
Eureka: Efficient Tensor Cores for One-sided Unstructured
Sparsity in DNN Inference

Ashish Gondimalla
∗

agondima@google.com

Google

Sunnyvale, CA, USA

Mithuna Thottethodi

mithuna@purdue.edu

Purdue University

West Lafayette, IN, USA

T. N. Vijaykumar

vijay@purdue.edu

Purdue University

West Lafayette, IN, USA

ABSTRACT
Deep neural networks (DNNs), while enormously popular, continue

to place ever higher compute demand for which GPUs provide

specialized matrix multipliers called tensor cores. To reduce the

compute demand via sparsity, Nvidia Ampere’s tensor cores sup-

port 2:4 structured sparsity in the filters (i.e., two non-zeros out of

four values) which provides uniform 50% sparsity without any load

imbalance issues. Consequently, the sparse tensor cores maintain

(input or output) operand stationarity, which is fundamental for

avoiding high-overhead hardware, requiring only one extra 4-1 mul-

tiplexer per multiply-accumulate unit (MAC). However, 2:4 sparsity

is limited to 2x improvements in performance and energy without

loss of accuracy, whereas unstructured sparsity provides 5-6x op-

portunity albeit while causing load imbalance. Previous papers on

unstructured sparsity incur high hardware overhead (e.g., buffering,

crossbars, scatter-gather networks, and address calculators) mainly

due to sacrificing operand stationarity in favor of load balance. To

avoid adding high overheads to the highly-efficient tensor cores, we

propose Eureka, an efficient tensor core for unstructured sparsity.

Eureka addresses load imbalance via three contributions: (1) Our

key insight is that a slight weakening of output stationarity achieves

load balance most of the time while incurring only a modest hard-

ware overhead. Accordingly, we propose single-step uni-directional
displacement (SUDS), where a filter element’s multiplication can

either occur in its original position or be displaced to a vacant

MAC in the adjacent row below while the accumulation occurs in

the original row to restore output stationarity. SUDS is an offline

technique for inference. (2) We provide an optimal algorithm for

work assignment for SUDS. (3) To achieve fewer bubbles in the ten-

sor core’s systolic pipeline due to the irregularity of unstructured

sparsity, we propose offline systolic scheduling to group together

the sparse filters with similar, statically-known execution times

(based on the number of non-zeros). Our evaluation shows that

Eureka achieves 4.8𝑥 and 2.4𝑥 speedups, and 3.1𝑥 and 1.8𝑥 energy

reductions over dense and 2:4 sparse (Ampere) implementations,

respectively, and incurs area and power overheads of 6% and 11.5%,

respectively, over Ampere.
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1 INTRODUCTION
Deep neural networks are deployed widely for many commercial

applications including image classification, recognition, natural

language processing, and recommendation systems. To meet the

high compute demand of many of the models, commercial DNN

accelerators (e.g., the GPU and TPU [12]) provide energy- and

area-efficient hardware with vast compute and memory bandwidth

resources. TPUs use large two-dimensional systolic arrays whereas

GPUs use specialized compute units, called tensor cores, optimized

for dense matrix multiplication [19].

Despite such specialized units, the demand for compute con-

tinues to outpace the hardware as the models grow in size and

complexity. Sparsity, or zeros in the input matrices, can help meet

this demand. Sparsity occurs in the filters due to pruning coupled

with retraining for accuracy [9]. Sparsity in the filters [33–35] and

activations [16] could be structured with hardware-friendly pat-

terns [35] or unstructured without constraining the location of

zeros [8, 9]. For instance, Ampere’s structured 2:4 sparsity (i.e., two

out of four filter values are non-zeros and fewer than two non-zeros

treated as two non-zeros for regularity), leads to 2x better perfor-

mance and nearly 2x better energy over dense (capturing sparsity

incurs some modest energy and area overhead). By reducing work,

sparsity improves both performance and energy. Due to its uniform

50% sparsity, 2:4 sparsity does not incur load imbalance or compute

under-utilization so that the tensor cores maintain (input or output)

operand stationarity [3], similar to dense operation, which is fun-

damental for avoiding high-overhead hardware. Consequently, the

tensor cores add only one 4-1 multiplexor per multiply-accumulate

unit (MAC) for 2:4 sparsity. This minimal extra hardware results

in the tensor cores being highly efficient for both 2:4 sparse and

dense operations.

Unstructured sparsity, on the other hand, is much higher (e.g.,

83%) without loss of accuracy [8]. Capturing unstructured filter
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sparsity alone (i.e., one-sided) would achieve 5-6x speedup and

possibly 4-5x lower energy after accounting for sparsity overheads

over dense (at modest area overhead). Increasing 2:4 sparsity from

its 2x limit to this level would result in loss of accuracy [33]. Further,

sparsity can also occur in the feature maps for some DNNs due to

the presence of non-linear layers such as ReLU which zeroes out

negative values. Such feature map sparsity, which is necessarily

unstructured, can range up to 50%. Exploiting both filter and feature

map (i.e., two-sided) sparsity can achieve further improvements.

However, unstructured sparsity incurs load imbalance due to its

non-uniformity.

To achieve load balance and high compute utilization, previous

proposals targeting one- or two-sided unstructured sparsity [2, 6, 7,

10, 21, 22, 26, 29, 31, 32] incur considerable hardware overhead due

to the added costs of buffering, routing, and sparse computation.

As such, it is hard to scale up these proposals to the high compute

throughputs of commercial accelerators like GPUs. In addition,

these custom sparse accelerators cannot process dense matrices as

efficiently as the GPU and TPU which is important for unpruned,

dense models that continue to be used. Any unstructured sparse

operation must satisfy the tensor cores’ challenging constraint

of minimal extra hardware (and hence energy and area). Unfor-

tunately, previous tensor core-specific proposals violate this key

constraint by adding crossbars, accumulation buffers, and scatter-

gather logic, mostly due to sacrificing operand stationarity in favor

of load balance [29]. Our goal is to exceed the 2𝑥 improvement limit

of 2:4 sparsity and efficiently capture the opportunity of 5-6x work

reduction in unstructured filter sparsity. In doing so, departing

significantly from the current, highly-efficient tensor core organi-

zation or imposing considerable energy or area overhead on sparse

or dense computation is not desirable.

Separately, larger tensor core arrays provide higher efficiency

for larger models by exploiting higher reuse. However, broadcast

of operands within the arrays is often pipelined for higher speed

and lower energy than a brute-force, flat broadcast, resulting in a

systolic-style computation (e.g., an 8x8 array may be implemented

as four 4x4 arrays arranged in a systolic pipeline). Also, such systolic

arrays can be scaled more easily to larger sizes. Any sparse opera-

tion, structured or unstructured, should not impede such systolic

pipelines.

To achieve efficient unstructured filter (one-sided) sparsity, we

propose Eureka starting with the basic observation that the 4-1 mul-

tiplexers for 2:4 sparsity suffice to capture unstructured sparsity

while maintaining operand stationarity (i.e., no extra hardware). A

further extension of our observation is that a simply larger multi-

plexer (e.g., 16-1) suffices to allow the offline compaction of a larger

sparse filter matrix into a smaller matrix to improve compute utiliza-

tion without increasing output buffering. While such compaction

is not new [6, 14, 29, 32], the sufficiency of the 2:4 sparsity hard-

ware has not been observed before. However, the resultant load

imbalance among the non-zero and vacant matrix cells, which can-

not be packed arbitrarily while maintaining operand stationarity,

considerably hurts performance. Further, while 2:4 sparsity’s uni-

formity allows for smooth systolic operation without any pipeline

bubbles, unstructured sparsity’s load imbalance-induced timing

non-uniformity induces bubbles. To address these issues we make

the following contributions:

• To achieve better load balance, our key insight is that a slight

weakening of output stationarity achieves load balance most

of the timewhile incurring only amodest hardware overhead.

Accordingly, we propose single-step uni-directional displace-
ment1 (SUDS), in which a filter element’s multiplication can

either occur in its original position or be displaced to a va-

cant MAC in the adjacent row below while the accumulation

occurs in the original row to restore output stationarity. Be-

cause the filters do not change during inference, we compact

the filters and apply SUDS offline before inference. SUDS

adds only two 2-1 multiplexers and a carry-save adder with

floating-point (FP) mantissa alignment per MAC.

• We design an optimal polynomial-time algorithm for SUDS

work assignment. Our correctness proof also enables SUDS

hardware overhead reduction.

• To achieve fewer bubbles in the tensor core’s systolic pipeline

due to the non-uniformity of unstructured sparsity, we pro-

pose offline systolic scheduling to group together the sparse

filters with similar execution times (known statically based

on the number of non-zeros). Systolic scheduling works even

better when coupled with SUDS which shrinks the sparse

computations’ critical paths, lowering the unevenness in the

pipeline’s stages.

Eureka improves performance by 4.8𝑥 and 2.4𝑥 , and reduces

energy by 3.1𝑥 and 1.8𝑥 over dense and 2:4 sparse implementa-

tions, respectively. To achieve these improvements, at each MAC

we (1) replace Ampere’s 4-1 multiplexer with a 16-1 multiplexer

and (2) add two 2-1 multiplexers and a carry-save adder with FP

mantissa alignment for area and power overheads of 6% and 11.5%,

respectively, over Ampere.

We considered extending our ideas to two-sided sparsity which,

however, is significant only in convolutional neural networks (CNNs).

Recurrent neural networks (RNNs), long short-term memory mod-

els (LSTMs), and recently, transformers, which are more prevalent
than CNNs [11], have only a few to no ReLU layers. As such, we

do not pursue two-sided sparse tensor cores.

2 BACKGROUND
2.1 Deep neural networks
A deep neural network has many layers, where each layer’s output

is generated using operations such as convolutions, matrix multi-

plication, and non-linear operations (e.g., ReLU). Convolutions and

matrix multiplications are compute-intensive and consume time

and energy. Convolutions can be transformed into matrix multipli-

cation using implicit GEMM kernels without IM2Col memory bloat

[20].

Matrix multiplication can be implemented using two fundamen-

tally different methods. Inner product method computes the dot
product of every pair of row and column vectors, from the first

and second input matrices, respectively. Outer product computes

a partial output matrix as a cross product of only the matching 𝑖𝑡ℎ

column and the 𝑖𝑡ℎ row vectors, from the first and second matri-

ces, respectively. Accumulating the partial matrices of different

1
Like the water being displaced up in Archimedes’s "Eureka" moment.
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Figure 1: (a) Inner product; (b) Outer product methods

column-row pairs gives the final output matrix. Figure 1 shows the

methods.

A key aspect is effectively utilizing the hardwaremultiply-accumulate

units (MACs) with low buffering and data movement, as determined

by the hardware dataflow. A well-known approach is to hold sta-

tionary one of the matrices’ elements in the MACs and minimally

move the remaining matrices [3]. In an input-stationary dataflow,
each MAC holds an input element (or a group of input elements)

of one matrix (Figure 2(a)). The other input matrix is broadcast to

the MAC to generate the partial output element. The partial output

elements are transferred from one MAC to the next (spatially) for

accumulation to compute the final output element. Alternatively,

the four marked MACs are interconnected using a reduction tree

to enable spatial reduction. Thus, for the input-stationary dataflow,

an inner product method allows for minimal data transfers. In con-

trast, in an output-stationary dataflow (Figure 2(b)), each output

element (or a group of output elements) is generated in a MAC in

place by broadcasting both of the corresponding input vectors. Each

partial output element is accumulated in place over time to pro-

duce the final output element. Thus, the output-stationary dataflow

supports the outer product method with minimal data transfers.

Although there is a reduction tree in the input-stationary approach

and two-directional broadcast in the output-stationary design, the

approaches are similar in terms of overall cost.

Matrix multiplication is often tiled and parallelized on many

MACs. The tiles can be of various shapes (e.g., row, square, or

column). In addition, a tile of one input matrix can be multiplied

with multiple tiles of the other input enabling enormous reuse.

The tiles can be nested with either method at each nesting level,

allowing for many hybrid methods.

2.2 Sparsity in DNNs
Exploiting two-sided sparsity gives high performance benefits but

adds expensive hardware to tackle irregularity via buffering, index-

matching or routing [6, 7, 22, 29]. Two-sided sparse architectures

like SCNN [22], SparTen [6], and DSTC [29], which closely resem-

bles SCNN except for bit masks like SparTen to reduce SCNN’s ad-

dress calculation overhead, achieve high performance while incur-

ring high energy overhead. For example, SCNN employs expensive

crossbars for partial sum accumulation while SparTen adds prefix-

sum and priority encoder logic, and buffers. Although SparTen’s

overheads drop significantly for smaller tensor cores (size of 4 or

8), performance also falls without a large look-ahead window (e.g.,

at least 32). Additionally, input feature map sparsity is limited to

Figure 2: (a) Input- (b) Output-stationary dataflows

layers containing ReLU, which is common in most CNNs. How-

ever, as discussed in Section 1, other more prevalent DNNs, such as

LSTMs and recently, transformers [11], have only a few to no ReLU

layers limiting two-sided architectures’ opportunity. On the other

hand, filter sparsity is present in almost all DNNs. Accordingly,

Ampere’s tensor core exploits one-sided filter sparsity [2, 35] but is

limited due to its structured 2:4 sparsity. Thus, we need a low-cost

approach to capture unstructured one-sided sparsity in filters.

2.3 Tensor Core
Nvidia’s tensor core architecture details are not public. As such,

we first describe a sensible, well-motivated tensor core design that

efficiently performs dense as well as 2:4 sparse matrix multiplica-

tions. Because the design matches observed latencies and operates

efficiently, any other equivalent design would not change our tech-

niques or results.

Each tensor core in Volta and Turing has 64 MACs [19]. Custom

instructions, such as HMMA.1688 and HMMA.844 [30], take input

matrices of sizes 16𝑥8, 8𝑥8 and 8𝑥4, 4𝑥4 respectively. Without loss

of generality, we consider the building block of two 4x4 matrices

multiplied on a 4𝑥4MAC array taking four cycles (and a 16𝑥8 or 8𝑥8

matrix multiplication taking eight cycles). This computation can be

realized with many architectures, each with its own well-known

trade-offs. For example, a systolic design with a 4𝑥4 array has low-

cost, near-neighbor communication but high latency. In contrast, a

full broadcast-tree based 4x4 array would have lower latency with

higher communication costs (broadcast costs grow quadratically

with size). Further, as discussed in Section 2.1, efficient execution

can be realized with the appropriate method and hardware support.

For example, inner product is efficient with reduction trees whereas

outer product is efficient with two-directional broadcast support.

The 16-MAC array can be extended to 64 MACs, organized as a

flat 8𝑥8 array or as four 4𝑥4 sub-arrays connected systolically [15]

to operate on 8𝑥8 matrices or 16𝑥8 matrices partitioned into 2 8𝑥8

sub-matrices. Figure 3 shows a 2D systolic compute array.

Given these possibilities, we assume a simple and efficient canon-

ical building block of 4𝑥4 array with a flat broadcast within this

small array and a larger array composed of these building blocks

(e.g., four 4𝑥4 sub-arrays for an 8𝑥8 array) with a systolic broadcast

from one sub-array to the next.

2.3.1 Tensor core for structured sparsity. We extend the above dense

matrix tensor core design to Ampere’s 2:4 structured sparse opera-

tion. Sparse operation in tensor cores is easier with outer product
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Figure 3: Systolic array producing 4 matrices in 4 cycles

Figure 4: A 2:4 sparse matrix: (a) original; (b) left-aligned

and output stationary approach, as also observed by DSTC [29].

Inner product with one-sided sparse input requires fetching the

matching element in the second input and the stationary input

faces uncertainty over the non-zero positions [23]. Inner product

with stationary output would also face similar uncertainty [6]. In

contrast, outer product with stationary output requires only modest

hardware addition, especially for one-sided 2:4 sparsity where the

four columns of a 4𝑥4 matrix are left-aligned into two columns (i.e.,

exactly two non-zero values in every row), as shown in Figure 4.

Recall from Section 2.1 that in outer product with stationary

outputs for dense matrices (i.e., cross product of column 𝑖 in the

first input matrix and row 𝑖 in the second input matrix), the MAC

for output element (n,m) multiplies the 𝑛𝑡ℎ row in column 𝑖 and

𝑚𝑡ℎ
column in row 𝑖 . Thus, in the 4𝑥4 MAC array in Figure 2(b),

each column-row pair computes the full 4𝑥4 cross product by broad-

casting the column 𝑖 left to right and the row 𝑖 top to bottom, and

accumulates the output in place each cycle. In 2:4 sparsity, however,

each sparse row contains two non-zero elements where the first

element can be from any of the first three columns within the same

row of the original matrix and the second element from the last

three columns (Figure 4(b)). Accordingly, the (n,m)
𝑡ℎ

MAC’s first

input is the 𝑛𝑡ℎ row of one of the original first three columns (e.g.,

the first column in Figure 4(b) holds elements from one of the first

three columns in the same row in Figure 4(a)). Hence, the second

input has a 3-1 choice among the first three rows of the𝑚𝑡ℎ
column.

However, the same MAC is used next cycle for the next column-

row pair where the second input has a 3-1 choice among the last
three rows of the𝑚𝑡ℎ

column. Hence, we need a 4-1 multiplexer

to select the appropriate row for the second input. Figure 5 shows

Figure 5: Multiplexers for structured sparsity

the operation for the first column of Figure 4(b). Thus, with only

one extra 4-1 multiplexer per MAC, outer product produces the out-

put for 2:4 sparsity in exactly two cycles without any uncertainty

(dense matrices take 4 cycles). Because a filter column’s elements

are broadcast to their respective rows in the MAC array as in the

dense case (Figure 2(b)), the MACs in a row share the multiplexer

control.

2:4 sparsity adds 2 bits of metadata per value to identify the

value’s original column. This increase is more than offset by the

50% reduction in the matrix size. For such one-sided sparsity, both

the matrix data size and the number of MAC operations reduce

by the same factor (50%), keeping the memory bandwidth demand

similar to that of dense operation. The metadata incurs a small

increase in the bandwidth demand. Fortunately, the abundant reuse

exploited by the output stationary dataflow ensures that the sparse

tensor core’s net bandwidth demand remains reasonable.

3 EUREKA
Recall from Section 1 our basic observation that the structured 2:4

sparse tensor core can also be used for unstructured sparsity. The

flexibility provided by the 4-1 multiplexers is enough for unstruc-

tured sparsity where the second input for the (n,m)
𝑡ℎ

MAC has a

4-1 choice among all four rows of the second input matrix’s 𝑛𝑡ℎ col-

umn. Unfortunately, the unpredictability of the non-zero counts, as

opposed to 2:4 sparsity’s exactly two non-zeros in every four dense

values, causes considerable load imbalance and compute underuti-

lization. For instance, with 87.5% observed at moderate pruning in

ResNets, each 4𝑥4 matrix has around two non-zero elements on
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Figure 6: Compacting left-aligned unstructured-sparse ma-
trices

average. If the two non-zeros are in the same column (best case),

the multiplication can finish in just one cycle but achieve only 50%

utilization. In the worst case, where the non-zeros are in the same

row, utilization drops to just 25%.

Fortunately, as filters are available offline we can pre-process

them to achieve better compute utilization. We start off with well-

known, offline matrix compaction where multiple sparse input

matrices are compacted into a single matrix [6, 14, 29, 32]. In Fig-

ure 6, two left-aligned, unstructured-sparse matrices are compacted

along the rows, which improves utilization. The residual under-

utilization correlates with the number of vacant cells in the shaded

area (4+4 = 8 in Figure 6(a) versus 4 in Figure 6(b)).

We extend our basic observation with the point that replacing

Ampere’s 4-1 multiplexer with a larger multiplexer suffices for

this compaction without increasing output buffering (e.g., 8-1 or

16-1 multiplexer for compacting 4𝑥8 or 4𝑥16 matrices into a 4𝑥4

matrix). To see this extension, observe that each column of the

compacted matrix is broadcast to the compute array, similar to

Figure 5. However, given that 8 (or 16) columns are compacted

instead of 4 columns as done in 2:4 sparsity, we need 8-1 (or 16-1)

multiplexer instead of 2:4 sparsity’s 4-1 multiplexer.

Being offline, the compaction does not add any run-time over-

head. However, the metadata to identify a non-zero value’s original

column increases (e.g., from 2 bits to 4). Further, increasing the com-
paction factor (ratio of the larger to smaller matrix sizes) improves

the sparse tensor core’s utilization and reuse but also increases

buffering. Fortunately, these costs are modest for small compaction

factors (e.g., 2-4).

Despite matrix compaction, load imbalance exists due to irregu-

larity of unstructured sparsity. The non-zero and vacant cells of the

compacted matrix cannot be packed arbitrarily while maintaining

output stationarity, leading to MAC idling. To address this issue,

we propose: (1) single-step uni-directional displacement (SUDS) for
moving the multiplication work to a vacant MAC in the adjacent

row below, (2) an optimal work assignment algorithm for SUDS,

and (3) systolic scheduling to reduce bubbles due to uneven spar-

sity in the scaled-up systolic compute arrays. The optimality proof

also helps in reducing the SUDS hardware overhead. The following

subsections describe each contribution in detail.

3.1 Single-step uni-directional displacement
While matrix compaction improves utilization by compacting the

filters along the rows as discussed above, there is no compaction

along the columns. Thus, compaction is a hit or miss approach: a

Figure 7: Displacement: Greedy versus Optimal

compacted matrix where one row is much longer than the others

would incur severe under-utilization. While simply distributing

the values among the rows would achieve better utilization, such

arbitrary distribution would disrupt output stationarity leading to

high hardware, area, and energy overheads. Our key insight is that

a slight relaxation of output stationarity achieves load balance in

most cases while incurring low overheads. Accordingly, we propose

single-step uni-directional displacement (SUDS), done offline in

software, in which a filter element’s multiplication can either occur

in its original position or be displaced to a vacant MAC in the

adjacent row below while the accumulation occurs in the original

row to restore output stationarity.

Figure 7 shows an example of SUDS. The first row of the sparse

matrix 𝐴 initially (Figure 7(a)) has four values while the other rows

have two or fewer. In Figure 7(b), a value from the first row is

displaced to an adjacent MAC below, reducing the cycle count from

four to three. The partial product generated in the bottom MAC is

accumulated at the original MAC to restore output stationarity.

A key correctness point is that in the outer product method

without any displacement, the partial products for all the elements

in a row 𝑖 of a filter matrix are accumulated at the same row 𝑖 of

the output matrix. Consequently, a displaced value’s partial prod-

ucts can be accumulated at the partial products of the row above,

irrespective of the column to which the value is displaced. Though

restricted to displacing work only to the row below the original

position, SUDS is powerful because multiple elements can be dis-

placed achieving good load balance. Figure 7(c) shows a perfectly

load-balanced result.

Though the multiplication for a displaced value occurs at the

MAC below, the accumulation of the partial product occurs at the

displaced value’s original position to restore output stationarity.

Accordingly, we add extra wires for the displaced partial product

to return to the original MAC above (Figure 8). In the figure, there

are four possibilities for two vertically-adjacentMACs: (1) neither

of the values they are multiplying was displaced (e.g., A22 and A33
in Figure 7(c)), (2) the top value was not displaced but the bottom

value was (from above) (e.g., A00 and A02, respectively), (3) the top
value was displaced but the bottom value was not (e.g., A02 and
A22, respectively), and (4) both values were displaced (e.g., A03 and
A12). The first case requires no change. In the second case, the two

partial products (from the top and bottomMACs) belong to the same

output element and are accumulated at the top MAC, performing

a three-input addition. In the third case, the top MAC’s product

goes to the MAC above leaving the top MAC’s adder unused (the

bottom value stays at the bottom MAC). In the final case, the top
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Figure 8: SUDS hardware (one MAC column shown)

MAC’s product goes up one hop and the bottom MAC’s product is

accumulated at the top MAC. Hence, we need a three-input adder

in each MAC.

The three-input adder’s inputs are the local product, local accu-

mulator, and the product from below (Figure 8). In the first case

above, the third input is set to zero. In the second case, all three

inputs are valid. In the third case, no addition is done. And in the

final case, the first input is set to zero. Therefore, the first and third

inputs need a 2-1 multiplexer each. As in the case of 2:4 sparsity

(Figure 5), the relevant multiplexers of a row share their control.

The three-input addition can be implemented as a carry-save adder

to reduce the three values to two (the sum and carry) followed by

a full adder. For FP16 values, the three exponents are compared

against each other before the three mantissas are aligned and added

together.

To indicate to the hardware whether a value is displaced requires

only one bit per value, in addition to Eureka’s 4-bit metadata for

compaction (Section 3).

SUDS can cut the critical path, the longest row, by 50% even

for the worst case. For example, in a worst-case sparse matrix that

has a single row with four values, utilization improves by 2𝑥 by

displacing two values from the original row to the row below. In

general, we need to find the assignment of the values across the rows

that achieves the best utilization. As mentioned before, because the

filters do not change for inference, this work assignment is done

offline. We describe our optimal work assignment algorithm in the

next section.

3.2 Optimal SUDS work assignment
A naive, greedy algorithm may not be able to generate the optimal

work assignment. For example, a greedy algorithm that simply finds

an empty anti-diagonal slot in the compacted matrix can fail to

achieve the minimum critical path. As shown in Figure 7(b), while

considering the first row the algorithm checks only the second row

and finds one empty slot. While considering the second row checks

only the third row and finds no slots. Thus, the algorithm produces

a three-column matrix after displacement. However, the optimum

is a two-column matrix, as shown in Figure 7(c). Thus, we need an

algorithm to achieve the optimal work assignment.

Algorithm 1 Algorithm for the decision problem

Input: Sparse Matrix𝑀 , number 𝐾

Output: Sparse Matrix 𝑂 with max row length ≤ K

1: 𝑠𝑙𝑎𝑐𝑘_𝑟𝑜𝑤𝑠 ← {}
2: for each row in 𝑀 do
3: if (length(M[row]) ≤ 𝐾 then
4: slack_rows.append(row)

5: end if
6: end for
7: for each row in 𝑠𝑙𝑎𝑐𝑘_𝑟𝑜𝑤𝑠 do
8: 𝑂 ← 𝑀

9: 𝑖 ← 𝑝 − 1
10: while 𝑖 ≥ 0 do
11: 𝑟𝑜𝑤𝑎𝑏𝑜𝑣𝑒 ← 𝑟𝑜𝑤 − 1 (mod 𝑝)
12: 𝐶 ← length(O[row])

13: 𝐶𝑎𝑏𝑜𝑣𝑒 ← length(O[𝑟𝑜𝑤𝑎𝑏𝑜𝑣𝑒 ])

14: 𝑠𝑙𝑎𝑐𝑘 ← 𝐾 −𝐶
15: 𝑛_𝑑𝑖𝑠𝑝 ← min(𝐶𝑎𝑏𝑜𝑣𝑒 , slack)

16: //Displace n_disp elements from 𝑟𝑜𝑤𝑎𝑏𝑜𝑣𝑒 to row
17: O[row]← displace(O[𝑟𝑜𝑤𝑎𝑏𝑜𝑣𝑒 ], 𝑛_𝑑𝑖𝑠𝑝)

18: 𝑟𝑜𝑤 ← 𝑟𝑜𝑤𝑎𝑏𝑜𝑣𝑒

19: if length(O[row]) > 𝐾 then
20: Break to next slack row
21: end if
22: 𝑖 ← 𝑖 − 1
23: end while
24: return 𝑂 // found an optimal solution

25: // no need to try more slack rows

26: end for
27: return No solution

A key challenge in finding the optimum is that while a row may

have some room, the row above may need to displace more than

the room available so that the row with the room itself may have

to displace to the row below to make more room for the row above.

And so on, across all the rows. Thus, it is not easy to decide how

much to displace to the next row because the next row’s length

may change based on how much the next row itself displaces later.

Therefore, we employ a two-step process where we first find feasible

work assignments that can fit all the rows within a given length

and then search through the feasible solutions to find the optimum.

For the first step, we define the following decision problem.

Definition 1. Given a sparse matrix𝑀 of dimension 𝑝𝑥𝑞 and a
number 𝐾 , is there an assignment such that each value of row 𝑖 either
stays in the 𝑖𝑡ℎ row or is displaced to the 𝑖 + 1𝑡ℎ (mod 𝑝) row (i.e.,
wrap around) and the final matrix’s longest row (i.e., the critical path)
is less than 𝐾 .
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Figure 9: Critical path distribution of four filter sub-matrix
groups in ResNet50

Additionally, we define the following two terms:

Slack rows: A row in𝑀 with a length 𝐶 such that 𝐾 ≥ 𝐶 .
Base rows:A row that does not displace any elements to the adjacent

row below.

With these definitions, we see that a slack rows can accept dis-

placed values from the previous row. However, a slack row may

itself displace some of its values to the adjacent row to satisfy the

decision problem. We also define that a satisfying assignment is

minimal if there are no redundant displacements. An example re-

dundant displacement is one that displaces exactly one value in

each row without changing the longest row length.

If the decision problem has a minimal solution, then there is at

least one slack row that is also a base row (i.e., no value displaced

to the adjacent row). We prove this statement by contradiction. Let

us assume that a minimal solution exists with no base rows so that

each row has displaced at least one value. However, this solution is

not minimal as there is a redundant movement. Hence a minimal

solution must contain at least one base row. In addition, the base

row is always a slack row; otherwise, the row length would exceed

𝐾 so that the solution would not satisfy the decision problem.

Algorithm 1 finds a minimal solution for the decision problem 1

if the solution exists. Because we do not know which slack row is

a base row, the algorithm tries each slack row as a base row. The

algorithm starts at a slack row and at each row greedily fills up the

available slack by displacing from the adjacent row above before

moving to the row above. If this process results in a negative slack

for any row (i.e., row length > K), then the algorithm moves on

to try the next slack row. Only a truly base row would lead to a

solution. The time complexity of this offline algorithm is O(𝑝2).
Given this algorithm to find a minimal solution for the decision

problem, we extend the algorithm to determine the optimal longest

row length 𝐾𝑜𝑝𝑡 . To that end, the extension tries every 𝐾 between

the lower bound of 𝑐𝑒𝑖𝑙 (𝑐𝑜𝑢𝑛𝑡 (𝑀)/𝑝) where count is the number

of values in𝑀 (the longest row cannot be shorter than this bound)

and the upper bound of 𝑞. For larger matrices, the trials can be

binary-searched between these bounds leading to a complexity of

O(𝑝2 log𝑞). Using the row lengths of the minimal solution with

𝐾𝑜𝑝𝑡 , we displace the values of 𝑀 to produce the displaced filter

matrix 𝑂 .

The SUDS assignment compresses the sparse sub-matrices lead-

ing to two key changes in the sub-matrix critical path distribution:

(1) more sub-matrices have shorter critical paths and (2) the critical

path distribution has shorter range and lower variation. Figure 9

shows the distribution before and after the optimal assignment

while scheduling four sparse filter sub-matrices for an intermediate

layer in ResNet50.
Finally, although the cases for small 4𝑥4, 4𝑥8 matrices can be

enumerated exhaustively, especially if offline, the above algorithm

is scalable to larger sizes due to it polynomial time complexity. A

key observation from our proof is that the number of displacements

needed is just 𝑝 − 1 for a 𝑝𝑥𝑞 matrix because the base row does

not displace. Consequently, the hardware can avoid SUDS support

in one of the MACs. Accordingly, we offline rotate the matrix so

that the base row is placed always on the last ((𝑝 − 1)𝑡ℎ) MAC

row avoiding expensive wraparound wires from the last MAC row

to the first (Figure 8). Also, the last row of MACs can use two-

input, instead of three-input, adders. For this rotation, we add a

two-bit field, indicating the rotation amount, to each filter matrix

for adjusting the software index while loading the filter matrix into

the GPU and storing the output matrix into memory. The rest of

the computation stays oblivious of this rotation.

3.3 Systolic scheduling
Recall from Section 2.3 that the tensor core is organized as a large

systolic array of smallerMAC sub-arrays (Figure 3). If the sub-arrays

take different number of cycles to complete due to uneven sparsity,

there would be bubbles in the systolic array. While SUDS optimizes

the smaller sub-arrays’ utilization, the bubbles considerably degrade

utilization as each bubble keeps an entire MAC sub-array idle. In

contrast to Eureka’s unstructured sparsity, 2:4 sparsity incurs no

bubbles because the sub-arrays are guaranteed to have the same

latency. To reduce the number of bubbles, we propose offline systolic

scheduling to feed sparse sub-matrices with the same or that add up

to the same critical path length along each row of the 2𝐷 systolic

array. The critical paths are known from our optimal assignment.

Recall systolic movement from Figure 3. In Figure 10(a), the sub-

matrices𝐴1 in input batch 1 and𝐴3 in input batch 2 take two cycles

each in each of their systolic stages in the top systolic row. The sub-

matrices𝐴2 and𝐴4 take one cycle each in each of their stages in the

bottom systolic row. Every stage takes the same number of cycles,

which may be one or more and may vary across input matrices.

Consequently,𝐴2 waits in place in cycle 4, incurring a bubble as𝐴1

and 𝐴3 continue in their respective stages for their second cycle.

Similarly, 𝐴4 waits in place in cycle 6 as 𝐴3 continues in its stage

for its second cycle. With systolic scheduling (Figure 10(b)), we can

feed either two sub-matrices each taking one cycle adding up to

two cycles (𝐴2 and 𝐴4) or a sub-matrix which takes two cycles in

place of 𝐴2 (not shown), matching 𝐴3’s latency in each systolic

stage. 𝐴2 cannot move in cycle 4 as 𝐴3 continues in its stage for

its second cycle. Instead, 𝐴4, scheduled with 𝐴2 to match 𝐴3’s two

cycles, replaces 𝐴2 in cycle 4.

Boosted by the SUDS work assignment providing many sub-

matrices with short critical paths (Section 3.2), the systolic schedul-

ing achieves high utilization.
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Figure 10: Example for systolic scheduling: (a) original (b) scheduled

Finally, our systolic scheduling is offline. To avoid high band-

width pressure for loading the filter sub-matrices from the D cache

into registers, we limit scheduling only a small number of filter

sub-matrices in one row of the systolic array (e.g., 2). The small

number suffices due to being coupled with the optimal assignment.

Systolic scheduling does not incur much addressing complexity

because the scheduler packs entire sparse filter sub-matrices, not

individual elements. The input filter sub-matrix’s filter identifier

(in a GPU register) is used to, store the corresponding output sub-

matrix (via GPU instructions). The scheduling requires some minor

instruction changes. A register specified in the multiply instruction

indicates the cycle in which an output should be extracted based

on the critical path known to the optimal assignment.

3.4 Other issues
Two other issues are: (1) prevalence of sparsity and unstructured

sparsity’s accuracy, and (2) scalability of Eureka’s multiple tensor

cores.

For the first issue, all sparse accelerators, including Ampere,

need sparsity which exists for most models. Without sparsity (rare),

even Ampere will not work. In fact, unstructured sparsity is more

robust for accuracy than structured sparsity. Still, Eureka incurs

low energy overhead over Ampere for dense models.

For the second issues, one large array (e.g., TPU) and multiple

tensor cores have similar number of compute units (MACs) though

larger arrays have more data reuse (key difference). With a shared

L2, tensor cores achieve similar on-chip reuse as the TPU, making

memory bandwidth sharing moot (if anything, unstructured spar-

sity requires lower bandwidth). That said, multiple tensor cores is

GPU’s choice (which seems to work well), not Eureka’s.

4 METHODOLOGY
To evaluate Eureka, we build a cycle-level simulator modeling vari-

ous sparse architectures and estimate the designs’ area and power

from their Verilog implementations.

Benchmarks: We obtain the sparse models from SparseZoo [18]
with conservative and moderate degree of pruning, ordered by in-

creasing moderate-pruning sparsity in Table 1. We use batches of 32

224𝑥224𝑥3 inputs from ImageNet [5] except for Inceptionv3 which
has an input size of 299𝑥299𝑥3 [28]. For BERT, we use the SQUAD

model [24]. While transformer-based models do have significant

two-sided sparsity and thus favor Eureka, SparseZoo has only one

Table 1: Benchmarks

Benchmark #lay- Unst. fil. dens. & acc. S2TA dens.

ers conservat. moderate act. fil.

% % % % % %

MobileNetv1 27 27 70.9 22 70.1 39 38

Inception-v3 94 18 77.4 16 76.6 - -

ResNet50 53 20 76.1 13 75.3 44 38

BERT-squad 72 20 88.6 10 88.07 50 50

transformer-based model – BERT. Generating our own sparse mod-

els is both time-consuming and expensive, and less credible than

public models.

Simulated systems: We simulate a dense tensor core architecture

(Dense), 2:4 structured-sparse Ampere (which covers STC as well),

one-sided, unstructured-sparse Cnvlutin, two-sided unstructured-

sparse DSTC [29] and SparTen [6], two-sided structured-sparse

S2TA [16], and Eureka with two offline matrix compaction factors

of 2 and 4 (indicated by 𝑃 ). We simulate 432 tensor cores (similar

to Ampere) each comprising a systolic array of four 4x4 sub-arrays

of MACs, and cache and memory (DDR5). Our compute-bound

workloads’ maximum demand is 251 GB/s memory bandwidth

(compared to Ampere’s 1.5 TB/s available bandwidth).

We carefully model DSTC’s outer product operation, which

closely resembles that of SCNN, with 1x8 and 1x16 vectors, crossbar

for scatter-gather to and from the accumulation buffers, and buffer-

ing. We also faithfully model SparTen’s inner product operation

with prefix sum and priority encoder logic for finding matching

non-zero positions in the inputs, and significant buffering and hard-

ware greedy balancing (GB-H) to ensure good compute utilization

(two double-buffered input chunks of 32 FP16 values each with ac-

companying bitmasks and two double-buffered FP!6 output values,

totaling 280 bytes per MAC). S2TA seems to clock-gate the MAC

when there is no matching non-zero filter value for a non-zero acti-

vation value and performs the multiplication otherwise, similar to

EIE [7]. While S2TA’s text is unclear about the no-match condition,

Figure 6d’s clock-gated MAC and Figure 6e’s bitmask before the

multiplexer suggest such idling. Thus, contrary to its name, S2TA

exploits only one-sided structured (activation) sparsity for perfor-

mance and two-sided structured sparsity for energy. By forgoing

two-sided sparsity’s performance, S2TA achieves energy efficiency,
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Figure 11: Performance

as confirmed by S2TA’s 2.1x speedup and 2x energy over SA-ZVCG
which power-gates the MAC upon a zero and is essentially dense for
performance and one-sided, unstructured sparse for energy. S2TA

compares against SparTen and SCNN only for energy but not per-

formance! While S2TA’s activation sparsity is different for each

layer, we use the mean sparsity for each benchmark (Table 1), the

only data listed in the paper. S2TA’s filter sparsity is 2:4. While

Ampere/STC, DSTC, S2TA, and Eureka are all tensor core-based,

we scale non-tensor-core-based Convlutin and SparTen to match

Eureka (same number of MACs, and cache and memory, but more

hardware than Eureka). In fact, SparTen is more energy-efficient at

smaller scales than the original, and performs better than Eureka
for two-sided benchmarks, as shown in Figure 11.

Area/Power estimates from ASIC synthesis: To estimate area

and power, we synthesize individual components such as FP16

MACs, multiplexers and crossbars implemented in Verilog using

the Synopsys Design Compiler, FreePDK-15 nm [17] along with

NanGate-15 nm open cell library. For power, the default estimates

from FreePDK-15 nm deviate from expected values by orders of

magnitude. Instead, we synthesize our RTL implementation using

FreePDK-45 nm and then scale the power estimates from 45 nm to

15 nm [27].

5 RESULTS
We present the following results:(1) performance comparison of

Eureka against 2:4 sparsity and Cnvlutin [2], both of which are

one-sided sparsity schemes, (2) performance isolation of Eureka’s
techniques, (3) energy comparison of the schemes, (4) performance

sensitivity to the MAC array size, and (5) area, power, and delay

estimates from an ASIC synthesis of an RTL implementation of

Eureka.

5.1 Performance
We compare Eureka to dense tensor core (Dense), 2:4 structured

sparse architecture (Ampere/STC), Cnvlutin-like, DSTC, SparTen and

S2TA. While Cnvlutin is designed specifically for convolutions with

one-sided unstructured, sparse feature maps, Cnvlutin-like is an
adaptation with sparse filters. Cnvlutin-like inherits not only Cn-

vlutin’s equivalent of compaction factor of 4 but also its lack of

targeted load balancing. For Eureka, we vary the compaction factor

𝑃 as 2 and 4 (a 4𝑥4𝑃 matrix is compacted into a small matrix). We

also show an ideal version of Eureka where the speedup is lim-

ited only by one-sided sparsity (1-sided Ideal). The X-axis shows
conservatively-pruned (cons) and moderately-pruned (mod) mod-

els. S2TA uses only one version of structured sparsity (not cons
or mod); S2TA is shown in the mod clusters. Further, S2TA does

not run Inceptionv3 whose structured activation sparsity is hence

unavailable. We show the mean to the right (sans Inceptionv3 for
S2TA). However, because modern DNN workloads are dominated

by DNNs other than CNNs such as transformers [11], we show a

representative mean (rep mean) with BERT’s weight at 75% and that

of the rest (CNNs) at 25%. This 75-25 split is shown by TPUv4i [11].

Figure 11 shows performance normalized to that of Dense on the

Y-axis and the X-axis shows the benchmarks in the order of increas-

ing moderately-pruned sparsities (Table 1) to capture the perfor-

mance trends. The bars for conservative and moderate pruning for

each benchmark are separated for clarity. Across the benchmarks,

Ampere/STC achieves 2𝑥 speedup over Dense as expected from 2:4

sparsity. Exploiting unstructured sparsity provides higher opportu-

nity for both Cnvlutin-like and Eureka. However, Eureka performs

better than Cnvlutin-like which lacks load balancing. Increasing

Eureka’s compaction factor from 2 to 4 improves the compute uti-

lization, pushing the speedups closer to 1-sided Ideal. In addition

to compaction, Eureka’s load balancing (SUDS and systolic sched-

uling) efficiently capture most of the opportunity via only local

displacement.

Despite being two-sided, DSTC does not achieve higher speedups

than Eureka for the CNNs, which have reasonable two-sided spar-

sity, because of (1) being power- and area-limited to four 4x4 cross-

bars which can route upto only 16 partial products out of a max-

imum of 64 in DSTC’s 8x8 array (16 accumulation buffer values

per cycle, as stated in [29]), and (2) the lack of load balancing.

DSTC discusses these limitations, which result in around 5x lower

speedups than the opportunity exposed by two-sided sparsity (e.g.,

DSTC shows around 30-200x opportunity for BERT’s individual

layers but only 7-9x speedups). In our results, DSTC captures similar

fractions of the opportunity. Unlike CNNs, BERT does not include

ReLU resulting in nearly-dense activations and lower opportunity
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Figure 12: Isolating the impact of Eureka’s techniques

for DSTC. Further, DSTC incurs heavy load imbalance in BERT be-

cause of large chunks of high sparsity in the filters. In contrast, the

two-sided SparTen achieves higher speedups than Eureka for the
CNNs though at the cost of energy, as seen next. However, SparTen
has worse speedups than Eureka for BERT because BERT’s coarse

filter sparsity pattern implies that large parts of the nearly-dense

activations are fetched and skipped over wasting time and energy,

despite SparTen’s GB-H. In contrast, Eureka’s SUDS fills the sparse
chunks with non-zero weights from elsewhere to achieve good uti-

lization. Being essentially one-sided for performance with around

50% density (Section 4), S2TA achieves speedups similar to those of

Ampere/STC, except for BERT whose activations are nearly dense.

Because our workloads are highly compute-intensive, the memory

system accounts for only 9-13% of the execution time in all the

architectures (not shown to avoid clutter).

On average, Eureka 𝑃 = 4 is 2.4𝑥 faster than A100 (mean). The

more power-efficient variant, Eureka 𝑃 = 2, performs 2.0𝑥 better

than A100. Due to its limitations,DSTC’s mean is only slightly better

than that of Cnvlutin-like. The two-sided SparTen achieves higher

mean speedups than Eureka of 5.5𝑥 over A100. Being one-sided for

performance, S2TA’s mean is similar to A100’s. Because rep mean
weighs BERT more than the CNNs, the rep mean speedups for all

the schemes are close to those of BERT where Eureka significantly
outperforms SparTen.

Our key insight that a slight relaxation of output stationarity

suffices to achieve load balance most of the time (Section 1) is borne

out by the modest gap between Ideal and Eureka. This gap exists

because SUDS’s local displacement cannot achieve perfect utiliza-

tion for some inputs in contrast to unconstrained displacement.

However, capturing this gap requires foregoing output stationarity

with the accompanying costs of buffering and routing, which may

not be justified.

5.2 Isolation of Eureka’s techniques
To isolate the impact of compaction, SUDS, and systolic scheduling,

we add each of these techniques in a progressive manner. We start

with unoptimized Eureka (Eureka-unopt) and progressively add (1)

compaction with a factor of 4, (2) SUDS with a greedy work as-

signment (Greedy SUDS), (3) SUDS with optimal work assignment

(Optimal SUDS), and (4) systolic scheduling (Eureka). Lastly, we
also show full Eureka including systolic scheduling but without

SUDS (Eureka-no-SUDS). In Figure 12, the Y-axis shows speedups

normalized to Dense. From the left, Eureka-unopt does not exploit
much of the opportunity because of uneven sparsity, incurring

as many cycles as the longest row length. Next, compaction im-

proves utilization by packing more non-zeros into the columns. The

greedy and optimal versions of SUDS shorten the critical path to

boost performance. Adding systolic scheduling (i.e., full Eureka)
further improves performance by ensuring fewer pipeline bubbles.

Eureka-no-SUDS is better than Compaction P=4 showing systolic

scheduling’s benefit without SUDS. However, the larger difference

between Eureka and Eureka-no-SUDS than that between Optimal
SUDS and Eureka shows that systolic scheduling is more effective

when the critical paths are shortened by SUDS (Section 3.3). We

see similar trends for all the benchmarks and pruning levels.

5.3 Energy
Figure 13 presents the compute energy including on-chip buffers
estimated using our ASIC synthesis and off-chip memory energy (Y

axis) forDense,Ampere/STC, Cnvlutin-like, Eureka 𝑃 = 2, Eureka 𝑃 =

4, DSTC, SparTen and S2TA normalized to that of Dense. In addition

to our benchmarks, we also include an unpruned, dense model,

Dense Bench, which shows the sparse schemes’ energy overhead for

such models. Accel-sim [13] shows that for dense GEMM kernels,

the workhorse of many ML workloads, running on a GPU, the off-

chip memory’s share of the total energy is 10-20% which is not

surprising given the heavily compute-bound nature of the kernels.

We choose the upper end of the range favoring two-sided schemes

which save memory energy for both activations and filters unlike

Eurekawhich saves only filter memory energy.We setDense Bench’s
compute-memory energy split to be 80-20 by calibrating the relative

energy cost of a memory access with respect to that of a MAC

operation in the Dense architecture. We then apply this relative

cost to the other benchmarks whose compute-memory split may

be different from 80-20 depending on each benchmark’s operations

per byte (e.g, mobilenet has fewer operations per byte and hence

a higher share of memory energy than ResNet50). As before, We

show at the far right the mean and the representative mean, which

do not include Dense Bench.
In Figure 13, as expected, Ampere/STC dissipates more than 50%

energy across the sparse benchmarks due to its 2:4 sparsity after

accounting for the sparsity overheads. Cnvlutin-like and Eureka dis-
sipate lower energy than Ampere/STC due to their higher sparsity

despite their modestly higher overheads. With a compaction factor
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Figure 13: Total energy

of 4 but no SUDS overheads, Cnvlutin-like dissipates slightly lower

energy than Eureka 𝑃 = 2 and Eureka 𝑃 = 4 which employs larger

multiplexers and buffering, and hence dissipates slightly higher

energy, than Eureka 𝑃 = 2. By exploiting two-sided unstructured

sparsity, DSTC dissipates less energy (compute and memory) than

Eureka for the CNNs but not for BERT whose nearly-dense activa-

tions incur high compute energy overhead which outstrips DSTC’s
memory energy advantage over Eureka. SparTen incurs significant

energy overhead due to its prefix sum and priority encoder logic and

large buffering. S2TA exploits two-sided structured sparsity, which

is lower than DSTC’s sparsity, to achieve lower energy than the one-

sided schemes and SparTen but equal to or higher than DSTC. The
exception is BERT where S2TA’s structured sparsity is much lower

than that of the other schemes’ unstructured sparsity (Table 1).

Ampere/STC incurs around 6% average compute energy overhead

for Dense Bench, whereas Eureka 𝑃 = 4 increases this overhead to

around 20%. The higher energy is due to the sparsity hardware

which should be minimal as the same tensor core hardware is used

for dense operations as well. As expected, the two-sided schemes

DSTC and SparTen incur high overheads whereas S2TA remains

efficient by foregoing two-sided sparsity for performance.

Overall, Eureka 𝑃 = 4 saves 3.1𝑥 mean energy over Dense and
1.8𝑥 over Ampere/STC, while Eureka 𝑃 = 2 saves 3.4𝑥 and 1.8𝑥 en-

ergy overDense andAmpere/STC, respectively. Two-sidedDSTC and

SparTen achieve, respectively, slightly worse and worse mean en-

ergy reductions than Eureka whereas S2TA’s mean is overwhelmed

by BERT. As before, rep mean tilts the mean towards BERT where

Eureka achieves significantly lower energy than DSTC, SparTen and

S2TA.
Combining performance (Figure 11) and energy (Figure 13), while

two-sided SparTen achieves better mean performance but higher

mean energy than Eureka, rep mean shows Eureka to be significantly
better in both performance and energy.

5.4 Area, power and delay analysis
Table 2 shows per-MAC estimates for the area and power of the key

components of Ampere and Eureka 𝑃 = 4, as well as DSCT’ cross

bars and SparTen’s prefix sum and priority encoder logic and buffers.

Ampere’s total includes a MAC and a 4-1 multiplexer. Eureka’s total
includes a MAC, a carry-save adder, a 16-1 multiplexer, and two 2-1

multiplexers. Eureka incurs area and power overheads of 6% and

11.5%, respectively, over Ampere. In comparison, only DSTC’s cross

Table 2: ASIC 15 nm Area and power

Component Area (𝜇𝑚2
) Power (𝜇𝑊 )

MAC 1230 771

FP carry-save adder (per MAC) 43 47

16-1 Multiplexer (per MAC) 32 43

4-1 Multiplexer (per MAC) 16 14

2-1 Multiplexer (per MAC) 8 7

DSTC Crossbar (per MAC) 1105 299

SparTen logic (per MAC) 250 21

SparTen buffers (per MAC) 648 30

Total Ampere (per MAC) 1246 785

Total Eureka (per MAC) 1321 875

bars, ignoring any other overheads, and SparTen’s logic and buffers

contribute, respectively, 89% and 72% area and 38% and 6.5% power

over Ampere. Adding other components of these schemes will only

favor Eureka. Finally, our Ampere design achieves 1.66 ns latency

which increases to 1.84 ns (11%) for Eureka. Both latencies will likely
reduce with better commercial tools than our public-domain tools

and some pipelining, enabling 1-2 GHz clocks for both designs.

5.5 Sensitivity to MAC array size
Figure 14 shows the mean and rep mean speedups over Dense for
moderate and conservative pruning, as we vary the MAC array

size as 4x4, 8x8, and 16x16 in two ways: plain scale up (8x8-plain
and 16x16-plain) and systolic scale up using 4x4 as building blocks

(8x8-systolic and 16x16-systolic), as discussed in Section 2.3. In both
dense and sparse tensor cores (i.e., not specific to Eureka), plainly-
scaled-up larger arrays achieve higher reuse (lower memory band-

width and energy) and higher area efficiency (shared buffers). How-

ever, such larger arrays incur slower clocks and higher power (e.g.,

operand broadcast to 8 MACs instead of 4). Further, such larger

arrays both have a higher chance of unbalanced rows despite SUDS

and lose more utilization for the same unbalanced row length than

smaller arrays, causing significant performance loss as shown in Fig-

ure 14. Fortunately, systolically-scaled up larger arrays can achieve

the same reuse and area efficiency as plainly-scaled up larger ar-

rays with modest performance loss, nearly obviating this trade-off.

Across conservative and moderate sparsities, the moderate sparsity
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Figure 14: Sensitivity to array size

distributions are better-balanced than the conservative distributions

leading to fewer systolic bubbles.

6 RELATEDWORK
Two-sided sparse proposals not based on tensor cores [6, 7, 22, 31,

34] improve performance albeit at considerable energy (Section 2.2).

The one-sided Sparse Tensor Core (STC) [35] suggests pruning for

structured sparsity, preceding Ampere’s 2:4 structured sparsity.

Such pruning loses accuracy beyond 75% sparsity while unstruc-

tured sparsity provides much higher opportunity. The Dual-Sided

Sparse Tensor Core (DSTC) [29] closely resembles SCNN except for

using a bit-mask representation like SparTen [6] to reduce SCNN’s

partial sum address calculation overhead [22]. However, by aban-

doning output stationarity like SCNN, DSTC incurs the merge over-

head in outer product, requiring an expensive crossbar for scatter-

gather exactly like SCNN. As such, DSTC’s performance comes

with high energy and area costs for the widely-used transformers

which do not have activation sparsity. As discussed in Section 4,

S2TA [16] exploits one-sided activation sparsity for performance

and two-sided sparsity for energy.

Bit-tactical [4] suggests work stealing from the adjacent bit lanes

using a large look-ahead window for finding bit-level work. Such

windows, when applied to 8- or 16-bit values, incurs considerable

buffering and routing (e.g., [6]). Further, Bit-tactical adopts an on-

line, sub-optimal, greedy approach which does not capture the full

opportunity, as shown in Section 5.2. Our emphasis is on mini-

mal extra hardware for constrained displacement with an optimal

offline algorithm.

Other work [14] improves systolic utilization by combining

sparse columns similar to matrix compaction used in this work

(not our contribution). However, unlike matrix compaction, com-

bining of multiple non-zero values eliminates all but one of the

values and hence, leads to accuracy loss.

A few proposals [1, 4, 25] explore sparsity at bit level, referred to

as bit sparsity. Bit sparsity, however, has the following shortcomings.

(1) Most bit-sparsity is captured already by Booth encoding. (2) The

papers report high bit sparsity (e.g„ 99% or higher [4] implying only

one ’1’ bit for 99 ormore Booth-encoded ’0’ bits). Such unexpectedly-

high bit sparsity stems from unconventional, linear quantization,
mentioned briefly in one of the papers [4], where the entire actual

value range is quantized linearly to capture a few outlier values.

There are only 256 bins in INT8 for the entire real value range

whereas most actual values are clustered closer to zero than not.

Consequently, most of the linear bins are sparse with only a few

outlier values whereas most actual values are crammed into a few

bins near zero (e.g., -2, -1, 0, 1, 2, 3). While these near-zero bins

have more Booth-encoded ’0’ bits giving rise to high bit sparsity,

cramming the actual values into only a few bins would significantly

degrade accuracy. Due to this reason, most real-world DNNs use

information-theoretic, saturating quantization where the outlier

values are saturated to the ’255’ or ’-256’ bins while spreading most

of the actual values over all the 256 bins to retain more information

content of the actual values and hence, high accuracy. However,

such spreading also implies an even split between ’0’ bits and ’1’

bits, and significantly-diminished bit sparsity especially after Booth

encoding.

Proposals on hyper-sparse outer product [10, 21, 26, 32] at-

tempt to improve matrix multiplication for extreme sparsity. The

techniques target large matrices (e.g., 10
6
x10

6
) with orders-of-

magnitude lower sparsities than 1%. These methods involve merg-

ing partial products over large dimensions by storing in memory,

along with expensive hardware for dynamic merging and sorting.

Such methods are not compatible with the much lower sparsities

of DNNs.

7 CONCLUSION
To meet the increasing compute demand for machine learning,

GPUs provide tensor cores for dense matrix multiplication and

structured one-sided (filter-only) sparse matrix multiplication. High

energy efficiency for both sparse and dense operations is a primary

constraint for tensor cores. Because increasing structured sparsity

for higher speedups and energy savings leads to accuracy loss, ex-

ploiting unstructured sparsity is necessary. In contrast to structured

sparsity’s uniformity, unstructured sparsity causes load imbalance.

Previous unstructured sparse custom or tensor core organizations

incur high energy overheads caused mainly by sacrificing (input or

output) operand stationarity in favor of higher utilization.

To address these issues, we proposed Eureka based on the key in-

sight that a slight relaxation of output stationarity can achieve load

balance most of the time while incurring only a modest overhead.

Accordingly, we proposed single-step uni-directional displacement
(SUDS), an offline technique for inference, where a filter element’s

multiplication can either occur in its original position or be dis-

placed to a vacant MAC in the adjacent row below while the accu-

mulation occurs in the original row to restore output stationarity.

We designed an optimal algorithm for work assignment for SUDS.

To mitigate bubbles in the tensor cores’ systolic pipeline due to

the irregularity of unstructured sparsity, we propose offline sys-
tolic scheduling to group together the sparse filters with similar,

statically-known execution times. Our evaluations showed that Eu-
reka improves performance by 4.8𝑥 and 2.4𝑥 , and reduces energy by

3.1𝑥 and 1.8𝑥 over dense and 2:4 sparse (Ampere) implementations,

respectively, and incurs area and power overheads of 6% and 11.5%,

respectively, over Ampere. Eureka’s efficiency and applicability to a

broad array of neural networks make it attractive option for tensor

cores.

REFERENCES
[1] Jorge Albericio, Alberto Delmas, Patrick Judd, Sayeh Sharify, Gerard O’Leary,

Roman Genov, and Andreas Moshovos. 2017. Bit-pragmatic deep neural network

computing. In Proceedings of the 50th Annual IEEE/ACM International Symposium

335



Eureka: Efficient Tensor Cores for One-sided Unstructured Sparsity in DNN Inference MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

on Microarchitecture, MICRO 2017, Cambridge, MA, USA, October 14-18, 2017.
382–394. https://doi.org/10.1145/3123939.3123982

[2] Jorge Albericio, Patrick Judd, Tayler H. Hetherington, Tor M. Aamodt, Natalie

D. Enright Jerger, and Andreas Moshovos. 2016. Cnvlutin: Ineffectual-Neuron-

Free Deep Neural Network Computing. In 43rd ACM/IEEE Annual International
Symposium on Computer Architecture, ISCA 2016, Seoul, South Korea, June 18-22,
2016. 1–13. https://doi.org/10.1109/ISCA.2016.11

[3] Yu-Hsin Chen, Tushar Krishna, Joel Emer, and Vivienne Sze. 2016. Eyeriss:

An energy-efficient reconfigurable accelerator for deep convolutional neural

networks. In 2016 IEEE International Solid-State Circuits Conference (ISSCC). 262–
263. https://doi.org/10.1109/ISSCC.2016.7418007

[4] Alberto Delmas Lascorz, Patrick Judd, Dylan Malone Stuart, Zissis Poulos,

Mostafa Mahmoud, Sayeh Sharify, Milos Nikolic, Kevin Siu, and Andreas

Moshovos. 2019. Bit-Tactical: A Software/Hardware Approach to Exploiting Value

and Bit Sparsity in Neural Networks. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Ma-

chinery, New York, NY, USA, 749–763. https://doi.org/10.1145/3297858.3304041

[5] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. 2009. Im-

ageNet: A large-scale hierarchical image database. In 2009 IEEE Conference on
Computer Vision and Pattern Recognition. 248–255. https://doi.org/10.1109/CVPR.

2009.5206848

[6] Ashish Gondimalla, Noah Chesnut, Mithuna Thottethodi, and T. N. Vijaykumar.

2019. SparTen: A Sparse Tensor Accelerator for Convolutional Neural Networks.

In Proceedings of the 52Nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (Columbus, OH, USA) (MICRO ’52). ACM, New York, NY, USA,

151–165. https://doi.org/10.1145/3352460.3358291

[7] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A. Horowitz,

and William J. Dally. 2016. EIE: Efficient Inference Engine on Compressed Deep

Neural Network. In 2016 ACM/IEEE 43rd Annual International Symposium on
Computer Architecture (ISCA). 243–254. https://doi.org/10.1109/ISCA.2016.30

[8] Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Com-

pressing Deep Neural Network with Pruning, Trained Quantization and Huff-

man Coding. In 4th International Conference on Learning Representations, ICLR
2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings. http:

//arxiv.org/abs/1510.00149

[9] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both

Weights and Connections for Efficient Neural Network. In Advances in
Neural Information Processing Systems 28, C. Cortes, N. D. Lawrence, D. D.
Lee, M. Sugiyama, and R. Garnett (Eds.). Curran Associates, Inc., 1135–

1143. http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-

for-efficient-neural-network.pdf

[10] R. Hojabr, A. Sedaghati, A. Sharifian, A. Khonsari, and A. Shriraman. 2021.

SPAGHETTI: Streaming Accelerators for Highly Sparse GEMM on FPGAs. In

2021 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 84–96. https://doi.org/10.1109/HPCA51647.2021.00017

[11] Norman P. Jouppi, Doe Hyun Yoon, Matthew Ashcraft, Mark Gottscho, Thomas B.

Jablin, George Kurian, James Laudon, Sheng Li, Peter Ma, Xiaoyu Ma, Thomas

Norrie, Nishant Patil, Sushma Prasad, Cliff Young, Zongwei Zhou, and David

Patterson. 2021. Ten Lessons from Three Generations Shaped Google’s TPUv4i. In

Proceedings of the 48th Annual International Symposium on Computer Architecture
(Virtual Event, Spain) (ISCA ’21). IEEE Press, 1–14. https://doi.org/10.1109/

ISCA52012.2021.00010

[12] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,

Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,

Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt

Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,

William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,

Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander

Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve

Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle

Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran

Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,

Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,

Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,

Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo

Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,

Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis of a

Tensor Processing Unit. In Proceedings of the 44th Annual International Symposium
on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM, New York, NY,

USA, 1–12. https://doi.org/10.1145/3079856.3080246

[13] Mahmoud Khairy, Zhesheng Shen, Tor M. Aamodt, and Timothy G. Rogers. 2020.

Accel-Sim: An Extensible Simulation Framework for Validated GPU Modeling. In

2020 ACM/IEEE 47th Annual International Symposium on Computer Architecture
(ISCA). 473–486. https://doi.org/10.1109/ISCA45697.2020.00047

[14] H.T. Kung, Bradley McDanel, and Sai Qian Zhang. 2019. Packing Sparse Convo-

lutional Neural Networks for Efficient Systolic Array Implementations: Column

Combining Under Joint Optimization. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Architectural Support for Programming Languages and Oper-
ating Systems (Providence, RI, USA) (ASPLOS ’19). Association for Computing Ma-

chinery, New York, NY, USA, 821–834. https://doi.org/10.1145/3297858.3304028

[15] Zhi-Gang Liu, Paul N. Whatmough, and Matthew Mattina. 2020. Systolic

Tensor Array: An Efficient Structured-Sparse GEMM Accelerator for Mobile

CNN Inference. IEEE Computer Architecture Letters 19, 1 (2020), 34–37. https:

//doi.org/10.1109/LCA.2020.2979965

[16] Zhi-Gang Liu, Paul N.Whatmough, Yuhao Zhu, andMatthewMattina. 2022. S2TA:

Exploiting Structured Sparsity for Energy-Efficient Mobile CNN Acceleration. In

2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). 573–586. https://doi.org/10.1109/HPCA53966.2022.00049

[17] NCSU. [n. d.]. FreePDK45. https://www.eda.ncsu.edu/wiki/FreePDK15/.

[18] Neural Magic. 2021. Sparse Zoo. https://docs.neuralmagic.com/sparsezoo/

[19] Nvidia. [n. d.]. NVIDIA TESLA V100 GPU ARCHITECTURE. https://images.

nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf

[20] Nvidia. 2022. Nvidia Deep Learning Performance documentation.

https://docs.nvidia.com/deeplearning/performance/dl-performance-

convolutional/index.html. Updated: 2022-May-17.

[21] S. Pal, J. Beaumont, D. Park, A. Amarnath, S. Feng, C. Chakrabarti, H. Kim, D.

Blaauw, T. Mudge, and R. Dreslinski. 2018. OuterSPACE: An Outer Product Based

Sparse Matrix Multiplication Accelerator. In 2018 IEEE International Symposium
on High Performance Computer Architecture (HPCA). 724–736. https://doi.org/10.

1109/HPCA.2018.00067

[22] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W. Keckler, and

William J. Dally. 2017. SCNN: An Accelerator for Compressed-sparse Con-

volutional Neural Networks. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (Toronto, ON, Canada) (ISCA ’17). ACM,

New York, NY, USA, 27–40. https://doi.org/10.1145/3079856.3080254

[23] MdAamir Raihan, Negar Goli, and TorM. Aamodt. 2019. Modeling Deep Learning

Accelerator-Enabled GPUs. In 2019 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS). 79–92. https://doi.org/10.1109/ISPASS.

2019.00016

[24] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang.

2016. SQuAD: 100,000+ Questions for Machine Comprehension of Text.

arXiv:1606.05250 [cs.CL]

[25] Sayeh Sharify, Alberto Delmas Lascorz, Mostafa Mahmoud, Milos Nikolic, Kevin

Siu, Dylan Malone Stuart, Zissis Poulos, and Andreas Moshovos. 2019. Laconic

Deep Learning Inference Acceleration. In Proceedings of the 46th International
Symposium on Computer Architecture (Phoenix, Arizona) (ISCA ’19). ACM, New

York, NY, USA, 304–317. https://doi.org/10.1145/3307650.3322255

[26] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.

Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise

product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[27] Aaron Stillmaker and Bevan Baas. 2017. Scaling equations for the accurate

prediction of CMOS device performance from 180nm to 7nm. Integration 58

(2017), 74–81. https://doi.org/10.1016/j.vlsi.2017.02.002

[28] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew

Wojna. 2016. Rethinking the Inception Architecture for Computer Vision. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2818–2826.
https://doi.org/10.1109/CVPR.2016.308

[29] Yang Wang, Chen Zhang, Zhiqiang Xie, Cong Guo, Yunxin Liu, and Jingwen

Leng. 2021. Dual-Side Sparse Tensor Core. In Proceedings of the 48th Annual
International Symposium on Computer Architecture (Virtual Event, Spain) (ISCA
’21). IEEE Press, 1083–1095. https://doi.org/10.1109/ISCA52012.2021.00088

[30] Da Yan, Wei Wang, and Xiaowen Chu. 2020. Demystifying Tensor Cores to

Optimize Half-Precision Matrix Multiply. In 2020 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 634–643. https://doi.org/10.1109/

IPDPS47924.2020.00071

[31] S. Zhang, Z. Du, L. Zhang, H. Lan, S. Liu, L. Li, Q. Guo, T. Chen, and Y. Chen.

2016. Cambricon-X: An accelerator for sparse neural networks. In 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MICRO). 1–12.
https://doi.org/10.1109/MICRO.2016.7783723

[32] Z. Zhang, H. Wang, S. Han, and W. J. Dally. 2020. SpArch: Efficient Architecture

for Sparse Matrix Multiplication. In 2020 IEEE International Symposium on High
Performance Computer Architecture (HPCA). 261–274. https://doi.org/10.1109/

HPCA47549.2020.00030

[33] Aojun Zhou, YukunMa, Junnan Zhu, Jianbo Liu, Zhijie Zhang, Kun Yuan, Wenxiu

Sun, and Hongsheng Li. 2021. Learning N:M Fine-grained Structured Sparse

Neural Networks From Scratch. In International Conference on Learning Represen-
tations. https://openreview.net/forum?id=K9bw7vqp_s

[34] X. Zhou, Z. Du, Q. Guo, S. Liu, C. Liu, C.Wang, X. Zhou, L. Li, T. Chen, and Y. Chen.

2018. Cambricon-S: Addressing Irregularity in Sparse Neural Networks through

A Cooperative Software/Hardware Approach. In 2018 51st Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO). 15–28. https://doi.org/

10.1109/MICRO.2018.00011

336

https://doi.org/10.1145/3123939.3123982
https://doi.org/10.1109/ISCA.2016.11
https://doi.org/10.1109/ISSCC.2016.7418007
https://doi.org/10.1145/3297858.3304041
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1145/3352460.3358291
https://doi.org/10.1109/ISCA.2016.30
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1510.00149
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
http://papers.nips.cc/paper/5784-learning-both-weights-and-connections-for-efficient-neural-network.pdf
https://doi.org/10.1109/HPCA51647.2021.00017
https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1109/ISCA52012.2021.00010
https://doi.org/10.1145/3079856.3080246
https://doi.org/10.1109/ISCA45697.2020.00047
https://doi.org/10.1145/3297858.3304028
https://doi.org/10.1109/LCA.2020.2979965
https://doi.org/10.1109/LCA.2020.2979965
https://doi.org/10.1109/HPCA53966.2022.00049
https://www.eda.ncsu.edu/wiki/FreePDK15/ 
https://docs.neuralmagic.com/sparsezoo/
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1109/HPCA.2018.00067
https://doi.org/10.1145/3079856.3080254
https://doi.org/10.1109/ISPASS.2019.00016
https://doi.org/10.1109/ISPASS.2019.00016
https://arxiv.org/abs/1606.05250
https://doi.org/10.1145/3307650.3322255
https://doi.org/10.1016/j.vlsi.2017.02.002
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1109/ISCA52012.2021.00088
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/IPDPS47924.2020.00071
https://doi.org/10.1109/MICRO.2016.7783723
https://doi.org/10.1109/HPCA47549.2020.00030
https://doi.org/10.1109/HPCA47549.2020.00030
https://openreview.net/forum?id=K9bw7vqp_s
https://doi.org/10.1109/MICRO.2018.00011
https://doi.org/10.1109/MICRO.2018.00011


MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada Ashish Gondimalla, Mithuna Thottethodi, and T. N. Vijaykumar

[35] Maohua Zhu, Tao Zhang, Zhenyu Gu, and Yuan Xie. 2019. Sparse Tensor Core:

Algorithm and Hardware Co-Design for Vector-Wise Sparse Neural Networks

on Modern GPUs. In Proceedings of the 52nd Annual IEEE/ACM International

Symposium on Microarchitecture (Columbus, OH, USA) (MICRO ’52). Association
for Computing Machinery, New York, NY, USA, 359–371. https://doi.org/10.

1145/3352460.3358269

337

https://doi.org/10.1145/3352460.3358269
https://doi.org/10.1145/3352460.3358269

	Abstract
	1 INTRODUCTION
	2 Background
	2.1 Deep neural networks
	2.2 Sparsity in DNNs
	2.3 Tensor Core

	3 Eureka
	3.1 Single-step uni-directional displacement
	3.2 Optimal SUDS work assignment
	3.3 Systolic scheduling
	3.4 Other issues

	4 METHODOLOGY
	5 RESULTS
	5.1 Performance
	5.2 Isolation of Eureka's techniques
	5.3 Energy
	5.4 Area, power and delay analysis
	5.5 Sensitivity to MAC array size

	6 Related work
	7 Conclusion
	References

