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ABSTRACT 
Recent studies have shown that users of visual analytics tools can 
have difculty distinguishing robust fndings in the data from sta-
tistical noise, but the true extent of this problem is likely dependent 
on both the incentive structure motivating their decisions, and the 
ways that uncertainty and variability are (or are not) represented 
in visualisations. In this work, we perform a crowd-sourced study 
measuring decision-making quality in visual analytics, testing both 
an explicit structure of incentives designed to reward cautious 
decision-making as well as a variety of designs for communicating 
uncertainty. We fnd that, while participants are unable to perfectly 
control for false discoveries as well as idealised statistical mod-
els such as the Benjamini-Hochberg, certain forms of uncertainty 
visualisations can improve the quality of participants’ decisions 
and lead to fewer false discoveries than not correcting for multiple 
comparisons. We conclude with a call for researchers to further 
explore visual analytics decision quality under diferent decision-
making contexts, and for designers to directly present uncertainty 
and reliability information to users of visual analytics tools. The 
supplementary materials are available at: https://osf.io/xtsfz/. 
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1 INTRODUCTION 
Imagine that you are an analyst charged with the responsibility 
of identifying the profts of stores of a company. The company 
operates in 10 diferent regions, each of which has 200 stores. The 
company’s manager have recently implemented an ambitious new 
store policy, and wants you to assess the impact of the new pol-
icy on the stores’ proftability. However, only 20 of the stores in 
each region have provided you their fnancial reports. To assess 
proftability, you use an exploratory data analysis (EDA) system to 
create visualisations of the profts of the 20 stores in each of the 
10 regions that you have data for; you then calculate the average 
proft in each region and quickly identify the regions which are 
likely to have been proftable on average. 

Modern visual analytics systems such as Tableau and PowerBI 
allow analysts of varying levels of expertise to quickly create and 
modify such visualisations. With simple UI components, analysts 
can easily sort, flter, and slice data. This encourages analysts to 
rapidly explore the data, generate numerous charts, and, poten-
tially, a great number of insightful fndings. In other words, these 
tools enable EDA: an unconstrained and often visual search for 
interesting and meaningful trends or patterns in a data set [68, 69]. 

Returning to our example, how can you, as the analyst in this 
scenario, be sure if the insights you have generated are reliable and 
accurate? By lowering the barrier to engage in EDA, and allowing 
the analyst to rapidly and iteratively test multiple hypotheses, vi-
sual analytic systems may be susceptible to the multiple comparisons 
problem [4, 49, 55, 75, 80]. Well-known in statistics, the multiple 
comparisons problem can occur when a user tests multiple hypothe-
ses, sometimes even implicitly, increasing the likelihood of fnding 
a false positive. For instance, if an analyst applies a statistical test 
at the 5% signifcance level to a dataset where the null hypothesis 
is true, the probability of a false positive is, by defnition, 5%. How-
ever, applying the same test on 10 null datasets will increase the 
chance of fnding at least one false positive to 1− (1−0.05)10 ≈ 40%. 
Similarly, the more charts an analyst generates through an uncon-
strained search of possible combinations of data felds or subsets, 
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the higher the odds of encountering, just by chance, a fnding that 
appears insightful but which is merely statistical noise. 

Recent literature suggests that multiple comparisons and false 
discoveries could be a signifcant concern for EDA systems. In one 
study, over 60% of “insights” found were false when participants 
were asked to report “any reliable observations” in a synthetic 
dataset [78]. In another study where participants were asked to 
perform visual analysis on specifc tasks with an EDA tool, ap-
proximately 20% of the answers provided by participants were 
incorrect [4]. If these error rates generalise to EDA in practice, 
the ease of discovery in current tools could lead to poor decision-
making. However, prior work falls short of a realistic evaluation of 
decision-making quality in EDA in two crucial ways: (1) the lack of 
uncertainty representations, and (2) the lack of incentives. 

In prior work [78], participants were asked to generate insights— 
an essentially inferential task, requiring participants to make gen-
eralisations based on a small data sample. A data analyst would 
typically generate hypotheses and then use inferential statistical 
methods to make generalised claims about the data. The visualisa-
tion analog of conducting such inferential statistical tests would 
be to use uncertainty representations which visualise a summary 
statistic, such as the mean or median, and the uncertainty associated 
in estimating this statistic, such as the standard error [19]. Diferent 
types of uncertainty visualisations have been found to improve 
decision quality when users make decisions under risk [21, 41, 42]. 
An EDA system that fails to visualise uncertainty does not explicitly 
provide the information analysts need to identify reliable insights, 
control error rates, or potentially mitigate the multiple comparisons 
problem. 

In most decision-making scenarios, the consequences of such 
“mistakes” can be determined. For instance, consider a scenario 
where there exists a high cost for making an intervention, such as 
fagging a potential fnding for a full-scale, double-blind clinical 
trial. An analyst cognisant of this cost might be unwilling to act 
on an apparent fnding unless they are very certain. Conversely, 
as in many monitoring scenarios, the cost of investigating a few 
false positives might be considerably lower than the cost of missing 
an important event (a false negative). The commonly used value 
for � = 0.05 in null hypothesis statistical testing (NHST) is one 
such acknowledgement of the cost of a false positive relative to the 
reward of a true positive, albeit a completely arbitrary one. As such, 
a realistic evaluation of participants’ decision making requires ex-
plicitly defning the rewards and penalties for correct and incorrect 
decisions. In experiments, this can be achieved through the use 
of incentives [74]. Failing to consider incentives in experimental 
design can reduce validity—can we claim that a 60% false positive 
rate is bad if participants may have falsely believed that the reward 
for true positives is arbitrarily high? Without an explicit incentive 
structure, participants in an EDA task might simply attempt to 
maximise the quantity of insights identifed and ignore the quality, 
leading to a high false discovery rate. 

To understand the impact of uncertainty representations and 
incentives, we conduct a pre-registered,1 crowd-sourced, incen-
tivised experiment where participants make decisions from mul-
tiple datasets visualised simultaneously, mimicking an EDA-like 

1https://aspredicted.org/2fw4r.pdf 

multiple comparisons setting. We investigate (1) whether partici-
pants in a multiple comparisons scenario adjust for multiple 
comparisons and (2) whether uncertainty representations af-
fect participants ability to correct for multiple comparisons. 
Specifcally, we present participants with 12, 16 or 20 graphs at the 
same time, and ask them to make a decision for each graph. We 
visualise the data in the graphs using a scatterplot (baseline), 50% 
confdence intervals (ci) or probability density functions (pdf). 

We measure participants performance using three metrics: (1) 
the probability of a false positive, (2) the false discovery rate, and 
(3) points accumulated based on our incentive scheme. Compared 
against two normative strategies as benchmarks—uncorrected (not 
correcting for multiple comparisons) and Benjamini-Hochberg 
(a multiple comparisons correction procedure which controls for 
the false discovery rate)—we fnd that participants, in the ci and 
pdf conditions, on average performed better than the uncorrected 
benchmark, but worse than the Benjamini-Hochberg benchmark. 
However, participants in the baseline condition, who were shown 
the data samples directly, perform worse than the uncorrected 
benchmark. These results suggest that appropriate uncertainty rep-
resentations can improve participants’ decision quality, and when 
provided with such information, participants may be able to control 
for False Discoveries to a certain extent. Further, participants report 
using heterogeneous strategies to complete the task, many employ-
ing the visual afordances of the displays they saw, suggesting that 
diferent ways of conveying the same uncertainty information can 
infuence decision-making. 

2 RELATED WORK 
Visualisation researchers have long argued that the primary objec-
tive of visualisation is to help users gain insight and make data-
driven decisions [9, 12, 14, 16, 51, 76]. Several visual analytics sys-
tems are designed to achieve that objective, including Tableau, Mi-
crosoft PowerBI, TIBCO Spotfre, and Voyager [72, 73]. Although 
the target is amorphous, some defnitions of insight in the visualisa-
tion literature include, “an individual observation about the data by 
the participant, a unit of discovery” [58] or “a non-trivial discovery 
about the data” or “a complex, deep, qualitative, unexpected, and 
relevant assertion” [51]. 

The goal of insight discovery in EDA can confict with the goal 
of validating and verifying patterns in confrmatory data analysis. 
Designing for the detection or serendipitous discovery of insights 
can require virtues like open-mindedness, perseverance, and a sys-
tem that supports fuid and extemporaneous exploration [66] that 
matches the idiosyncratic ways that people can move through the 
various states of EDA [57]. Such an EDA system might value the 
speed or ease of constructing new views or queries (as with Time-
Searcher, which was designed to “provide analysts with the power 
to construct queries quickly, [...] and examine results” [26]) but 
lack a similar focus on tools for verifying or validating the pat-
terns seen. For instance, EDA system designers may refrain from 
including information about uncertainty (that can be crucial for de-
termining the robustness of a visual pattern) to avoid confusing or 
overwhelming users, among other reasons [31]. On the fip side, the 
focus on verifcation can cost the analyst opportunities for making 
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discoveries: e.g., an analyst approaching a dataset with a specifc 
set of hypotheses to validate can be biased or incurious concerning 
otherwise obvious data quality concerns [75]. 

2.1 Pitfalls in Visual EDA 
The freedom to create novel views in EDA without considerations 
for robustness of insight can create two types of errors: errors due 
to the multiple comparisons problem and errors due to overlooking 
uncertainty in the visualised data. 

Multiple Comparisons in the Garden of Forking Paths: During 
an unconstrained exploration, an analyst makes many, often im-
plicit, decisions. These decisions create branches in the analysis 
path, possibly afecting the subsequent exploratory steps. These 
decisions occur at all stages of the sense-making process, and can 
result in compounding levels of uncertainty and variability [40]. 
Gelman and Loken [22] describe this phenomenon as wandering in 
the garden of forking paths. The large degrees of freedom in explo-
ration can result in problematic conclusions that fail to generalise 
to the entire dataset or the population. In statistical testing, the 
issue of fnding non-generalisable insight can be framed as the mul-
tiple comparisons problem: the chance of making a false discovery 
increases as the analyst tests more hypotheses on the same data or 
tests the same hypothesis on multiple datasets [55]. 

There are many approaches in EDA for addressing the garden 
of forking paths problem in general and the multiple comparisons 
problem in particular. Multiverse visualisations can show that a par-
ticular conclusion is robust (or not) across a set of reasonable anal-
yses applied to a dataset [20, 60, 61]. Visual analytics systems may 
also calculate and display metrics of “insight quality” [8, 15, 62, 80]. 
In statistical testing, multiple comparisons correction methods ad-
just �-values to control diferent error rates in multiple testing 
scenarios. The Bonferroni correction is a common method that con-
trols the family-wise error rate [64], and the Benjamini-Hochberg 
procedure controls the false discovery rate [6]. 

For our study, we want to realistically evaluate whether EDA 
users implicitly correct for the multiple comparisons problem by 
assessing their false discovery rates in data decision-making. We use 
statistical testing (�-tests) and the Benjamini-Hochberg procedure 
as baselines to interpret participant performance. 

Missing Uncertainty Information: The absence of uncertainty in-
formation in a chart prevents users from easily judging the reli-
ability of an efect, either through heuristics linked to statistical 
tests (“inference by eye” [19]) or through more holistic estimations 
involving both mean and error [17, 41]. At best, this uncertainty 
information can be recovered implicitly [18], either through estima-
tion of spread based on underlying values, or through “graphical 
inference” [10, 29, 70], where a particular visual pattern’s robustness 
is evaluated by contrasting it with visualisations of data generated 
under some null hypothesis. Despite the value of uncertainty in-
formation, per a survey by Hullman [31], visualisation designers 
often intentionally omit this information. Common reasons for this 
omission include the cost in additional visual and cognitive com-
plexity incurred by including uncertainty, the perceived inability of 
audiences to correctly interpret the uncertainty information, and 
the difculty in quantifying this uncertainty in a useful way. 

Even if uncertainty is directly visualised, diferent methods of 
conveying uncertainty can impact decision quality. Traditional 
forms of communicating uncertainty, such as error bars or box 
plots, express distributional information by encoding summary 
statistics as marks. These contain some amount of uncertainty 
information and are consistent with the design goal of cognitive 
efciency [13, 32, 46, 67]. However, they may not be ideal for many 
decision-making tasks, as they are subject to biases or non-ideal 
heuristics [17, 41], may require the reader to have a baseline under-
standing of statistics [5], or may simply be subject to inconsistencies 
in what is being encoded (e.g., confdence intervals v.s. standard 
errors, etc.) [17, 27]. 

While there are many more uncertainty visualisation techniques 
for various data types [36, 38, 47, 54, 63], the ones most relevant 
for our study visualise univariate distributions. They include prob-
ability density function (PDF) plots, with variants such as violin 
plots [25] and gradient plots [17, 37]. In theory these convey com-
plete information about the underlying probability distribution. 
Uncertainty visualisations have been shown to improve accuracy in 
statistical reasoning in certain tasks [23, 34, 41–43, 59]. Therefore, 
we postulate that uncertainty visualisations can improve the qual-
ity of decisions and help users reduce excessive error rates from 
the multiple comparisons problem. In our study, we compare two 
types of uncertainty visualisations and a baseline to cover a range 
of previously-evaluated techniques. 

2.2 Assessing Insight Reliability and 
Robustness in EDA 

Faced with the issue of analysts discovering insights during EDA 
that may fail to generalise, a small but growing body of visual 
analytics research attempts to quantify the reliability of insights. 
Zgraggen et al. [78] ran an experiment where participants were free 
to explore datasets in an exploratory visual analysis tool, asking par-
ticipants to report “any reliable observations.” These observations 
were then manually coded into testable hypotheses. For example, 
one such insight could be “the average age is 50.” Zgraggen et al. 
found that the false discovery rate among those insights was over 
60%. On the other hand, Battle and Heer [4] had participants com-
plete “goal-oriented” tasks in Tableau. These participants answered 
questions that can be judged correct or incorrect, like “which [one 
of the four] parts of the aircraft appear to get damaged the most.” 
Correspondingly, Battle and Heer report the error rate (not false 
discovery rate) to be at most 25% in participants’ responses to these 
focused-task questions, and conclude that “participants were cau-
tious analysts” [4]. Comparing their results against the False Discov-
ery Rate reported in Zgraggen et al. [78], Battle and Heer speculate 
that their lower error rate may be due to more data-profcient par-
ticipants and more “focused” tasks [4]. That is, if participants have 
to choose from a small set of answers, they can be more deliberate 
or cautious, therefore getting more answers correct (true positives); 
by contrast, if they write down however many insights they may 
fnd, participants might make more false positives. 

These recent studies of insight quality in EDA may be limited 
by the lack of incentives for decision quality. Without appropriate 
incentives—such as penalising false positives and rewarding true 
positives in some proportion to each other—it is difcult to say what 
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the optimal False Discovery Rate should be. Further, the decisions 
that participants make are less likely to refect the way that ana-
lysts would trade of risks and benefts in a real-world, data-driven 
decision-making task; instead, participants might be motivated to 
maximise the total number of insights generated regardless of relia-
bility. Our experimental task is closer to the goal-oriented approach 
of Battle and Heer (we ask participants to make decisions about 
a given hypotheses), with the addition of incentives for decision 
quality. 

2.3 Incentivising Decision-Making in Human 
Subjects Studies 

Previous studies in Psychology and HCI have adopted fnancial 
incentives to motivate participants in decision-making tasks under 
uncertainty [21, 39, 50], with incentives determined by maximising 
a utility function. Many regard incentivised experiments as a more 
realistic way to study decision quality [30, 33, 44, 45, 56]. Though 
these studies usually have repeated decision trials, they do not 
study multiple-comparison scenarios: each trial consists of only 
one decision, and the participant does not make decisions at the 
same time or make them on the same dataset. Since one decision 
does not impact the quality of the next, participants do not have to 
control for error rates across multiple comparisons. However, dur-
ing EDA, an analyst may test multiple hypotheses at once or make 
multiple decisions from the same dataset, increasing their error 
rates overall due to the multiple comparisons problem [1, 78]. Our 
incentivised study evaluates decision quality in a multiple-testing 
scenario, requiring the participant to test multiple hypotheses in 
each trial. 

3 EXPERIMENT DESIGN 
The primary goals of this study were to investigate (1) whether 
users’ decisions refect implicit multiple comparisons correction 
when users perform EDA under a specifc incentive structure, and 
(2) whether the type of uncertainty visualisations afects users’ deci-
sion quality. To that end, we designed an online experiment where 
participants made decisions in an EDA-like setting with multiple 
comparisons and were compensated based on their decision qual-
ity. Study materials, data, and analyses are in the Supplementary 
Material and available on OSF2. 

3.1 Task Description and Experimental 
Apparatus 

In our study, we asked participants to play the role of a business 
analyst who decides which sales regions are likely to have made 
a proft on average. This task did not assume extensive domain 
knowledge. In each trial, participants selected the proftable regions 
from a panel of sales data visualisations. As shown in Figure 1, the 
task contains a multiple comparisons problem: the participant tests 
one hypothesis (“Is the average proft in this region greater than 
zero?”) on multiple datasets from diferent sales regions. We use the 
task of identifying proftable (signifcantly diferent from zero in 
the positive direction) regions as a reasonable proxy for real-world 

2https://osf.io/xtsfz/ 

analytical tasks: in EDA, data analysts often explore many facets 
of their data and report on only the subsets that appear important. 
Participants saw the following prompt: 

You are a manager supervising the sales of stores. In 
each region there are 200 stores. Your task will be to 
guess whether the average proft of the stores in a 
region is greater than zero. However, you only receive 
the sales data for 20 stores, and you have to make the 
decision based on this limited information. 

There are two experimental variables in this study: (1) the num-
ber of sales regions, i.e., the number of possible comparisons in 
each trial (m), a within-subjects variable with three levels: 12, 16 
and 20; and (2) the type of uncertainty visualisation representation 
(vis), a between-subjects variable with three levels: baseline scat-
terplot, ci and pdf. Each experiment consisted of 30 trials broken 
into three blocks. Within each block, there were ten trials of the 
same m (number of graphs shown). The order of the blocks, and the 
order in which the trials were presented within each block were 
randomised. 

In the beginning, participants went through a training which 
consisted of three parts. First, participants were presented with an 
onboarding page introducing them to the background story for the 
task and an explanation of how to interpret the visual represen-
tations used (see supplement ▶ survey ▶ survey-example.pdf). 
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Figure 1: Experimental interface: participants are asked to 
indicate each region (individual graphs) as proftable or not 
proftable, based on data shown. In the training phase, par-
ticipants are presented with 8 graphs (as shown here). In the 
test phase, participants are either presented with 12, 16, or 
20 graphs. 
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This was followed by an introduction to the incentives and an expla-
nations of how participants’ job performance would be evaluated 
(Figure 2). Finally, participants were presented with fve training 
trials with eight graphs (Figure 1). After each training trial, partici-
pants were informed of their cumulative points, and given detailed 
feedback regarding which graphs were correctly selected, which 
were actually positive and which were actually negative. The points 
were reset to zero after the training phase ended. In the test phase, 
participants were only informed of their cumulative points after 
each trial; feeedback regarding the quality of their decisions were 
not provided. After completing all trials, participants were asked 
to report their strategy for completing the task in a free text feld. 

3.2 Simulating the Stimuli for a Multiple 
Comparisons Task 

An important consideration in designing an experiment for investi-
gating the multiple comparisons problem is the value of adjusting 
for multiple comparisons. Consider two statistical golems—one 
which makes statistical decisions without adjusting for multiple 
comparisons (uncorrected) and the other which makes statistical 
decisions while controlling for the false discovery rate at a partic-
ular � level (Benjamini-Hochberg). In our desired experiment, 
the performance of these two golems represent two benchmarks, 
against which we can compare participants’ performance. This re-
quires the diference between these two benchmarks to be larger 
than the measurement and estimation error in our experiment. 

Ensuring this diference can be challenging. For example, in a 
previous iteration of this experiment, we generated stimuli such 
that the number of possible comparisons (�) varied between 8 and 
12, the probability the null hypothesis is true (�0) i.e. that the region 
shown in the graph was not proftable was set to 0.5, and partici-
pants were incentivised to control for false discovery rate at � = 0.05. 
In this scenario, the maximum possible number of false positive is 
given by �0� = 6, when � = 12. The p-value is known to be uni-
formly distributed when the null hypothesis is true [35]. Thus, the 
expected number of false positives was � (��) = ��0� = 0.3. Thus 
the uncorrected statistical golem would be expected to make 0.3 
false positives on average, while the Benjamini-Hochberg golem 
would be expected to make somewhere between 0 and 0.3 false 
positives3 on average. The magnitude of the diference between the 
two benchmarks was too small to determine whether participants 
were performing any form of multiple comparisons correction. 

However, by manipulating the values of �0, � and � we can 
design an experiment with a greater diference between the uncor-
rected and Benjamini-Hochberg benchmarks. We can then use 
these benchmarks to investigate people’s performance on a multi-
ple comparisons problem. Another variable which impacts the false 
discovery rate is the (standardised) efect size (�)—larger efect sizes 
are more easily “discoverable” (more true positives and less false 
negatives), whereas smaller efect sizes have the opposite efect. 
We conducted a grid search, varying �0 ∈ {0.5, 0.6, 0.7, 0.8, 0.9}, 
� ∈ {10, 15, 20, 30, 50, 100}, � ∈ {0.1, 0.2, 0.3, 0.4, 0.5} and � ∈ 
{0.2, 0.25, 0.3}, to determine a combination of �0,�, � and � that 

3Because the BH procedure is dependent on the actual distribution of the p-value, we 
cannot provide a theoretical estimate of � (�� |strategy = �� ) 

ensures a measurable diference between the uncorrected and 
Benjamini-Hochberg benchmarks. We also preferred smaller val-
ues of � (to better ft on participants’ screens), smaller � (to more 
closely align with the typical � = 0.05 used most commonly in 
NHST), and �0 close to 0.5. 

For each combination of variables, we ran 1,000 simulations, esti-
mated the false discovery rate using uncorrected and Benjamini-
Hochberg strategies, and calculated the mean and standard de-
viation of the false discovery rate from each strategy. Based on 
the results of our simulations, we selected values for the variables 
such that the estimated diference in the mean of the false discov-
ery rate between the uncorrected and Benjamini-Hochberg (Δ) 
was at least twice as large as the relative standard deviation. More 
precisely, we determined the following values for the parameters: 
� ∈ {12, 16, 20}, �0 = 0.7, � = 0.4 and � = 0.25 to be reasonable 
for our experiment. We use these values to simulate the datasets 
used as stimuli for the participants which consisted of 10 trials for 
each value of �, resulting in 30 total trials. Due to variance, it is 
still possible that the diference in false discovery rate between the 
two normative strategies in our sample of 30 trials is smaller than 
the average diference across 1,000 simulations. As such, we use 
rejection sampling to ensure a minimum average diference, for 
each value of �, of at least the estimated average diference (Δ) from 
our simulations. Further details, including the code used for our 
simulation and the generated stimuli, can be found in supplement 
▶ R ▶ 01-experiment-design.Rmd. 

3.3 Incentives 
We want an incentive structure which encourages participants to 
control the false discovery rate at the determined � level of 0.25 
across multiple comparisons. This means that for every 100 discov-
eries, at least 75 of them should be true discoveries and less than 
25 should be false discoveries on average [35]. Therefore we want 
25 false discoveries to be as expensive as 75 true discoveries: the 
ratio between the false positive penalty and true positive reward is 
75 : 25 = 3 : 1. Since statistical tests are typically conducted with a 
power of 0.8, we similarly adjust the ratio between false negative 
and true negative rewards to be 4 : 1. Moreover, we want to ensure 
our incentive structure does not encourage participants from adopt-
ing a trivial strategy where marking all of the regions are as not 
proftable (a reject none strategy). To make such a trivial strategy 
non-viable, we again rely on simulations to test various incentive 
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zero, on average, you will lose 150 points.

❌ If you mark a region as not profitable, and 
that region does have a profit greater than 
zero, on average, you will lose 40 points.

Figure 2: Incentive structure as shown to participants 
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structures and determine an appropriate reward ratio between a 
true positive and true negative. Based on our simulation results, 
we fnd a ratio of 5 : 1 between the rewards for true positives and 
true negatives to result in measurable diferences between the pay-
outs from using Benjamini-Hochberg and the trivial reject none 
strategies. The complete incentive matrix presented to participants 
is shown in Figure 2. 

3.4 Uncertainty Displays 
We varied the type of uncertainty visualisations (vis) between sub-
jects to investigate whether visualisation type can improve the 
quality of participant decisions. In addition to a baseline which 
represents the data directly, we included two types of uncertainty 
visualisations, varying in amount of information (interval vs. den-
sity). While there are many other strategies for visualising uncer-
tainty [34, 36, 38, 43, 47, 54, 63], we chose these types because they 
are either common in visual analytics tools or have been shown to 
improve decision-making under risk. 

To decide whether a region is proftable, the participant needs 
to estimate arbitrary one-sided confdence intervals using each 
type of visualisation. For example, if the participant wants to con-
trol the false discovery rate to be under 0.25 for a single deci-
sion, they should decide that a region is proftable on average 
when the confdence mass below the zero line is less than 0.25, i.e., 
� (� < 0) < 0.25. 

Baseline: scatterplot 
Displays of raw data without explicitly encoded 
uncertainty (such as scatterplots and strip plots) 
are easy to understand and commonly used in 
exploratory data analysis systems, making them 
a good baseline for comparison. These plots pre-
sent the intrinsic uncertainty contained in raw 
data. An alternative baseline is to show only the 
mean, which hides all uncertainty information. 
However, showing no uncertainty is known to 
lead to bad performance [39] and can be unfair 

to the participant, whose pay depends on their decision-making 
quality. 

CI: Mean Point Estimate and 50% Confdence Intervals 

Point estimates of the mean with 95% confdence 
intervals are perhaps the most commonly used 
graphical plot for communicating uncertainty. 
Our task is designed such that, in the absence of 
multiple comparisons, participants should per-
form a one-tailed t-test and reject the null hy-
pothesis at � = 0.25. Hence, we visualise the 50% 
confdence interval, which is the equivalent of 
showing a 95% interval when rejecting the null 
hypothesis at � = 0.05. We included these plots 

due to their familiarity and ubiquity. While the interval does not 
directly encode the confdence mass that a given region is proftable, 
it does provide some information on how reliable the estimate of 
the mean is for the broader population. 

PDF: Probability Density Plot 
Probability density plots use height to represent 
the probability density function (PDF) of the con-
fdence distribution of the mean. This approach 
is similar to eyeball plots proposed by Spiegel-
halter [65], which use width instead of height to 
encode density (similar variations are also called 
raindrop plots [2] or violin plots [17]). Density 
plots are a common uncertainty representation 
that shows information about the shape of the 
entire distribution. To make judgements about 

the confdence an estimate is greater than a particular value, the 
viewer must compare ratios of areas, which may be a difcult task 
and lead to lower accuracy [21, 36, 43]. 

3.5 Participant Information 
For our pre-registered (https://aspredicted.org/2fw4r.pdf) study, we 
deployed the experiment on the Prolifc crowd-sourcing research 
platform [52]. We recruited participants who were on desktop de-
vices and fuent in English. We collected responses from 182 partic-
ipants in total. Per our preregistration, participants who failed any 
of the three attention checks were not allowed to fnish the study 
and therefore not included in the � = 182 sample. Two participants 
appeared to have retaken the survey after they were disqualifed 
for failing the attention check, and were excluded from the analy-
sis. This resulted in 180 participants for our fnal analysis, with 60 
participants in each vis (between-subjects) condition. The median 
completion time was approximately 26 minutes, and the average 
wage was $11.44/hr ($14.40/hr including bonuses). All participants 
who performed better than the uncorrected strategy i.e. had accured 
greater than -7650 cumulative points (60%; 108 / 180) received a 
bonus which was awarded in stepwise increments of $0.5 up to a 
maximum of $4.5 

4 STATISTICAL MODELING AND ANALYSIS 
We describe the methods involved in our pre-registered quantitative 
and qualitative analyses. 

4.1 Quantitative Analysis 
Our Bayesian hierarchical model is specifed in the Wilkinson-
Rogers-Pinheiro-Bates syntax [3, 53, 71] as: 
1: ������� | ������ (�) ∼ ����������� (�)
2: �� � ���� (�� ) = vis × trial × block × m + 
3: (trial × block × m | �����������) 

Line 1: decision outcomes modeled as a multinomial distri-
bution. There are four possible outcomes for each decision: true 
positive (TP), true negative (TN), false positive (FP), and false negative 
(FN), and we use a multinomial distribution for the likelihood to 
estimate the mean probability for each ������� . The multinomial 
distribution estimates the probability of each outcome as a vector, 
� = {�1, �2, �3, �4}. ������ () is a brms4 keyword that specifes how 
many decisions (“������”) are in each observation, and the ordinal 

4More explanation on trials(): https://cran.r-project.org/web/packages/brms/vign 
ettes/brms_customfamilies.html 

https://aspredicted.org/2fw4r.pdf
https://cran.r-project.org/web/packages/brms/vignettes/brms_customfamilies.html
https://cran.r-project.org/web/packages/brms/vignettes/brms_customfamilies.html
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variable � indicates that the participant performed 12, 16 or 20 
comparisons in a particular trial. 

Line 2: population-level efects. In our experiment, vis is a bet-
ween-subjects variable for diferent uncertainty displays; trial, which 
indicates the trial number within each block (1-10), captures any po-
tential learning or fatigue efects over the course of the experiment; 
m encodes the number of graphs presented in the trial; and block 
captures potential order and learning efects. We encode vis, m and 
block as discrete variables, and trial as a continuous variable (i.e., 
with a linear efect). Since we want to compare decision outcomes 
across these variables, they are specifed as population-level efects 
(predictors) with interactions. 

Line 3: group-level efects to account for individual diferences 
and repeated trials. Diferent participants can have diferent deci-
sion capacities, and the efects of trial and block (learning and order 
efects as a participant goes through the trials) and m variables can 
be diferent for each participant. To account for these individual 
diferences, we use a multilevel model, including varying slopes and 
intercepts for the efect of trial and m within each ����������� (the 
grouping variable). In addition, participants completed repeated 
trials within each condition. Using multilevel models and grouping 
by participants or other clusters often gives improved estimates for 
repeated trials [48]. 

Model Run and Validation 
We ft the model with the brms R package [11] and used weakly-
informed priors. The model ran four chains with 5,000 warmup 

samples and 5,000 post-warmup samples each, thinned by 5 for 
a fnal total sample size of 4,000. We assessed convergence using 
the Gelman-Rubin diagnostic (�̂ = 1.00 for all population-level 
parameters, correlations and standard deviations) and the (bulk and 
tail) efective sample sizes (����_������ ≈ 3, 000). One method for 
model validation is with posterior retrodictive checks. Instead of 
predicting responses for an average participant as results, here our 
model retrodicts existing participant responses [7]. Figure 3 shows 
the posterior retrodictives (mean and 95% credible interval) 
alongside with the participant response averages. In this visual 
comparison, the means of the posterior retrodictives are close to 
the average responses in most cases. The retrodictive checks do 
not show any signs of consistent model bias, and indicates a good 
model ft. 

4.2 Qualitative Analysis 
We preregistered an exploratory qualitative analysis of the partici-
pants’ self-reported free text responses for the strategies they used 
to complete the main experimental task. We employed a hybrid 
coding approach on these responses. In line with our research aims, 
we coded whether participants reported a sensitivity to the incentive 
structure we presented (i.e., expressing caution over the cost of false 
positives). We also coded whether participants self-reported em-
ploying a correction strategy: that is, incorporating the number of 
comparisons into their decision making, or changing their decision-
making strategy in response to past performance on previous trials. 
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Figure 3: Average participant response and validation of the model by recovering the participant response means from the 
model ft. The columns show average predicted and observed probabilities of true positive, true negative, false positive and 
false negative for a given trial. The false discovery rate is computed as ��� = ��/(� � + ��). The tapered ends of each gray 
bar represents the complementary cumulative distribution function (CCDF) of the posteriors of the average probability. As 
indication for a good model ft, the means of posteriors are close to the means of participant response in most cases, without 
consistent bias. 
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We were also interested in whether diferent uncertainty visualisa-
tions would promote diferent strategies for task completion, but 
given the expected diversity of strategies we relied on emergent 
rather than pre-defned codes. A paper author acted as initial coder 
employing our two closed codes and then performed open cod-
ing to generate initial codes representing categories of strategies. 
A second paper author then independently coded the responses; 
the two coders then met to discuss mismatches and ambiguities 
to generate a fnal consensus codebook and consensus labels for 
use in our thematic analysis. The full codebook, per-rate responses, 
and analysis of inter-rater reliability are included in supplement 
▶ qualitative-analysis ▶ qual-responses.xlsx. 

5 RESULTS 
Our model estimates the number of true positive, true negative, false 
positive and false negative for a particular trial, for each vis and 
m condition. We can divide these estimates by m to obtain the 
probability of making a true positive, true negative, false positive 
and false negative. Figure 3 reports participants’ • average and 

posterior retrodictive estimates of the probability of true pos-
itives, true negatives, false positives and false negatives, refecting 
participants’ overall decision quality. Since our research questions 
are not concerned with other potential factors such as learning or 
order efects, we marginalise over the trial and block variables (see 
Appendix A). 

5.1 Do Participants’ Decisions Refect Implicit 
Multiple Comparisons Correction? 

Our frst research question concerns whether participants’ decisions 
refect multiple comparisons correction. We compare the estimated 
probability of a false positive (Figure 4) by an average participant, 
for each vis and m conditions, averaged over trial and block, against 
the normative uncorrected benchmark—the expected number of 
false positive and false discovery rate from using an uncorrected 
strategy. If we fnd participants having lower probability of a false 
positive when compared to the uncorrected benchmark it would 

suggest that participants may be performing some form of multiple 
comparisons corrections. 

Overall, we fnd that the average participant in the ci condition 
is expected to make 0.148 (95% credible interval (CI): [0.124, 0.175]), 
0.142 (95% CI: [0.118, 0.167]) and 0.142 (95% CI: [0.120, 0.167]) false 
positives on average, when the number of possible comparisons 
(m) is 12, 16 and 20 respectively; the average participant in the 
pdf condition is estimated to make 0.104 (95% CI: [0.086, 0.123]), 
0.124 (95% CI: [0.103, 0.147]) and 0.132 (95% CI: [0.111, 0.158]) false 
positives. As shown in Figure 4, this is lower than the normative 
benchmark of using an uncorrected strategy but greater than the 
Benjamini-Hochberg benchmark. On the other hand, the average 
participant in the baseline scatterplots condition is expected to 
make more false positives than the uncorrected benchmark. This 
suggest that participants, on average, are likely performing some 
form of multiple comparisons to be making fewer false positives 
than the uncorrected strategy. However, a typical participant is 
likely not able to exactly control for false discoveries at the desired 
�-level, as incentivised, as the false discovery rate across all vis 
conditions exceeds � = 0.25 (Figure 5). Additionally, this falls short 
of the performance achieved by procedures which can guarantee 
false discovery rate control at any pre-determined �-level such as 
Benjamini-Hochberg. 

As the number of comparisons, m, changes, the criterion for 
rejecting the null hypotheses in normative procedures such as 
Benjamini-Hochberg or Bonferroni becomes stricter. In our results, 
we observe that the probability of a false positive remains compara-
ble. This likely suggests that, while some participants may be per-
forming some form of multiple comparisons correction, they may 
not be adjusting their strategy as the number of possible compar-
isons changes. Additionally, in an (not pre-registered) exploratory 
analysis we examine the probability of rejecting the null hypothe-
sis, and fnd that the average participant in the CI and PDF condi-
tions are likely to reject the null hypothesis (that the region is not 
proftable) less frequently than the uncorrected strategy, lending 
further evidence to suggest that participants are likely performing 
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some form of multiple comparisons correction (see supplement ▶ 
R ▶ 04-modeling_and_analysis.Rmd). 

From the self-reported strategy data from our 180 participants, 
while 37/180 reported making adjustments to their strategy, only 
two reported doing so in an a priori-way, based on the number of 
comparisons. One participant reported that they “[h]ad a look at 
the graphs overall and see how all stores looked before making a 
decision.”, indicating at least an awareness of potential issues in 
multiple comparisons, while another indicated that they “[a]dded 
50% to length of bars to see if it still indicated a proft (mad I know!)” 
which is somewhat analogous to an increased level of signifcance 
produced by something like a Bonferroni correction. More common 
was reporting an adaptive or reactive strategy based on feedback 
from the trials, in which participants became more conservative in 
reaction to a low score. E.g., “[i]nitially I was very risky and went 
with all stores with over 50% chance of being proftable. I changed 
to very conservatively picking only sure bets as my score was very 
low.” Or, from another participant, “[i]nitially I largely trusted the 
distribution and if less than about 25% of the bell curve was below 
the proft line then I would mark it as proftable. But this didn’t 
work very well and gradually I began only marking as proftable if 
about 90% was above the line and the middle of the bell curve was 
at around about 4 or higher.” 

An interesting reaction was a (mal-)adaptive strategy in response 
to negative feedback, which was reporting adding randomness or 
otherwise giving up. E.g., “Tried to play it safe and go for ’prof-
itable/not proftable’ when it looked like a sure thing, but that didn’t 
go too well for me! Started taking more risks/gambles as my points 
spiralled and by the end, there wasn’t really too much of a strategy” 
from one participant, or “If the [business analyst] put the dot above 
the proft line, generally I said it would be proftable. However 
when I kept accruing negative points, I did try and throw some 
random ones in there to see if it helped but unfortunately it did not 
and I kept getting further into the negative numbers.” In all, nine 
participants indicated employing some degree of randomness in 
their guesses, from giving up or “spiralling” as mentioned above, to 
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Figure 5: Posterior estimates of the false discovery rate points 
per trial, based on our incentive structure, for each visualisa-
tion (vis) and number of possible comparisons (m) 

those who reported trying to “...throw some random ones in there 
to see if it helped.” 

5.2 Do Uncertainty Visualisations Afect 
Decision Quality? 

Our second research question is concerned with the impact of dif-
ferent uncertainty representations on participants’ decision quality, 
and more specifcally, in their ability to correct for multiple compar-
isons. As a between-subjects condition, we tested three uncertainty 
visualisations—a (baseline) scatterplot of the data with no sum-
mary or uncertainty information, a discrete interval representation 
of a summary statistic (mean) and the associated uncertainty using 
a point estimate and 50% confdence intervals (ci), and a continuous 
uncertainty representation of the mean using a probability density 
function (pdf). 

Figure 6A shows the estimated probability of false positive, for 
the average participant, marginalised across all trial, block and m 
variables. Compared to the baseline, the average participant in both 
uncertainty representations is likely to have a lower probability 
of a false positive with pdf showing marginally greater reduction 
(mean: -0.13; 95% CI: [-0.18, -0.10]) compared to the ci (mean: -0.11; 
95% CI: [-0.15, -0.07]). As seen in Figure 4, these diferences are 
consistent across all levels of m. 

In addition to comparing false positive, we can also compare par-
ticipants’ performance by calculating false discovery rate and points, 
using the estimated quantities of true positive, true negative, false 
positive and false negative. Figure 6B shows the estimated false dis-
covery rate marginalised across all trial, block and m variables. Here, 
we observe that the average participant in the baseline condition 
has a higher false discovery rate than the uncorrected benchmark. 
However, while the typical participant in the pdf and ci conditions 
are not able to control for False Discoveries at the desired �-level 
of 0.25, these uncertainty representations nevertheless may lead to 
a lower false discovery rate when compared to both an uncorrected 
strategy, in addition to the baseline. Figure 6C shows the points, 
estimated to be accumulated by a typical participant, marginalised 
across all trial, block and m variables. Like the previous metrics, we 
again observe that the average participant in the baseline condi-
tion performs worse than the uncorrected benchmark, while the 
typical participant in the pdf and ci conditions outperform both 
the uncorrected strategy and the baseline. 

Our qualitative responses indicate that one potential factor in 
the diferences in performance observed in the diferent visualisa-
tion types may be a result of the strategies that a reader can adopt 
based on the afordances of those charts. 28/60 participants in the 
pdf condition report using the proportion of the visualised density 
that overlaps 0 (or some other value of proft) to help them make a 
decision. For instance, a participant reported that “anything with 
25% or more of the distribution below the red line went immedi-
ately to ‘unproftable”’ and another that “I eventually realised that 
only tasks where <5% of the bell curve fell below the proft line 
were worth recommending as proftable.” This density information 
was not directly available in the other charts, and so participants 
reported other strategies. 

In keeping with prior work that reports that confdence intervals 
encourage dichotomous thinking [17, 24], 8/60 participants in the 
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ci condition reported using whether or not the confdence interval 
overlapped 0 (or some other threshold) to make their decision. E.g., 
“I simply selected proftable for the the ones where the whole range 
was above 0” or selecting unproftable “[i]f the bar dropped below 
the red line at all”. As with the density overlap strategy above, this 
information was only directly available in the ci condition. 

For the baseline condition, where no data about mean or vari-
ability was directly presented, participants often used other strate-
gies. The majority of participants (39/60) would count the number 
of points above and/or below zero, and use the resulting total to 
either make a decision directly, or as part of a process of estimating 
the mean in order to make a fnal decision. E.g., “I fgured the more 
dots above the red line there were, the more proftable the store 
was”. We note that this sort of counting is a not a true calculation 
of mean value and, in keeping with the other perceptual proxies 

that have been shown to factor into the extraction of mean values 
from graphs [77], can produce incorrect or biased results. 12/39 
participants who reported employing dot counting strategies coun-
teracted for this fact by giving outliers special treatment, e.g. “I 
looked at how dense the clusters were on either side of the 0 mark 
to decide whether or not they were proftable or not then looked for 
any outliers like a lone sample or two that were above or below the 
average and decided if [I] thought they were high or low enough to 
counteract my initial assumption” from one participant, and “frst 
[I’d] see which side had most points, but then if it was close or if 
sides had a noticeable quantity of points further from 0 [I’d] weigh 
them higher, as 1 point at lets say 25 is worth 10x points around 
the 2.5 mark.” 

6 DISCUSSION 

6.1 The Potential Promise of Uncertainty 
Representations 

The visual representations used in prior work did not directly visu-
alise the mean and the associated uncertainty in the mean (standard 
error) that is necessary for the inferential tasks that participants in 
prior work [78] were asked to perform. Instead, this information 
was left implicit—participants could get a sense of the mean and 
the standard error based on the visualised data sample, and the 
spread of the data sample. The average participant in our baseline 
condition performed poorly across all metrics, suggesting that par-
ticipants may be struggling to recover such inferential statistical 
estimates from a plot which does not visualise it directly. 

On the other hand, we fnd that the average participant, in the ci 
and pdf conditions, makes fewer false discoveries than the golem 
using an uncorrected strategy. Along with the qualitative de-
scriptions of the strategies used in performing this task, this result 
indicates that participants in these two conditions are potentially 
making some adjustments for multiple comparisons. As partici-
pants’ false discovery rates are still greater than the incentivised 
� = 0.25 level (Figure 6), and falls far short of the false discov-
ery rates achieved by the golem using the Benjamini-Hochberg 
strategy, it appears that the result of this adjustment is perhaps an 
imperfect multiple comparisons correction. 

However, the estimated averages hide a great degree of variabil-
ity [28, 79], both in participants’ performance and their reported 
strategies. From Figure 7, we observe that approximately 23% and 
32% of the participants in the ci and pdf conditions respectively (0% 
in the baseline condition) have a positive points on average across 
the trials, which is close to the Benjamini-Hochberg benchmark 
(96 points on average). This suggests that a subset of participants 
are in fact able to optimise for the incentives and perform almost as 
well as the best statistical golem. Conversely, 80%, 48% and 35% of 
the participants in the baseline, ci and pdf conditions respectively 
perform worse than uncorrected golem, with some performing 
considerably worse. We conduct an exploratory analysis to help us 
understand what strategies might participants be using. We believe 
that a small subset of the participants may be employing a mix of a 
mean strategy (considering only the mean of the visualised data, 
and indicating that a “region is proftable” if this mean is greater 
than zero) and answering at random (not responding to the stim-
ulus). This is supported by some the qualitative responses as well 
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(e.g., a participant in the pdf condition who claimed “if the middle 
of the shape was above zero [I] said proftable, if not then I said not 
proftable”), and suggests that there exists a subset of people who, 
even when presented with uncertainty information, are likely to 
use sub-optimal strategies to perform this task. 

We recommend that designers of EDA systems should explic-
itly visualise uncertainty, if they expect the user to be perform-
ing inferential tasks. However, this may not be sufcient. Certain 
forms of uncertainty visualisations have diferent afordances, and 
may promote certain decision-making strategies that rely on these 
afordances. For instance, a proportion of participants reported 
employing binary decision criteria in the ci condition (which has 
been criticised in the past for presenting uncertainty information 
in a dichotomous way), and a proportion of participants counted 
the number of dots above and below zero as a perceptual proxy 
for estimating mean and/or variability. However, the wide variety 
of reported strategies both within and across conditions points to 
difering levels of expertise and experience with uncertainty visual-
isation: designs could therefore draw from the strategies used by 
participants who excel at this task in order to help those who may 
struggle with it. 

6.2 The Precarious Entanglement of Incentives 
and Evaluation 

The expected proportion of false discoveries, for the average partic-
ipant in the ci and pdf conditions, was 39% and 34% respectively. 
In contrast, prior work found false discovery rates of 60% [78]. This 
raises the question: is a false discovery rate of 34% good? Or con-
versely, is a false discovery rate of 60% bad? The answer surely varies 
depending on the data analysis and decision-making context. This 
decision-making context can and should be translated into incen-
tive structures. When analysts decide which data patterns may be 
real, or perhaps “statistically signifcant”, they usually consider the 
context. For example, there might be a budget constraint against 
taking action on too many discoveries, or false discoveries might 
lead to adding an inefective new product feature that loses users 
and revenue. As we demonstrate in this paper, we can encode a false 

discovery rate threshold, such as � = 0.25, through experimental 
incentives. Only when this additional context is provided can we 
evaluate participants’ decision-making quality and performance. 
In the absence of such explicit incentives, it is impossible to deter-
mine whether the 60% false discoveries reported in prior work is 
excessive. Rather, a number of alternative, plausible explanation 
may explain participants behavior in the study. For instance, par-
ticipants in the study may have deemed the value of true positive 
to be arbitrarily high, and have attempted to maximise this implicit 
incentive structure even though they were actually evaluated on 
minimising false positive. 

The participants in our study were unable to control their false 
discovery rate at the incentivised � = 0.25 level. Even in the ci and 
pdf conditions, participants’ false discovery rates were 10–15 per-
centage points greater than the desired false discovery rate, based 
on our incentives. However, they did, on average, adjust their be-
haviour in light of the incentives, as evidenced by the lower false 
discovery rate when compared to the uncorrected benchmark as 
well as from their qualitative descriptions. This suggests that well-
designed and explicit incentive structures may encourage better 
decisions and more realistically refect the quality of the EDA sys-
tem in terms of the multiple-comparison problem. 

6.3 Should We Care About False Discoveries 
Only? 

We note that the potential improvements in false positive and false 
discovery rate come at the cost of lower true positive and higher false 
negative. This is the case for both the statistical golems (Benjamini-
Hochberg v.s. uncorrected) and the uncertainty displays (base-
line v.s. ci or pdf). This is to be expected, as our incentives penalised 
false positives most strongly. However, depending on the decision 
context other incentive structures besides the one we tested may 
be valid. For instance, it is possible that the cost of false negatives is 
much greater than the rewards from true positives or true negatives 
in certain scenarios. 

Due to our experimental design, we are unable to disentangle 
the efects of the incentive structure presented to participants and 
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the uncertainty representations used on participants’ performance. 
While it may be possible that such uncertainty representations 
provide participants with a holistic representation of the informa-
tion required to perform the task, such that they still may perform 
better even under diferent evaluation metrics, further research 
is necessary. Designers of EDA systems should carefully choose 
uncertainty visualisations that best suit their evaluation metrics. 

6.4 Limitations and Future Work 

Impact of immediate feedback. In our experiment, we decided 
to provide participants with immediate feedback regarding their 
performance on both the previous trial, and their performance over-
all, in the form of “points.” This design choice had some impact 
on participants’ behavior in the experiment, and even across dif-
ferent trials. A handful of participants described using a reactive 
strategy—they became more conservative about rejecting the null if 
they scored a lot of negative points in a previous trial. In real world 
decision-making contexts, however, the feedback may not always 
be immediate, but may be delayed, or even ambiguous. In the ab-
sence of immediate feedback, we speculate that participants may be 
less reactive; it is also possible this may increase the likelihood of 
users failing to account for multiple comparisons when performing 
exploratory data analysis. In scenarios where immediate feedback 
may not be feasible, a possible solution could be to proactively train 
participants on the need to account for multiple comparisons. We 
hope to explore the impact of feedback presentation in future work. 

Impact of the magnitude of incentives. One design choice we 
made in our experiment was to use comparatively large values 
for the incentives. While this was intended to make sure that par-
ticipants did not perceive the diference between a correct and 
incorrect decision in the task as trivial, it also meant that partic-
ipants could potentially end up with a large, negative number of 
points. Figure 7 shows that there were indeed some participants 
who accrued very large, negative points, raising the question of 
how our specifc incentive structure impacted performance. A small 
number of participants (9/180) reported adopting risky strategies 
or randomly guessing due to poor performance in a previous trial 
and/or an accumulation of negative points (see §5.1). We speculate 
that a diferent incentive structure (e.g., if the rewards are scaled 
down by a factor of 10) may have reduced the number of partici-
pants adopting such mal-adaptive strategies. In general, we believe 
that the psychological and statistical impact of difering incentive 
structures in visual analytics (both in experimental settings and in 
practice) is understudied. 

The broader space of uncertainty representations. Recent work 
on uncertainty visualisations have recommended many other forms 
of representations such as dotplots [21, 41, 43], hypothetical out-
come plots [34, 42], gradient plots [17] etc. As a preliminary ex-
ploration of the impact of uncertainty representations, we decided 
to focus on two uncertainty representations which are commonly 
used and which provide successively greater degree of uncertainty 
information. We hope to explore the impact of these alternative 
uncertainty representations, all of which, like the pdf, convey com-
plete distributional information, in future work. 

7 CONCLUSION 
We set out to improve the evaluation of multiple comparison prob-
lems in EDA systems in two ways: using realistic decision incen-
tives and uncertainty visualisations. We conduct an experiment 
to investigate the impact of providing explicit incentives and us-
ing uncertainty representations on participants decision-making 
quality. We found that, for an average participant, uncertainty rep-
resentations such as confdence intervals or probability density 
functions may lead to false discovery rates which are lower than the 
uncorrected (no corrections for multiple comparisons) benchmark, 
but higher than the Benjamini-Hochberg (a multiple comparisons 
correction procedure) benchmark. However, in the absence of un-
certainty information, participants perform worse than the uncor-
rected benchmark. In a qualitative analysis of users’ strategies, we 
fnd that some participants may be adapting to the information pre-
sented to them and employing strategies which produce a similar 
efect to an imperfect multiple comparisons correction procedure. 
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A MARGINALISATION OF POSTERIOR 
ESTIMATES 

To answer our research questions, we need to estimate the marginal 
efect of vis and m on the posterior probability of the four decision 
outcomes for an average participant. However, because trial and 
block were included population-level efects in our regression model, 
we need to average out the efects of these two variables on our 
parameters of interest. For instance, if we want to show the efect 
of vis on participants’ decisions, we would need to marginalise over 
the predictors trial, block and m. Figure 8 describes the process 
of computing the average marginal efect5 by marginalising over 
the predictor trial. This can then be repeated for other the other 
predictors. 

Marginalising over trial is justifed because the learning efects 
captured by trial do not alter our main results (section 5). With 
exploratory comparisons, we fnd that as participants progress and 
potentially improve through the trials, vis afects FDRs in similar 
patterns when we look at m = 12, m = 16 and m = 20 separately. If we 
compare the FDRs in the last trial of the frst experiment block and 
that of the second block, and do the same comparison for the last 
fve trials of each block, we see similar diferences in FDR among 
visualization types, even though participants might have gotten 
better at the task by the end of the second block of the experiment. 
Details of this exploratory comparison are in supplement▶ R ▶ 
04-modeling_and_analysis.Rmd. 

How we estimate the probability of a FP, marginalised over trial number, in 
the ci condition when m = 12. In Figures 4 - 6, we flip the x- and y-axes.
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Example calculation of marginalised density estimates (used in Figures 4-6)

Figure 8: How we estimate the probability of a decision out-
come (FP) for an average participant, with a given vis and m 
condition, marginalising over trial. 

5An article on model interpretation using average marginal efects: https://cran.r-
project.org/web/packages/margins/vignettes/TechnicalDetails.pdf 
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