches around 1-2`𝑠 , which is almost comparable to the latency of
a single GANNS iteration. As discussed earlier, the communication
overhead can take up around 85% of the total end-to-end latency.

4 DESIGN METHODOLOGY OVERVIEW
The goals of FPaaS-based billion-scale GANNS systems are scaling
up, scaling out, and high performance.

• Scaling up: A memory-efficient architecture is needed to
improve memory bandwidth utilization and provide linear
scaling-up ability.

• Scaling out: A communication-efficient parallel scheme is
required to reduce inter-node communication overhead and
provide scaling out ability while adhering to SLA constraints.

• High performance: The GANNS architecture should ensure
high performance through data and pipeline parallelism,
i.e., maximizing latency-bounded throughout under given
constraints.

Figure 6 shows the design methodology overview of DF-GAS to
achieve these goals. To tackle Challenge-1, our first key idea is to
improve the memory-level parallelism, increasing the bandwidth
utilization from 35-45% to 77-81%. To tackle Challenge-2, our second
key idea is to pack multiple discontinuous requests into one request,

287

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Shulin Zeng al.

reducing the communication overhead by 76.2%. To enable these
ideas, we implement a customized GANNS architecture, and verify
its effectiveness on the FPaaS system. Moreover, we maximize the
latency-bounded throughput through system-level design space
exploration considering a hybrid parallel search scheme.

5 DF-GAS ARCHITECTURE
5.1 Architecture Overview
We design a customized domain-specific architecture to accelerate
GANNS on the distributed FPGA cluster. Figure 7(a) shows the
overview of DF-GAS architecture. FPGAs are connected with each
other using the 2x100Gbps network stack [4]. Inside each FPGA,
there are multiple PEs and feature-packing MAEs supporting both
local and remote access optimizations (Section 5.2 and 5.3).

Each PE has several distance compute units (DCUs), local top-𝑘
sorting units (LSUs), an optional global top-𝑘 sorting unit (GSU)
(Section 5.4), and a controller with RISC-V compatible ISA (Sec-
tion 5.5).

The customized feature-packing MAE is designed to optimize
both local and remote access, as shown in Figure 7(c). MAE contains
four key modules for managing instructions and data movements:

• The R/W-CMDmodule reads the commands (e.g., start and
init) from the host CPU (d○) to the controller and writes
the sync command to remote FPGAs (a○) for the synchro-
nization.

• The R/W-Neighbor.id module is to read the neighbor list
𝑁𝑖𝑑 of the point to be traversed (𝑉𝑖𝑑) returned by PEs (j○)
and then check the hash visited RAM (HVR) for filtering
out visited 𝑁𝑖𝑑 (g○). Besides, this module also manages data
prefetching for local and remote access and optionally stores
remote 𝑁𝑖𝑑 into the shared RAM (f○) for delayed remote
feature access.

• TheR/W-Featuremodule fetches features of unvisited nodes
from local (b○ c○) or remote memory (a○) and then sends
them to PEs (k○) for distance computation.

• The R/W-Output module is to read/write the partial results
({𝑉𝑖𝑑 , 𝐷𝑖𝑠𝑡 .}) from/to the remote GSU (l○) under the sub-GPS
scheme and write the final result back to the host CPU (d○).

All the four modules are connected with the corresponding direct
memory access (DMAs) through a request dispatcher. The request
dispatcher is connected to Network a○, DDR b○, HBM c○, and PCIe
d○. A local scheduler controls the four modules (i○) with RISC-V
compatible ISA sent by the controller (m○).

The search process begins with the host CPU uploading the
bitstream to FPGAs, and placing the graph database (i.e., features𝑉
and indexes 𝑉𝑖𝑑) into the main memory. Then, the host CPU sends
an init command to configure DF-GAS (e.g., iterations 𝑒 𝑓 and
batch size 𝐵). After that, a start command with a batch of queries
(𝑄) is sent to DF-GAS for searching. During each iteration, MAEs
are in charge of loading graph data (i.e., neighbor lists𝑁𝑖𝑑 s and their
features 𝐹) from both local and remote memory. When features 𝐹
are loaded, they are passed to PEs for distance calculation and top-𝑘
sorting. After 𝑒 𝑓 iterations, the final top-𝑘 results ({𝑉𝑖𝑑 , 𝐷𝑖𝑠𝑡 .}) are
written back to the host CPU.

5.2 Scaling Up: MAE for Local Access
5.2.1 Two-level outstanding request generation. The underutilized
memory bandwidth is mainly caused by the fine-grained and irreg-
ular feature access (100-128B), as discussed in Section 3. Inspired
by Figure 5(a), the key idea of improving bandwidth utilization is
to enlarge the total feature volume of continuous outstanding re-
quests. To this end, we propose an outstanding request generation
technique that employs two-level feature packing.

Firstly, MAE employs an intra-PE data-level pipeline scheme.
The intra-PE merger in R/W-Feature merges all the feature re-
quests of one PE to increase the memory-level parallelism at a
fine-grained level (Figure 8(a)). Besides, the sub-modules of MAE
are connected using streaming-based FIFOs, achieving a pipeline
initiation interval (II) of one. For each iteration, MAE increases
the total data amount of a single outstanding request (e.g., from
128B to 8KB), improving data access throughput (i.e., memory-level
parallelism) by 10-12× while introducing a little latency overhead
(≤ 5%) for each request.

Secondly, MAE utilizes inter-PE packing with out-of-order out-
standing request generation to increase the memory-level paral-
lelism at a coarse-grained level. The inter-PE packing is executed
by the inter-PE OoO generator in R/W-Feature. However, main-
taining the dependency of requests needs additional information
as context, which introduces non-trivial control overhead. To deal
with that, we design a 64-bit tag to store the context that includes
request information, e.g., iteration rounds, number of feature pack-
ages, etc. The tag is embedded into the intra-PE outstanding request
package. Thus, the context-switching overhead is greatly reduced
to less than 1%. Furthermore, we implement a score-board module
in MAE to maintain the dependency and synchronization for the
issued OoO outstanding requests. By applying the inter-PE packing
with the OoO design, MAE increases the total data amount with
massive memory-level parallelism (e.g., 8KB to 128KB with 16 PEs).
In all, the bandwidth utilization can be increased from 35-45% to
77-81%.

5.2.2 Pipeline optimization for latency hiding. To efficiently hide
the local access latency, we propose a task-level pipeline scheme
based on five sub-tasks in one search iteration (Figure 8(b)). The
five sub-tasks include loading 𝑁𝑖𝑑 , loading feature 𝐹 , distance cal-
culation, Top-𝑘 sorting, and queue update. The task-level pipeline
can reduce the latency of one iteration by 24-32%.

Furthermore, we propose a local data prefetching technique to
further hide the latency, where the idea is to pack the data of two
adjacent iterations, as shown in Figure 8(c). To be specific, R/W-
Neighbor.id in MAE fetches the neighbor lists of the iteration 𝑖 and
(𝑖+1) at the same time, where the (𝑖+1)-th neighbor list is predicted
from the PE’s local top-𝑘 queue (j○). The controller monitors the
results of the (𝑖 − 2) and (𝑖 − 1) iterations to check whether the
prediction is correct. Once there is a miss, the controller sends
the flush command to the R/W-NeighborIndex, R/W-Feature,
and PEs (m○) for flushing FIFOs and computation units. Then MAE
reloads the correct data and sends them to PEs to perform another
(𝑖 + 1)-th iteration. The local data prefetching technique further
reduces the iteration latency to 44-48% of the original design. In
practice, combining the two techniques improves the end-to-end
performance by 25-30%.

288

DF-GAS MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

(a) Distributed FPaaS Architecture for GANNS

R/WNeighbor.id

R/W Feature

R/W CMD

R/WOutput

R
eq
ue
st
D
is
pa
tc
he
r

To/From
GSU

To/From
Controller

To
Multi-PE

To/From
Remote
Nodes

To/From
Local
DDRs

To/From
Local
HBMs

To/From
Host CPU

M
U
X

M
U
X

M
U
X

M
U
X

Shared RAM

Hash Visited
RAM (HVR)

M
U
X

Local Scheduler

cmdEncode

C
on
fig
.

R
eg

cmdDecode

512b

1024b

128b
32b

1024b

128b

Node Feature
Score-board

From
Multi-PE

M
U
X

C
rossbar

C
rossbar

1024b

1024b

jf

g

a

b

c

d

e
k

h

l

i m

𝑐𝑚𝑑

𝕍id/ℕid

𝕍id_𝑎𝑑𝑑𝑟

Addr. Gen

ℕ!" Checkerℕid

𝕍id

ℕid

ℕid

ℕid

Intra-PE Merger

Inter-PE OoO Gen

ℕid_𝑎𝑑𝑑𝑟

ℕid_𝑑𝑎𝑡𝑎

ℕid_𝑑𝑎𝑡𝑎

128b

ℚid

{𝕍, 𝐷𝑖𝑠𝑡.}

Result Buffer
𝕍id …
𝐷𝑖𝑠𝑡. …

𝕍id
𝐷𝑖𝑠𝑡.{𝕍, 𝐷𝑖𝑠𝑡.}

𝑐𝑚𝑑

cmd argument
𝑖𝑛𝑖𝑡 𝑒𝑓, 𝐵
𝑠𝑡𝑎𝑟𝑡 ℚid
𝑠𝑦𝑛𝑐 𝑅𝑒𝑚𝑜𝑡𝑒. 𝑖𝑑

𝑐𝑚𝑑
𝑆𝑦𝑛𝑐

s𝑡𝑎𝑟𝑡
𝑖𝑛𝑖𝑡

Local Memory I/O

HBM
Ch.

DDR
Ch.

Single-Node Architecture

Remote Memory I/O

100 Gbps
Network

NGlobal Top-K Sorting Unit (GSU)

Controller (Sec 5.E)

Processing Engine
(Sec 5.D)

Distance
Compute

Unit (DCU)

Local Top-K
Sorting Unit

(LSU)

B
Feature-Packing
Memory Access
Engine (MAE)
Local Access
Optimization

(Sec 5.B)

Remote Access
Optimization

(Sec 5.C)

Ring
or

Switch

B

𝑉𝑎𝑙𝑢𝑒

Combinational
CRC-12 Gen.

ℕ 𝑖𝑑
Read Table

𝑘𝑒𝑦Regℎa𝑠ℎ

{𝑉𝑎𝑙𝑖𝑑, 𝑉𝑎𝑙𝑢𝑒}
M

Comparator
𝑣𝑖𝑠𝑖𝑡𝑒𝑑

A==B?1:0

Select Logic

−1

Write Table

𝑣𝑖𝑠𝑖𝑡𝑒𝑑
𝑓𝑙𝑢𝑠ℎ

𝑒𝑛𝑎𝑏𝑙𝑒

𝑆𝑙𝑜𝑡 𝑖𝑑

M slots

Hash Table

…

ℕid_visited10
Null01
Null02

ℕid_visited13

ℕid_visited1K-1

Port
A

M
U

X

ℕ 𝑖𝑑

Port
B

Dual-port BRAMs

Key/Valid/Value

{𝑉a𝑙𝑖𝑑!, … , 𝑉a𝑙𝑖𝑑"#$}

(b) Hash Visited RAM (c) Memory Access Engine

Figure 7: (a) Hardware architecture overview of DF-GAS. (b) Hash visited RAM implemented on CRC functions and fixed-length
slot-based table. (c) Feature-packing MAE with local and remote memory access optimization.

Data access throughput improvement: 𝟏𝟎 ∼ 𝟏𝟐×

Req1 Req2 Req3 Req4 Req5

Req1 Req2

t

Data read Data read

…

t

Data Access
without
Pipelining

Data Access
with Intra-PE
Pipelining

(a)

Task-level
Pipelining
Workflow

(b)

Local Data
Prefetching
Workflow

(c)

t

Iteration 𝑖 Iteration 𝑖 + 1 Iteration 𝑖 + 2

t

Iteration 𝑖, 𝑖 + 1 Iteration 𝑖 + 2, 𝑖 + 3

𝟐𝒏data
…

Load ℕid Load Feature Dist. Compute Top-K Sorting Update
𝒏data

Task
Execution order

Iteration latency: 𝟔𝟖 ∼ 𝟕𝟔%

Iteration latency: 𝟔𝟖 ∼ 𝟕𝟔% → 𝟒𝟒 ∼ 𝟒𝟖%

Figure 8: (a) Intra-PE data-level pipelining technique. (b)
Task-level pipelining workflow. (c) Local data prefetching
with iteration-level data packing.

5.2.3 Hardware optimization for visited lists. A visited list is used
to check whether a point has been visited or not, thus avoiding
repeated computations. Prior work [22] utilizes the single-bit tag-
based optimization, i.e., using one bit to denote whether a point has
been visited or not. This optimization reduces the required on-chip
memory by 32×. However, it is still impractical for billion-scale
datasets, which require 250MB on-chip memory for single-bit tags.

To tackle this issue, we propose a hash visited RAM (HVR),
as shown in Figure 7(b). HVR utilizes CRC-12 function [45] to
generate the hash key, which is used to read out 𝑀 values from
an 𝑀-slot hash table. The input 𝑁𝑖𝑑 is compared with 𝑀 values
simultaneously to generate the visited signal. If 𝑁𝑖𝑑 has not been
visited, the select logic generates the next insert location (Slot id)
based on 𝑀 valid signals and then inserts the 𝑁𝑖𝑑 into the target
slot. HVR utilizes eight dual-port BRAMs with 𝐾 = 1024 buckets
per slot and 𝑀 = 4 slots, reducing the required on-chip memory

to 32KB. HVR employs double buffering to hide the latency for
initialization, which happens for every query. Besides, the latency
of the search and insert operation in HVR is about 2-3 cycles per
point. Evaluations show the average conflict rate is about 0.1%,
resulting in negligible latency overhead (≤0.05%) with no accuracy
loss since conflicts only cause redundant visits without changing
the graph traversal path.

5.3 Scaling Out: MAE for Remote Access
5.3.1 Delayed remote feature access. To relieve the remote feature
access overhead, an intuitive solution is to reduce the number of
remote access. The original remote access occurs when the required
data is stored in other nodes. As Figure 9(a) shows, a large number
of consecutive and fine-grained feature accesses cause significant
long remote access latency and low bandwidth utilization. Aiming
at this problem, we propose a delayed remote access strategy to
reduce the number of remote access. The delayed remote access
strategy pends the former remote accesses and merges them with
the later ones into coarse-grained access. A basic example is shown
in Figure 9(a). In the skip phase, we pend the current remote access
and temporarily store this access locally. In the sync phase, each
node sends its locally stored remote accesses to different remote
nodes through the network. We define the number of iterations
between two adjacent sync phases as the communication interval.
The communication interval length influences the nodes’ access
order during the search, causing slightly longer search steps. The
communication interval is determined for each dataset during the
construction stage. The end-to-end performance can be improved
by 1.69-1.86× with the same recall.

5.3.2 Prefetching remote neighbor list. In order to reduce the re-
mote neighbor list access latency, we propose a remote neighbor
list prefetching technique. In GANNS, we use a priority queue to
track the closest nodes to the query. During each search iteration,
the head of the priority queue is popped, whose neighbors will be
traversed. In the prefetching technique, if we need to access one

289

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Shulin Zeng al.

(a) Delayed remote feature access

RA RA RA RA(1) Original
Remote access: 4
Latency: 4
Bandwidth: 30%

skip skip skip RA
(sync)(2) Opt.

Remote access: 1
Latency: ~1
Bandwidth: 100%

(b) Prefetching remote neighbor list

Queue Used

Remote access: 3
Latency: 3
Bandwidth: 30%

(1) Original

Used

Used

RA

Stored on local

Remote access: 1
Latency: 1
Bandwidth: 90%Queue

(2) Opt.
Used

RA Used
Used

Figure 9: Optimizations for parallel search: (a) Delayed re-
mote feature access. (b) Prefetching remote neighbor list. 𝑅𝐴
denotes remote access.

neighbor list from a remote node 𝑋 , we first traverse the priority
queue and select the points whose neighbor lists are also stored in
𝑋 . Then we send all of these neighbor list requests to 𝑋 . As shown
in Figure 9(b), the original method needs three remote accesses for
three different neighbor lists. While in our prefetching techniques,
we traverse the priority queue and find that these neighbor lists are
stored in one remote node. Then it takes only one remote access to
get these neighbor lists with a higher bandwidth utilization rate.
The prefetching technique is also enabled by an interesting phenom-
enon: the GANNS algorithm can approach the query very quickly,
then search around the query for most of the remaining iterations. In
the later phase, which takes most iterations, points in the queue are
seldom updated, guaranteeing a high hit rate of prefetching. The
number of remote neighbor list access is decreased by 78.2-82.1%,
with 1.59-1.68× end-to-end performance improvement.

5.4 High Performance: PE Design
5.4.1 Distance computing unit with data parallelism. The role of
DCU is to perform the distance calculation 𝑑 (𝑞, 𝑝) between the
𝐷-dimensional query 𝑞 and point 𝑝 . DCU employs a pipelined sum
reduction structure with data parallelism, which consists of 𝑁𝐷

compute units with registers and an adder tree with 𝑁𝐷 − 1 adders.
It takes DCU 𝐷/𝑁𝐷 cycles to process a single point with 𝑁𝐷 data
parallelism.

5.4.2 Top-𝑘 sorting unit with pipeline parallelism. This unit is in
charge of maintaining the 𝑘 nearest neighbors and updating candi-
date indexes for the next iteration. We implement the top-𝑘 priority
queue using a serial sorting structure [18], which can process one
input per cycle with minimal resource overhead. It utilizes 2𝑘 regis-
ters with pipeline parallelism for high throughput sorting. Besides,
the current nearest point is in the first register. Thus, the next iter-
ation can start as soon as all points are loaded without waiting for
the top-𝑘 priority queue to be completely sorted.

5.5 Instruction Set Architecture Design
To provide flexibility and modularity for GANNS, we design a RISC-
V compatible ISA [43]. We encode the functionality of DF-GAS

Base dataset

Memory Unit QueriesNodePE

Memory Controller
Full-graph structure

Network

QPS=4, Latency=1
(b) Full-GPS implementation

Sub-graph structure
Merge Unit

Memory Controller

MergeNetwork
QPS=2, Latency=0.5

(a) Sub-GPS implementation

Figure 10: Two parallel schemes: (a) sub-GPS and (b) full-GPS
of the intra-node and inter-node design.

commands using the customized opcode set [42], where the bits
[6:0] are used. Then, we encode the arguments (e.g., batch size, iter-
ation) into the remaining space to support different commands. The
number of DF-GAS commands is 15, leaving room for supporting
new GANNS variants, as GANNS algorithms are still developing.

6 SYSTEM-LEVEL OPTIMIZATION
At the system level, we propose the hybrid parallel search and
design space exploration based on DF-GAS to maximize the latency-
bounded throughout of distributed systems.

6.1 Hybrid Parallel Search Scheme
We take Figure 10 as a simple example to show the implementation
of sub-GPS and full-GPS on intra-node and inter-node, respectively.

6.1.1 Latency-optimized sub-GPS. In sub-GPS scheme, different
PEs in one node or different nodes perform searching on different
sub-graphs simultaneously, as shown in Figure 10(a). Then the
search results of these sub-graphs are merged to get the final results.
Because one query is processed in parallel, the sub-GPS has the
virtue of low search latency. However, the sub-GPS introduces more
computations1 than the full-GPS to achieve the same accuracy,
reducing the search throughput.

6.1.2 Throughput-optimized full-GPS. In full-GPS scheme, differ-
ent PEs or nodes share one large-scale graph, as shown in Fig-
ure 10(b). Because each PE can process different queries simultane-
ously, the full-GPS can provide higher throughput. However, due
to the intra-/inter-node bandwidth limitation, the query latency
of one point may become longer when other points occupy the
memory bandwidth.

6.1.3 Combine together. Full-GPS has a throughput advantage,
while sub-GPS has a latency advantage. Therefore, to achieve the
best latency-bounded throughout, we propose a hybrid parallel
search scheme for billion-scale datasets on distributed systems,
which can have more options on the latency-throughout tradeoff.
1For example, return multiple Top-𝑘 values of each sub-graph, rather than the Top-𝑘
of the full-graph

290

DF-GAS MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Table 1: Hardware configurations of CPU, GPU, ANNA [23],
Vstore [27], and FPGA. (BW for bandwidth)

CPU GPU ANNA Vstore FPGA

Platform
Intel Xeon Nvidia TSMC Xilinx Xilinx Alveo
Gold 5218 RTX 3090 40nm XC7Z045 U280/U250

Compute 16 10496 1024 512 1024
Units cores CUDAs MACs MACs DSPs

Frequency 2.3 GHz 1.4 GHz 1 GHz 200MHz 300 MHz
Memory 64GB 24GB 32GB 32GB&1TB 40/64GB
BW (GB/s) 102.4 936.2 75 107.3&76.8 498.4/76.8

Table 2: Hardware resource utilization on U250 and U280.

FPGA LUT FF BRAM URAM DSP
U280 79.7% 51.9% 56.1% 26.7% 11.3%
U250 61.1% 38.2% 47.5% 20.0% 8.3%

Specifically, we can configure three different parallel methods (from
inter-node to intra-node): full-GPS to full-GPS (full-full), sub-full,
and sub-sub. In the billion-scale dataset, the full-full parallelism has
the potential to provide extremely high throughput up to 333,201
QPS; the sub-sub parallelism achieves 51us latency; the sub-full
parallelism can provide high flexibility of achieving the highest
throughput under different SLA constraints.

6.2 Design Space Exploration (DSE)
We propose a system-level DSE approach to automatically explore
the optimal hardware configuration and parallel scheme for the
distributed FPaaS system. Specifically, a DSE engine first receives
the user inputs and constructs the design space that satisfies the
resource constraints. Then, the engine searches exhaustively in
the design space with an analytical performance model to acquire
the QPS and latency of each candidate. At last, the engine selects
the design that has the highest QPS and also satisfies the latency
constraint.

The performance model contains two levels, i.e., PE and node, to
achieve high accuracy (modeling error rate≤4.5%) on the latency
and QPS simulation.

• PE-level: Suppose we have 𝑆 PEs in one FPGA node, the
PE-level latency 𝐿𝐴𝑇𝑃𝐸 can be represented as:

𝐿𝐴𝑇𝑃𝐸 =
𝐵max

𝑏=1

(
𝐿𝐴𝑇𝑄𝑢𝑒𝑟𝑦𝑏

)
+ 𝑃𝑆2 ×𝑇𝑖𝑚, (3)

where 𝐿𝐴𝑇𝑄𝑢𝑒𝑟𝑦𝑏
is the latency of executing one query point

𝑏, 𝑃𝑆2 denotes the choice of parallel scheme in PE-level (i.e.,
0 for full-GPS and 1 for sub-GPS), and 𝑇𝑖𝑚 is the time of
merging the top-𝑘 distances of 𝐵 PEs.

• Node-level: Similarly, we can represent the node-level la-
tency on multiple FPGA nodes 𝐿𝐴𝑇𝑁𝑜𝑑𝑒 as:

𝐿𝐴𝑇𝑁𝑜𝑑𝑒 =
𝑁max
𝑖=1

(𝐿𝐴𝑇𝑃𝐸𝑖) + 𝑃𝑆1 ×𝑇𝑐 , (4)

where 𝑇𝑐 denotes the total communication time, and 𝑃𝑆1
denotes the choice of the parallelization strategy in node-
level (i.e., 0 for full-GPS and 1 for sub-GPS).

7 EVALUATION
7.1 Evaluation Setup
GANNS datasets.We choose two representative ANNS datasets,
SIFT [19] and SPACEV [2], with different number of points (i.e., 1M,
10M, 100M, and 1B). We select a representative GANNS algorithm
(i.e., HNSW [1]) to construct the graph database. Unless otherwise
specified, we evaluate the performance with the 𝑅𝑒𝑐𝑎𝑙𝑙@10 to be
0.95 for SIFT and 0.9 for SPACEV, as commonly used by previous
work [7, 22].
FPGA clusters. We consider two kinds of cloud FPGAs, including
Xilinx Alveo U250 (w/o HBM) and U280 (w/ HBM), as shown in Ta-
ble 1. We set up two 8-node FPGA cluster configurations, including
the bandwidth-optimized all-U280 and capability-optimized all-
U250. Both of them deliver enough off-chip memory capability for
billion-scale datasets, while the million-scale datasets are evaluated
on a single-node system. We utilize a switch-based P2P topology
for inter-FPGA communication with the 2×100GbE interface.
DF-GAS configurations. By employing system-level DSE on both
the U280 and U250 FPGA, DF-GAS is designed with 𝐵 = 16 PEs per
FPGA and 𝑁𝐷 = 128 multipliers per PE. We implement DF-GAS
using Verilog and Xilinx Vitis 2021.1 with a frequency of 300MHz.
Table 2 shows the resource utilization. We measure the end-to-end
performance with host applications, which are implemented using
C++ with Xilinx runtime (xrt) libraries. We measure the power of
DF-GAS (including DDRs and HBMs) through the on-chip power
monitor, which can be accessed via the vendor-provided Xilinx
Board Utility tool xbutil [3].
CPU and GPU baselines. Both the CPU- and GPU-based GANNS
systems are evaluated on the 8-node cluster for fair comparisons,
and also employ the same switch-based P2P topologywith 2x100Gbps
networking bandwidth on the same rack. Table 1 shows the con-
figurations of the CPU and GPU server. For the CPU baseline, we
choose the 16-core Xeon Gold CPU with 64GB DDR memory and
102.4GB/s bandwidth, and evaluate a SOTA 𝑠𝑢𝑏-GPS multi-CPU
design [13]. Since HBM-equipped CPUs are not publicly available
yet [20], we simulate the performance of HBM-equipped CPUs with
500GB/s bandwidth (compared to U280) for fair comparisons. The
GPU baseline is a SOTA 𝑠𝑢𝑏-GPS multi-GPU design GGNN [14] on
Nvidia RTX 3090 with 24GB HBM memory and 936.2GB/s band-
width. We measure their performance and power by Intel RAPL
and nvprof.
SOTA architecture baselines.We compare DF-GAS with SOTA
FPGA-based designs (PQ-ANN [49] and HPQ-ANN [5]), hetero-
geneous memory designs (SSD-GANN [22] and HM-ANN [37]),
PQ-based ANN accelerator (ANNA [23]), and in-storage GANNS
accelerator (VStore [27]). Since all these prior works are evaluated
on the platform without HBMs, we also evaluate DF-GAS under
the all-U250 configuration. We scale their performance based on
the same memory bandwidth of U250 FPGA for a fair comparison.

7.2 Evaluation Results
7.2.1 Design space exploration. To show the benefits of the hybrid
parallel search scheme, we perform system-level DSE on billion-
scale datasets under the soft and hard SLA constraint (i.e., 1ms
and 0.1ms) with a 5% budget. Figure 12 illustrates that for the soft
SLA constraint, both all-U280 and all-U250 with full-GPS provide

291

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Shulin Zeng al.

Single-node Multi-node

0.01

1

100

(a
)L
at
en
cy
(m
s)

1M 10M 100M
SIFT

1M 10M 100M
SPACEV

1B
SIFT

1B
SPACEV

(b
)Q
PS

Latency: CPU GPU FPGA (Ours)CPU(HBM)
Latency

(m
s)

1E+6

1E+5

1E+3

1E+4

1E+3

1E+1

1E-3

1E-1

GPU FPGA (Ours)CPUQPS: CPU(HBM)

1M 10M 100M
SIFT

1M 10M 100M
SPACEV

1B
SIFT

1B
SPACEV

Single-node Multi-node

Figure 11: (a) Latency with a batch size of one and (b) maximum throughput without any SLA constraint of CPU, CPU with
HBMs, GPU, and DF-GAS.

433K
328K

206K
151K

276K
200K 232K

171K

0E+0
1E+5
2E+5
3E+5
4E+5
5E+5

296
390

78 106

463

640

69 94

0
150
300
450
600
750

Full-GPS Sub-full-GPS

U280 (soft) U250 (soft) U280 (hard) U250 (hard)

(a
)

Q
P

S
(b

)
L

a
te

n
c
y

(u
s
)

U280 (soft) U250 (soft) U280 (hard) U250 (hard)

SIFT1B SPACEV1B

Figure 12: DSE results, (a) QPS and (b) Latency, on all-
U250/U280 clusters under the soft/hard SLA constraint on
billion-scale datasets.

the best throughput. For the hard SLA constraint, only employing
the hybrid parallel search with sub-full-GPS can meet the 0.1ms
SLA constraint. Compared with full-GPS, sub-full-GPS achieves
3.7-6.8× lower latency while providing competitive throughput
(with 17-117% reduction). For the comparison between U280 and
U250, all-U280 achieves ∼1.4× higher throughput than all-U250
due to a much higher bandwidth (498.4GB/s vs. 76.8GB/s). Thus,
we choose all-U280 with full-GPS as the basic configuration for
DF-GAS, considering that the 1ms SLA constraint can satisfy most
recommender system scenarios [7].

7.2.2 Latency comparison. We compare the latency of CPU, GPU,
and DF-GAS with batch size one. Figure 11(a) shows that DF-GAS
outperforms CPU and GPU in latency on both million- and billion-
scale datasets. Comparedwith CPU, DF-GAS reduces the single- and
multi-node query latency by 4.2-16.9× and 92.1-218.6×, respectively.
It is because that DF-GAS makes full use of the high bandwidth (77-
81%) of HBM-equipped FPGAs, and provides sufficient parallelism
for different operators. Introducing HBMs in the CPU-based system
brings 2.2× improvement on average, but DF-GAS still outperforms
HBM-equipped CPU by 1.9-98.9×. Compared with GPU, DF-GAS
achieves 59.1-293.6× lower latency. Considering that GPU has twice
the bandwidth of the U280 FPGA, it further verifies that GPU has
poor pipeline parallelism.

7.2.3 Throughput comparison. We compare the maximum through-
put of different GANNS systems without any SLA constraint, and
show their corresponding latency in Figure 11(b). The batch size
of DF-GAS is 16 per node, while the batch size of CPU and GPU
is 32 and 4096, respectively. Further increasing the batch size for
CPU and GPU will bring marginal throughput improvement but
severe latency deterioration. DF-GAS outperforms HBM-equipped

CPU in throughput by 11.3-52.2× with 11.9-25.1× lower latency.
GPU provides 1.3-2.0× higher throughput over DF-GAS on sev-
eral million-scale datasets, but with a much higher latency (308.6-
2064.3×, ranging from 18.8ms to 124.1ms). Instead, DF-GAS main-
tains sub-millisecond ultra-low latency consistent with batch size
one, ranging from 0.046ms to 0.114ms. For billion-scale datasets,
DF-GAS achieves 1.9-50.8× higher throughput with 148.0-406.1×
lower latency than GPU.

7.2.4 Latency-bounded throughput. The SLA constraint is usually
set within 10ms in recommender systems [13, 24], and a stricter
bound (e.g., 1ms) can help to optimize the entire pipeline [8]. Thus,
we compare the latency-bounded throughput with 1ms and 10ms
SLA constraints. Figure 13(a) shows the results under the 10ms
SLA constraint. GPU provides 1.7-1.8× higher latency-bounded
throughput than DF-GAS on SIFT1M and SPACEV1M, because GPU
can employ a large batch size (2048) to improve the throughput
with relatively low shared resource contention when the dataset
is small. As the dataset size increases from 10M to 1B, DF-GAS
outperforms GPU in latency-bounded throughput by 1.2-29.9×.
Besides, GPU fails to meet the 10ms SLA constraint on the SIFT1B
dataset. Compared with CPU with and without HBMs, DF-GAS
achieves a geometric average of 24.1× and 55.4× higher latency-
bounded throughput, respectively. Figure 13(b) shows that GPU
cannot meet the 1ms SLA constraint in any dataset other than
SIFT1M, and both CPU and GPU cannot meet the SLA constraint
on billion-scale datasets. Moreover, Figure 14 shows that DF-GAS
consistently outperforms CPU and GPU under different recall on
billion-scale datasets.

7.2.5 Comparison with SOTA architecture baselines. Figure 15 il-
lustrates the throughput comparison between SOTA architecture
baselines and DF-GAS under different recall. For FPGA-based de-
signs, HPQ-ANN [5] achieves 34.7M QPS on SIFT1M with 0.97 re-
call. This is because HPQ-ANN utilizes a hierarchical PQ approach
to fully store the database in the on-chip BRAMs. However, the
performance of HPQ-ANN will degrade rapidly when processing
billion-scale datasets, which are too large to be stored on-chip. As
for PQ-ANN [49], it achieves 56.5K QPS on SIFT1M with 0.94 recall,
and 202.4K QPS with 0.7 recall on SIFT1B. DF-GAS consistently out-
performs PQ-ANN with 1.61-1.76× higher QPS, while maintaining
a high accuracy (i.e., 0.90-0.96 𝑅𝑒𝑐𝑎𝑙𝑙@10) on billion-scale datasets.
PQ-ANN compresses datasets into small structured data, thus does
not suffer from the inter-node communication overhead and fine-
grained random memory access problem faced by GANNS, but at
the cost of relatively low accuracy on billion-scale datasets. DF-
GAS enables both high performance and high accuracy by utilizing

292

DF-GAS MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

1E+3

1E+4

1E+5

1E+6

(a)
1M 10M 100M

SIFT
1M 10M 100M

SPACEV
1B

SIFT
1B

SPACEV

Single-node Multi-node

(b)
1M 10M 100M

SIFT
1M 10M 100M

SPACEV
1B

SIFT
1B

SPACEV

Single-node Multi-node
1E+6

1E+4

1E+2

GPU FPGA (Ours)CPU CPU (HBM)

Figure 13: Throughput of CPU, CPU with HBMs, GPU, and DF-GAS with (a) 10ms and (b) 1ms SLA constraint.

1E+3

1E+4

1E+5

1E+6

0.75 0.8 0.85 0.9 0.95

Q
P

S

Recall @ 10

1E+3

1E+4

1E+5

1E+6

0.77 0.8 0.83 0.85 0.9

Q
P

S

Recall @ 10

CPU GPU FPGA (Ours)CPU(HBM)

(a) (b)

Figure 14: The throughput of CPU, CPU with HBMs, GPU,
and DF-GAS under different recall on (a) SIFT1B and (b)
SPACEV1B.

1E+2

1E+3

1E+4

1E+5

1E+6

0.62 0.66 0.7 0.88 0.92 0.96

Vstore HM-ANN PQ-ANN ANNA
Ours(U250) Ours(U280) SSD-GANN HPQ-ANN

Q
P

S

(b)

1E+3

1E+4

1E+5

1E+6

0.88 0.9 0.92 0.94 0.96 0.98

Q
P

S

(a) Recall @ 10 Recall @ 10

PQ-ANN

SSD-GANN

HPQ-ANN: 34.7M

DF-GAS(Ours)

DF-GAS(Ours)

Figure 15: QPS of SOTA architectures and DF-GAS under
different recall on (a) SIFT1M and (b) SIFT1B.

feature-packing MAE with remote data prefetching and delayed
processing for billion-scale ANNS.

For heterogeneous memory designs, both SSD-GANN [22] and
HM-ANN [37] achieve low throughput of 604.7 and 2200 QPS
(609.6× and 167.55× lower than DF-GAS) with 0.94 recall on SIFT1B,
respectively. The reason is that the limited SSD bandwidth becomes
the performance bottleneck. Compared with ANNA [23], DF-GAS
offers comparable throughput (2.1× on average) on SIFT1M, and
provides superior performance (8.6× on average) on SIFT1B. Com-
pared with Vstore [27], DF-GAS achieves an average of 1.3× and
7.5× higher throughput on SIFT1M and SIFT1B, respectively. The
performance advantage of DF-GAS comes from several factors:
(1) DF-GAS packs inter- and intra-PE feature accesses to improve
bandwidth utilization. (2) DF-GAS utilizes local data prefetching
to perform graph traverse efficiently. (3) DF-GAS employs delayed
remote access and remote data prefetching to efficiently hide the
long remote access latency.

7.2.6 Energy and cost efficiency. We consider energy efficiency and
cost efficiency as fair metrics. The latency-bounded throughput
with a 10ms SLA constraint are used as the performance reference.

Table 3: Power consumption of hardware platforms.

CPU CPU×8 GPU GPU×8 FPGA FPGA×8
Power 100 W 840 W 165 W 1376 W 57 W 488 W

Table 3 shows the power consumption of CPU-, GPU-, and FPGA-
based GANNS systems. Figure 16(a) shows the results of energy
efficiency (QPS/W). DF-GAS consistently outperforms CPU and
GPU with 41.8-401.7× and 1.6-86.5× better energy efficiency, re-
spectively. For cost efficiency (QPS/(cost unit)), Based on the same
memory capacity, we normalize the costs of GPU, FPGA, and host
server to 3, 6, and 10, respectively. Thus, the relative costs of CPU,
CPU+GPU, and CPU+FPGA server are 10, 13(=10+3), and 16(=10+6),
respectively. Figure 16(b) shows that GPU delivers a 2.1-2.3× higher
cost efficiency than DF-GAS on SIFT1M and SPACEV1M. For larger
datasets over 10M points, DF-GAS provides 14.9-145.8× and 2.0-
24.3× better cost efficiency over CPU and GPU, respectively.

7.2.7 Scalability. We compare the multi-node scalability of CPU,
GPU, and DF-GAS on billion-scale datasets. Figure 17 shows that
DF-GAS achieves near-linear scalability, with only ∼10% difference
compared to the ideal linear case. Besides, DF-GAS delivers 3.0-3.5×
and 2.0-5.1× better scalability over CPU and GPU, respectively. The
poor scalability of CPU and GPU illustrates the influence of low
bandwidth utilization and long remote access latency on billion-
scale GANNS. Moreover, it verifies the effectiveness of the proposed
𝑓 𝑢𝑙𝑙-GPS scheme, with data prefetching and delayed processing to
reduce communication overhead by 76.2%.

7.2.8 Ablation studies. Figure 18 illustrates the improvement break-
down of the proposed techniques on the SIFT1B dataset. The through-
put are normalized to DF-GAS with all optimization techniques.
The original design with pipeline takes up 8.5%. Based on that,
the feature packing with two-level outstanding request generation
improve the original design by 20.5%. Then, prefetching local data
provides another performance improvement of 23.2%. The delayed
remote feature access and remote neighbor list prefetching further
improve performance by 10.8% and 37.1%, respectively. Thus, all the
four techniques provide a total of 11.8× performance improvement
over the original design.

For networking sensitivity analysis, Figure 19(a) shows that the
P99 tail latency of DF-GAS is 0.025ms and 0.051ms on SIFT1B and
SPACEV1B, respectively. It verifies that DF-GAS can satisfy the
SLA requirements for most queries.

To gain insight into the architecture optimizations, we try to ap-
ply the proposed local and remote prefetching techniques for CPU
and GPU baselines. Figure 19(b) shows that adding local prefetching

293

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Shulin Zeng al.

1M 10M 100M
SIFT

1M 10M 100M
SPACEV

1B
SIFT

1B
SPACEV

1E+0
1E+1
1E+2
1E+3
1E+4 Single-node Multi-node

(a
)E
ne
rg
y
ef
f.

(Q
PS
/W
)

1E+0
1E+1
1E+2
1E+3
1E+4
1E+5

1M 10M 100M
SIFT

1M 10M 100M
SPACEV

1B
SIFT

1B
SPACEV

Single-node Multi-node

(b
)C
os
te
ff.

(Q
PS
/c
os
tu
ni
t)

GPU FPGA (Ours)CPU

Figure 16: (a) Energy efficiency and (b) cost efficiency.

0

2

4

6

8

1 2 4 8

(a
)

N
o

rm
.
Q

P
S

Multi-node resources(a)

0

2

4

6

8

1 2 4 8
(b) Multi-node resources

(b
)

N
o

rm
.
Q

P
S

CPU GPU FPGA (Ours)

Figure 17: Multi-node scalability analysis on (a) SIFT1B and
(b) SPACEV1B.

to the original sub-GPS CPU/GPU design [13, 14] can improve per-
formance by 1.36/1.3×. While adding remote prefetching gives no
further improvements, since there is almost no inter-node commu-
nication in the sub-GPS design. However, if we switch the parallel
search mode to full-GPS, employing the two techniques can im-
proves the performance from 0.65/0.68× to 1.65/1.72×, showing that
the proposed methods can optimize the distributed parallel com-
puting. Furthermore, it demonstrates that the main performance
improvement of DF-GAS stems from the joint optimization of the
micro-architecture and parallel scheme.

8 RELATEDWORK
Software-based ANNS Acceleration. Accelerating ANNS on soft-
ware has been well studied in the community. At the beginning,
researchers employ hash-based (e.g., locality-sensitive-hashing [10,
38] and learning-based hash [29]) or tree-based (e.g., R-tree [16],
KD-tree [12], and VP-tree [46]) techniques to optimize ANNS. Later,
many product quantization based ANNS algorithms [6, 15, 21] have
been proposed to improve the quality of codebook. Recently, graph-
based ANNS algorithms achieve the best performance and accuracy
on large-scale datasets [26, 28], e.g., HNSW [32] and NSG [13].
Hardware-based NNS Acceleration. FEARY [47] and CHIP-KNN
[30] focus on accurate NNS instead of GANNS. Accurate NNS is
hard to deal with billion-scale datasets because of low search effi-
ciency. In addition to the GANNS accelerators [22, 36], Zhang et al.

0% 20% 40% 60% 80% 100%

1.6x (+37.1%)

1.2x (+10.8%)

1.8x (+23.2%)

3.4x (+20.5%)

Prefetch remote
neighbor list

Delayed remote
feature access

Prefetch local data

Original

Packing feature
11.8x in total

Figure 18: Improvement breakdown of DF-GAS.

0.0

0.5

1.0

1.5

2.0
GPUCPU

1.361.3

0.920.95

0

0.01

0.02

0.03

0.04

0.05

0.06

(a
) T

ai
lL

at
en

cy
(m

s)

SIFT1B SPACEV1B

0.048 0.051

0.024 0.025

x-th percentile

0.044

0.021

(b
) N

or
m

al
iz

ed
 S

pe
ed

up

1.371.31

sub sub L sub L+R full full L full L+Ravg 90 93 95 99

0.650.68

1.65
1.72

SIFT1B

Figure 19: (a) Tail latency of DF-GAS. (b) The normalized
speedup of applying the proposed local (L) and remote (R)
prefetching techniques onto CPU and GPU baselines with
sub-GPS and full-GPS designs.

[49] design a PQ-based accelerator on theOpenCL-based FPGAwith
a specialized quantization method, which achieves 0.02ms latency
with 0.94 𝑅𝑒𝑐𝑎𝑙𝑙@10 on the SIFT1M dataset. However, it cannot
achieve high accuracy (e.g., 90%) on most billion-scale datasets. Ab-
delhadi et al. [5] propose a modified PQ-based ANNS algorithm
to fit as much graph data as possible into the on-chip BRAMs of
FPGAs, but it is limited to million-scale datasets. Recently, ANNA
[23] explores a specialized dataflow pipeline for PQ-based ANNS
to support million- and billion-scale datasets, but ignoring the per-
formance potential of distributed multi-node parallel searching.
HM-ANN [37] explores prefetching methods on the heterogeneous
memory, i.e., from SSD to DRAM. DF-GAS explores another dimen-
sion of prefetching strategies, i.e., from DRAM to PE, and achieves
168× performance gains by incorporating micro-architectural opti-
mization. Vstore [27] proposes an in-storage GANNS accelerator
by exploiting data reuse between queries. Since our proposed tech-
niques are independent of correlation between queries, we can
combine the techniques of Vstore with DF-GAS to realize further
performance improvement.

9 CONCLUSION
Graph-based approximate nearest neighbor search is a key opera-
tion for recommender systems, demonstrating superior accuracy
and performance over other ANN algorithms. We build up the
first distributed FPaaS system for GANNS named DF-GAS. which
enables billion-scale GANNS with million-QPS throughput and
sub-millisecond ultra-low latency for the first time. By overcoming
the challenges of underutilized bandwidth and long remote access
latency, DF-GAS provides 55.4/32.2× latency-bounded throughput
improvement over CPU and GPU on billion-scale GANNS, respec-
tively.

294

DF-GAS MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

ACKNOWLEDGMENTS
This work was supported by National Natural Science Foundation
of China (No. U19B2019, 62325405, U21B2031, 61832007, 62104128,
62204164), and Beijing National Research Center for Information
Science and Technology (BNRist). This research was partially sup-
ported by ACCESS – AI Chip Center for Emerging Smart Systems,
sponsored by InnoHK funding, Hong Kong SAR.

REFERENCES
[1] 2022. hnswlib. [Online]. https://github.com/nmslib/hnswlib.
[2] 2022. SPACEV datasets. [Online]. https://github.com/microsoft/SPTAG/tree/

main/datasets/SPACEV1B.
[3] 2022. Xilinx Board Utility Tool. [Online]. https://xilinx.github.io/XRT/2021.1/

html/xbutil2.html.
[4] 2022. Xup vitis network example (vnx). [Online]. https://github.com/Xilinx/

xup_vitis_network_example.
[5] Ameer MS Abdelhadi, Christos-Savvas Bouganis, and George A Constantinides.

2019. Accelerated approximate nearest neighbors search through hierarchical
product quantization. In 2019 International Conference on Field-Programmable
Technology (ICFPT). IEEE, 90–98.

[6] Artem Babenko and Victor Lempitsky. 2014. Additive quantization for extreme
vector compression. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 931–938.

[7] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. Advances in Neural Information
Processing Systems 34 (2021), 5199–5212.

[8] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,
Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, et al.
2016. Wide & deep learning for recommender systems. In Proceedings of the 1st
workshop on deep learning for recommender systems. 7–10.

[9] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks
for youtube recommendations. In Proceedings of the 10th ACM conference on
recommender systems. 191–198.

[10] Mayur Datar, Nicole Immorlica, Piotr Indyk, and Vahab SMirrokni. 2004. Locality-
sensitive hashing scheme based on p-stable distributions. In Proceedings of the
20th annual symposium on Computational geometry. 253–262.

[11] DW Dearholt, N Gonzales, and G Kurup. 1988. Monotonic search networks for
computer vision databases. In Twenty-Second Asilomar Conference on Signals,
Systems and Computers, Vol. 2. IEEE, 548–553.

[12] JeromeH Friedman, Jon Louis Bentley, and Raphael Ari Finkel. 1977. An algorithm
for finding best matches in logarithmic expected time. ACM Transactions on
Mathematical Software (TOMS) 3, 3 (1977), 209–226.

[13] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast approximate
nearest neighbor search with the navigating spreading-out graph. Proceedings of
the VLDB Endowment 12, 5 (2019), 461–474.

[14] Fabian Groh, Lukas Ruppert, Patrick Wieschollek, and Hendrik Lensch. 2022.
Ggnn: Graph-based gpu nearest neighbor search. IEEE Transactions on Big Data
(2022).

[15] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and
Sanjiv Kumar. 2020. Accelerating large-scale inference with anisotropic vector
quantization. In International Conference on Machine Learning. PMLR, 3887–3896.

[16] Antonin Guttman. 1984. R-trees: A dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD international conference on Management
of data. 47–57.

[17] Ben Harwood and Tom Drummond. 2016. Fanng: Fast approximate nearest
neighbour graphs. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition. 5713–5722.

[18] Flemming Hoeg, Niels Mellergaard, and Jørgen Staunstrup. 1994. The prior-
ity queue as an example of hardware/software codesign. In Third International
Workshop on Hardware/Software Codesign. IEEE, 81–88.

[19] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in one billion vectors: re-rank with source coding. In 2011 IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861–864.

[20] Hong Jiang. 2022. Intel’s Ponte Vecchio GPU: Architecture, Systems & Software.
In 2022 IEEE Hot Chips 34 Symposium (HCS). IEEE Computer Society, 1–29.

[21] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2019. Billion-scale similarity
search with gpus. IEEE Transactions on Big Data 7, 3 (2019), 535–547.

[22] Ji-Hoon Kim, Yeo-Reum Park, Jaeyoung Do, Soo-Young Ji, and Joo-Young Kim.
2022. Accelerating Large-Scale Graph-based Nearest Neighbor Search on a
Computational Storage Platform. IEEE Trans. Comput. 01 (2022), 1–1.

[23] Yejin Lee, Hyunji Choi, Sunhong Min, Hyunseung Lee, Sangwon Beak, Dawoon
Jeong, Jae W Lee, and Tae Jun Ham. 2022. ANNA: Specialized Architecture for

Approximate Nearest Neighbor Search. In 2022 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 169–183.

[24] Sen Li, Fuyu Lv, Taiwei Jin, Guli Lin, Keping Yang, Xiaoyi Zeng, Xiao-Ming Wu,
and Qianli Ma. 2021. Embedding-based product retrieval in taobao search. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 3181–3189.

[25] Shuangchen Li, Dimin Niu, Yuhao Wang, Wei Han, Zhe Zhang, Tianchan Guan,
Yijin Guan, Heng Liu, Linyong Huang, Zhaoyang Du, et al. 2022. Hyperscale
FPGA-as-a-service architecture for large-scale distributed graph neural network.
In Proceedings of the 49th Annual International Symposium on Computer Architec-
ture. 946–961.

[26] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2019. Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement. IEEE Transactions on Knowledge
and Data Engineering 32, 8 (2019), 1475–1488.

[27] Shengwen Liang, Ying Wang, Ziming Yuan, Cheng Liu, Huawei Li, and Xiaowei
Li. 2022. VStore: in-storage graph based vector search accelerator. In Proceedings
of the 59th ACM/IEEE Design Automation Conference. 997–1002.

[28] Jun Liu, Zhenhua Zhu, Jingbo Hu, Hanbo Sun, Li Liu, Lingzhi Liu, Guohao Dai,
Huazhong Yang, and Yu Wang. 2022. Optimizing Graph-based Approximate
Nearest Neighbor Search: Stronger and Smarter. In 2022 23rd IEEE International
Conference on Mobile Data Management (MDM). IEEE, 179–184.

[29] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012. Su-
pervised hashing with kernels. In 2012 IEEE conference on computer vision and
pattern recognition. IEEE, 2074–2081.

[30] Alec Lu, Zhenman Fang, Nazanin Farahpour, and Lesley Shannon. 2020. CHIP-
KNN: A configurable and high-performance k-nearest neighbors accelerator on
cloud FPGAs. In 2020 International Conference on Field-Programmable Technology
(ICFPT). IEEE, 139–147.

[31] Alec Lu, Zhenman Fang, Weihua Liu, and Lesley Shannon. 2021. Demystifying
the memory system of modern datacenter FPGAs for software programmers
through microbenchmarking. In The 2021 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays. 105–115.

[32] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate
nearest neighbor search using hierarchical navigable small world graphs. IEEE
transactions on pattern analysis and machine intelligence 42, 4 (2018), 824–836.

[33] Microsoft. 2022. Bing Vector Search. [Online]. https://www.microsoft.com/en-
us/ai/ailab-vector-search.

[34] Microsoft. 2022. Sptag: A library for fast approximate nearest neighbor search.
[Online]. https://github.com/microsoft/SPTAG.

[35] Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang,
Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-
Jean Wu, Alisson G Azzolini, et al. 2019. Deep learning recommendation model
for personalization and recommendation systems. arXiv preprint arXiv:1906.00091
(2019).

[36] Hongwu Peng, Shiyang Chen, Zhepeng Wang, Junhuan Yang, Scott A Weitze,
Tong Geng, Ang Li, Jinbo Bi, Minghu Song, Weiwen Jiang, et al. 2021. Optimizing
FPGA-based Accelerator Design for Large-Scale Molecular Similarity Search
(Special Session Paper). In 2021 IEEE/ACM International Conference On Computer
Aided Design (ICCAD). IEEE, 1–7.

[37] Jie Ren, Minjia Zhang, and Dong Li. 2020. Hm-ann: Efficient billion-point nearest
neighbor search on heterogeneous memory. Advances in Neural Information
Processing Systems 33 (2020), 10672–10684.

[38] Anshumali Shrivastava and Ping Li. 2014. Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS). Advances in neural information
processing systems 27 (2014).

[39] Godfried T Toussaint. 1980. The relative neighbourhood graph of a finite planar
set. Pattern recognition 12, 4 (1980), 261–268.

[40] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A com-
prehensive survey and experimental comparison of graph-based approximate
nearest neighbor search. Proceedings of the VLDB Endowment 14, 11 (2021),
1964–1978.

[41] Ruoxi Wang, Rakesh Shivanna, Derek Cheng, Sagar Jain, Dong Lin, Lichan Hong,
and Ed Chi. 2021. Dcn v2: Improved deep & cross network and practical lessons
for web-scale learning to rank systems. In Proceedings of the Web Conference 2021.
1785–1797.

[42] Andrew Waterman, Yunsup Lee, David A Patterson, and Krste Asanovi. 2014.
The risc-v instruction set manual. volume 1: User-level isa, version 2.0. Technical
Report. California Univ Berkeley Dept of Electrical Engineering and Computer
Sciences.

[43] Andrew Shell Waterman. 2016. Design of the RISC-V instruction set architecture.
University of California, Berkeley.

[44] Xilinx. 2022. Xilinx Alveo U280 FPGA Datacenter Acceleration Card. https:
//www.xilinx.com/products/boards-and-kits/alveo/u280.html.

[45] Fumito Yamaguchi and Hiroaki Nishi. 2013. Hardware-based hash functions for
network applications. In 2013 19th IEEE International Conference on Networks
(ICON). IEEE, 1–6.

295

https://github.com/nmslib/hnswlib
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
https://github.com/microsoft/SPTAG/tree/main/datasets/SPACEV1B
https://xilinx.github.io/XRT/2021.1/html/xbutil2.html
https://xilinx.github.io/XRT/2021.1/html/xbutil2.html
https: //github.com/Xilinx/xup_vitis_network_example
https: //github.com/Xilinx/xup_vitis_network_example
https://www.microsoft.com/en-us/ai/ailab-vector-search
https://www.microsoft.com/en-us/ai/ailab-vector-search
https://github.com/microsoft/SPTAG
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html
https://www.xilinx.com/products/boards-and-kits/alveo/u280.html

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Shulin Zeng al.

[46] Peter N Yianilos. 1993. Data structures and algorithms for nearest neighbor. In
Proceedings of the fourth annual ACM-SIAM Symposium on Discrete algorithms,
Vol. 66. SIAM, 311.

[47] Chaoliang Zeng, Layong Luo, Qingsong Ning, Yaodong Han, Yuhang Jiang, Ding
Tang, Zilong Wang, Kai Chen, and Chuanxiong Guo. 2022. {FAERY}: An {FPGA-
accelerated} Embedding-based Retrieval System. In 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). 841–856.

[48] Shulin Zeng, Guohao Dai, Niansong Zhang, Xinhao Yang, Haoyu Zhang, Zhenhua
Zhu, Huazhong Yang, and Yu Wang. 2022. Serving Multi-DNN Workloads on
FPGAs: A Coordinated Architecture, Scheduling, and Mapping Perspective. IEEE
Trans. Comput. 72, 5 (2022), 1314–1328.

[49] Jialiang Zhang, Soroosh Khoram, and Jing Li. 2018. Efficient large-scale ap-
proximate nearest neighbor search on OpenCL FPGA. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. 4924–4932.

296

	Abstract
	1 Introduction
	2 Background
	2.1 Nearest Neighbor Search
	2.2 Cloud FPGAs

	3 Motivations and Challenges
	3.1 Practically Ideal GANNS Hardware Architecture
	3.2 Limitation of Existing Work
	3.3 Challenges of FPaaS-based GANNS Systems

	4 Design Methodology Overview
	5 DF-GAS Architecture
	5.1 Architecture Overview
	5.2 Scaling Up: MAE for Local Access
	5.3 Scaling Out: MAE for Remote Access
	5.4 High Performance: PE Design
	5.5 Instruction Set Architecture Design

	6 System-level Optimization
	6.1 Hybrid Parallel Search Scheme
	6.2 Design Space Exploration (DSE)

	7 Evaluation
	7.1 Evaluation Setup
	7.2 Evaluation Results

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

