
Photon: A Fine-grained Sampled Simulation Methodology for
GPUWorkloads

Changxi Liu
National University of Singapore

Singapore

Yifan Sun
College of William & Mary

USA

Trevor E. Carlson
National University of Singapore

Singapore

ABSTRACT
GPUs, due to their massively-parallel computing architectures, pro-
vide high performance for data-parallel applications. However, ex-
isting GPU simulators are too slow to enable architects to quickly
evaluate their hardware designs and software analysis studies. Sam-
pled simulation methodologies are one common way to speed up
CPU simulation. However, GPUs apply drastically different ex-
ecution models that challenge the sampled simulation methods
designed for CPU simulations. Recent GPU sampled simulation
methodologies do not fully take advantage of the GPU’s special
architecture features, such as limited types of basic blocks or warps.
Moreover, these methods depend on up-front analysis via profiling
tools or functional simulation, making them difficult to use.

To address this, we extensively studied the execution patterns
of a variety of GPU workloads and propose Photon, a sampled
simulation methodology tailored to GPUs. Photon incorporates
methodologies that automatically consider different levels of GPU
execution, such as kernels, warps, and basic blocks. Photon does
not require up-front profiling of GPU workloads and utilizes a light-
weight online analysis method based on the identification of highly
repetitive software behavior. We evaluate Photon using a variety
of GPU workloads, including real-world applications like VGG and
ResNet. The final result shows that Photon reduces the simulation
time needed to perform one inference of ResNet-152 with batch
size 1 from 7.05 days to just 1.7 hours with a low sampling error of
10.7%.
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1 INTRODUCTION
General-Purpose Graphics Processing Units (GPUs) are widely used
to accelerate data-parallel applications in domains such as big data
analysis [12, 30], machine learning [1, 14], and physics simula-
tion [17, 34]. Because of their massively-parallel computing archi-
tectures, GPUs have become one of the most important types of
accelerators that power today’s datacenters [25] and supercomput-
ers [55].

A GPU functions by grouping a subset of threads (usually 32 or
64) into a warp to execute in parallel on shared execution units to
maximize parallelism. One GPU usually contains hundreds to thou-
sands of execution units while each unit processes multiple warps
at the same time, allowing them to overlap long-latency memory
operations. This feature enables GPUs to achieve extremely high
throughput, with today’s GPUs achieving nearly 134 TFLOPs [41]
for single-precision floating point operations.

In the past decades, researchers from academia and industry
have proposed new hardware designs to improve GPU through-
put [6, 7, 16, 24, 39, 54, 63]. To validate these proposed designs,
architects depend on GPU simulators to profile applications, ex-
amine hardware behaviors, and evaluate overall performance. Sim-
ulators are also useful for existing GPU designs, as they allow
performance architects to build a detailed understanding of GPU
workloads, and to find and understand bottlenecks to help software
developers improve their existing algorithms. However, the per-
formance of open-source GPU simulators [5, 32, 52, 56] is quite
low, especially considering the huge workload processed by GPUs.
With performance levels below 30KIPS, these simulators are over
1,000,000,000× slower than the real-time performance of a GPU.
The disparity between the high throughput of GPUs, and the ex-
tremely low simulation rate handicaps hardware researchers and
hinders innovation in this domain. To give one concrete example, an
inference of the VGG-16 [50] convolutional neural network (CNN),
with an input image size of 224×224, requires ≃ 15.5 billion FLOPs,
requiring a simulation time of 3.44 days to evaluate the complete
workload. Therefore, alternatives that allow researchers to simulate
workloads faster are needed to evaluate next-generation hardware
and software.

Sampled simulation methodologies are one common way to
speed upworkload simulation. Sampling single-threaded workloads
for CPU architectures are mainly derived from two representative
works: SimPoint [48] and SMARTS [60] (profile-driven and statisti-
cal sampling simulation methods, respectively). Moreover, modern
sampled simulation methodologies, including LoopPoint [45], Flex-
Points [59], and BarrierPoint [11], have been proposed for multi-
threaded applications. However, GPUs apply a drastically different
execution model that involves a significantly larger number of
computing cores and threads, challenging the sampled simulation
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methods designed for CPU simulations. As the number of threads
increases, the phase behavior of these workloads can vary due to
the interaction among threads. Therefore, a systematic sampled
simulation solution tailored for GPU execution is needed to enable
faster GPU simulation.

Recently, sampled simulation methodologies [4, 29, 31, 40] have
been introduced targeting GPUs. However, these methods use sam-
pling methodologies similar to CPUs, such as monitoring for a
stable IPC during execution intervals [4, 29], or they do not fully
explore GPU-specific sampling directions, such as intra-kernel sam-
pling [31, 40]. They can potentially miss-out on opportunities to
improve performance as they have not taken into account unique
features of the GPU, like warp-based execution. Moreover, it can
be challenging to utilize existing methodologies if profiling tools
are unavailable for new GPU architectures, or if benchmarks are
too large even for functional simulation [4]. Earlier sampled sim-
ulation techniques that require profiling tools or functional sim-
ulation to conduct up-front analysis could significantly increase
end-to-end simulation time for researchers working to optimize
systems via compiler-hardware co-design [58], optimization algo-
rithms for GPUs [13, 38]. They would now be required to repeat
the pre-profiling process each time the binary is updated.

To facilitate building amore practical sampled simulationmethod-
ology for GPUs, we have extensively studied the execution patterns
seen in GPUs. We find that GPU architecture, different from CPU
architecture, (1) requires specific methodologies as hundreds to
thousands of basic units of work from different levels of GPU work-
loads, including warps, basic blocks, and instructions, simultane-
ously execute and interact with other work at the same level. We
also find that (2) sampled simulation methods should occur at dif-
ferent levels of interest, as no single method can handle all GPU
workloads. This is because some GPU workloads have a huge num-
ber of warps that only contain tens of instructions each, while other
GPU workloads have limited numbers of warps with each warp
executing a significant number of instructions. (3) We also find
that significant, time-consuming up-front profiling is not required
as GPU workloads contain limited types of kernels, warps, basic
blocks, and instructions. These units are often highly repetitive and
demonstrate similar behaviors, creating the opportunity to avoid
analyzing and simulating all of them in a highly detailed manner.

Based on our insights into GPU simulation, we propose Photon,
a systematic methodology to accelerate GPU simulation. Photon
requires no upfront analysis and fully relies on online analysis to ac-
celerate GPU simulation with sampling methods. Photon combines
sampling-based simulation solutions at three different levels, includ-
ing kernel-sampling, warp-sampling, and basic-block-sampling.

Photon provides comprehensive solutions for inter- and intra-
kernel sampling according to different types of GPU workloads.
For inter-kernel sampling, Photon skips detailed simulation of GPU
kernels if one similar kernel has been simulated before. Instead of
using up-front analysis results to decide the similarity, we online
functionally simulate and analyze a sample of warps to understand
the kernel’s phase behavior. GPU kernels are typically combined
with sufficient numbers of warps with limited types, and a subset
of warps can often represent the whole kernel. For intra-kernel
sampling, Photon performs sampled simulation of one GPU kernel

via warp-sampling and basic-block-sampling. Photon automati-
cally switches between sampling different levels of the program
execution, according to runtime information, to achieve a good
compromise between high performance and low simulation error.

We implement Photon on MGPUSim [52], a cycle-level GPU
simulator. The goal of Photon is to enable large-scale system sim-
ulation and empower the community to perform GPU hardware
research and software analysis for different types of GPUworkloads
with different inputs. Overall, in this work, we make the following
contributions:

• We propose Photon, the first sampled GPU simulator that
requires no up-front analysis. Photon supports basic-block-
sampling, warp-sampling and kernel-sampling (as well as a
combination of the three), so that Photon can use sampling
to simulate a large variety of GPU workloads with both high
performance and low sampling errors.

• We evaluate the kernel-, warp-, and basic block-level sampled
simulation of Photon, and the results show that our method
achieves up to 24.65× for the single kernel GPU workloads
over the full detailed simulation with the average sampling
error rate 6.83%.

• We evaluate Photon on real-world applications, including
PageRank, VGG, and ResNet. The final result shows that
Photon reduces the simulation time needed to perform one
inference of ResNet-152 with batch size 1 from 7.05 days to
1.7 hours. Photon achieves 39.1× speedup with a very low
error rate of 10.7% for ResNet-152.

2 SAMPLING GPUWORKLOADS
In this section, we describe the main features of GPUworkloads that
enable fast and accurate sampling in Photon. We also discuss prior
sampled simulation methodologies and some of their limitations.

GPUworkloads.AGPU program is usually comprised of a CPU
and GPU portion. A function call from the CPU side to the GPU side
is called a kernel launch. Usually, one kernel contains a large number
of threads that execute the same program but across different sets
of data. Moreover, the GPU groups a number of threads (typically
32-64) into warps. Threads within a warp always execute the same
instruction at the same time. Additionally, a programmer-defined
number (usually 1-16) of warps can be further organized into blocks.
On a GPU, threads from a block are executed in a single streaming
multiprocessor (SM, which is a computing core on a GPU that
executes instructions).

Similar to CPU programs, GPU programs are also organized as a
list of instructions. These instructions form basic blocks (a group of
instructions with one entry and one exit point). Note that as GPUs
execute instructions at the warp level, basic blocks are also defined
at the warp level, and all of the threads will enter and exit the basic
block at the same point. Basic blocks can be differentiated by their
start PC address and length (the instruction count).

GPU Architecture. The architecture of the GPU has received
increasing attention from both academic and industry researchers,
as it is a powerful platform for parallel processing data [1, 12, 19, 46].
The GPU architecture uses a hierarchy to arrange threads. For
example, AMD GPUs are designed with command processors (CPs),
as well as compute units (CUs) and SIMD units. NVIDIA GPUs are
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built from streaming multiprocessors (SMs) which contain shader
processors (SPs). Compute units (or SPs) are basic calculation units
for GPUs. Threads on GPUs are dynamically scheduled to one
compute unit (CU) and all threads communicate and compete for
memory bandwidth, the use of cache capacity, as well as for other
resources. This can result in a variable, or unpredictable, execution
pattern even if their instructions and inputs are the same.

GPU Simulators. GPU simulators are essential for GPU archi-
tecture exploration and GPU workload analysis. Open-source GPU
simulators can be clustered into execution-driven and trace-driven
based on how the front end of the simulator has been built. Trace-
driven GPU simulators, such as MacSim [21], execute functionally-
generated traces with a timing model to generate simulation re-
sults, such as GPU performance. While trace-driven simulators do
not rely on the functional model, they do require pre-generated
traces, which can make it challenging to evaluate certain design fea-
tures such as dynamic synchronization mechanisms [51] and value-
dependent optimization [54]. On the other hand, execution-driven
GPU simulators, including MGPUSim [52], gem5 APU [8, 23] and
GPGPUSim [5], directly execute the binary, but at the cost of lower
performance due to the need for functional simulation during per-
formance simulation. Other simulators, including Accel-Sim [32]
and NVArchSim [57], support both execution- and trace-driven
modes. Current GPU simulators have shown simulation perfor-
mance that is lower than 30 KIPS [32], as simulators simulate GPU
workloads on far fewer CPU cores than exist in real GPU cores.

Sampled Simulation Methodologies. Sampled simulation
methodologies extrapolate whole application performance through
detailed simulation of key, representative pieces of an applica-
tion. To perform sampled simulation, simulators must support two
modes, fast-forward mode, which allows for functional simulation
only, and detailed mode, which enables the timing model. Sampled
simulators switch between these two modes and split the whole
application into fast-forward mode regions and detailed mode re-
gions. The final results of fast-forward regions are predicted by
other regions in detailed mode.

Sampled simulation methodologies for CPUs can be clustered
into two main directions: statistical sampling and profile-driven
sampling simulation. Statistical sampled simulation [59, 60] uti-
lizes a number of small regions in detailed mode to represent the
whole application as long as these regions are enough to cover
all application behaviors. On the other hand, profile-driven sam-
pled simulation [11, 45, 48] utilizes up-front analysis and clustering
methods to select representative regions to simulate in detail mode.
These regions are then used to determine the overall performance
of the workload. However, with the number of threads increasing,
these applications exhibit complex behaviors, making it challenging
to accurately simulate their performance using traditional sampling
methods.

Sampled simulation for GPU workloads. Prior work has
attempted to use sampling methods to accelerate GPU simulation.
GT-Pin [31] utilizes the kernel name, arguments, and basic block
statistics to select representative portions of GPU programs at a
kernel-level granularity. Sieve [40] points out that using both the ker-
nel name and instruction count allows for both sampling speedups
and low errors. GT-Pin and Sieve only focus on the inter-kernel
level, but we find that speeding-up intra-kernel simulation is also

very important for GPU simulators, as simulating one GPU kernel
takes hours to days if the problem size is large. Yu et al. [61, 62]
utilize a SimPoint-like [49] methodology to detect representative
loops to extrapolate a kernel performance. As this work uses proxy
applications, it can be difficult to extend. Principal Kernel Analy-
sis (PKA) [4] and TBPoint [29] enable sampled simulation of GPU
workloads at both the inter- and intra-kernel levels. One of the
main limitations of these two works is that, to speed up simula-
tion, they require stable values for intra-kernel IPCs. As we will
show in Section 3, there are a number of applications where this
does not hold, preventing these works from improving simulation
performance significantly. In addition, their intra-kernel methods
analyze the instructions executed in the same time interval as a
whole, similar to how multi-threaded sampled simulation method-
ologies work [10, 11, 45]. Ignoring the hierarchical nature of GPU
workloads can result in missed opportunities to accelerate sampled
simulation. Apart from performance, these previous works can also
experience low accuracy because of their assumption of a stable IPC
during execution. For example, GPU workloads, like AES, exhibit
stable IPC at the start of their kernel. However, this measurement
does not account for the instructions that have yet to be executed in
the subsequent steps of these kernels, which may no longer exhibit
the same stability, leading to incorrect results.

Besides these works, analytical modeling methodologies [27, 28,
36] are another choice to evaluate new GPU architectures. Ana-
lytical models are faster than simulator methodologies but these
models are often unable to model the newest architectures. Per-
formance model methodologies are also not sufficient to show the
hardware execution details.

3 OBSERVATIONS
We observe GPU workload executions to gain insights that can
support our decisions in designing the sampled GPU simulator.

Observation 1: GPUexecution does not demonstrate phases.
Contrary to the conclusionmentioned by several research projects [37,
44], we find most GPU workloads do not demonstrate clear intra-
kernel execution phases due to the interaction between threads,
as shown in Figure 1b. While there may be software phases for
each thread, concurrently executing thousands of threads blurs
the boundary of the phases during execution, creating a swarm
effect. This is a major difference with CPU execution. Existing
sampled CPU simulations mainly rely on phase detection meth-
ods [10, 22, 45, 49, 59, 60]. However, our observation shows that
not all CPU simulation methods apply directly to GPUs.

Observation 2: IPCmay not remain stable during the entire
workload execution.While it is expected that the swarm effect
of GPU execution can lead to a stable IPC, our investigation into
a large number of GPU workloads shows that IPC only stabilizes
for some GPU kernels. For example, Figure 1a shows how the IPC
stabilizes over time for ReLU benchmark [35]. However, the IPC in
some other kernels, such as Matrix Multiplication (MM) shown in
Figure 1b, changes frequently. Closely examining the MMworkload
suggests that its IPC variance comes from complex interactions
between warps, such as resource competition and synchronization.

Prior sampled simulation methods [4, 10, 29, 48] are mainly
based on the assumption that application phases repeat, allowing
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(b) Matrix Multiplication (MM)

Figure 1: A GPUs instructions per cycle (IPC) may (see (a))
or may not (see (b)) stabilize over time. These results show
that IPC may not remain stable during the entire workload
execution.

one to extrapolate the execution time of one region based on the
execution time of another region. For example, PKA [4] detects
the IPC and checks for its stability. The two observations above
demonstrate that relying on phase detection and stable IPCs may
miss opportunities to skip detailed simulation. While it still may
be possible to rely on IPC values, this observation suggests that a
multi-layer sampled execution methodology may be needed.

Observation 3: Basic blocks’ execution time can be stable
over time. Basic blocks are consecutive instructions with only
one entry point (e.g., a redirectable label) and one exit point (e.g.,
a branch instruction) [47, 48]. Basic blocks are labeled by the PC
of their first instructions. For GPU workloads, the basic block we
define is not the same as the one traditionally defined by compilers
(where basic blocks end with a branch instruction). In addition,
our methodology ends basic blocks using instructions that cause
inter-warp synchronization. Specifically, Photon uses s_barrier
in addition to branch instructions as the ending of basic blocks.
We do not consider atomic instructions as MGPUSim does not
currently support these instructions, but future work could evaluate
these instructions as well. We consider these extra instructions to
distribute the latency caused by interactions among warps into
their respective basic blocks.

We also considered additional special instructions that synchro-
nize threads inside thewarp. For example, the instruction, s_waitcnt,
isolates memory accesses so that a single basic block will not con-
tain different sets of unrelated memory accesses. The evaluation of
these instructions is left for future work.

We select two kernels, which are shown in Figure 2 and Figure 3,
as examples of regular and irregular applications, and we see that
other benchmarks evaluated also demonstrate similar behavior. Ir-
regular applications, which are discussed by PKA [4], are difficult to
sampled simulate due to their complicated memory access patterns
and the workload imbalance among warps. Regular applications,
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(a) MM : A regular application with a large kernel.
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(b) SpMV : An irregular application with irregular memory accesses.

Figure 2: Execution time and variance of the dominating (in
terms of execution time) basic block in the MM and SpMV
applications. These results demonstrate that the variance,
which is used as the threshold by prior works [4, 29] to deter-
mine run time stability, cannot always successfully predict
stabilization as some applications’ basic blocks stabilize at
multiple stable regions.

on the other hand, have balanced workloads and regular memory
access patterns across warps.

Figure 2 shows that the execution time of basic blocks can vary
along with the application execution. We initialize the block indices
in an ascending order based on the retirement time of basic blocks,
as this facilitates the collection of online execution information
once the basic blocks have completed their processing. Note that
we define the execution time of basic blocks by the time interval
between the issue time of the first instructions for the basic block
and its next basic block. We find that utilizing the variance directly,
as employed in prior works [4, 29] as a threshold, misses oppor-
tunities to detect if the basic block’s execution time is stable. For
example, the global variances of MM and SpMV in Figure 2 are
31.93 and 2.63, respectively. In addition, using variance, without
examining the entire execution, could lead to the determination of
false stable regions, as seen in Figure 2.

We also observe that the relationship between the issue and
the retired time of basic blocks can help us to better understand
the workload. As shown in Figure 3, the dots, which represent
the issue and retired time for basic blocks, show a regular pattern
that can be used, regardless of whether they belong to regular or
irregular applications. These regular patterns are because a large
number of threads average out of the influence of complicated
interactions among threads, including memory access patterns and
thread communication.

Observation 4: Warps for regular application can be stable
overtime. Warps are the basic task unit for GPU workloads and
warps usually process the same instructions but with different input
data. The performance of warps executing the same instructions
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(a) MM : A regular application with a large kernel.
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(b) SpMV : An irregular application with irregular memory accesses.

Figure 3: The relationship between the issue and retired time
of the dominating (in terms of execution time) basic block
in the MM and SpMV applications. These results show that
this relationship can be utilized to detect if the basic blocks’
execution time is stable.
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(a) MM : A regular application with a large kernel.
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Figure 4: The corresponding relationship between the issue
time and retired time of warps each benchmark. Plot (a)
shows that this relationship can be used to detect if thewarps’
execution time is stable for regular applications. Plot (b)
shows that we can utilize this relationship to identify if the
execution time of warps is variable for irregular applications.

and inputs can also be different due to memory contention, and
micro-architecture status, like TLB contents, which is affected by
prior and current warps. We define warps of the same type as those
that execute identical sequences of instructions during their execu-
tion, independent of whether threads inside a warp are masked as
being executed or ignored. Specifically, if two warps have the same

Warp (type0)
BBV0

Weight0

●●●

Warp (typen)
BBVn

Weightn

GPU BBV

Figure 5: GPU BBV: the feature vector to capture the behavior
of one GPU kernel. Warps of the same type are those that
execute identical sequences of instructions during their exe-
cution and share the same BBV. Weights are the portion of
warps in each type with respect to the total number of warps
in the kernel. GPU BBVs are combined with the weighted
BBVs.

Basic Block Vectors (BBVs), they belong to the same type. BBVs are
often used in CPU-based sampling methodologies [11, 45, 48] to
determine phase similarity. A BBV is a list of basic blocks executed
at least once during program execution, identified by the program
counter of the first instruction of the basic block. SimPoint [48]
points out that if two portions of a program have similar BBVs,
they share similar execution behavior. For GPU workloads, warps
executing identical sequences of instructions have the same BBVs.

Regular applications, like ReLU, have only one or a small number
of warp types, whereas irregular applications, like SpMV, have a
large number of warp types due to different loop iterations, data-
dependent branch divergence, etc. A warp is issued from the GPU
scheduler to the calculation units and then sends the completion
message to the GPU scheduler to release its resources after it fin-
ishes all instructions. We consider the issue time and retired time
of warps by the time it is scheduled to the calculation unit and the
time it finishes all instructions, respectively.

Referring to the basic block level method, we analyze the rela-
tionship between the issue time and retired time for regular and
irregular applications, and the results are shown in Figure 4. We
observe that the retired time of warps for regular applications, like
MM, has the same pattern as that of the basic block level. This is
because warps for regular applications tend to execute the same
instructions, but with different data. However, for irregular appli-
cations like SpMV, warps have different tasks and memory access
patterns are also different from each other.

Observation 5: GPU Kernels with similar GPU BBV have
similar IPC. Similarities between kernel invocations, as well as
their implication in sampled simulation, as been studied in prior
work [4, 40]. All prior methods focus on counting the number of
handpicked features (e.g., each type of instructions, warps). How-
ever, we find limitations with these methods as it can often lead
to mis-clustering: 1) completely different kernels may be clustered
together due to similar feature counts and 2) similar kernels may
not be able to be grouped due to count difference. Therefore, a more
sophisticated method beyond simply using feature counting needs
to be designed.

For multi-threaded CPU workloads, prior methodologies, includ-
ing BarrierPoint [11] and LoopPoint [45], directly merge BBVs of
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Figure 6: The IPC of kernels from all convolution, pooling, and dense layers of VGG-16. We cluster them based on GPU BBVs
and the results show that kernels in the same cluster have similar IPC.

each thread together. However, these methods do not directly ap-
ply to GPU workloads as GPU workloads contain a significantly
larger number of threads that are dynamically scheduled. We find
that directly using multi-core CPU BBV clusters GPU workloads
with similar execution behaviors into different groups due to this
execution model.

GPU BBVs, as shown in Figure 5, are designed based on BBVs to
capture the phase behavior of one GPU kernel. We first indepen-
dently calculate BBVs for each warp and then project these BBVs
into fixed-size BBVs (We use 16) to improve online clustering per-
formance. Since warps with similar BBVs indicate similar execution
behavior, we can easily cluster the warps if they have the same
BBV. With the warp clustered, we then calculate the portion of
warps in each cluster with respect to the total number of warps
in the kernel ({weight0, ..., weight𝑛}). Finally, the weighted BBVs
are ordered according to a descending order based on the weights,
and the GPU BBV is formed by listing the weighted (multiply the
weight of BBVs with each BBV value) BBVs.

Figure 6 shows that Photon utilizes GPU BBVs to cluster all
kernels from convolution, pooling, and dense layers of VGG-16.
We can see kernels with similar GPU BBVs tend to have similar
IPC. We also find that GPU kernels with similar BBVs and the same
number of warps have a higher similarity than kernels with solely
similar BBVs.

4 THE PHOTON METHODOLOGY
In this section, we propose a sampled GPU simulation methodology,
Photon, which aims to enable sampled simulation for a large variety
of GPU workloads. Photon employs a multi-tiered solution that in-
cludes kernel-sampling, warp-sampling, and basic-block-sampling.
As described previously, GPU kernels are highly diverse and one
method may not always be applicable. The multi-tiered solution
ensures a wide coverage of applications that can be accelerated by
Photon. Additionally, Photon does not require any up-front anal-
ysis. We believe any up-front analysis harms generality and can
limit use cases (e.g., adding a new instruction or using different
compilation options). Photon is embedded into our simulator so
that researchers can easily use it in the same way as they would
when running a simulator without sampling.

When starting the simulation of each kernel, Photon first decides
if the kernel execution time can be predicted using kernel-sampling.
If not, Photon will then attempt to use basic-block-sampling as it
takes less time to detect. Meanwhile, the warp-sampling detector

runs in parallel and Photon switches to warp-sampling when the
criteria are satisfied as warp-sampling is faster.

Sampling Warps. Sampling GPU workloads at the warp level
avoids functionally emulating instructions inside warps and can
significantly reduce simulation time. Warp-sampling applies to ap-
plications with a large number of warps, with most warps executing
the same instructions (according to Observation 4).

Sampling Basic Blocks. In large-warp kernels, the finishing
time of the first warp is usually close to the finishing time of the
GPU kernel, leaving limited opportunities to extrapolate the rest
of the kernel execution. For example, for several inputs, the first
warp of MM finishes after most instructions are completed. Also,
basic-block-sampling works for irregular applications (e.g. SPMV)
as it breaks down the kernel into smaller elements and can better
utilize the statistical properties.

Sampling Kernels. GPU workloads, especially real-world ap-
plications like VGG-16, usually contain more than one GPU kernel.
Photon avoids detailed simulation of duplicate GPU kernels by
utilizing Observation 5 and GPU BBVs.

Basic-block-sampling effectively accelerates simulation of irreg-
ular workloads, by considering divergence and synchronization in
the statistical model. For divergence, single-threaded or 64-thread
execution will have similar latencies in most cases, and hence, we
do not need to take special consideration for divergence, at least
for AMD GPUs. For synchronization, as most of the warps will
perform synchronization at the same point, the synchronization
latency will also stabilize, which can lead to stabilization of the exe-
cution time of warps. Therefore, our statistical model can also cover
variable synchronization latency to a certain degree. However, Pho-
ton currently does not accelerate GPU workloads with extremely
complex or long patterns of repeated behaviors as the methodology
currently only keeps track of the last 1024 warps. These patterns
could be analyzed at the cost of reducing sampling performance.
However, according to our experience, 1024 is sufficient for the
workloads evaluated.

We do not consider basic blocks with different synchronization
points. In theory, it is possible that basic blocks may have distinct
synchronization points and may have a distinct execution time.
However, in practice, we do not find applications that can not be
handled by our statistical model with three-level sampling. Photon
falls back to full detailed simulation to ensure sampling accuracy
in cases where stable regions are not detected at any level. Basic
blocks with distinct synchronization points can be discerned via
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Figure 7: Photon online analyzes the distribution of basic
block distributions via parallel functional simulating a sam-
ple of warps (Step 1). Then Photon detailed simulates GPU
workloads, accumulates the rate of stable basic blocks, and
records their execution time (Step 2). Finally, Photon switches
to basic-block-sampling if the rate of stable basic blocks is
larger than the threshold. Photon functional simulates warps
and predicts their execution time at the basic block level (Step
3).

monitoring special registers, like VCC and EXEC for AMD GPUs,
during functional simulation. We leave this for future work.

4.1 Sampling Basic Blocks
The workflow of sampling basic blocks is represented in Figure 7.
In the beginning, Photon functional simulates a percentage (we use
1%) of warps in parallel to collect the basic block distribution for
the GPU kernel. Then Photon starts detailed simulation of the GPU
workload, accumulates the rate of stable basic blocks, and records
the runtime of each type of basic block. Finally, Photon switches
to basic-block-sampling when the rate is larger than the threshold
(we use 95%). Photon functionally simulates the remaining warps
and predicts their execution time by accumulating the predicted
time of their basic blocks.

The online analysis provides the distribution of basic blocks in
advance so that basic-block-sampling does not require waiting for
rare basic blocks that do not affect GPU workload performance sig-
nificantly, to finish. For example, SpMV, at the end of its execution,
stores its results into the target vector, and that task is finished
by one basic block executed at the end after all warp execution.
However, this basic block does not substantially affect the runtime
of SpMV warps since it only accounts for about 0.6% of all the basic
blocks executed by the SpMV kernel in our experiments. Moreover,
we analyze a sample of warps to ensure that online analysis will not
introduce a large overhead. Figure 8 shows the distribution of basic
blocks for both all warps and a sample of warps. The percentage is
calculated by the total instruction count of these basic blocks to the
instructions of whole kernels. We can see that no matter whether
the applications are irregular or regular, online analysis of a sample
of warps’ basic block distribution is enough.

We then use online detection to determine whether the execution
of each type of basic block is stable. Photon utilizes the least-squares
method to detect their stable status. The least-squares method [9]
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Figure 8: The distribution of basic blocks of all warps and a
sample of warps for regular and irregular applications.

is used to find the best-fit line or curve that passes through a set of
data points by minimizing the sum of the squared residuals between
the observed data and the predicted values of the model. Assume
that we have a set of data {(𝑥0,𝑦0),...,(𝑥𝑛 ,𝑦𝑛)}, we calculate the best-fit
line, 𝑦 = 𝑎 · 𝑥 + 𝑏, using Equation 1.
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As we can see from Figure 3a and Figure 3b, the least-squares lines
for the issue time and retired time of the most frequent basic blocks
are 𝑅𝑒𝑡𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 = 1.00 · 𝐼𝑠𝑠𝑢𝑒 𝑡𝑖𝑚𝑒 + 4.23, and 𝑅𝑒𝑡𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒 =

0.99 · 𝐼𝑠𝑠𝑢𝑒 𝑇𝑖𝑚𝑒 + 4.96, respectively. We observe that the slope
value 𝑎 calculated by the least-squares method is always close to
one for basic blocks no matter which benchmarks we evaluate. We
investigate this observation and conclude that this is because the
execution time of basic blocks is not related to its issue time since
the memory competition and others are stable for GPU systems. In
Figure 3, we can find that at the beginning of GPU workloads, the
𝑎 of the least square line for dots (𝑥 = 𝑖𝑠𝑠𝑢𝑒 𝑡𝑖𝑚𝑒 , 𝑦 = 𝑟𝑒𝑡𝑖𝑟𝑒𝑑 𝑡𝑖𝑚𝑒)
is not close to one. And then the 𝑎 of these dots is close to one after
competition among warps becomes stable.

Photon calculates the rolling slope value 𝑎 of the least-squares
method for the last 𝑛 basic blocks from the same type (we use 2048
across all GPU workloads), in order to leverage the regular pattern
in Observation 3. If the value of |1 − 𝑎 | is less than the threshold
𝛿 (we use 3%), this type of basic block is considered to be stable.
Moreover, we find that some applications might trigger a false stable
signal as 𝑎 falls into a local optimum [33]. We propose to solve this
by also checking the average number of executions with the last
2𝑛 basic blocks and ensuring that their relative difference is also
less than the threshold 𝛿 .

Rare Basic Blocks: Rare basic blocks are basic blocks that are
rarely triggered during execution. Basic-block-sampling requires
predicting the execution of these basic blocks but hard to collect
their data. Rare basic blocks occur in several cases. One example
is that basic blocks in some benchmarks to handle special cases.
For example, one basic block (PC=508, number of instructions=1)
for the benchmark SC is the last instruction of one warp and it is
triggered as this warp is an empty task. Another case is that the
final basic block for handling final results write or others for large
kernel applications, like SpMV.

We process rare basic blocks via a performance modeling method
based on interval analysis, as shown in Figure 9. Firstly, we collect
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Figure 10: Photon online analyzes the distribution of warp
distributions via parallel functional simulating a sample of
warps (Step 1). Warp-sampling can be enabled only when
the rate 𝑟𝑎𝑡𝑒𝑓 𝑟𝑒𝑞 of the most frequent warps 𝑤𝑎𝑟𝑝 𝑓 𝑟𝑒𝑞 is
larger than the threshold. Then Photon detailed simulates
GPU workloads (Step 2). Finally, Photon switches to warp-
sampling if warps are stable and predicts the execution time
of following warps by the average execution time of the last
n warps (Step 3).

the latency for each type of instruction during the detailed simu-
lation so that Photon is not required to consider the multi-warp
model like GPUMech [28]. During the basic block sampling period,
Photon predicts the runtime of rare basic blocks via the interval
model. Photon models the issue and retired time of instructions and
when the dependency happens, postpones the issue time of that
instruction to be after the retire time of the dependent instruction.
For these rare instructions that we never collect, we set their initial
value according to the latency of caches and ALUs.

4.2 Sampling Warps
Warps represent the basic unit of computation in GPU kernels
that are scheduled to compute units during execution. Different
types of warps have different BBVs. Figure 10 shows the workflow
of warp-sampling. Photon first collects the distribution for each
type of warp. If there is one warp dominating the GPU kernel (this
type of warp accounts for more than 95% for all warps), we start
to detect if the execution of the dominant warps is stable during
detailed simulation. Once this warp is stable, Photon switches to
warp-sampling and only simulates the scheduler.

Photon firstly completes online analysis of the distribution of
each warp. We derive this by analyzing a sample of warps to en-
sure both accuracy and performance. Note that the online analysis
overhead of warp sampling is similar to the online analysis for both
basic-block- and warp-sampling as most of the online analysis time
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Figure 11: The distribution of different warp types for a reg-
ular application (SC) and an irregular application (SpMV) of
all warps and a sample of warps.

is spent on functional simulation. Figure 11 illustrates the distribu-
tion for each type of warp of regular and irregular applications for
both all warps and a sample of warps. For regular applications, like
SC, the distribution of warps for all warps and a sample of warps
is similar so that we can use a subset of warps (we use 1% warps)
to decide if warp-sampling should be enabled. For irregular appli-
cations, like SpMV, both a sample of warps and all warps have no
dominant warp, and therefore, we can also disable warp-sampling
by analyzing a subset of warps.

The relationship between the issue and retired time of warps
for regular applications, like MM, has the same pattern as seen at
the basic block level, as shown in Figure 4a. Regular applications
exhibit a predominant warp type, resulting in their warps being
primarily influenced by the microarchitecture status. As a result,
the 𝑎 of regular applications approaches one, which means that the
execution time of the warps in that type is stable. However, in the
case of irregular applications, the execution of warps is influenced
by various factors, such as the instructions executed and memory
access patterns. Consequently, the value of 𝑎 for these applications
tends to deviate significantly from one. For example, the value for
𝑎 of the least squares fitted value for SpMV, shown in Figure 4b,
deviate significantly from one, so the methodology will not enable
sampling this irregular application on the warp level.

Photon starts the detailed simulation and collects the issue and
retired time for all warps for applications with a dominant warp
type based on Observation 4. Once Photon detects the 𝑎 of the
least square method on the last n warps (we set n=1024) is close to
1 (|𝑎 − 1| < 𝛿), Photon will then switch to warp-sampling as shown
in Figure 10, Step 3. By doing so, warp-sampling is automatically
disabled for irregular applications as they do not have a dominant
warp type and the value of 𝑎 deviates significantly from 1. However,
basic-block-sampling (Section 4.1) and kernel-sampling (Section 4.3)
can still be applied for these irregular applications. Similar to basic-
block-sampling, we also check the relative difference for the average
execution time of n and 2n warps to avoid issue of finding a local
optimum. Photon only simulates the scheduler and all execution
time of warps is predicted as the average time of the last n warps
during warp-sampling.

4.3 Sampling Kernels
GPU kernels are the basic units of execution that are scheduled to
execute on the GPU. Instead of depending on offline analysis to
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Figure 12: Photon online generates GPU BBV via paral-
lel functional simulating a sample of warps (Step 1). Then
Photon finds all prior kernels whose distance is less than
the threshold (Step 2). Furthermore, Photon selects kernels
whose warp count is closest (Step 3). Finally, Photon predicts
the execution time of the kernel via the predicted IPC and
instruction count (Step 4). Note that the number of warps
must be equal for kernels whose warp count is less than GPU
cores.

decide the similarity of GPU kernels, we provide an online kernel-
sampling method based on Observation 5.

The workflow of Photon for kernel-sampling is shown in Fig-
ure 12. We first collect the distribution and BBVs for each type of
warp, which is the same as sampling-warps. If both warp-sampling
and kernel-sampling are enabled, we can reuse the analysis data of
warp-sampling. Then we generate online GPU BBV as shown in
Figure 5. As shown in Figure 6, GPU-BBVs generated from different
types of kernels can be clustered into different groups attributed to
the higher variance of warps’ type and distribution.

Furthermore, we select all prior kernels that have similar GPU
BBVs. We select the kernel that has the closest number of warps
since kernels with a similar number of warps usually have similar
IPC. Noted that we notice that for kernels with warps that are less
than the number of GPU cores, their IPC is different compared to
kernels with a large number of warps. That is due to these kernels
having less competition for resources and also less parallelism.
Kernel-sampling requires the warp number to be the same for
sampling accuracy when the number of warps of the kernels is less
than the number of GPU cores.

Finally, we predict the execution time of one kernel 𝐾 via the
predicted instruction count and IPC via the prior GPU kernel, 𝐾 ′.
The instruction count of the entire kernel can be predicted by

#𝑖𝑛𝑠𝑡𝑠 = #𝑖𝑛𝑠𝑡𝑠𝐾 ′ ·#𝑖𝑛𝑠𝑡𝑠𝑠𝑎𝑚𝑝𝑙𝑒
#𝑖𝑛𝑠𝑡𝑠𝐾 ′

𝑠𝑎𝑚𝑝𝑙𝑒

, where #𝑖𝑛𝑠𝑡𝑠 and #𝑖𝑛𝑠𝑡𝑠𝐾
′
are the to-

tal number of instructions executed for 𝐾 and 𝐾 ′, and #𝑖𝑛𝑠𝑡𝑠𝐾
′

𝑠𝑎𝑚𝑝𝑙𝑒

and #𝑖𝑛𝑠𝑡𝑠𝑠𝑎𝑚𝑝𝑙𝑒 are the number of instructions executed of a sam-
ple of warps during online analysis for 𝐾 and 𝐾 ′, respectively. The
IPC of 𝐾 is predicted to be the same as 𝐾 ′.

5 EXPERIMENTAL SETUP
This section describes the experimental setup to evaluate Photon.
We first provide the details of the simulation framework and micro-
architectures that Photon validates. Then we provide the bench-
marks we used to validate the accuracy and performance of Photon.

Simulation Configuration. We modify MGPUSim [52] to sup-
port switching between the detailed mode and fast-forward mode
simulation and implement Photon and PKA inside the simulator.

Table 1: The configuration parameters used for R9 Nano and
MI100 GPU on MGPUSim to evaluate Photon.

Component R9 Nano MI100 [3]
CU 1.0GHz, 64 per GPU 1.0GHz, 120 per GPU
L1 Vector Cache 16KB 4-way 64 per GPU 16KB 4-way 120 per GPU
L1 Inst Cache 32KB 4-way 16 per GPU 32KB 4-way 30 per GPU
L1 Scalar Cache 16KB 4-way 16 per GPU 16KB 4-way 30 per GPU
L2 Cache 256KB 16-way 8 per GPU 8MB 16-way 32 per GPU
DRAM 4GB 32GB

We choose MGPUSim as it is an open-source GPU simulator and
provides a range of tools to monitor GPU workload behavior. We
validate Photon on two different architectures, R9 Nano and MI100,
as shown in Table 1. We use the default scheduling algorithm pro-
vided by MGPUSim. R9 Nano and MI100 are both CDNA architec-
tures that are for computing. We do not use RDNA because RDNA
GPUs are mainly for gaming and 3D rendering and CDNA is the
default architecture for MGPUSim. The MI100 is already the newest
CDNA-architecture-based GPU that is commercially available to-
day. The MI200 and MI300 have been announced but cannot yet be
purchased at this time. We evaluate all experiments on the platform
using the Intel® Xeon® Gold 6132 CPU. The operating system used
is Ubuntu 20.04.4.

GPU workloads. We evaluate Photon on both regular and ir-
regular applications including simple GPU kernels, like ReLU, as
well as larger, real-world applications, like VGG-16, as shown in
Table 2. All kernels are written in OpenCL and then compiled by
the AMD ROCm compiler. The compiler is set to use the default
options. To fully validate each benchmark, we run all benchmarks
using various problem sizes, which are defined by the number of
warps for GPU workloads. Each benchmark is executed over 10
runs, and the kernel execution kernel and wall time of simulating
are averaged.

Accuracy. We select kernel execution time (Sim Time) instead
of the IPC of TBPoint [29] and PKA [4] as the kernel execution
time is the most important feature that GPU users care about when
executing workloads. We validate the absolute error rate of sampled
simulation by comparing the execution time of GPU workloads
with full detailed mode via |𝑇𝑓 𝑢𝑙𝑙−𝑇𝑠𝑎𝑚𝑝𝑙𝑒𝑑 |

𝑇𝑓 𝑢𝑙𝑙
× 100%, where𝑇𝑓 𝑢𝑙𝑙 and

𝑇𝑠𝑎𝑚𝑝𝑙𝑒𝑑 are the GPU workloads execution time of full detailed
mode and sampled methods, respectively.

Performance.We utilize thewall time (Wall Time) of finishing sim-
ulation for GPU workloads to evaluate the performance of Photon
and other methods. Another metric that we used is speedup, which
is calculated by 𝑆𝑝𝑒𝑒𝑑𝑢𝑝 =

𝑊𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑓 𝑢𝑙𝑙

𝑊𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑
, where𝑊𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑓 𝑢𝑙𝑙

and𝑊𝑎𝑙𝑙 𝑇𝑖𝑚𝑒𝑠𝑎𝑚𝑝𝑙𝑒𝑑 are the wall time of completing simulating
GPU workloads using full detailed mode and sampled methods,
respectively.

6 EVALUATION
In this section, we present a comprehensive evaluation of Pho-
ton. We first present the performance and accuracy of Photon by
comparing it with the state-of-the-art work, PKA [4] on different
problem sizes for single kernel GPU workloads. Then we evaluate
Photon using both the R9 Nano and MI100 configurations to show
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Figure 13: The kernel execution time (left y-axis with lines) and wall time (right y-axis with bars) for Full detailed MGPUSim,
PKA, and Photon. The numbers in the parentheses represent the maximum speedup among all problem sizes for each
application.

Table 2: The benchmarks used to evaluate Photon.

Abbr. Suite Workload Description
AES Hetero-Mark [53] AES-256 Encryption
FIR Hetero-Mark FIR filter
SC AMD APP SDK [2] Simple Convolution
MM AMD APP SDK Matrix Multiplication
ReLU DNNMark [18] Rectified Linear Unit
SPMV SHOC [15] Sparse Matrix-Vector Multiplication
PR-X Hetero-Mark PageRank with X nodes.
VGG [50] VGG-16 and VGG-19; batchsize=1
ResNet [26] ResNet-18 (34, 50, 101, 152); batchsize=1

that Photon is robust to microarchitecture changes. Thereafter, we
independently evaluate the effect of different levels of sampling
in Photon both independently as well as together as a complete
simulator. Finally, we evaluate Photon on the larger, real-world
applications.

6.1 Overall Effectiveness
In this section, we compare Photon with the prior work, PKA, using
MGPUSim modeling the R9 Nano. Figure 13 illustrates the results
of MGPUSim configured to use full detailed mode, PKA and Photon,
respectively. Figure 13 demonstrates that Photon achieves up to
24.65× speedup (average speedup 1.87×) with an average simulation
error of 6.83%, while PKA results shows either a significant sampling
error or low performance.

We implement PKA in MGPUSim by referencing the PKA source
code and we use the PKA default parameters: 𝑠 = 0.25where 𝑠 is the
threshold of the IPC variance over the last 3000 cycles. Sampling
simulation speedup is related not only to applications but their

inputs, implementation, underlying architecture, and underlying
simulator. It is therefore expected that different speedups can be
reported with PKA in another environment. Although our PKA
implementation shows a lower sampling speedup for SpMV, our
results also show that PKA achieves a 13× speedup for Matrix
Multiplication, while PKA [4] only reports a speedup of 1.3×.

Small kernel GPU workloads. Small kernel GPU workloads,
including FIR and ReLU, have a large number of warps but their
warps only contain tens to hundreds of instructions each. Figure 13a
and Figure 13b show that both Photon and PKA archive low error
rates and high performance. PKA, especially, outperforms Photon
on FIR benchmarks for problem size including 3K, and 6K. However,
Photon maintains both low sampling errors and high performance
when the problem size is larger than 16K, while PKA is unable to.
This is because that Photon utilizes basic blocks and warps as basic
units so that its basic granularity is larger than PKA, which allows
Photon to have lower performance than PKA with better accuracy.

ComplexGPUworkloads. Complex GPUworkloads, including
SC and MM, are other common GPU kernels. Their number of warp
and instructions per warp are both large. As shown in Figure 13c
and Figure 13d, Photon ensures low sampling errors for all problem
sizes, whereas PKA exhibits significantly high sampling errors for
some problem sizes in SC and MM. For problem sizes 32K and 64K
of MM, Photon achieves a higher error rate as we still have local
optimum issues for some special cases.

Additionally, AES represents another set of complex GPU work-
loads. Unlike SC and MM which have large instruction counts due
to loops, AES has a long instruction sequence, about 400 instruc-
tions, to process different steps of its algorithm. PKA fails to ensure
the sampling accuracy for some problem sizes like 2K and 6K as
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Figure 14: The kernel execution time (left y-axis with lines) and wall time (right y-axis with bars) for Full detailed MGPUSim,
Photon for MI100. The numbers in the parentheses represent the maximum speedup among all problem sizes for each
application.

it does not collect all instructions inside the kernel, while Photon
achieves very low sampling errors for all problem sizes.

Irregular GPU workloads. Irregular applications are a set of
applications whose kernels contain different types of warps. These
applications are difficult for PKA to handle due to their fluctuating
IPC. As shown in Figure 13f, PKA has either low performance or
high error rates for all problem sizes, while Photon achieves up to
24.65× speedup with an average sampling error 18.9% due to its
granularity in basic blocks instead of cycles.

Micro-architecture Independent. We evaluate all benchmarks
with the same problem sizes on MI100 and the results indicate that
Photon is a micro-architecture independent methodology. Figure 14
shows the kernel runtime and wall time of Photon compared to full
detailed simulation. For all benchmarks and problem sizes, Photon
achieves similar performance and low sampling errors, as sampling
R9 Nano. The benchmark MM with the 12K problem size shows a
slightly higher error rate due to the local optimum issue.

We conclude that Photon outperforms PKA and other prior
works due to these methods mostly focusing on kernel-samping
simulation. While PKA’s assumption of stable IPC may hold true
for some GPU workloads, it may not be an accurate predictor of
performance for all types of workloads.

6.2 Effects of Different Sampling Levels
Figure 15 shows the performance of each sampling level and their
combination for Photon. The average error rates for basic-block-
sampling, warp-sampling and Photon are 9.70%, 1.75%, and 6.83%,
respectively.

Small kernel GPU workloads. Small kernels, like ReLU and
FIR, contain tens or fewer basic blocks. For example, ReLu only has
two basic blocks so the threshold of basic-block sampling is easier
to satisfy. Figure 15a and Figure 15e show that basic-block-sampling
contributes most performance improvement for Photon.

Complex kernel GPU workloads. For complex kernels, in-
cluding SC and MM, whose main instructions come from loops,
basic-block-sampling, and warp-sampling simulation work well in-
dividually, and their combination provides an even larger speedup.
For AES, most of the performance improvement comes from warp-
sampling as this kernel contains a long instruction sequence, which
allows warps of AES to stabilize more easily than when basic-block-
sampling.

Irregular GPU workloads. For irregular applications, basic-
block-sampling contributes to the vast majority of the performance
improvement. We notice that for some problem sizes, like a warp
count of 384, basic-block-sampling is worse than Photon and we
determined that it is due to the variance across different executions.
MGPUSim dynamically schedules warps into GPU cores and the
memory access order also causes irregular applications to become
more variable.

We conclude that basic-block-sampling, warp-sampling, and the
combination of both provide both accuracy and performance for a
variety of different types of GPU kernels. We can not depend on
one single method to solve all GPU sampling simulation workloads.

6.3 Real-world Applications
In this section, we present larger, real-world GPU workloads, as
shown in Figure 16, to help demonstrate that Photon yields both
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Figure 15: The kernel execution time (left y-axis with lines) and wall time (right y-axis with bars) for full detailed MGPUSim,
basic-block-sampling (BB-sampling), warp-sampling, and Photon.
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Figure 16: The kernel execution time (left y-axis with lines)
and wall time (right y-axis with bars) for full detailed MG-
PUSim, and Photon. The numbers in the parentheses repre-
sent the maximum speedup for all real-world applications.
The average sampling accuracy for all applications is 4.3%.

high accuracy and performance for a wide range of applications. We
also present the detailed results of VGG-161 in Figure 17 to evaluate
the kernel-sampling, kernel+warp sampling, and Photon, which
enables kernel-, warp- and basic-block-sampling. Note that prior
works provide solutions for kernel-sampling but their methods
depend on pre-processing. Photon utilizes online-analysis and we
include this analysis time into the runtime of Photon. Figure 16
shows that sampling GPU workloads without up-front analysis still
achieves up to a 39.1× speedup with a low average sampling error
rate, 4.3%.

1Only kernel-level sampling is enabled for fc-6 because of a bug in online analysis.
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Figure 17: The absolute runtime error and speedup of kernel-
sampling, kernel+warp-sampling, and Photon for each layer
and whole inference runtime of VGG-16 with batch size 1.
Noted that each layer contains multiple GPU kernels.

Accuracy. Figure 17a shows the sampling error rate for each
layer of VGG-16 and its full runtime. The result shows that kernel-
sampling is the most accurate sampling method. The online GPU
BBVs can capture the behavior of GPU kernels to achieve sampling
accuracy. Adding basic-block- and warp-sampling increases the

1238



Photon: A Fine-grained Sampled Simulation Methodology for GPU Workloads MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

sampling error rate from 4.60% to 8.05%. This error is mainly from
conv5-1, 5-2, and 5-3 as we select larger execution time basic blocks
to predict the kernel runtime.

Speedup. The speedup numbers for the whole VGG-16 using
kernel-sampling, kernel+warp-sampling and Photon are 6.76, 13.08
and 19.71×, respectively. Warp-sampling improves performance by
about 1.9× over kernel-sampling, and basic-block-sampling contin-
ues to increase the sampling performance by 1.5× over the prior two
sampling methods. The result illustrates that basic-block-, warp-
and kernel-sampling can work together to improve the perfor-
mance.

Online/Offline Tradeoff. Although we consider having a high-
speed online profiling solution that allows for a fast turn-around
time between new application updates and simulation results, Pho-
ton also supports offline analysis to further improving sampling
simulation performance. All data that is generated by the online
analysis of kernel-, basic-block- and warp-sampling sampling, is
micro-architecture agnostic. Hardware researchers can reuse these
data to enable sampled simulation of GPU workloads. For example,
our results show that offline Photon reduces the sampling simula-
tion time of VGG-16 from 4.19 hours to 3.76 hours, compared with
the original, online version of Photon.

7 CONCLUSION
In this paper, we propose a new sampled simulation methodology,
Photon, that can optimize sampling based on application behav-
ior across the basic block, warp, and kernel levels. The evaluation
of Photon shows that basic-block-sampling, warp-sampling, and
kernel-sampling (both independently, as well as together in Pho-
ton) can successfully simulate a variety of GPU workloads. Finally,
we evaluate Photon on a wide range of real-world applications to
demonstrate its high sampling accuracy and performance. For ex-
ample, Photon reduces the simulation time needed to perform one
inference of ResNet-152 with batch size 1 from 7.05 days to just 1.7
hours, with a very low sampling error of 10.7%; previous works [4]
tend to show higher errors for large real-world applications.
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A ARTIFACT APPENDIX
A.1 Abstract
This artifact provides all of the information that is required to use
the Photon methodology. We provide a simulator that can run both
detailed and sampled simulation. We also provide scripts to help
simulate and collect all of the results presented in the paper.

A.2 Artifact check-list (meta-information)
• Algorithm: Photon
• Program: Go, Python
• Compilation: Go
• Run-time environment: Docker

• Hardware: Machine with at least 32 cores.
• Metrics: Wall time and simulation time
• Output: Plain text, tables, figures
• Experiments: Run benchmarks with the simulator and collect
data

• How much disk space required : ≈8GB
• How much time is needed to complete experiments ?: ≈ 24
hours

• Publicly available?: Yes
• Workflow framework used?: MGPUSim

A.3 Description
We provide a Dockerfile to help users easily set up the experi-
mental environment. Within the Dockerfile, we set up the Go and
Python environments, as well as all necessary environment vari-
ables (PATH, etc.). Note that MGPUSim is a multi-threaded simu-
lator and our Python script maintains a thread pool (set to 8) to
help evaluate multiple benchmarks at the same time. We suggest
evaluating N benchmarks at the same time, where N is the 1

4 of the
hardware core count. The default output data is in JSON format
and stored in the ${HOME}/gpudata directory. The Python script
also includes a -check option to read the results and display the
results.

A.3.1 How to access. The Dockerfile and its related scripts are
included at Zenodo [42, 43]. We provide the Dockerfile to automat-
ically download all software and set up the execution environment.

A.3.2 Hardware dependencies. We suggest using a server with at
least 32 cores and 128GB memory to evaluate the results of Photon.

A.3.3 Software dependencies. The Internet is required for MG-
PUSim to download all dependencies.

A.3.4 Data sets. The data sets used in this work are included with
Photon.

A.4 Installation
Once the Dockerfile and its related scripts are downloaded, build
the Docker environment via the make_docker.sh script.

$ ./make_docker.sh

This script will pull all code that we modified to build Photon.
All the path variables are set via this script.

Once the setup is done, use the run_docker.sh to run the con-
tainer that is generated via the previous script make_docker.sh.

$ ./run_docker.sh

A.5 Evaluation and expected results
Single kernel applications. The Python script testallbench.py
inside the directory sampledrunner of the sampled-mgpu-sim repos-
itory is can be used to generate all results in the paper for single
GPU kernels (Figure 13, Figure 14 and Figure 15). Note that the first
time this is run, it will automatically download and install the go
dependencies for Photon, and compile the benchmark binaries for
evaluation.
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For example, to generate the data of Figure 13 and Figure 15, run
the command:

$ ./testallbench.py

Once the execution finishes, use the command:

$ ./testallbench.py -check

to collect results and export the result file r9nano.xlsx into
the micro2023_figures repository for further steps to generate
Figure 13 and Figure 15.

To generate the data and export the result file mi100.xlsx for
Figure 14, add the parameter -arch=mi100. The -n option is used
to set how many applications to evaluate at the same time. And -h
gives help information.

Real-world application. For the results of real-world applica-
tions in Figure 16 and Figure 17, we provide scripts for deep learning
applications (testdlapps.py) and PageRank (testpagerank.py).
For example, to run VGG-16, use the command ./testdlapps.py
-bench=vgg16 and then utilize ./testdlapps.py -bench=vgg16
-check to generate the results of VGG-16 and export the result file
vgg16.xlsx. Other applications are similar.

Results.We provide both the scripts and the data we used to cre-
ate all the result figures within the micro2023_figures repository.
Prior steps will export files of new data and overwrite the original
files inside the micro2023_figures repository. To generate fig-
ures for the new data, simply run scripts after overwriting files via
prior steps. To generate Figure 13, Figure 14 and Figure 15, execute
the python scripts r9nano.py, mi100.py and r9nanolevels.py,
respectively. Running vgg16.py and vgg16speedup.py will auto-
matically generate Figure 17. Generating Figure 16 is different with
others. New data should be manually copied into the file all.xlsx
for each application before running all.py.

A.6 MLCommons
We have added support to evaluate Photon using the MLCom-
mons CM automation language [20]. Check the README inside
the mlcommons directory for details.

A.7 Methodology
Submission, reviewing and badging methodology:

• https://www.acm.org/publications/policies/artifact-review-and-
badging-current

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html
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