
AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural
Network Inference with
AdaptiveQuantization

Yukui Luo

Northeastern University

Boston, MA, USA

luo.yuk@northeastern.edu

Nuo Xu

Lehigh University

Bethlehem, PA, USA

nux219@lehigh.edu

Hongwu Peng

University of Connecticut

Storrs, CT, USA

hongwu.peng@uconn.edu

Chenghong Wang

Indiana University Bloomington

Bloomington, IN, USA

cw166@iu.edu

Shijin Duan

Northeastern University

Boston, MA, USA

duan.s@northeastern.edu

Kaleel Mahmood

University of Connecticut

Storrs, CT, USA

kaleel.mahmood@uconn.edu

Wujie Wen

North Carolina State University

Raleigh, NC, USA

wwen2@ncsu.edu

Caiwen Ding

University of Connecticut

Storrs, CT, USA

caiwen.ding@uconn.edu

Xiaolin Xu

Northeastern University

Boston, MA, USA

x.xu@northeastern.edu

ABSTRACT
The growing prevalence of Machine Learning as a Service (MLaaS)

enables a wide range of applications but simultaneously raises nu-

merous security and privacy concerns. A key issue involves the po-

tential privacy exposure of involved parties, such as the customer’s

input data and the vendor’s model. Consequently, two-party com-

puting (2PC) has emerged as a promising solution to safeguard the

privacy of different parties during deep neural network (DNN) in-

ference. However, the state-of-the-art (SOTA) 2PC-DNN techniques

are tailored explicitly to traditional instruction set architecture (ISA)

systems like CPUs and CPU+GPU. This reliance on ISA systems

significantly constrains their energy efficiency, as these architec-

tures typically employ 32- or 64-bit instruction sets. In contrast, the

possibilities of harnessing dynamic and adaptive quantization to

build high-performance 2PC-DNNs remain largely unexplored due

to the lack of compatible algorithms and hardware accelerators.

To mitigate the bottleneck of SOTA solutions and fill the existing

research gaps, this work investigates the construction of 2PC-DNNs

on field programmable gate arrays (FPGAs). We introduce AQ2PNN,

an end-to-end framework that effectively employs adaptive quanti-

zation schemes to develop high-performance 2PC-DNNs on FPGAs.

From an algorithmic perspective, AQ2PNN introduces an inno-

vative 2PC-ReLU method to replace Yao’s Garbled Circuits (GC).

Regarding hardware, AQ2PNN employs an extensive set of building

blocks for linear operators, non-linear operators, and a specialized

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00

https://doi.org/10.1145/3613424.3614297

Oblivious Transfer (OT) module for secure data exchange, respec-

tively. These algorithm-hardware co-designed modules extremely

utilize the fine-grained reconfigurability of FPGAs, to adapt the data

bit-width of different DNN layers in the ciphertext domain, thereby

reducing communication overhead between parties without com-

promising DNN performance, such as accuracy. We thoroughly

assess AQ2PNN using widely adopted DNN architectures, includ-

ing ResNet18, ResNet50, and VGG16, all trained on ImageNet and

producing quantized models. Experimental results demonstrate

that AQ2PNN outperforms SOTA solutions, achieving significantly

reduced communication overhead by 25%, improved energy effi-

ciency by 26.3×, and comparable or even superior throughput and

accuracy.

CCS CONCEPTS
• Security and privacy→ Hardware-based security protocols.

KEYWORDS
Privacy-Preserving machine learning, Deep learning, FPGA, Quan-

tization, Two-party computing

ACM Reference Format:
Yukui Luo, Nuo Xu, Hongwu Peng, Chenghong Wang, Shijin Duan, Kaleel

Mahmood, Wujie Wen, Caiwen Ding, and Xiaolin Xu. 2023. AQ2PNN: En-

abling Two-party Privacy-Preserving Deep Neural Network Inference with

Adaptive Quantization. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’23), October 28–November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/

3613424.3614297

1 INTRODUCTION
Machine Learning as a Service (MLaaS) has become increasingly

popular in recent years [46], where users, organizations, and enter-

prises can all utilize the centralized computing service and infras-

tructures (e.g., AWS SageMaker [25], Google AI Platform [7], and

Azure Machine Learning [3]) to build and deploy their own deep

628

https://doi.org/10.1145/3613424.3614297
https://doi.org/10.1145/3613424.3614297
https://doi.org/10.1145/3613424.3614297
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613424.3614297&domain=pdf&date_stamp=2023-12-08

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Luo, et al.

neural networks (DNN). Despite its popularity, the practical MLaaS

is challenged by the the ever-increasing privacy and security con-

cerns, especially for these applications processing privacy-sensitive

data like health records and location-based information [49]. These

concerns highlight the urgent need for privacy-preserving solu-

tions in the context of deep learning. A number of solutions have

been proposed, mainly including trusted execution environment

(TEE) [38], homomorphic encryption (HE)[19], and multi-party

computation (MPC)[15, 44].

However, the two common methods, HE and MPC, have their

unique pros and cons. HE, especially the leveled HE like CKKS [11,

36], is mainly used to protect client’s data with the advantage of

linear operations directly on ciphertexts. It works well for small to

medium-scale DNNs without involving costly bootstrapping and

large communication overhead. However, it is not suitable for pro-

tecting large-scale networks. Also, HE relies on public/private key

generation and distribution, which introduces considerable extra

costs and requires either a trusted curator to securely sample the

keys or secret-sharing of the private key among two non-colluding

parties[17]. Furthermore, HE techniques often incur high-cost mul-

tiplicative gate operations[18] for complex applications like DNN

inference, which results in significantly slow inference. For example,

the inference speed for HE-evaluated deep networks is 164.7 sec-

onds per image for a 10-layer SqueezeNet inference on the CIFAR10

dataset [14].

MPC protocols such as Yao’s Garbled Circuits (GC), which pro-

tect both client’s data and model IP, on the other hand, often can

support large-scale networks by partitioning the inference between

clients and MLaaS providers. Similar to HE, the performance of

MPC is also a key concern that hinders its practical deployment.

For example, among the state-of-the-art (SOTA) works, Gazelle [26]

requires more than 200 seconds latency and 8 GB communication

to perform ResNet-32 on the CIFAR-100, and Falcon [53] consumes

5.9 × 104 times latency in DNN inference, than its plaintext coun-

terpart. In contrast, a recent work CryptGPU[51] achieves much

higher performance, i.e., it takes only 2.7 seconds to process VGG-

16 inference for an image from the CIFAR10 dataset. This substan-

tial difference in performance highlights the advantages of MPC

over HE for privacy-preserving DNN inference. However, Crypt-

GPU [51] incurs ultra high power consumption, i.e., it employs two

CryptGPU platforms [51] with a power budget of 315 × 2 Watts,

while implementing VGG16 for ImageNet inference.

This work focuses on the two-party computation (2PC) setup,

a special case of MPC, for securing DNN inference. Our proposed

method targets the following aspects to improve the efficiency

of 2PC-DNN inference: (1) Developing ciphertext-dedicated DNN

model quantization techniques and (2) Exploring secure two-party

comparison methods without using Yao’s Gabled Circuits [21].

These advancements drastically reduce the communication over-

head in a 2PC setup, facilitating faster secret exchanges. We develop

a new FPGA-based hardware accelerator capable of exploiting the

adaptively quantized DNNmodel. Such innovations would undoubt-

edly benefit the MLaaS ecosystem and pave the way for more secure

and efficient privacy-preserving solutions.

To this end, this work addresses the following challenges: (1)
It is non-trivial to quantize DNNs to embrace the 2PC protocols,

which otherwise introduces quantization errors and affects the

quality of the ML service. For example, improper ring size design

can lead to the collapse of the overall secure inference process. More

details on this challenge can be found in Sec. 5. (2) Like other works,

the basic 2PC-DNN protocols incur ultra-high computation and

communication overhead [35, 40]. Specially, applying 2PC on large

complex DNN models exacerbates the problem due to (i) a vast

amount of data communication and (ii) limited resources (e.g., on-

chip memory size) on devices. (3) Adding cryptographic operations

could greatly limit the solution practicality of secure deep learning

(DL) in mobile and IoT devices.

We summarize our contributions in this work as follows:

•We propose a 2PC-DNN framework, AQ2PNN, from an algo-

rithm and hardware co-design perspective – a hardware-friendly

adaptive quantization schemewith a high accuracy guarantee. Since

the data width of the secret directly determines the communication

overhead of 2PC-DNN shared input feature map, which is highly

compatible with our proposed adaptive quantization scheme. More-

over, we propose a novel two-party ReLU operation method that

eliminates the usage of Yao’s Garbled Circuit [21]. This method con-

structively combines arithmetic-to-binary share conversion [15]

and oblivious transfer [5] to build ReLU in ciphertext domain.

• We design, optimize, and implement various modules for

AQ2PNN. These modules include an arithmetic share-based general

matrix multiplication unit (AS-GEMM), an arithmetic share-based

arithmetic logic unit (AS-ALU), an arithmetic-to-binary share con-

version machine (A2BM), and a secure comparison machine (SCM).

All these modules are tailored to efficiently support various 2PC-

DNN operations, enabling efficient execution on the heterogeneous

CPU+FPGA platform. Moreover, our proposed design is systematic

and highly modular (Fig. 1), laying the foundation for future ASIC

developments.

•We implement AQ2PNN on low-cost AMD-Xilinx multiproces-

sor system-on-chip devices, leveraging the reconfigurable hardware

resources in a CPU+FPGA system. The experimental results demon-

strate that AQ2PNN outperforms SOTA GPU implementations, in

terms of energy efficiency while maintaining comparable or even

higher accuracy for popular DNN models.

•We evaluate AQ2PNN across datasets of different scales, small,

medium, and large, as well as on various architectures including

LeNet5, AlexNet, ResNet18, VGG16, and ResNet50. These experi-

mental results showcase AQ2PNN’s excellent scalability in terms

of model size. Furthermore, we investigate the accuracy loss intro-

duced by our adaptive quantization scheme and identify the optimal

data width. Lastly, we discover that modifying model structures

can improve throughput without significantly affecting accuracy,

such as replacing Max pooling with Average pooling, substantially

increasing throughput.

2 RELATEDWORK AND THREAT MODEL
2.1 Two-party Computation for DNN
A two-party computation (2PC) setup [15, 41, 54] enables two col-

laborators (e.g., customer and vendor) to jointly evaluate a function

on the private input data from them each. Specifically, a 2PC setup

masks and distributes privacy-sensitive data on separate computing

devices in a secret-sharing manner to protect the privacy of these

two parties [9].

629

AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with
AdaptiveQuantization MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Taking the 2PC-DNN inference as an example, the two parties

will provide the input data and model, respectively. In such a setup,

no private information is leaked besides what can be obtained

from the expected function outputs. The state-of-the-art (SOTA)

2PC-DNNs are predominantly built on software-programmable

platforms like CPU [32] and CPU+GPU [51]. For example, Crypt-

flow [32], a CPU-basedMPC framework that employs multiple MPC

methods, offers 2PC-DNNs based on ABY2 [44]. CryptGPU [51],

another SOTA CPU+GPU MPC-based DNN framework, operates

in a 3-party setting and uses a 2-out-of-3 replicated secret-sharing

scheme [2, 23]. In practice, CryptGPU can also be configured to

address 2PC-DNNs.

Previous works have all been set to full precision computation

(e.g., 32- or 64-bit data width), which is enforced by the under-

lying instruction set architectures of CPU or GPU. For instance,

CryptGPU [51] creates a new abstraction called CUDALongTensor,
a 64-bit integer-valued cryptographic datatype that is designed to

utilize the optimized 64-bit floating-point GPU kernel. This is re-

ferred to as “GPU-friendly cryptography". However, these solutions

are not efficient in addressing the large overheads associated with

the communication between two parties. This problem becomes

aggravated as modern DNN size continues to grow.

2.2 2PC Acceleration Using FPGA
FPGAs have witness great use in accelerating 2PC protocols like

Yao’s Garbled Circuits (GC) [22] and secret-sharing [6]. For ex-

ample, Huang et al. deployed GC on Amazon AWS FPGA [21],

which achieves 15× speedup compared to its CPU counterpart. A

recent GC-based accelerator HAAC [39], leverages hardware sup-

port like HBM2 and provides ReLU with a maximum speedup of

779×, compared to its CPU counterpart. However, the underlying

mechanism of GC incurs a large communication and circuit over-

head, e.g., ReLU requires 67.9K wires, which significantly limits its

applicability in complex tasks like DNN inference. Differently, the

secret-sharing-based 2PC employs more rounds of lightweight com-

munication to mitigate the bulky communication in Yao’s Garbled

Circuits, which makes it more lightweight, e.g., Wolfe et al. [57]
demonstrate that secret-sharing outperforms other 2PC methods in

data centers. Nonetheless, such explorations of the secret-sharing

2PC are dominantly focused on various fundamental benchmarks

like the Advanced Encryption Standard (AES) and random number

generator. Still, it could not satisfy the need of practical complex

applications like DNN inference, due to the large communication

overhead. In this work, we make use of the bit-wise reconfigura-

bility of FPGA to mitigate the 2PC-DNN performance bottleneck,

caused by its prohibitively high communication overhead.

2.3 Relevant Terminologies
Secret-sharing: Secret-sharing is a cryptographic technique that di-

vides a secret into multiple “shares”, such that no single share can re-

veal the original secret. There are a number of secret-sharing meth-

ods, such as additive [13], Blakley’s secret-sharing [8], and Shamir’s

secret-sharing [47]. Among these solutions, additive secret-sharing

has been applied to numerous 2PC applications, such as Crypt-

flow2 [45], CryptGPU [51]. Without loss of generality, we adopt the

additive secret-sharing as the foundation for our AQ2PNN design,

see details in Definition 3 and Sec. 4.

Oblivious Transfer: Oblivious Transfer (OT) is a popular method

for building secret-shared comparison operators. Specifically, in the

context of 2PC, party 𝑖 has a set of messages 𝑀 = 𝑚1,𝑚2, ...,𝑚𝑁 ,

and party j holds an index 𝑛 (𝑛 ∈ [1, 𝑁]). By evaluating a (1, 𝑁)-OT
(1-out-of-𝑁 OT) protocol (see Definition 2), party 𝑗 learns only

message𝑚𝑛 but nothing else, while party 𝑖 learns nothing about

index𝑛. In this work, we implement OT following the general design

rules proposed by Chou et al. [12], with necessarymodifications and

hardware-friendly optimizations, see the related details in Sec. 4.3.

2.4 Threat Model
We consider a threat model for Machine Learning as a Service

(MLaaS) in a 2PC context, where the users seek inference services

from model providers and they both contribute to the computation

(i.e., inference) process. Without loss of generality, we follow the

2PC setup similar to previous works [15, 29, 51, 53], where the two

parties involved in secure MLaaS have opposing roles, i.e., the user

and model provider, who strive to ensure the privacy of their data,

exhibiting the characteristics of semi-honest but non-colluding

parties [15, 27]. Last, in our setup, the data from both parties are

protected by the additive secret-sharing method.

3 AQ2PNN: OVERVIEW

Table 1: Definitions of terms in AQ2PNN.

A2BM

Arithmetic-to-Binary Sharing

Conversion Machine

ABReLU

Arithmetic-to-Binary Sharing

based two-party ReLU

AS-ALU

Arithmetic Sharing based

Arithmetic Logic Unit

AS-CST Buffer

Arithmetic Sharing Pre-Compute

Triple’s Buffer

AS-GEMM

Arithmetic Sharing based

General Matrix Multiplication

AS-INP Buffer Arithmetic Sharing Input’s Buffer

AS-INP-MSK Buffer Arithmetic Sharing Input Mask’s Buffer

AS-OUP Buffer

Arithmetic Sharing Computing Output’s

Buffer

AS-WGT Buffer Arithmetic Sharing Weight’s Buffer

AS-WGT-MSK Buffer Arithmetic Sharing Weight Mask’s Buffer

BS-INP Buffer Binary Sharing Input’s Buffer

BS-OUP Buffer Binary Sharing Output’s Buffer

INST Q Instruction Queue

OUT-MSK Buffer Comparision Result Mask’s Buffer

SCM Secure Comparison Machine

Sec-COMM. Module Secure-communication Module

Sec-COMP. Module Secure-computing Module

We provide a systematic overview of the proposed AQ2PNN

framework in Fig. 1, which details its underlying hardware modules.

This system implementation consists of a CPU, DRAM, an AQ2PNN

accelerator, and a Network Inference Card (NIC) for the data ex-

change between the two parties, which is suitable for quantized

2PC-DNN models. Specifically, we take into consideration the dif-

ferent requirements for inference accuracy, model architecture, and

630

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Luo, et al.

Sec-COMP. MODULE

LOAD MODULE STORE MODULE

Sec-COMM.
MODULE

AS-INP
BUFFER

AS-WGT
BUFFER

NIC

OUP-MSK
BUFFER

INST Q

DRAM CPU

AS-ALU SCMA2BM

AS-CST
BUFFER

AS-GEMM

AS-WGT-
MSK BUFFER

AS-OUP
BUFFER

BS-OUP
BUFFER

BS-INP
BUFFER

AS-INP-MSK
BUFFER

Figure 1: Overview ofAQ2PNN framework, which is deployed
on both party 𝑖 and 𝑗 in the 2PC-DNN setup.

latency from various applications, and we resort to the hardware-

reconfigurable devices to develop a high-performance AQ2PNN

accelerator. Our proposed adaptive quantization strategies are de-

tailed in Sec. 5.1, 6.2, and 6.5. This method is implemented on both

parties in a 2PC-DNN setup. Specifically, we focus on the design

and optimization of the AQ2PNN accelerator part, which consists of

four modules: LOAD Module, STORE Module, Secure-Computing

(Sec-COMP.) Module, and Secure Communication (Sec-COMM.)

Module. The Sec-COMP. Module contains a General Matrix Mul-

tiplication calculator for the secret arithmetic shares (AS-GEMM),

which is detailed in Sec. 4.1.2, as well as an arithmetic share based

arithmetic logic unit (AS-ALU). Sec. 4.1.3 provides the different

computations supported by the AS-ALU, including addition, left

shift, right shift, and clipping, all of them are based on 2PC.

We propose a novel 2PC-based rectified linear unit (ReLU),

namely ABReLU, which realizes secret arithmetic to binary share

conversion [15] and oblivious transfer (OT) [58], see details in

Sec. 4.4. We employ the Sec-COMM. Module to implement ABReLU

using the Arithmetic-to-Binary share conversion machine (A2BM)

and the Secure Comparison Machine (SCM), detailed in Sec. 4.3.

The workflow of AQ2PNN shown in Fig. 1 is as follows:

Step-1: The LOAD Module distributes the pre-compute secure

constant (AS-CST), the secret arithmetic shares of the user’s input

(AS-INP) and input masks (AS-INP-MSK), as well as the model

provider’s weight (AS-WGT) and weight masks (AS-WGT-MSK) to

their corresponding buffers.

Step-2: The instruction queue (INST Q) drives the Sec-COMP.

Module to perform secure computation, see Sec. 4.1.

Step-3: The results from the Sec-COMP. Module are buffered in

the Secret Arithmetic Share Output Buffer (AS-OUP Buffer).

Step-4: The data in the AS-OUP Buffer is used as inputs for

A2BM, which converts the secret arithmetic shares to binary shares

and stores them in the Secret Binary Share Output Buffer (BS-OUP

Buffer), as described in Sec. 4.3.2.

Step-5: A data exchange occurs between two parties 𝑖 and 𝑗 , and

the secret binary share from the other party is loaded into the Secret

Binary Share Input Buffer (BS-INP Buffer).

Step-6: The BS-INP Buffer and BS-OUP Buffer carry the inputs

for SCM to complete the 2PC secure comparison. The output mask

is then stored in the OUP-MSK Buffer. Share Input Buffer (BS-INP

Buffer).

Step-7: The results in the AS-OUP Buffer and OUP-MSK Buffer

are combined and transferred back to DRAM. See an example in

Sec. 5.1.

Note that steps 4-6 are performed using our developed ABReLU

(see Sec. 4.4), in conjunction with the OT protocol described in

Sec. 4.3, for secure 2PC-ReLU computation.

4 AQ2PNN: IMPLEMENTATION
Definition 1. Operation on a ring: Given an unsigned integer

ring Z𝑄 , where the ring size is 𝑄 = 2
ℓ and ℓ denotes the bit-length.

All operations performed on the ring Z𝑄 takes a modular (mod 𝑄). A
bit-length overflow in a hardware accelerator can easily replace this
modular operator.

Definition 2. (𝑛, 𝑡)-secret-sharing: A (𝑛, 𝑡)-secret-sharing (i.e.,
𝑡-out-of-𝑛) over Z𝑄 refers to the scheme that splits a secret value
𝑥 ∈ Z𝑄 among 𝑛 parties. The security property ensures that any 𝑡 ′

out of 𝑛 parties can recover 𝑥 , if and only if 𝑡 ′ ≥ 𝑡 . Otherwise, no one
knows any information about the secret value 𝑥 .

Definition 3. 2PC additive secret-sharing:We denote the two
parties in the 2PC system as 𝑖 and 𝑗 , where 𝑖 and j can get an index from
set {0, 1} and 𝑖 ≠ 𝑗 . This setup constructs a (2, 2)-secret-sharing. For
any value 𝑥 ∈ Z𝑄 , we use J𝑥K← (𝑥𝑖 , 𝑥 𝑗) to denote its corresponding
secret shares, where 𝑖 and 𝑗 denote the secret disseminated to party 𝑖
and 𝑗 separately.

We introduce two basic operations over such additive secret-

shared data.

• Secret share J𝑥K generation: Given 𝑥 ∈ Z𝑄 , it samples a ran-

dom value 𝑟 in Z𝑄 , and returns J𝑥K← (𝑟, 𝑥 − 𝑟).
• Secret share recovering rec(J𝑥K): Given secret shares J𝑥K←
(𝑥𝑖 , 𝑥 𝑗), it computes 𝑥 ← (𝑥𝑖 + 𝑥 𝑗) mod 𝑄 , then returns 𝑥 .

4.1 Secure-computing Module
The Secure-computing Modul (Sec-COMP. Module) is used in the

linear operations of 2PC-DNNs, such as 2D convolution (2PC-

Conv2D). In the 2PC setup, the 2PC-Conv2D operation should

be conducted in the ciphertext domain, which can be accomplished

as matrix multiplication accumulation based on two additive secret-

shared data, i.e., ciphertext-to-ciphertext (C-C) multiplication
and accumulation, which are implemented by AS-GEMM and the

add logic in AS-ALU. The 2PC-BNReQ operator can be abstracted as

multiplication and division of one additive secret-shared data and

an unsigned integer constant, corresponding to the left and right

shift logic in AS-ALU, and the requantization using the truncation

logic in AS-ALU, i.e., ciphertext-plaintext (C-P) multiplication,
division, and truncation. In the following subsections, we will

discuss the microarchitecture of the Sec-COMP. Module, focusing

on AS-GEMM and AS-ALU.

4.1.1 Instruction Queue. We develop an instruction queue module

(INST Q) to drive the execution flow of AQ2PNN. These instructions

are primarily for invoking the functions of AS-GEMM, AS-ALU, as

well as allocating the workload based on the hyperparameter config-

uration of different DNN layers. This design method is compatible

with the real-world deisgn practice, i.e., there are many DNN accel-

erator compilers for generating such an instruction queue, such as

the open-source Apache TVM [10].

631

AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with
AdaptiveQuantization MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

AS-GEMM

BLOCK_IN

BLOCK_OUT

BLOCK_OUT

BLOCK_IN

𝑊𝑖

(229)

𝐸
(251)

𝐹
(252)

𝑍𝑖
(16)

𝑖 =0

𝐼𝑁𝑖
(23)

𝑂𝑈𝑇𝑖
(59)

𝑂𝑖

𝐼𝑁𝑖

𝑍𝑖

𝐸

𝐹

𝑊𝑖

(a) AS-GEMM (b) C-C MU

Figure 2: C-C matrix multiplication hardware. (a) Arith-
metic share based general matrix multiplication array with
(BLOCK_IN, BLOCK_OUT) = (4, 4) (b) C-C multiplication unit, its
example input/output correspond to the 𝑂𝑈𝑇𝑖 = 59 in Fig. 3.

4.1.2 Arithmetic Share-based GEMM. In 2PC-DNN context, the

arithmetic-share-based general matrix multiplication (GEMM) is

entirely different from that in the plaintext domain, i.e., due to the

C-C matrix multiplication over secret-sharing information. Ac-

cording to the additive share and two-party setting, assuming a ma-

trix multiplication over input (J𝐼𝑁 K) and weight (J𝑊 K): J𝑂𝑈𝑇 K←
J𝐼𝑁 K ⊗ J𝑊 K that produces a new secret shared value J𝑂𝑈𝑇 K ←
(𝑂𝑈𝑇𝑖 ,𝑂𝑈𝑇𝑗), such that rec(J𝑂𝑈𝑇 K) = rec(J𝐼𝑁 K) ⊗ rec(J𝑊 K). In
this process, we need two masks J𝐸K and J𝐹K to assist each party’s

computation, i.e., hide the secret information of J𝐼𝑁 K and J𝑊 K by
using pre-computed multiplication triple J𝐴K, J𝐵K, and J𝑍K, where
J𝑍K = J𝐴K · J𝐵K. The three secret shared matrices of triple are

J𝐴K← (𝐴𝑖 , 𝐴 𝑗), J𝐵K← (𝐵𝑖 , 𝐵 𝑗), and J𝑍K← (𝑍𝑖 , 𝑍 𝑗).

𝑂𝑈𝑇𝑖 = −𝑖 · 𝐸 ⊗ 𝐹 + 𝐼𝑁𝑖 ⊗ 𝐹 + 𝐸 ⊗𝑊𝑖 + 𝑍𝑖 (𝑖 ∈ {0, 1}) (1)

Initially, each party computes J𝐸K = J𝐼𝑁 K − J𝐴K and J𝐹K =

J𝑊 K − J𝐵K. Then both parties jointly recover 𝐸 ← rec(J𝐸K), and
𝐹 ← rec(J𝐹K), and each party computes Eq. 1, the so-called Beaver
multiplication triples [4] adopted by many other relevant works

like Crypten [29], CryptGPU [51], ABY [15], and ABY2[44]. Tak-

ing party 𝑖 as an example, 𝑂𝑈𝑇𝑖 will then be treated as the secret

share for J𝑂𝑈𝑇 K. Typically, the multiplication triple can be gener-

ated using homomorphic encryption [60] or with oblivious transfer

(OT)[28]. For a better understanding of Eq. 1, we provide an illus-

tration in Fig. 3 to demonstrate its complete flow and compare the

recovered results from ciphertext with the results in plaintext.

For facilitate the C-C maxtrix multiplication in the ciphertext

domain, we design an arithmetic share based GEMM (AS-GEMM),

for which we draw inspiration from the normal GEMM used in the

open-source DNN accelerator VTA [42]. We build an AS-GEMM

computation array as shown in Fig. 2 (a), to enable parallelism in

the input and output channels with size BLOCK_IN and BLOCK_OUT.
We apply a fully pipelined initiation interval of 1 in the output

channel. This design can perform piplined matrix multiplication at

a rate of one input-weight matrix multiplication per cycle.

In AS-GEMM, we replace the conventional multiplication with

a C-C multiplication unit (C-C MU) shown in Fig. 2 (b). Using

party 𝑖 as an example, this unit complies with Eq. 1. The mask 𝐸 is

related to the user’s input, which is variable, so the calculation of 𝐸

must be performed for each inference. We store the value of 𝐸 in

Algorithm 1: AS-GEMM implementation for party 𝑖

Data: Secret shared input matrix 𝐼𝑁𝑖 , weight matrix𝑊𝑖 ,

prepared C-C MU masked values 𝐸, 𝐹 and 𝑍𝑖 for each

output 𝑂𝑈𝑇𝑖
Result: Each parallel output channels 𝑂𝑈𝑇𝑖
𝑜𝑐 ← BLOCK_OUT;

while 𝑜𝑐 ≠ 0 do
𝑂𝑈𝑇𝑖 (𝑜𝑐) = 0 ; /* Initialization */

𝑖𝑐 ← BLOCK_IN;

while 𝑖𝑐 ≠ 0 do
𝑂𝑈𝑇𝑖 (𝑜𝑐) += C-C MU(𝐼𝑁𝑖 ,𝑊𝑖 , 𝐸, 𝐹 , 𝑍𝑖 , 𝑖)𝑖𝑐 ;
𝑖𝑐 ← 𝑖𝑐 − 1;

end
𝑜𝑐 ← 𝑜𝑐 − 1;

end

the AS-INP-MSK Buffer. The mask 𝐹 is related to the weight from

party 𝑗 (i.e., model provider), which can be pre-computed to reduce

the overhead for communication and computation, e.g., it can be

pre-deployed in the memory of each party. When computing each

layer, 𝐹 is loaded into the mask buffer (AS-WGT-MSK). The user’s

input share 𝐼𝑁𝑖 and the model provider’s weight share𝑊𝑖 will be

loaded into the AS-INP Buffer and AS-WGT Buffer, respectively. 𝑍𝑖
is a pre-computed value stored in the AS-CST Buffer. In addition, as

shown in Def. 2, we need to determine the index of party 𝑖 , where

𝑖 ∈ {0, 1}, which affects the method used by parties 𝑖 and 𝑗 when

computing C-Cmatrix multiplication and ensures the correctness of

the recovery process. Then, we construct the AS-GEMM hardware

based on the pseudocode in Alg. 1, and the C-C multiplication unit.

4.1.3 Arithmetic Share-based Arithmetic Logic Unit. The diverse
arithmetic operations supported by the arithmetic share based arith-

metic logic unit (AS-ALU) in between the ciphertext (C) and Plain-

text (P) are as follows.
C-C addition: For any secret-shared values J𝑥K and J𝑦K, we

have J𝑥 + 𝑦K← (𝑥𝑖 + 𝑦𝑖 , 𝑥 𝑗 + 𝑦 𝑗).
P-C addition: For any secret-shared values J𝑥K constant 𝑎 ∈ Z𝑄 ,

we have J𝑎 + 𝑥K← (𝑎 + 𝑥𝑖 , 𝑎 + 𝑥 𝑗).
P-C multiplication: For any secret-shared values J𝑥K constant

multiplicative 𝑎 ∈ Z𝑄 , we have J𝑎𝑥K← (𝑎𝑥𝑖 , 𝑎𝑥 𝑗).
P-C division: For any secret-shared values J𝑥K constant divi-

dend 𝑎 ∈ Z𝑄 , we have J𝑥𝑎 K← (𝑥𝑖𝑎 ,
𝑥 𝑗

𝑎).
The arithmetic operations in the AS-ALU are similar to their

plaintext counterpart. The primary difference is that the hidden

secure results should be maintained on the Z𝑄 ring, to ensure

ensure the correctness of secure computing results.

4.2 Matrix Multiplication and Accumulation
Using the proposed AS-GEMM and AS-ALU, we can implement

other critical 2PC-DNN operators, i.e., matrix multiplication and

accumulation (2PC-MMAC). We illustrate how the 2PC-MMAC

works in Fig. 3, using (BLOCK_IN, BLOCK_OUT) = (4, 4) as an example.

The input and mask 𝐸 of each party consist of 4 pixels, and they are

broadcasted to each column of the 4×4 weight and mask 𝐹 used for

632

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Luo, et al.

1 2 -1 -2 3 0 -1 1 3 0 -1 1
INT8->UINT8 2 1 2 2 4 2 4 4

1 2 255 254 1 0 3 0 -1 0 -3 0
-1 1 1 2 2 -2 -2 -4 8 0 -2 1

23 36 3 10 229 254 161 250 252 249 248 250
254 254 255 0 251 250 251 250

56 4 16 255 192 244 157 250 249 252 249
199 2 201 252 248 250 250 251

251 252 249 248

59 121 51 164
100 64 96 56

5 187 88 176 UINT8 -> INT8
136 196 140 254 44 56 119 138 8 0 -2 -1

200 135 204 93 220 200 135 117 8 0 254 255
160 194 164 202
250 69 165 80
122 58 114 254

234 222 252 244 30 2 94 7 252 249 248 250
4 3 3 1 251 250 251 250

206 3 26 2 64 15 99 250 249 252 249
56 255 56 6 248 250 250 251

251 252 249 248

𝐼𝑁𝑖

× =

+

𝑊𝑖 𝐹

Check the
correctness

P
la

in
te

xt

D
o

m
ai

n
C

ip
h

er
te

xt
 D

o
m

ai
n

user (party 𝑖)

model provider
(party 𝑗)

AS-GEMM

AS-GEMM

𝑂𝑈𝑇𝑖

𝑂𝑖

𝐸

𝑊 𝑂𝑈𝑇

𝑂

𝐼𝑁

𝐴𝑖 𝐵𝑖 𝑍𝑖

𝐴𝑗 𝐵𝑗 𝑍𝑗

𝐸

𝐹𝑊𝑗

𝑂𝑈𝑇𝑗 𝑂𝑗

𝐼𝑁𝑗

𝑟𝑒𝑐(𝑂)

𝑒𝑛𝑐(𝑟𝑒𝑐 𝑂)
+

+

Figure 3: Schematic of 2PC-MMAC. This example includes
the computation of MMAC in Plaintext Domain and compu-
tation using AS-GEMM (Fig. 2) in Ciphertext Domain.

AS-GEMM computation. Consequently, 16 AS-GEMM operations

are computed in parallel.

In Plaintext Domain, green 1○ represents the matrix multi-

plication of input (𝐼𝑁) and weight (𝑊), where 𝑂𝑈𝑇 denotes the

intermediate results. In green 2○, accumulation is performed along

the direction of the arrows to produce the final output 𝑂 .

In Ciphertext Domain, orange 1○ party 𝑖 and 𝑗 use AS-GEMM

to compute intermediate values 𝑂𝑈𝑇𝑖 and 𝑂𝑈𝑇𝑗 , respectively. In

orange 2○, the add instruction in AS-ALU is executed along the

direction of the arrows to produce the output 𝑂𝑖 and 𝑂 𝑗 . In or-

ange 3○, we compute rec(J𝑂K) ← (𝑂𝑖 + 𝑂 𝑗) mod 𝑄 and encode

rec(J𝑂K) with 2’s compliment method 𝑒𝑛𝑐 (rec(J𝑂K)) = 𝑂 , verify-
ing the correctness of 2PC-MMAC. We can observe that in this

setup, the 2PC-MMAC will not reveal any original values during

the computation.

4.3 Secure-communication Module
Data comparison is a critical and challenging step in 2PC-DNN,

in which the two compared values are encrypted and exchanged

between the two parties, yet the Yao’s classical millionaires’ prob-
lem. Such operation is realized with secure communication in the

existing works, which incurs large communication overhead. To

facilitate the hardware acceleration, we follow the protocol in [16]

to develop a secure-communication Module (Sec-COMM. Module).

Our proposedmethod is detailed in Sec. 4.3.1, which can perform op-

erations like 2PC-ReLU and 2PC-MaxPool. Since this protocol uses

arithmetic-to-binary share conversion [15] during the oblivious

transfer (OT) [5], we name the developed new 2PC-ReLU methods

as ABReLU, detailed in Sec.4.4.

Generate random number 𝑟𝑖 Generate random number list 𝑟𝑗

Ƹ𝑟𝑖 generator Receive Ƹ𝑟𝑖1

Generate 𝐾𝐸𝑌𝑖 by 𝑅 to
encrypt 𝑀𝑖 as 𝐸𝑛𝑐(𝑀𝑖).

Receive 𝐸𝑛𝑐(𝑀𝑖)3

Based on co-server's 𝐾𝐸𝑌𝑗
to decode the 𝐸𝑛𝑐(𝑀𝑖), and
generate 𝑇𝑚

Receive 𝑇𝑚4

Based on 𝑀𝑗 to generate its 𝑅Receive R2

user (party 𝑖) model provider (party 𝑗)
Shared
𝑔, Q &
𝑙𝑎𝑏𝑒𝑙

Figure 4: Secure two-party comparison protocol w/ OT-flow.

4.3.1 Secure Two-party Comparison Protocol. We adopt the Diffie-

Hellman key exchange protocol (noted as OT-flow), to establish

a secure information exchange channel between the two parties.

The OT-flow uses the multiplicative group of integers modulo 𝑄 to

mask data for exchange (i.e., communication), and its flow is shown

in Fig. 4. In the initialization step, party 𝑖 and 𝑗 share the modulus

(𝑄), group number (𝑔), and a non-repeating randomly generated

element label list of length 𝐿, on which the inquiry is an injective

non-surjective function: 𝑒2𝑙 (·) : 𝑥 ↦→ 𝑙𝑎𝑏𝑒𝑙 (𝑥).
1○ Party 𝑖 generates a random number 𝑟𝑖 , and uses 𝑔 to mask 𝑟𝑖

as 𝑟𝑖 = 𝑔
𝑟𝑖 𝑚𝑜𝑑 𝑄 . 𝑟𝑖 is sent to party 𝑗 .

2○ Party 𝑗 receives 𝑟𝑖 and generates a 2D matrix 𝑅 relevant to its

own message (𝑀𝑗). 𝑀𝑗 is a 𝑉 ×𝑈 matrix generated from 𝑉 N-bit

signed numbers using the arithmetic-to-binary share conversion

machine (A2BM), which is detailed Sec. 4.3.2. A2BM splits an N-bit

binary number into𝑈 parts, i.e.,𝑀𝑗 (𝑣,𝑢) represents the 𝑢-th group

in the 𝑣-th number, where 𝑣 ∈ [0,𝑉 − 1] and 𝑢 ∈ [0,𝑈 − 1]. Each
element𝑀𝑗 (𝑣,𝑢) is the input for 𝑒2𝑙 (·) : 𝑥 ↦→ 𝑙𝑎𝑏𝑒𝑙 (𝑥). The party 𝑗
generates a list of random numbers 𝑟 𝑗 of length𝑈 . Then, it applies

power and mod with XOR (⊕) to generate 𝑅, following Eq. 2.

𝑅(𝑣,𝑢) = (𝑟𝑒2𝑙 (𝑀𝑗 (𝑣,𝑢))
𝑖

𝑚𝑜𝑑 𝑄) ⊕ (𝑔𝑟 𝑗 (𝑢) 𝑚𝑜𝑑 𝑄) (2)

Since the numbers are unsigned and with ℓ-bit (𝑄 = 2
ℓ
), the results

of power and mod operations are finite, which can be replaced by a

hardware-friendly look-up-table in practice.

3○ After receiving 𝑅, party 𝑖 also has 𝑉 N-bit signed numbers to

process. These numbers can be extended into a 3D matrix message

(𝑀𝑖), by the A2BM and a secure comparisonmachine (SCM) detailed

in Sec. 4.3.3.𝑀𝑖 is a 𝑉 ×𝑈 × 𝐿 matrix with𝑀𝑖 (𝑣,𝑢, 𝑙) denoting an
element, where 𝑣 ∈ [0,𝑉 − 1], 𝑢 ∈ [0,𝑈 − 1], and 𝑙 ∈ [0, 𝐿 − 1].
The party 𝑖 uses 𝑅 and label to generate 𝐾𝐸𝑌𝑖 , and encrypt 𝑀𝑖 as

𝐸𝑛𝑐 (𝑀𝑖) following Eq. 3

𝐸𝑛𝑐 (𝑀𝑖 (𝑣,𝑢, 𝑙)) = 𝑀𝑖 (𝑣,𝑢, 𝑙) ⊕ 𝐾𝐸𝑌𝑖 (𝑣,𝑢, 𝑙) (3)

For hardware-friendly purpose, we generate 𝐾𝐸𝑌𝑖 with XOR(⊕)
operations following Eq. 4.

𝐾𝐸𝑌𝑖 (𝑣,𝑢, 𝑙) = 𝑅(𝑣,𝑢) ⊕
(
(𝑟𝑒2𝑙 (𝑀𝑖 (𝑣,𝑢,𝑙))
𝑖

𝑚𝑜𝑑 𝑄)𝑟𝑖 𝑚𝑜𝑑 𝑄
)

(4)

4○ Party 𝑗 generates 𝐾𝐸𝑌𝑗 with Eq. 5 to decrypt the message

𝐸𝑛𝑐 (𝑀𝑖), i.e., by XORing each element with 𝐾𝐸𝑌𝑗 . Note that only

the comparison information between𝑀𝑖 and𝑀𝑗 can be correctly

633

AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with
AdaptiveQuantization MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

label

𝑀𝑖

𝑝𝑚𝑗

𝑀𝑖(𝑣, 0) 𝑀𝑖(𝑣, 1) 𝑀𝑖

𝑝𝑚𝑗

𝑀𝑖(𝑣, 2) 𝑀𝑖(𝑣, 3) 𝑀𝑖(𝑣, 4)

𝑥7 𝑥6 𝑥5𝑥4 𝑥3𝑥2 𝑥1𝑥0

𝑙0 0 𝑀𝑖(𝑣, 0, 0) 𝑀𝑖(𝑣, 1, 0) 00 𝑀𝑖(𝑣, 2, 0) 𝑀𝑖(𝑣, 3, 0) 𝑀𝑖(𝑣, 4, 0)

𝑙1 1 𝑀𝑖(𝑣, 0, 1) 𝑀𝑖(𝑣, 1, 1) 01 𝑀𝑖(𝑣, 2, 1) 𝑀𝑖(𝑣, 3, 1) 𝑀𝑖(𝑣, 4, 1)

𝑙2 10 𝑀𝑖(𝑣, 2, 2) 𝑀𝑖(𝑣, 3, 2) 𝑀𝑖(𝑣, 4, 2)

𝑙3 11 𝑀𝑖(𝑣, 2, 3) 𝑀𝑖(𝑣, 3, 3) 𝑀𝑖(𝑣, 4, 3)

Figure 5: A possible value comparison matrix with 8-bit data.

𝑀0

𝑝𝑚1

1 0
𝑀0

𝑝𝑚1

11 01 10

0 3 2 00 3 3 1

1 2 1 01 3 2 1

10 3 1 2

11 2 1 3

[-74, -100, 21, ... , 0, 2]

3 3 3 1

2 3 2 1

2 3 1 2

1 2 1 3

𝑀0

𝑝𝑚1

1 0
𝑀0

𝑝𝑚1

11 01 10

0 3 2 00 3 3 1

1 2 1 01 3 2 1

10 3 1 2

11 2 1 3

𝑀0

𝑝𝑚1

1 0
𝑀0

𝑝𝑚1

11 01 10

0 3 2 00 3 3 1

1 2 1 01 3 2 1

10 3 1 2

11 2 1 3

INT8(-74)

𝑀𝑖

𝑝𝑚𝑗

1 0
𝑀𝑖

𝑝𝑚𝑗

11 01 10

0 3 2 00 3 3 1

1 2 1 01 3 2 1

10 3 1 2

11 2 1 3

3 3 3 1

2 3 2 1

2 3 1 2

1 2 1 3

3 3 3 1

2 3 2 1

2 3 1 2

1 2 1 3

33 236 138 69

33 237 116 70

184 117 239 220

237 33 185 137

Encrypted

by 𝐾𝐸𝑌𝑖
and packed

into a 4 ×
4 matrix

𝐸𝑛𝑐 𝑀𝑖 .

𝐸𝑛𝑐 𝑀𝑖 Possible Value Comparison Matrix

user (party 𝑖)

Figure 6:𝑀𝑖 message generation, encryption, packaging.

generated.

𝐾𝐸𝑌𝑗 = 𝑟
𝑟𝑖 𝑚𝑜𝑑 𝑄

𝑖
(5)

After decryption, party 𝑗 generates a 𝑇𝑚 matrix stored in OUP-

MSK Buffer, as the comparison result to inform party 𝑖 .

4.3.2 Arithmetic-to-Binary Share Conversion Machine. We develop

an arithmetic-to-binary share conversion machine (A2BM) to con-

vert the arithmetic shares into binary shares, by grouping the

bits. Considering an arithmetic share with ℓ-bit, we use “||" to

split them into 𝑈 groups. For example, an arithmetic share of

signed 8-bit integer (INT8) format can be separated into five groups:

𝑥 ← 𝑥7 | |𝑥6 | |𝑥5𝑥4 | |𝑥3𝑥2 | |𝑥1𝑥0, where 𝑥 ∈ Z28 . The two most signif-

icant bits 𝑥7 and 𝑥6 are associated with (1, 2) −𝑂𝑇 , while the rest
of the bits are associated with (1, 4) −𝑂𝑇 . In general, a group with

ℓ𝑠 sub-bits follows the (1, 2ℓ𝑠) −𝑂𝑇 scheme.

4.3.3 Secure Comparison Machine. We develop a secure compari-

son machine (SCM) to generate a possible value comparison matrix

(𝑀𝑖) after using A2BM.We provide a formulatedmatrix for the INT8

data type in Fig. 5. Each INT8 value is separated to five groups:

𝑀𝑖 (𝑣,𝑢, 𝑙), 𝑢 ∈ {0, 1, 2, 3, 4}, and them each has a number of possible

comparison value 𝑝𝑚 𝑗 , e.g.𝑀𝑖 (𝑣, 2) has 4 𝑝𝑚 𝑗 in 00, 01, 10, 11. The

comparison result is shown in Eq. 6.

𝑀𝑖 (𝑣,𝑢, 𝑙) =


1, 𝑀𝑖 (𝑣,𝑢) < 𝑝𝑚 𝑗

2, 𝑀𝑖 (𝑣,𝑢) = 𝑝𝑚 𝑗

3, 𝑀𝑖 (𝑣,𝑢) > 𝑝𝑚 𝑗

(6)

We use an INT8 data (-74) as an example to explicitly show the

mechanism of possible value comparison matrix in Fig. 6. In the

beginning, A2BM separates INT8(-74) into five groups. The most

significant bit (MSB) is the sign bit. After applying A2BM, all en-

cryption and calculation operations will depend on Step 3○ in the

OT-flow. After recovering the message, the OT-flow employs an

extra step to pack the encrypted message into a matrix. For exam-

ple, in Fig. 6, we pack each INT8 value into a UINT8 4 × 4 matrix.

Quadrant Detect
2PC Secure
comparison

−𝑥𝑖
𝑄 − 1

𝑥𝑗

12

43

0

0

𝑄 − 1

(a)

2-1

2-3

2-2

2-4

−𝑥𝑖

𝑥𝑗

(b)
𝑥𝑗

4-1

4-3

4-2

4-4

−𝑥𝑖

(c)

−𝑥𝑗= 𝑥𝑖

𝑥𝑗 > −𝑥𝑖

𝑥𝑗 < −𝑥𝑖

ABReLU

𝑥𝑖 → −𝑥𝑖
125

7
𝑥𝑗

-125

Arithmetic-to Binary sharing

OT-flow

1000_0011

0000_0111

4-3 𝑥 < 0

Quadrant Detect
2PC Secure
comparison

1000_0011

0000_0111

OT-flow
−𝑥𝑖< 𝑥𝑗

−𝑥𝑖< 𝑥𝑗

𝑥 > 0

𝑥 = 0

𝑥 < 0

Figure 7: Evaluation of 𝑥 ← (𝑥𝑖 + 𝑥 𝑗) mod 𝑄 . (a) 𝑥𝑖 and −𝑥 𝑗
∈ [0, 𝑄 − 1], corresponding to the values of 𝑥 . (b) Subdivision
of the 2𝑛𝑑 quadrant. (c) Subdivision of the 4𝑡ℎ quadrant.

Consequently, the formulated possible value comparison matrix

will convert one 8-bit value into a 4 × 4 8-bit matrix. Assuming we

have an ℓ-bit value, and where𝑈 = ⌊ℓ/2⌋ + 1, the packaged matrix

size is ⌈ℓ/2⌉ × 4. As the example shown in Fig. 6, we have ℓ = 8

and 𝑈 = 5. We can find that the two leftmost groups each have

only two possible values, while the three groups on the right have

four possible values. Therefore, we can combine the data of the two

leftmost groups and use a 4 × 4 matrix to pack the data efficiently.

4.4 Arithmetic-to-Binary Sharing based ReLU
While it is straightforward to conduct the ReLU(𝑥) operation in

the plaintext domain, e.g., ReLU(𝑥) = 𝑥 for 𝑥 > 0, it is complicated

and challenging to do so in the ciphertext domain. In previous

works that employ Yao’s Garbled Circuit [21], the embedded secret-

sharing from one party also includes the sign of the data. However,

in the additive secret-sharing based method, the effect of the sign

bit and the “mod" operation could not be ignored. We have to take

the signed secret information for ReLU computation, and cannot

directly apply the traditional secure comparison method [15]. For

example, if (−𝑥𝑖 , 𝑥 𝑗) = (−100, 5), represented in INT8 binary, the

traditional secure comparison will lead to a wrong conclusion that

−100 > 5, as their binary representations are (1001_1100)𝑏 and

(0000_0101)𝑏 , respectively. In fact for 2PC-ReLU we need to com-

pare “(𝑥𝑖 + 𝑥 𝑗) mod 𝑄” vs. “0”, not “-𝑥𝑖 ” vs. “𝑥 𝑗 ”.

To solve this problem, we first explore all possible results of

“(𝑥𝑖 + 𝑥 𝑗) mod𝑄”, based on the range of 𝑥𝑖 and 𝑥 𝑗 . Considering the

634

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Luo, et al.

B
N

R
eQ

•
2

P
C

-B
N

R
eQ

1 7 51

69 93 120 2 -9 383 116 1149 348 70 21 70 21

17 8 104 -3 7 -694 -190 -2082 -570 -131 -37 0 0

56 4 16

1 7 51 148 22 32 148 22 32 92 65502 65512 65531 1 45 70 21

69 93 120 176 189 149 176 189 149 120 133 93 63 87 114 -131 -37 1766 169

17 8 104 44 223 198 44 223 198 65524 167 143 11 2 98 0 0

3949 3993 65389 65433 65385 65429 65531 65520 53114 44596 28270 2716 1766 169 1 1

4038 4020 65478 65460 65474 65456 65526 0 42244 27946 61196 18302 3824 1143 0 0

2 4087 149 94 149 94 146 91 65531 65520 12805 21056 38415 63168 2400 3948 1 1

4093 7 55 83 55 83 52 80 65526 0 22598 37400 2258 46664 141 2916 0 0

3949 4081 19 65389 65521 19 65439 35 69 65531 1 45 2400 3948

3989 4000 4067 65429 65440 65507 65479 65490 21 63 87 114 0 0

4069 3881 4002 65509 65321 65442 23 65371 65492 11 2 98

65486 3 26

4096 4096 4096 4096 4096 4096 4096 4096 56636 56636 56636 56636 56636 56636 56636 56636 56636 56636 56636 56636 56636 56636 56636 56636 56636 9 4096 4096 4096 4096 4096

•
R

in
g

Si
ze

 E
xt

en
si

o
n

model provider
(party 𝑗)

P
la

in
te

xt
D

o
m

ai
n

C
ip

h
er

te
xt

 D
o

m
ai

n

•
D

at
a

Ex
ch

an
ge

•
2

P
C

-C
o

n
v2

D

•
A

B
R

e
LU

user (party 𝑖)

𝐼𝑁𝑗

𝑊
𝑂𝑈𝑇𝐼𝑁

𝐼𝑚 = 3 𝐼𝑒 = 4

𝐼𝑚 = 3 𝐼𝑒 = 4

Check the correctness

𝑒𝑛𝑐(𝑟𝑒𝑐 𝑂𝑈𝑇)

𝑇𝑚

Ring size 𝑸𝟏 = 𝟐𝟏𝟐 Ring size 𝑸𝟐 = 𝟐𝟏𝟔 Ring size 𝑸𝟏 = 𝟐𝟏𝟐

𝐼𝑁𝑖

𝑊𝑖

𝐸𝐴𝑖 𝐵𝑖 𝑍𝑖

𝐴𝑗 𝐵𝑗 𝑍𝑗

𝐸

𝐹

𝐹

𝑂𝑖

𝑊𝑗

𝑂𝑈𝑇𝑗

𝑂𝑗

𝑂𝑈𝑇𝑖

𝑂

𝐼𝑁

𝑊

𝐸𝑖

𝐹𝑖

𝐹𝑗

𝐸𝑗

C
o

n
v2

D

Figure 8: DNN Building block demonstration, exploring the ring size change and computation correctness.

quantized DNNs in the plaintext domain, the input of ReLU is a

ℓ-bit signed number encoded by 2’s complement method. Taking

−𝑥𝑖 and 𝑥 𝑗 as coordinates, we calculate “𝑥 ← (𝑥𝑖 + 𝑥 𝑗) mod 𝑄"

and evaluate 𝑥 . As shown in Fig. 7 (a), the light pixels represent

𝑥 > 0, the dark pixels represent 𝑥 < 0, and the red pixels represent

𝑥 = 0. Therefore, we can use the most significant 2 bits of −𝑥𝑖 and
𝑥 𝑗 to determine the quadrant where the hidden 𝑥 falls. For example,

if 𝑥 falls in the 1
𝑠𝑡

and 3
𝑟𝑑

quadrants, we can directly determine

the sign of 𝑥 by comparing −𝑥𝑖 and 𝑥 𝑗 , to achieve higher inference

efficiency.

However, the evaluation of 𝑥 will be more complicated, if it falls

in the 2
𝑛𝑑

and 4
𝑡ℎ

quadrants, as shown in Fig. 7 (b) and (c). More

specifically, if 𝑥 falls in the 2-2, 2-4, 4-2, and 4-4 sub-quadrants,

we can still directly determine its sign as “-” and “+”, respectively.

While 𝑥 falls in the 2-1, 2-3, 4-3, and 4-3 sub-quadrantsm, we could

not directly know its sign. To fully address this issue, we propose a

novel arithmetic-to-binary sharing-based ReLU design (ABReLU),

which conducts the secret-sharing-based ReLU in two steps: Red

1○ Quandrant detection, which determines the quadrant using the

most significant 2 bits; Red 2○ 2PC secure comparison, which uses

OT-flow (Sec. 4.3.1) to compare the value of −𝑥𝑖 and 𝑥 𝑗 .
We take (𝑥𝑖 , 𝑥 𝑗) = (125, 7) as an example to demonstrate how

ABReLU works, where −𝑥𝑖 = −125. Party 𝑖 and 𝑗 convert −𝑥𝑖 and
𝑥 𝑗 into 8-bit: (−𝑥𝑖 , 𝑥 𝑗) = (1000_0011, 0000_0111)𝑏 . The separation
operator splits −𝑥𝑖 ← 1| |0| |00| |00| |11, and 𝑥 𝑗 ← 0| |0| |00| |01| |11
into 5 groups. ABReLU will find that 𝑥 falls in the 4-3 quadrant,

by comparing the first two groups, then it compares each of the

remaining groups from left to right using the OT-flow and gets

−𝑥𝑖 < 𝑥 𝑗 . Based on this result, it concludes that 𝑥 < 0. By re-

constructing recJ𝑥K = −124, we can check the correctness of the

ABReLU output.

We take (𝑥𝑖 , 𝑥 𝑗) = (−2,−2) as an other example, from which we

get (−𝑥𝑖 , 𝑥 𝑗) ← (0| |0| |00| |00| |10, 1| |1| |11| |11| |10)𝑏 . By comparing

the most significant bits, we find that the hidden 𝑥 falls in the

2-2 quadrant. Since all 𝑥 possible values in the 2-2 quadrant are

less than 0, we can directly conclude that 𝑥 < 0. Reconstructing

recJ𝑥K = −4, we can verify the correctness of the ABReLU result.

4.5 Security of AQ2PNN
Our overall implementations do not alter the underlying 2PC algo-

rithm or the secret-sharing mechanisms, and the proposed ABReLU

are developed based on ABY [15] and OT [12]. Therefore, the al-

gorithm modifications are merely post-processing operations over

the secret shares, and the security guarantee of AQ2PNN follows

the security of the original 2PC protocol and OT. That is, as long

as the adversary is incapable of acquiring the randomness required

to generate secret-sharing, the probability of recovering sensitive

data and breaching the protocol remains negligibly small [52].

5 AQ2PNN: ADAPTIVE QUANTIZATION
Most SOTA solutions employ fix-bit ring for the DNN models, e.g.,

DELPHI [37] and Falcon [53] utilize 32-bit, while CryptGPU [51]

utilizes a fixed 64-bit ring. However, these large and fixed bit ring

sizes lead to significant computation and communication overhead

for the 2PC-DNN inference. Differently, AQ2PNN dynamically ad-

justs the bit-width of the model at different stages, to reduce the

overhead associated with the quantized 2PC-DNN inference.

5.1 Quantized Model Inference
We first take the DNN model building block in Fig. 9 (a) as an

example, to illustrate the model quantization in plaintext domain.

This block consists of 2D convolution (Conv2D), batch normaliza-

tion (BN), and re-quantization (ReQ) operators. The initial input of

Conv2D is 8-bit, which is then extended to 32-bit. By using ReQ

operators to perform truncation, we finally obtain an 8-bit output.

Such a consistency of output and input bit-widths is necessary to

ensure the proper implementation of a quantized DNN model. We

adopt this design philosophy in our proposed adaptive quantization.

To further reduce the number of involved parameters and improve

the inference efficiency, we follow the scheme in Hawq-v3 [59] to

635

AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with
AdaptiveQuantization MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

32/64-bit

32/64-bit 32/64-bit 32/64-bit

(b)

𝐼𝑚
′

2𝐼𝑒
′

(a)
8-bit 32-bit 8-bit8-bit

𝐼𝑚
2𝐼𝑒

ReLUBNReQConv2DP
la

in
te

xt

D
o

m
ai

n
C

ip
h

er
te

xt
 D

o
m

ai
n Previous works

AQ2PNN

2PC-Conv2D 2PC-BN GCReLU

16-bit 32-bit 16-bit16-bit
(c)

2PC-BNReQ ABReLU2PC-Conv2D

Figure 9: Comparison among different DNN frameworks. (a)
Default plaintext DNN inference with an 8-bit quantized
model. (b) Commonly used 2PC-DNN inference flow. (c)
AQ2PNN inference flow with 16-bit quantized model.

combine the BN and ReQ operations into BNReQ, during the train-

ing stage. Specifically, we employ a scaling factor 𝐼𝑚 and truncation

bit 𝐼𝑒 to guide the training and combination. These parameters will

also be used in the ciphertext domain quantization model.

For model quantization in the ciphertext domain, one key design

consideration is the ring size 𝑄 . Assuming a plaintext model has

input and weight values of ℓ-bit, when this model is converted to a

2PCmodel, we need to choose a larger ring size to carry the original

ℓ-bit secret value, i.e., to avoid bit overflow along the inference.

Since otherwise, the bit-width of intermediate results along the

inference will expand and possibly overflow the ring, which leads

to incorrect inference results. Most existing works, e.g., the CPU

or CPU+GPU-based, choose to use the maximum ring size of 32

or 64-bit to fit their underlying ISA systems, as shown in Fig. 9

(b). These methods, although could ensure the correctness of the

2PC-DNN inference, but also introduce large communication and

computation overhead associated with the model size.

To address these concerns, we propose an adaptive model quanti-

zation scheme. Our proposed quantization scheme characterizes the

distribution of run-time activation, through a post-training quanti-

zation process, and determines the required bit-width to minimize

the quantization error while reducing 2PC operator computation

overflow probability. We conduct statistical analysis on the bit-

width to avoid overflow. Our experimental results have shown that

for a plaintext model has input and weight values of ℓ-bit, a suitable

ring size is 2
ℓ+4

. For example, in a 12-bit plaintext model, a 16-bit

carrier (i.e., a ring size of 2
12 × 24 = 2

16
) is used to generate addi-

tive secret shares. We illustrate the proposed adaptive quantization

scheme in Fig. 9 (c) using 16-bit quantization.

To demonstrate the inference process using our proposed adap-

tive quantization, we extend Fig. 9(a) (c), and provide a quantization

building block demonstration in Fig. 8 to demonstrate the workflow:

1○ Our proposed adaptive quantization method is trained by the

model provider party 𝑗 in the plaintext domain, yielding an 8-bit

quantized model. 2○ Both the user (party 𝑖) and the model provider

utilize a larger ring carrier (𝑄1 = 2
12
) to expand their data. 3○ Two

paries generate additive secret shares and deploy them. 4○ The Ring

size extension function is enabled to extend 𝑄1 = 2
12

to 𝑄2 = 2
16
.

5○ Both parties exchange data and compute masks 𝐸 and 𝐹 . 6○ The

2PC-Conv2D operator, which primarily relies on AS-GEMM, is em-

ployed as described in Sec. 4.1.2. 7○ The 2PC-BNReQ is facilitated

by scaling and truncation, generating internal results 𝑂𝑈𝑇𝑖 and

𝑂𝑈𝑇𝑗 for each party. 8○We recover and encode J𝑂𝑈𝑇 K, comparing

it with the plaintext 𝑂𝑈𝑇 to verify correctness. 9○ The ABReLU

operator is activated, generating the mask 𝑇𝑚 . 10○ The outputs of

the two parties, 𝑂𝑖 and 𝑂 𝑗 , are extracted as the result of this block.

In summary, our proposed adaptive quantization-based inference

mainly goes through the following operation:

• Ring Size Extension. In the Plaintext Domain, the data bit-

width of convolution continues to expand due to a large number of

consecutive MAC, as shown in Fig. 9(a), where it expands to 32-bit.

Therefore, 2PC-Conv2D in the Chipertext Domain requires a larger

ring to carry the data. Fig. 8 visualizes the change of ring size from

𝑄1 = 2
12

to𝑄2 = 2
16
, where ring size extension is based on the sign

extension. For example, the 12-bit number in𝑄1 is 1111_0110_1101,

and in 𝑄2, it becomes 1111_1111_0110_1101.

• Data Exchange. As discussed in Sec. 4.1.2, due to the vari-

ability of input, the masked value 𝐸 also changes in each inference.

Therefore, data exchange is needed here to allow both parties to

obtain the updated 𝐸 matrix.

• 2PC-Conv2D. This stage involves extensive use of AS-GEMM.

To accelerate this process, we employ blocking techniques to divide

the data into blocks for computation. The results are stored in the

AS-OUP Buffer.

• 2PC-BNReQ. The 2PC-BNReQ operator uses the P-C multi-

plication and P-C division logic from AS-ALU. Then, we truncate

the ring size from 𝑄2 back to 𝑄1.

• ABReLU. The ABReLU (Sec.4.4) operation generates the mask

𝑇𝑚 (Fig. 4) for J𝑂𝑈𝑇 K ← (𝑂𝑈𝑇𝑖 ,𝑂𝑈𝑇𝑗) and produces J𝑂K ←
(𝑂𝑖 ,𝑂 𝑗) as input for the next layer.

5.2 Quantized Model Accuracy Evaluation
We evaluate the performance of our proposed adaptive quantization

scheme on MNIST [33], CIFAR10 [30], and ImageNet [31] datasets

with different model architectures, and report the inference accu-

racy in Tab. 2. Following the previous works [24, 51, 59], we adopt

several representative models like ResNet18/50 [20] and VGG16

[48] in our evaluation. We use PyTorch [43] to perform the model

training and quantization. For ImageNet, we perform the quanti-

zation on the pre-trained model from PyTorchCV [50] and keep

the architecture unchanged to show the performance of the models

after the quantization. For CIFAR10, we first train the full precision

model following the same architecture in CryptGPU[51], but us-

ing only one linear layer for the final output, to achieve the SOTA

model accuracy. Then we apply our proposed quantization on the

trained model.

Tab. 2 compares the performance of our proposed adaptive quan-

tization scheme with other SOTA works. The baseline indicates

the full precision (32-bit floating-point) model accuracy, and the

following rows correspond to two quantized inferences in Fig. 9(b)

(previous works [29, 37, 51, 53]) and Fig. 9(c) (AQ2PNN). In previ-

ous works, their input and output are quantized to a unified 32-bit

or 64-bit fixed point format, and utilize an extra scaling function

to constrain the activation value range. Differently, our proposed

scheme in Fig. 9(c) reduces the OT-flow cost with little accuracy

636

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Luo, et al.

Table 2: Inference accuracy (%) on differentmodels forMNIST,
CIFAR10 and ImageNet with proposed quantization

Dataset Model

Baseline

(float32)

Previous

works

[51, 53]

AQ2PNN
(16-bit)

MNIST

LeNet5 99.26 96.85 99.34
AlexNet 99.09 97.42 99.11

CIFAR10

VGG16 92.28 91.98 91.69
ResNet18 93.02 92.79 93.06

ImageNet

VGG16 73.02 72.73 72.08
ResNet18 73.06 72.87 72.59
ResNet50 77.72 77.47 76.24

Table 3: AQ2PNN vs. VTA (plaintext DNN): a comparison of
resource consumption.

LUT FF DSP BRAM

AQ2PNN 120k × 2 207k × 2 1536 × 2 310 × 2

VTA 24.2k 26.8k 268 136.5

drop. Specifically, the AQ2PNN results are obtained on all listed

models with 16-bit output sent to the ABReLU operator, which is

1/2 of the data width in DELPHI [37] and Falcon [53] inference

framework, and is 1/4 of the data width in CryptGPU [51] frame-

work. We discuss the trade-off between communication cost and

model utility using different extracted output bit-widths in Sec. 6.5.

6 AQ2PNN: EXPERIMENTAL EVALUATION
We use two ZCU104 FPGA development boards to serve as the

computing resource for two parties. ZCU104 integrates all common

SoC-FPGA components, such as an SRAM FPGA, an ARM processor,

DRAM controller/buses, and peripheral I/Os, which enable us to

emulate a practical 2PC setup. We implement AQ2PNN on these

two FPGAs and connect them with Ethernet LAN at a bandwidth

of 1000Mbps. The hardware resource consumption is reported in

Tab. 3.

6.1 Overall Evaluation
We compare AQ2PNN (16-bit quantized 2PC-DNN solution) with

the following SOTA solutions:

• Falcon [53], a standard 3PC-DNN framework, which demon-

strates outstanding performance in DNN models of small

and medium sizes.

• Cryptflow [32], we use its ABY2-based [44] 2PC-DNN for

fair performance comparison.

• CryptGPU [51], we utilize its 2PC-DNN setting and apply

a 2-out-of-2 secret-sharing scheme for comparison.

In particular, we consider four important metrics: (1) Through-

put (Tput.), with unit frames-per-second (fps). (2) The communi-

cation overhead (Comm.), with the corresponding unit specified

in the measurement, e.g., Mebibyte (MiB) (3) Power consumption

(Power), with unit Watt (W). (4) Energy efficiency (Efficiency), us-

ing fps-per-watt (fps/W) as its unit. Note that all Tput. and Power
measurements represent the average (Avg.) power consumption,

while executing the target solutions for 1,000 inference iterations.

Table 4: Comparison between AQ2PNN and SOTA works.

Small Size Model
Model

(Datasets)

Metrics

Tput.

(fps)

Comm.

(MiB)

Power

(W)

Efficientcy

(fps/W)

LeNet5

(MNIST)

Falcon 26.316 2.29 133 × 3 0.065354

AQ2PNN
(16-bit) 16.68 0.95 7.2 × 2 1.158333

AlexNet

(MNIST/

CIFAR10)

Falcon 9.091 4.02 139 × 3 0.021801

AQ2PNN
(16-bit) 6.081 1.2 7.4 × 2 0.410878

Medium Size Model

VGG16

(CIFAR10)

Falcon 0.694 40.45 185 × 3 0.001250

CryptGPU 0.467 56.20 289 × 2 0.000807

AQ2PNN
(16-bit) 0.352 28.87 7.7 × 2 0.022857

Large Size Model

ResNet50

(ImageNet)

Cryptflow 0.039 6900 178 × 2 0.000110

CryptGPU 0.107 3080 306 × 2 0.000175

AQ2PNN
(16-bit) 0.071 1120 7.7 × 2 0.004610

VGG16

(ImageNet)

CryptGPU 0.106 2750 315 × 2 0.000168

AQ2PNN
(16-bit) 0.038 1410 7.7 × 2 0.002468

All solutions adhere to the platform configurations specified in the

original papers. For example, the CryptGPU platform’s configura-

tion includes a single NVIDIA Tesla V100 GPU with 16 GB of GPU

memory, 8 Intel Xeon E5-2686 v4 (2.3 GHz) CPUs, and 61 GB of

RAM [51].

We show the comparison results in Tab. 4, that AQ2PNN out-

performs other SOTA works in terms of energy efficiency for all

small, medium, and large-size datasets. In the small-size model
comparison, only Falcon [53] reported the corresponding results,

where the efficiency of AQ2PNN is ∼ 18× higher than Falcon. For

medium-size models, AQ2PNN achieves 18.3× and 28.3× higher

efficiency than Falcon [53] and CryptGPU [51], respectively. In the

large-sizemodel comparison, Falcon is no longer applicable, while

Cryptflow [32] and CryptGPU [51] reported results. For ResNet50

(ImageNet), the efficiency of AQ2PNN is 41.9× and 26.3× higher

than Cryptflow [32] and CryptGPU [51], respectively.

Besides, we also find that the efficiency advantage of AQ2PNN

over CryptGPU [51] in VGG16 (ImageNet) is reduced to 14.7×.
Upon analysis, we find that VGG16 contains more max pooling

layers than ResNet50, leading to performance degradation. Further

details can be found in Sec 6.5. It is worth noting that our proposed

AQ2PNN is built on an FPGA setup, which only offers a comparable

throughput, albeit slightly lower, with much-saved power and cost.

As expected, in ResNet50 (ImageNet) evaluation, the achievable

throughput of AQ2PNN is ∼ 66% of that in CryptGPU [51], while

the batch size is 1. This is mainly due to the clock frequency (200

MHz) of our adopted ZCU104 FPGA (cost ∼ $1, 500) is much lower

than that (1.23∼1.38 GHz) of the NVIDIA Tesla V100 GPU (cost

∼ $10, 000). Overall, AQ2PNN has significantly improved energy

efficiency (about 14.7× ∼ 41.9×) and cost compared to all previous

works.

637

AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with
AdaptiveQuantization MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

92.28 91.98 91.18 89.52

61.47

93.02 92.79 92.89 92.35 89.4

60

70

80

90

100

32

M
od

el
 a

cc
ur

ac
y

vgg16

24 16 14
Bit widths

13 12

resnet18

91.69

93.02

Figure 10: CIFAR10 Accuracy (%) with different bit-widths

73.02 72.73 71.602
66.312

35.182

73.06 72.87
67.00

.6329

20

35

50

65

80

32

M
o

d
el

 a
cc

u
ra

cy

Bit widths

G16VG 8

24 16 14 13 12

ResNet1

72.60

72.084

Figure 11: ImageNet Accuracy (%) with different bit-widths

6.2 Communication Overhead Analysis
Our experimental results in Tab. 4 demonstrate that AQ2PNN sig-

nificantly reduces the communication data volume across different

model sizes. For small-size models, we observe a reduction of

2.41× and 3.35× for LeNet5 and AlexNet. For medium-size mod-
els, AQ2PNN reduces communication data volume by 1.4× and

1.94×, compared to Falcon [53] and CryptGPU [51], respectively. In

the large-size models, AQ2PNN reduces the communication data

volume by 2.75× and 1.95× for ResNet50 and VGG16 architectures

compared to CryptGPU [51], and by 6.16× for ResNet50 inference

compared to Cryptflow [32].

Trade-off analysis:We analyze ResNet18 and VGG16 to explore

the trade-off between quantized model accuracy and bit-width se-

lection for ABReLU. The accuracy of models with different hyperpa-

rameters is obtained through a retraining process. The flexibility of

selecting a bit-width provides a great trade-off between model util-

ity and secure inference communication and computation. Fig. 10

and Fig. 11 show the model accuracy for ResNet18 and VGG16

models on CIFAR10 and ImageNet, with different output bit-widths

selected for 2PC-Conv2D or 2PC-FC output and ABReLU input

(quantization scheme refers to Fig. 9 (c)), from which we can ob-

serve that our proposed hardware-friendly quantization introduces

trivial accuracy drop of only ∼ 1%, when reducing the number of

bit-width from 32 to 16. If we push the accuracy degradation to

6%, we only need to use 14-bit for the ABReLU function input. The

"sweet spot" is identified as 16-bit or 14-bit in Fig. 10 and Fig. 11.

6.3 Operator-wise Performance Profiling
To further imporve the performance of AQ2PNN, we also apply

operator-wise profiling. Taking ResNet50 (ImageNet) as an example,

its architecture consists of 16 building blocks, to demonstrate the

operator-wise performance of AQ2PNN, we select the operators

Table 5: Operator-wise performance profiling

bit Latency(ms) Comm.

width 2PC-Conv2D-6 ABReLU-6 2PC-BNReQ-6 (MiB)

32 42.76 140.01 13.87 36.92

16 40.12 65.83 10.65 18.46

Table 6: Validation set accuracy for ResNet18, ResNet50, and
VGG16 over the ImageNet dataset using Max pooling vs. Av-
erage pooling (retrained).

Model ResNet18 ResNet50 VGG16

Average Pooling 65.234 70.42 68.24

Max Pooling 72.872 77.47 72.73

within the 6
𝑡ℎ

building block as a case study, which includes opera-

tors 2PC-Conv2D-6, ABReLU-6, and 2PC-BNReQ-6. We measure

the latency (ms) and communication data volume (MiB) improve-

ment by AQ2PNN in Tab. 5, for different operators. The benefits of

our proposed adaptive quantization schemes (Fig. 9 (c)) on ABReLU

are significant. For example, when the bit-width is reduced by 2×,
the latency of ABReLU also decreases by ∼ 2×. This is because the
bit-width in our proposed scheme, is directly related to the com-

munication data volume of the ABReLU. The total communication

overhead also includes the exchange of J𝐸K in 2PC-Conv2D-6 that is
also related to the bit-width. Therefore, the overall communication

overhead is reduced by 2× as well. In 2PC-Conv2D-6, the primary

overhead comes from computation, so the improvement in latency

is not that significant. Similarly, the improvements in 2PC-BNReQ-6

are also small, as this operator does not require communication and

can be completed using the AS-ALU. Thus, we can conclude that

quantization can help ABReLU to reduce execution time by ∼ 2×.

6.4 Scalability Evaluation
We explore the scalability of AQ2PNN regarding the model size

in Tab. 4. First, the model size is related to the depth of the model.

We compare AlexNet and VGG16 for inferring CIFAR10, both with

the same input image size of 32 × 32. VGG16 has 2.6× more lay-

ers than AlexNet, resulting in a 17.27× reduction in throughput

and a 24× increase in communication data volume. We compare

the impact of scaling the input image size on AQ2PNN model in-

ference, using the same architecture. When the input image size

is increased by 49×, the communication overhead also increases

by ∼ 49×, and the throughput only decreases by 9.26×. However,
expanding the model regarding input image size does not result

in a significant throughput loss. This is because the number of

handshaking remains the same. Although the communication data

volume increases, the continuous transmission and computation

combined with the increased communication and computation can

mitigate such loss.

6.5 Optimization and Trade-off
We explore further optimization of AQ2PNN throughput, by modi-

fying the model structure. The most straightforward method is to

replace the Max pooling layer with the Average pooling layer. Since

Max pooling introduces more communication and computational

638

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Luo, et al.

Table 7: The model accuracy (%) and throughput (Tput.) for
ImageNet on ResNet18 models with different output bits
lengths applying Max Pooling and Avg Pooling.

Max pooling Average pooling

Bits

Top-1

(%)

Tput.

(fps)

Comm.

(MiB)

Top-1

(%)

Tput.

(fps)

Comm.

(MiB)

32 73.06 0.157 894 65.23 86.48 618

24 72.87 0.198 520 64.79 86.16 361

16 72.60 0.243 246 64.93 86.30 172

14 67.00 0.276 194 54.04 78.64 136

12 29.63 0.311 147 19.86 40.33 104

Table 8: The model accuracy (%) and throughput (Tput.)
for ImageNet on VGG16 models with different output bits
lengths applying Max Pooling and Avg. Pooling.

Max pooling Average pooling

Bits

Top-1

(%)

Tput.

(fps)

Comm.

(MiB)

Top-1

(%)

Tput.

(fps)

Comm.

(MiB)

32 73.02 0.030 5216 68.24 0.040 3145

24 72.73 0.033 3015 68.27 0.041 1823

16 72.08 0.038 1412 68.17 0.045 858

14 71.6 0.043 1104 66.64 0.050 673

12 35.18 0.049 835 11.37 0.061 809

cost in the 2PC-DNN scenario [53], while Average pooling can be

completed using only AS-ALU without communication, users can

choose different operations for model utility and inference through-

put. Tab. 6 shows the retraining results for the 16-bit quantization

on ImageNet by replacing all Max pooling layers with Average

pooling.

For the ResNet18/50 model with one Max pooling layer for the

input feature maps, the retraining results show that the single layer

change leads to a ∼ 7% accuracy drop. In the VGG16 model that uses

more Max pooling layers processing intermediate results, replacing

them all with Average pooling also leads to a 2.61%, and 4.49%

accuracy drop, respectively.

Tab. 7 and Tab. 8 show ImageNet results for ResNet18 and VGG16

on accuracy, communication data volume, and throughput for dif-

ferent representations. On ResNet18, the general model accuracy

(Top-1 and Top-5) slightly decreases when we reduce the number

of bit representations, while the throughput increases. Note that

using the proposed AQ2PNN (16-bit), the Top-1 accuracy drop is

within ∼ 0.94% compared to the 32-bit baseline. By reducing the

output to 16-bit, the throughput is ∼ 35.2% and ∼ 20.1% higher

than the 32-bit implementation on ResNet18 and VGG16 using Max

pooling, respectively. The sweat spot locates at 16-bit, i.e., there is

a small accuracy degradation but significant speedup. While the

number of bit representations is reduced, the communication over-

head decreases accordingly. On ResNet18 (ImageNet) and VGG16

(ImageNet) with Max pooling, the communication data volume

reduction is ∼ 3.6× and 3.7×, respectively, when we reduce the

number of bits to 16.

Max pooling support is critical for large and complex tasks in

2PC-DNN. We observe from Tab. 6, 7 and 8, that there is a signif-

icant accuracy loss (up to 7.67% for ResNet18 on ImageNet using

16 bits), if we change the Max pooling to Average pooling. Our

observation aligns well with the common knowledge and practice,

that DNNs (e.g., VGG series and ResNet series) prefer Max pool-

ing over Average pooling. We also observe that the throughput

overhead for all the listed bit representations are large. Note that

it is a common practice to trade significant throughput for even

0.5% accuracy in developing a deep learning system [1, 34, 55, 56].

With our proposed adaptive quantization scheme, a well-chosen

bit-width (e.g., 16 bits) for the intermediate outputs can achieve a

similar inference time with Max pooling, compared to using only

Average pooling, while still maintaining high accuracy.

7 CONCLUSION
This paper presents AQ2PNN, an end-to-end two-party framework

that enables privacy-preserving deep learning on FPGAs. AQ2PNN

targets the root performance bottleneck of SOTA solutions and

constructively applies an adaptive quantization scheme to generate

lightweight 2PC-DNN models in the ciphertext domain. AQ2PNN

also employs a novel ABReLU scheme and associates it with adap-

tive quantization profiling, to significantly reduce the communica-

tion overhead. All the proposed methods are deployed on FPGA

and evaluated with prevalent datasets and model architectures. We

leverage the fine-grained reconfigurability of FPGA devices for

acceleration purposes. The experimental results demonstrate that

AQ2PNN outperforms all SOTA GPU-based solutions in terms of

energy efficiency up to 29×, with similar or higher throughput and

accuracy.

ACKNOWLEDGMENTS
This work is supported in part by the U.S. National Science Foun-

dation under Grants 2153690, 2319962, 2239672, 2326597, 2247891,

2247892, and 2247893.

REFERENCES
[1] Aayush Ankit, Izzat El Hajj, Sai Rahul Chalamalasetti, Geoffrey Ndu, Martin

Foltin, R Stanley Williams, Paolo Faraboschi, Wen-mei W Hwu, John Paul Stra-

chan, Kaushik Roy, et al. 2019. PUMA: A programmable ultra-efficient memristor-

based accelerator for machine learning inference. In Proceedings of the Twenty-
Fourth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems. 715–731.

[2] Toshinori Araki, Jun Furukawa, Yehuda Lindell, Ariel Nof, and Kazuma Ohara.

2016. High-throughput semi-honest secure three-party computation with an

honest majority. In Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security. 805–817.

[3] Jeff Barnes. 2015. Azure machine learning. Microsoft Azure Essentials. 1st ed,
Microsoft (2015).

[4] Donald Beaver. 1992. Efficient multiparty protocols using circuit randomization.

In Advances in Cryptology—CRYPTO’91: Proceedings 11. Springer, 420–432.
[5] Donald Beaver. 1995. Precomputing Oblivious Transfer. In Proceedings of the 15th

Annual International Cryptology Conference on Advances in Cryptology (CRYPTO
’95). Springer-Verlag, Berlin, Heidelberg, 97–109. http://dl.acm.org/citation.cfm?

id=646760.706018

[6] Amos Beimel. 2011. Secret-sharing schemes: A survey. In International conference
on coding and cryptology. Springer, 11–46.

[7] Ekaba Bisong. 2019. Building machine learning and deep learning models on Google
cloud platform. Springer.

[8] George Robert Blakley. 1979. Safeguarding cryptographic keys. In Managing
Requirements Knowledge, International Workshop on. IEEE Computer Society,

313–313.

[9] Ran Canetti. 2001. Universally composable security: A new paradigm for cryp-

tographic protocols. In Proceedings 42nd IEEE Symposium on Foundations of
Computer Science. IEEE, 136–145.

[10] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Meghan

Cowan, Haichen Shen, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. TVM:

An automated end-to-end optimizing compiler for deep learning. arXiv preprint
arXiv:1802.04799 (2018).

639

http://dl.acm.org/citation.cfm?id=646760.706018
http://dl.acm.org/citation.cfm?id=646760.706018

AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with
AdaptiveQuantization MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

[11] Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. 2017. Homo-

morphic encryption for arithmetic of approximate numbers. In Advances in
Cryptology–ASIACRYPT 2017: 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part I 23. Springer, 409–437.

[12] Tung Chou and Claudio Orlandi. 2015. The simplest protocol for oblivious

transfer. In International Conference on Cryptology and Information Security in
Latin America. Springer, 40–58.

[13] Ronald Cramer, Ivan Damgård, and Jesper B Nielsen. 2001. Multiparty com-

putation from threshold homomorphic encryption. In Advances in Cryptol-
ogy—EUROCRYPT 2001: International Conference on the Theory and Application
of Cryptographic Techniques Innsbruck, Austria, May 6–10, 2001 Proceedings 20.
Springer, 280–300.

[14] Roshan Dathathri, Olli Saarikivi, Hao Chen, Kim Laine, Kristin Lauter, Saeed

Maleki, Madanlal Musuvathi, and Todd Mytkowicz. 2019. CHET: an optimizing

compiler for fully-homomorphic neural-network inferencing. In Proceedings
of the 40th ACM SIGPLAN Conference on Programming Language Design and
Implementation. 142–156.

[15] Daniel Demmler, Thomas Schneider, and Michael Zohner. 2015. ABY-A frame-

work for efficient mixed-protocol secure two-party computation.. In NDSS.
[16] Juan Garay, Berry Schoenmakers, and José Villegas. 2007. Practical and secure

solutions for integer comparison. In International Workshop on Public Key Cryp-
tography. Springer, 330–342.

[17] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2007. Secure

distributed key generation for discrete-log based cryptosystems. Journal of
Cryptology 20 (2007), 51–83.

[18] Craig Gentry. 2009. A fully homomorphic encryption scheme. Stanford university.
[19] Ran Gilad-Bachrach, Nathan Dowlin, Kim Laine, Kristin Lauter, Michael Naehrig,

and John Wernsing. 2016. Cryptonets: Applying neural networks to encrypted

data with high throughput and accuracy. In International conference on machine
learning. PMLR, 201–210.

[20] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual

learning for image recognition. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition. 770–778.

[21] Kai Huang, Mehmet Gungor, Xin Fang, Stratis Ioannidis, and Miriam Leeser.

2019. Garbled circuits in the cloud using fpga enabled nodes. In 2019 IEEE High
Performance Extreme Computing Conference (HPEC). IEEE, 1–6.

[22] Yan Huang, David Evans, Jonathan Katz, and Lior Malka. 2011. Faster Secure

{Two-Party} Computation Using Garbled Circuits. In 20th USENIX Security
Symposium (USENIX Security 11).

[23] Mitsuru Ito, Akira Saito, and Takao Nishizeki. 1989. Secret sharing scheme

realizing general access structure. Electronics and Communications in Japan (Part
III: Fundamental Electronic Science) 72, 9 (1989), 56–64.

[24] Benoit Jacob, Skirmantas Kligys, Bo Chen,Menglong Zhu,MatthewTang, Andrew

Howard, Hartwig Adam, and Dmitry Kalenichenko. 2018. Quantization and

training of neural networks for efficient integer-arithmetic-only inference. In

Proceedings of the IEEE conference on computer vision and pattern recognition.
2704–2713.

[25] Ameet V Joshi. 2020. Amazon’s machine learning toolkit: Sagemaker. InMachine
Learning and Artificial Intelligence. Springer, 233–243.

[26] Chiraag Juvekar, Vinod Vaikuntanathan, and Anantha Chandrakasan. 2018.

{GAZELLE}: A low latency framework for secure neural network inference. In

27th USENIX Security Symposium (USENIX Security 18). 1651–1669.
[27] Seny Kamara, Payman Mohassel, and Mariana Raykova. 2011. Outsourcing

Multi-Party Computation. IACR Cryptology ePrint Archive 2011 (2011), 272.
[28] Joe Kilian. 1988. Founding crytpography on oblivious transfer. In Proceedings of

the twentieth annual ACM symposium on Theory of computing. 20–31.
[29] Brian Knott, Shobha Venkataraman, Awni Hannun, Shubho Sengupta, Mark

Ibrahim, and Laurens van der Maaten. 2021. Crypten: Secure multi-party com-

putation meets machine learning. Advances in Neural Information Processing
Systems 34 (2021), 4961–4973.

[30] Alex Krizhevsky, Geoffrey Hinton, et al. 2009. Learning multiple layers of features

from tiny images. (2009).

[31] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifica-

tion with deep convolutional neural networks. In Advances in neural information
processing systems. 1097–1105.

[32] Nishant Kumar, Mayank Rathee, Nishanth Chandran, Divya Gupta, Aseem Ras-

togi, and Rahul Sharma. 2020. Cryptflow: Secure tensorflow inference. In 2020
IEEE Symposium on Security and Privacy (SP). IEEE, 336–353.

[33] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[34] Jiajun Li, Ahmed Louri, Avinash Karanth, and Razvan Bunescu. 2021. CSCNN:

Algorithm-hardware Co-design for CNN Accelerators using Centrosymmetric

Filters. In 2021 IEEE International Symposium on High-Performance Computer
Architecture (HPCA). IEEE, 612–625.

[35] Jian Liu, Mika Juuti, Yao Lu, and Nadarajah Asokan. 2017. Oblivious neural

network predictions via minionn transformations. In Proceedings of the 2017 ACM

SIGSAC conference on computer and communications security. 619–631.
[36] Qian Lou and Lei Jiang. 2021. HEMET: a homomorphic-encryption-friendly

privacy-preserving mobile neural network architecture. In International confer-
ence on machine learning. PMLR, 7102–7110.

[37] Pratyush Mishra, Ryan Lehmkuhl, Akshayaram Srinivasan, Wenting Zheng, and

Raluca Ada Popa. 2020. Delphi: A cryptographic inference service for neural

networks. In 29th USENIX Security Symposium (USENIX Security 20). 2505–2522.
[38] Fan Mo, Ali Shahin Shamsabadi, Kleomenis Katevas, Soteris Demetriou, Ilias

Leontiadis, Andrea Cavallaro, and Hamed Haddadi. 2020. DarkneTZ: towards

model privacy at the edge using trusted execution environments. In Proceedings
of the 18th International Conference on Mobile Systems, Applications, and Services.
161–174.

[39] Jianqiao Mo, Jayanth Gopinath, and Brandon Reagen. 2023. HAAC: A Hardware-

Software Co-Design to Accelerate Garbled Circuits. In Proceedings of the 50th
Annual International Symposium on Computer Architecture. 1–13.

[40] Payman Mohassel and Yupeng Zhang. 2017. Secureml: A system for scalable

privacy-preserving machine learning. In 2017 IEEE Symposium on Security and
Privacy (SP). IEEE, 19–38.

[41] P. Mohassel and Y. Zhang. 2017. SecureML: A System for Scalable Privacy-

Preserving Machine Learning. In 2017 IEEE Symposium on Security and Privacy
(SP). 19–38. https://doi.org/10.1109/SP.2017.12

[42] Thierry Moreau, Tianqi Chen, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and

Arvind Krishnamurthy. 2018. VTA: an open hardware-software stack for deep

learning. arXiv preprint arXiv:1807.04188 (2018).
[43] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019), 8026–8037.

[44] Arpita Patra, Thomas Schneider, Ajith Suresh, and Hossein Yalame. 2021. {ABY2.
0}: Improved {Mixed-Protocol} Secure {Two-Party} Computation. In 30th
USENIX Security Symposium (USENIX Security 21). 2165–2182.

[45] Deevashwer Rathee, Mayank Rathee, Nishant Kumar, Nishanth Chandran, Divya

Gupta, Aseem Rastogi, and Rahul Sharma. 2020. CrypTFlow2: Practical 2-party

secure inference. In Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security. 325–342.

[46] Mauro Ribeiro, Katarina Grolinger, andMiriamAMCapretz. 2015. Mlaas:Machine

learning as a service. In 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA). IEEE, 896–902.

[47] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[48] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).
[49] Latanya Sweeney. 2002. k-anonymity: A model for protecting privacy. Inter-

national Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 10, 05
(2002), 557–570.

[50] Oleg Sémery. 2021. PyTorchCV Library. https://pypi.org/project/pytorchcv/.
[51] Sijun Tan, Brian Knott, Yuan Tian, and David JWu. 2021. CryptGPU: Fast privacy-

preserving machine learning on the GPU. In 2021 IEEE Symposium on Security
and Privacy (SP). IEEE, 1021–1038.

[52] Vinod Vaikuntanathan and Prashant Nalini Vasudevan. 2015. Secret sharing

and statistical zero knowledge. In International Conference on the Theory and
Application of Cryptology and Information Security. Springer, 656–680.

[53] Sameer Wagh, Shruti Tople, Fabrice Benhamouda, Eyal Kushilevitz, Prateek Mit-

tal, and Tal Rabin. 2020. Falcon: Honest-majority maliciously secure framework

for private deep learning. arXiv preprint arXiv:2004.02229 (2020).
[54] ChenghongWang, Johes Bater, Kartik Nayak, and Ashwin Machanavajjhala. 2022.

IncShrink: architecting efficient outsourced databases using incremental mpc

and differential privacy. In Proceedings of the 2022 International Conference on
Management of Data. 818–832.

[55] Erwei Wang, James J Davis, Ruizhe Zhao, Ho-Cheung Ng, Xinyu Niu, Wayne

Luk, Peter YK Cheung, and George A Constantinides. 2019. Deep neural network

approximation for custom hardware: Where we’ve been, where we’re going.

ACM Computing Surveys (CSUR) 52, 2 (2019), 1–39.
[56] Xingbin Wang, Boyan Zhao, Rui Hou, Amro Awad, Zhihong Tian, and Dan Meng.

2021. NASGuard: a novel accelerator architecture for robust neural architecture

search (NAS) networks. In 2021 ACM/IEEE 48th Annual International Symposium
on Computer Architecture (ISCA). IEEE, 776–789.

[57] Pierre-Francois Wolfe, Rushi Patel, Robert Munafo, Mayank Varia, and Martin

Herbordt. 2020. Secret sharing MPC on FPGAs in the datacenter. In 2020 30th
International Conference on Field-Programmable Logic and Applications (FPL).
IEEE, 236–242.

[58] Andrew C Yao. 1982. Protocols for secure computations. In 23rd annual sympo-
sium on foundations of computer science (sfcs 1982). IEEE, 160–164.

[59] Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan,

LeyuanWang, Qijing Huang, Yida Wang, Michael Mahoney, et al. 2021. Hawq-v3:

Dyadic neural network quantization. In International Conference on Machine
Learning. PMLR, 11875–11886.

[60] Xun Yi, Russell Paulet, and Elisa Bertino. 2014. Homomorphic encryption. In

Homomorphic encryption and applications. Springer, 27–46.

640

https://doi.org/10.1109/SP.2017.12
https://pypi.org/project/pytorchcv/

	Abstract
	1 Introduction
	2 Related Work and Threat Model
	2.1 Two-party Computation for DNN
	2.2 2PC Acceleration Using FPGA
	2.3 Relevant Terminologies
	2.4 Threat Model

	3 AQ2PNN: Overview
	4 AQ2PNN: Implementation
	4.1 Secure-computing Module
	4.2 Matrix Multiplication and Accumulation
	4.3 Secure-communication Module
	4.4 Arithmetic-to-Binary Sharing based ReLU
	4.5 Security of AQ2PNN

	5 AQ2PNN: Adaptive Quantization
	5.1 Quantized Model Inference
	5.2 Quantized Model Accuracy Evaluation

	6 AQ2PNN: Experimental Evaluation
	6.1 Overall Evaluation
	6.2 Communication Overhead Analysis
	6.3 Operator-wise Performance Profiling
	6.4 Scalability Evaluation
	6.5 Optimization and Trade-off

	7 Conclusion
	Acknowledgments
	References

