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ABSTRACT 
Recent advances in AI combine large language models (LLMs) with 
vision encoders that bring forward unprecedented technical capa-
bilities to leverage for a wide range of healthcare applications. Fo-
cusing on the domain of radiology, vision-language models (VLMs) 
achieve good performance results for tasks such as generating radi-
ology fndings based on a patient’s medical image, or answering 
visual questions (e.g., “Where are the nodules in this chest X-ray?”). 
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However, the clinical utility of potential applications of these ca-
pabilities is currently underexplored. We engaged in an iterative, 
multidisciplinary design process to envision clinically relevant VLM 
interactions, and co-designed four VLM use concepts: Draft Report 
Generation, Augmented Report Review, Visual Search and Query-
ing, and Patient Imaging History Highlights. We studied these 
concepts with 13 radiologists and clinicians who assessed the VLM 
concepts as valuable, yet articulated many design considerations. 
Refecting on our fndings, we discuss implications for integrating 
VLM capabilities in radiology, and for healthcare AI more generally. 

CCS CONCEPTS 
• Human-centered computing → Interaction design process 
and methods. 
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1 INTRODUCTION 
Artifcial Intelligence (AI) is increasingly recognized as an important 
application in radiology [57, 82, 101, 121]. In particular, the latest 
advancements in the creation and adaptation of multimodal foun-
dation models (e.g., BioViL(-T) [8, 17], ELIXR [137], MAIRA [58], 
Med-PaLM M [128]) invite high expectations of how the use of 
AI may transform clinical practice through efciency and qual-
ity gains [121]; and improved overall patient care. By leveraging 
rich, multimodal data that particularly characterizes the health-
care domain, advanced AI models can achieve impressive new and 
improved capabilities. In this work, we focus particularly on the 
combination of large language models (LLMs) with vision capabili-
ties – as so called vision-language models (VLMs). In the context of 
radiology imaging, this modality combination enables tasks such as: 
automatically generating a radiology report from a medical image 
(e.g., [57, 58, 148]); using text queries to answer questions about a 
radiology image (cf. [137]); or detecting errors in a radiology report 
text through its comparison with the image. 

Despite great AI advances both in natural language processing 
and image-based analysis, translating recent research and devel-
opment successes into clinical practice remains challenging [32, 
44, 97, 100, 121, 130, 132, 145, 149, 150]. Factors hindering success-
ful AI implementation in radiology are wide ranging and include: 
skepticism due to inconsistent AI performance; lack of trust and 
overreliance in AI-generated outputs; and the need for clinical ef-
fectiveness trials (cf. [44]). A key underlying factor is uncertainty 
about the value that AI applications bring to clinical practice. In 
what has been described as “a race for getting the technology right 
before exposing human-end users to new promising AI tools” [100], 
the feld of AI has been criticized for its development “in a vac-
uum” [88], disconnected from well-defned needs of intended users 
or use contexts [79, 126]. Seeking to close the gap between techni-
cal proof-of-concepts and lab experiments towards the successful 
integration and deployment of AI-enabled systems within routine 
care requires the adoption of human-centered, participatory ap-
proaches [98, 125]. This involves engagement with relevant stake-
holders throughout AI system development, starting as early as the 
ideation and problem formulation stages [25, 59, 69, 91, 134, 144]. 

Within this broader context, we set out to better understand 
the design space of VLMs in healthcare, specifcally in the context 
of radiology. Radiology imaging workfows involve referring clin-
icians who request an imaging test for a patient; and radiologists 

who examine the image and describe their fndings and clinical 
impression. The resulting report goes back to referring clinicians 
to inform patient care and treatment [71]. Building on the recent 
advances in AI research, we focused on designing the right thing 
[22]: What might be clinically relevant use cases for VLMs to en-
hance radiology imaging workfows for radiologists and clinicians? 
Would radiologists want to engage with a draft report generated by 
AI? Would clinicians fnd it useful to have report fndings visually 
annotated on an image? What questions might radiologists and 
clinicians ask if they could query a patient X-ray or CT scan? 

As a team of human-computer interaction (HCI) researchers, 
AI researchers, radiologists and clinicians, we engaged in an iter-
ative design process to explore these questions. We conducted a 
three-phase study. The frst phase involved in-depth discussions 
and brainstorming sessions within our team to elicit our clinical 
team members’ domain expertise, and ideate use cases with VLM 
capabilities. We discussed how radiologists interpret images and 
write reports, and how clinicians review these to make patient 
care decisions. We brainstormed VLM-based interactions using 
sketches, scenarios and wirefows to identify what would be useful 
and acceptable. In the second phase, we selected four specifc use 
cases to further detail as design concepts: Draft Report Generation, 
Augmented Report Review, Visual Search and Querying, and Patient 
Imaging History Highlights. In the third phase, we recruited 13 
radiologists and clinicians to conduct user feedback sessions prob-
ing whether and how these concepts might be useful for clinical 
practice, and potential concerns. 

Overall, participants perceived the VLM concepts as valuable, but 
articulated many design requirements for these to be usable and ac-
ceptable. Particularly, they shared expectations of AI performance, 
workfow integration (e.g., well-defned, tool-based interactions 
rather than open-ended queries), and a desire for context-specifcity. 

This paper makes two main contributions. First, we identify 
and design VLM use cases to support radiology workfows, and 
ofer initial insights into the perceived value of these concepts. 
Second, we present a refective account of our design process as 
a case study of early phase AI innovation with clinical stakehold-
ers, from brainstorming to prioritization, concept generation and 
initial assessment. We discuss the design implications and future 
research directions for integrating VLM capabilities into radiology, 
and healthcare more generally. 

2 RELATED WORK 

2.1 VLMs: Multimodal Foundation Models 
Recently, considerable excitement has developed around a new class 
of AI models that have been termed foundation models (FMs) [18]. 
These models are trained on broad data at immense scale, which 
results in powerful general-purpose models that can be adapted 
and more fexibly (re)used for a wide range of tasks and domains – 
including healthcare [20, 119, 126, 135]. While FMs can in princi-
ple be developed for any data modality (text, image, audio, video, 
etc.) or their combination, we have seen most advances with large 
language models (LLMs) that demonstrate impressive capabili-
ties to generate coherent human-like text. Prominent examples 
include OpenAI’s GPT-4 [99] and Google’s LaMDA [33] models 
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that power conversation-based AI innovations such as ChatGPT 
[1], Microsoft’s Copilot [87], and Google Bard [48]. 

In its basic function, an LLM generates statistically likely con-
tinuations of word sequences [115]. For example, given a specifc 
text fragment such as “Pneumonia is. . . ” , the LLM may complete 
this fragment with “an infection that infames the air sacs in one or 
both lungs”, because it is statistically a likely continuation given 
the words’ distribution in the vast collective corpus of human-
generated (English) texts that the model was trained on. As a result, 
latest generations of LLMs (e.g., PaLM 2 [4], FLAN-T5 [30], LLaMA 
2 [127]), and especially those trained on additional medical data 
(e.g., Med-PALM 2 [120]), do not only interpret and respond in plain 
language. Having clinical representations encoded [119], they also 
exhibit a certain ‘comprehension’ in the medical domain [36] as 
illustrated in their ability to correctly answer medical exam ques-
tions [94, 96, 119, 120]. As a result, LLMs are being explored for 
healthcare tasks such as: medical knowledge extraction [105], liter-
ature search and medical article writing [51, 74, 139]; medical text 
simplifcation [61] and clinical notes summarization [68, 92, 95]; and 
as medical question-answering [120] and chatbot applications [75]. 

Most recently, LLMs are combined with other modalities [36], 
such as medical images (e.g., BioViL(-T) [8, 17], MAIRA [58]) to 
better leverage rich, multimodal data that particularly characterizes 
healthcare; seeking to achieve new, improved or more efcient 
AI architectures and capabilities [128, 137]. Most relevant to our 
work are AI models that leverage both radiology images and their 
associated report text (e.g., [58, 137]). Combining an LLM with an 
image encoder, a vision-language model (VLM) permits tasks such 
as: automatic generation of report text from a radiology image; text-
image retrieval (e.g., Show me examples of left lower lobe pneumonia); 
visual question-answering (e.g., Does the patient have lung nodules 
or an infection?); or error detection in reports (e.g., detecting clinical 
fndings in the image that are not reported in the text). 

While prior work suggests the applicability of new AI capabilities 
as “AI Mentor” [137] or “Autopilot for Radiologists” [72], how these 
could be usefully confgured to enrich human-AI radiology work-
fows warrants further study. Furthermore, many critical challenges 
need to be addressed to ensure safe and responsible VLM system de-
sign for clinical practice: The growing complexity of the underlying 
AI models makes it difcult, if not impossible, to understand their 
workings, or recognize when the AI might fail [18, 89, 126]. Other 
issues include questions around domain specifcity and quality of 
model input data [47, 74] as well as societal biases that are inherent 
in that data [12], which increase with model scale and multimodal-
ity [18], risking harms by exacerbating health disparities and social 
inequalities [11, 119, 126, 132]. And while LLMs tend to show ro-
bust performance to out-of-distribution cases, they are sensitive to 
the phrasing of prompts; generate hallucinations [61, 75]); or give 
high confdence indications even for wrong results [111]; posing 
signifcant challenges for AI trust and adoption [47]. 

Our work seeks to bring a human-centered approach to the 
VLM-assisted radiology workfows by engaging radiologists and 
clinicians in early phase brainstorming and concept development. 

2.2 Human-Centered Medical AI 
Developing AI systems for healthcare is a complex space with 
many, wide-ranging sociotechnical challenges [3, 9, 46, 60, 150], 
spanning: (i) concerns about patient autonomy and ability to ex-
plicitly consent or withdraw from healthcare data uses, and its 
privacy protection in AI development or use [123, 134]; (ii) inves-
tigations into AI workfow integration [9, 21, 27] and how best to 
confgure clinician-AI relationships to efectively empower care 
providers [50, 54, 125, 141, 147]; as well as (iii) challenges around 
acceptance, trust and adoption of AI insights into clinical prac-
tice [52, 60, 86, 114, 139]. This is mostly addressed in the feld of 
eXplainable AI (XAI) through research into AI transparency via 
explanations and other mechanisms to help clinicians contest [53] 
or learn about AI outputs [24] to be able to develop an appropriate 
mental model of AI capabilities and their limitations. Where uses 
of AI are especially proposed to support health screening, triage or 
treatment recommendations, research explores (iv) risks of inequal-
ity and unfair discrimination, which extends to clinical trial de-
sign [29]. All this further requires (v) robust evaluation frameworks 
and carefully defned AI model or system performance metrics [76]; 
and is interlinked with (vi) broader organizational challenges and 
regulatory approval requirements that pose additional questions 
about clinical accountability and taking medical-legal responsi-
bility for any AI-assisted decision by individual users, healthcare 
institutions, or insurance providers (e.g., [47, 102, 106, 150]). 

Within this vast, growing space, our research and design ex-
ploration within medical AI imaging (e.g., ophthalmology [7, 9], 
pathology [23, 49, 50, 80]), specifcally in radiology [5, 13, 26– 
28, 97, 132, 136], seeks to better understand – early within AI 
development processes – if and how specifc, anticipated VLM 
capabilities could be benefcial in assisting clinical workfows. 

2.3 Designing AI with Domain Stakeholders 
HCI research highlights the difculty of eliciting input from do-
main stakeholders in AI design and development, especially in early 
ideation and problem formulation phases to inform what is the right 
thing to design [22, 39, 69, 104]. Prior work noted that stakeholders 
with little to no background in data science or AI (e.g., domain 
experts, UX designers, policymakers, etc) might be involved in the 
design of an AI system’s user interface, but rarely in conversations 
around the objective of the underlying model or the overall prob-
lem formulation [39, 41, 109, 133, 144]. Recently, a growing body 
of work in HCI and AI has called for human-centered approaches 
for broadening participation in AI design to meaningfully engage 
domain stakeholders to brainstorm and refect on whether an envi-
sioned future technology is in fact addressing the right problem in 
the frst place [10, 34, 35, 40, 70, 78, 151]. 

However, designing AI-based systems presents unique chal-
lenges even for experienced practitioners [77, 122, 140]. Recent 
work investigating best practices for designing AI products high-
lights that efective innovation teams work with AI capabilities 
to scafold cross-disciplinary ideation [81, 91, 138, 142–144]. In-
spired by matchmaking [16], this approach proposes considering 
user needs and AI capabilities simultaneously to explore matches 
in a problem-solution space. Several researchers note that these 
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capability abstractions, sketches, and prototypes serve as bound-
ary objects to help bridge the knowledge gap between AI experts 
and domain stakeholders, allowing domain stakeholders to gain an 
understanding of what AI can do to articulate their desired futures 
[6, 25, 139, 146]. Researchers also point out that innovation teams 
often focus on use cases that require high task expertise (e.g., clini-
cal decision making), where near-perfect AI performance is needed 
for a concept to be useful [42, 140, 143]. Instead, researchers suggest 
focusing on where moderately performing, imperfect AI can still 
create value. We draw on this literature to explore VLMs as a design 
material [90, 140] for radiology workfows, investigating clinically 
relevant and valuable use cases for radiologists and clinicians. 

3 OVERVIEW OF RADIOLOGY WORKFLOWS 
Radiology workfows unfold across many clinician roles (Figure 1). 
First, referring clinicians request an imaging study for a patient 
(e.g., a chest X-ray). Next, radiographers perform patient scans, 
and radiology coordinators may prioritize and assign patient im-
ages to radiologists. Next, radiologists examine patient images, and 
document their fndings – descriptions of normal or abnormal ob-
servations, such as lesions or nodules – and their clinical impression 
– a summary that synthesizes the fndings and suggest possible 
causes or further tests. Referring clinicians then review the radiol-
ogy report, and may consult radiologists for further questions or 
clarifcations before making care decisions. In some cases, patient 
images are brought to multidisciplinary team meetings (MDT) to 
discuss patient treatment [71]. 

A radiology report (Figure 6 in the Appendix) typically consists 
of a Background section that describes the patient information and 
the clinical question that referring clinicians seek to answer, and 
Findings and Impression sections that communicates radiologists’ 
interpretation [66]. Diferent imaging modalities have diferent 
workfows. For instance, plain (2D) imaging, such as X-rays, are 
high volume and fast-paced, taking minutes to review [37]. Complex 
(3D) imaging on the other hand, such as CTs and MRIs, take more 
time (10-20 minutes) and cognitive efort [37]. Reports are often 
in the form of prose (sometimes called narrative report), while 
there is also research that calls for structured reporting approaches 
(e.g., short, bullet-point style sentences) for improved clarity [45]. 
Reports are usually written using voice dictation, often utilizing 
templates or draft reports produced by radiology trainees (interns 
or residents in the US context) in hospital settings. 

Depending on the imaging modality and context, clinicians may 
review images –especially plain images such as X-rays– before a 
radiology report becomes available. For example, intensive care 
physicians immediately review X-rays that are taken to assess if a 
feeding tube is inserted correctly [73]. Regardless of whether acted 
upon or not, all images require a radiology report as it serves as a 
legal document in a patient’s record [31]. A major challenge within 
the radiology workfow is the sheer volume of scans, leading to a 
backlog of unreported images [108]. Wait times might be a few days 
to a week for radiology reports [93]. In recent years, the majority 
of radiology services in the UK and the US have been outsourced 
to private vendors to reduce costs and wait times [14, 108]. 

The majority of human-centered AI research on radiology imag-
ing has focused on mechanisms to explain AI outputs to domain 

experts [5, 27, 28, 97], such as explaining the diagnostic outputs for 
specifc chest X-ray fndings (e.g., cardiomegaly) by highlighting 
what feature changes in the medical image would lead the AI system 
to give a diferent diagnosis [5]. Other work explored AI acceptance 
or the impact of using AI systems on radiologist diagnostic per-
formance [13, 26, 28]. Relatively little work investigated current 
radiology workfows or asked radiologists where they needed sup-
port [97, 132, 136]. Xie et al.’s work presents a rare example of an 
early phase needfnding and design study, where they conducted a 
three-phase design process to explore opportunities for AI-assisted 
radiology in the context of X-rays [136]. We build on this existing 
body of work by investigating radiologists’ and clinicians’ current 
needs and desired futures for VLM-assisted radiology workfows. 

4 METHOD 
As a multidisciplinary team, we engaged in an iterative, refective 
design process [152] to explore VLMs as a design material for ra-
diology (cf. [140, 143]). We had two high-level research questions: 
(RQ1) What might be the clinically relevant use cases for vision-
language model capabilities in radiology? (RQ2) Whether, how, and 
in what situations these use cases might provide value for radiologists 
and/or clinicians? Our three-phase study frst included formative 
work to better understand current radiology workfows and brain-
storm VLM use cases. In the second phase, we sketched design 
concepts for four specifc use cases we identifed. In the third phase, 
we sought feedback from 13 radiologists and clinicians outside of 
our team to investigate if and how these concepts might be useful 
for clinical practice. Below, we detail the study method and design 
activities for each phase. 

4.1 Phase 1: Brainstorming VLM Use Cases 
Phase one included: in-depth discussions to establish an under-
standing of current radiology workfows within our team, and 
brainstorming sessions to ideate clinically relevant VLM use cases. 

4.1.1 In-depth Discussions. We conducted 7 in-depth discussions 
with our clinical team members (4 sessions with a cardiothoracic 
radiologist (R1F); 3 sessions with a general practitioner clinician 
(C1F)) to form a collective understanding of radiology workfows. 
Each session lasted 30 mins and was led by an HCI researcher in 
the form of one-to-one remote, semi-structured interviews. Our 
discussions probed current workfows and pain points through tar-
geted questions, such as: How do radiologists read a medical image 
(e.g., an X-ray or CT scan)? How do they describe their fndings and 
impressions in radiology reports? How do clinicians interact with ra-
diologists to discuss radiology images and reports? Where possible, 
clinical team members shared their screen to walk through their 
process of prioritizing, selecting, and interpreting images, and per-
forming online searches for their information needs. The sessions 
also involved reviews of VLM capabilities from recent literature 
(e.g., [17, 118]) to discuss opportunity areas. 

4.1.2 Brainstorming Sessions. Following the formative in-depth 
discussions, we conducted brainstorming sessions to ideate clin-
ically relevant use cases that leverage VLM capabilities. We con-
ducted two one-hour sessions with two groups (four hours in total) 
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Figure 1: Overview of the radiology workfow. See Supplementary Material for details on pain points and opportunities. 

involving diferent team members to previous engagements. Each 
group consisted of three team members that brought: clinical do-
main expertise, AI expertise, and HCI expertise. The frst group 
included an intensive care clinician (C2F), an AI researcher, and an 
HCI researcher. The second group included a cardiothoracic radiol-
ogist (R2F), an AI researcher, and an HCI/RAI researcher. Sessions 
were hybrid (in person + remote) and were facilitated by the same 
HCI researcher as the initial in-depth discussions. 

Building on the insights from the formative discussions, brain-
storming sessions probed specifc VLM capabilities and use cases, 
such as working with an AI-generated draft list of fndings or vi-
sually selecting and querying a region on an image. We created 
sketches, scenarios, and wireframes using a Figma board [43] to 
scafold discussion around each use case. Drawing on each team 
member’s respective expertise, we elaborated on design ideas, dis-
cussing the clinical relevance, feasibility, data requirements, data 
availability, and desired system behavior. At the end of each session, 
we prioritized and ranked ideas for further development into design 
concepts. 

4.1.3 Data Collection and Analysis. We audio and video recorded 
and transcribed all sessions using video conferencing software. We 
analyzed the data using a combination of afnity diagramming [85], 
interpretation sessions [56], and service blueprinting [15]. We chose 
to use afnity diagrams and interpretation sessions –contextual 
design [67] methods that are commonly used in practice-based HCI 
research [55, 139, 141]– over other data analysis methods such as 
grounded theory, as our focus was on discovering opportunities 
for future uses of technology rather than building a detailed the-
ory of current practices and workfows. We reviewed interview 
and brainstorming session transcripts in interpretation sessions, 
where the lead researcher retold each session, and the team mem-
bers built on the insights and pulled out design implications. Using 
afnity diagrams, we documented key insights, questions, and vi-
gnettes capturing our process for exploring this problem-solution 
space. Through service blueprinting, we traced current workfows 
capturing how patient images are taken, processed, reported, and 
reviewed across several clinical roles to inform our understanding. 

4.2 Phase 2: Sketching VLM Concepts 
Following our formative work that broadly explored VLM opportu-
nities to support radiology workfows, we narrowed our focus to 
four specifc use cases: Draft Report Generation, Augmented Report 
Review, Visual Search and Querying, and Patient Imaging History 
Highlights (Section 6 details their rationale). We translated each use 
case into design concepts by sketching simple, click-through Figma 
[43] prototypes. We detailed the use cases based on the scenarios 
and examples from our brainstorming sessions. We then populated 

the prototypes with relevant images and reports from the open 
source MIMIC-CXR X-ray dataset [64], and placeholders to suggest 
diferent image modalities (e.g., CT). We reviewed and validated the 
plausibility of each design concept with a radiologist team member. 

Our goal was not to generate fully feshed out design proposals. 
Instead, we wanted the concepts to serve as probes to help clinicians 
envision possible futures. Therefore, we produced high-fdelity pro-
totypes with only enough detail to probe context-specifc questions. 
While we considered using actual, VLM-generated details in the 
prototypes (e.g., generated text fndings from a radiology image), 
we concluded that it was irrelevant as the focus of the study was 
not to evaluate model performance. Instead, we sought to probe per-
ceived usefulness and clinician acceptance to inform overall system 
design whilst vision-language models become more capable. 

4.3 Phase 3: User Feedback Sessions 
4.3.1 Participants. We recruited 13 clinical stakeholders across 
eight hospitals in the UK and the US (5 radiologists, 8 clinicians, 12 
male, 1 female) who had not been involved in our design process. 
We contacted an initial set of participants through our collaborating 
hospitals and our clinician team members’ professional connections. 
We then expanded this set through snowball sampling [117], asking 
each participant to share any contacts with the relevant clinical 
experience. Participants represented a range of clinical special-
ties including: intensive care, emergency care, pediatrics, family 
medicine, and other domains. The majority of participants described 
themselves as ‘somewhat’ or ‘very familiar’ with AI in healthcare. 
Table 1 provides an overview of our participants’ clinical roles and 
experience. 

4.3.2 Procedure and Data Analysis. Following the capture of demo-
graphic information, our feedback session protocol was matched 
to the participant’s role, either showing radiologist or clinician use 
cases. We then investigated the four design concepts, probing the 
perceived usefulness along with context-specifc questions for each 
concept (detailed in Section 6.2). Each feedback session lasted 1 
hour and was conducted remotely via video conferencing software. 
We audio and video recorded the sessions. Audio recordings were 
transcribed using automated transcription and corrected manu-
ally by the lead researcher. The data was analyzed using afnity 
diagramming [38] to iteratively generate codes for participant utter-
ances, which were then synthesized into high-level themes related 
to specifc use cases; including concerns and desires for additional 
support. 

The study was approved by our institutional ethics review board 
(IRB: R&CT 6532, ERP 10690). Informed consent was sought in 
writing prior to the feedback session. All participants received a 
£50 (or equivalent) Amazon gift voucher to compensate for their 
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Table 1: Participants in user feedback sessions. ‘Consultant’ 
denotes a senior doctor with specialist training (the equiva-
lent title in the US is ‘physician’.) (*) denotes clinical trainees 
(interns or residents in the US context). 

ID Professional Role Exp. AI Familiarity 

R1 Emergency Care Radiologist 12yr Very familiar 
R2 Pediatric Radiologist 15yr Very familiar 
R3 Uroradiologist 10yr Somewhat fam. 
R4* Gastrointestinal Radiologist 4yr Somewhat fam. 
R5 Cardiothoracic Radiologist 10yr Very familiar 
C1 Intensive Care Consultant 10yr Very familiar 
C2* Intensive Care Fellow 1.5yr Somewhat fam. 
C3 Intensive Care Consultant 8yr Very familiar 
C4 Public Health Physician 11yr Somewhat fam. 
C5 Internal Medicine Consultant 7yr Somewhat fam. 
C6 Cardiothoracic Consultant 20+yr Not familiar 
C7 Consultant Oncologist 20+yr Very familiar 
C8 Pediatrician 19yr Somewhat fam. 

time spent in contributing to the research. Each participant has been 
given a unique identifcation number to protect their anonymity, 
reported as R1-R5 for radiologists and C1-C8 for clinicians. 

4.4 Study Limitations 
Our study has three major limitations: the study sample, design in-
stantiations, and the scope on clinician acceptance and desirability. 

As mentioned in other HCI healthcare work, recruiting health-
care experts, who are extremely busy professionals presents a chal-
lenge [132]. As such, our participants present a convenience sample 
of UK or US-based individuals, who we either collaborated with pre-
viously or who were suggested to us through our clinician contacts. 
The sample is also biased towards more senior clinicians, higher 
levels of familiarity with AI, and included only one female. Pre-
dominantly, interviewees also had a dual clinical care and academic 
role, which suggests likely diferences in AI expectations as well as 
experiences to those working in private practice care. 

The examples used in the designs evolved from our formative 
brainstorming work and were reviewed by a radiologist collab-
orator. Nonetheless, the feedback given on these non-functional 
prototypes remains speculative; suggesting a need for further in-
teraction design and in-situ workfow integration to substantiate, 
test and challenge the insights and assumptions that are presented 
in this work. 

Our work is also limited in its particular focus on identifying 
clinically relevant uses and potential benefts of VLMs for radiology 
with little insight into their concrete risks and limitations. While 
we surfaced preferences and initial requirements for those designs 
and probed into the potential acceptance of, or readiness to correct 
AI errors in diferent scenarios, more work is needed into AI risks 
and strategies for their mitigation to ensure their responsible use 
in healthcare. 

Yildirim, et al. 

5 PHASE 1: BRAINSTORMING VLM USE CASES 
Our discussions and brainstorming sessions surfaced many chal-
lenges, ranging from requesting a patient scan to prioritization, 
reporting, and assessment. Our team generated many ideas for im-
provement (some of which are discussed in prior literature [112]), 
such as detecting redundant scan orders; detecting poor quality 
images at the time of scan to reduce rescans; and optimizing im-
age triage and assignment based on patient urgency and provider 
subspeciality. We provide a broad overview of these challenges 
and opportunities using a customer journey map of the radiology 
workfow (see Supplementary Material). 

In this section, we detail our insights into VLM-specifc use 
cases, mainly around radiology reporting and report review, as our 
focus was on probing the potential utility of VLM capabilities to 
support radiologists and clinicians. Where relevant, we provide 
direct quotes from our clinical team members that were involved 
in in-depth discussions (R1F, C1F) and brainstorming sessions (R2F, 
C2F) – denoted with F (formative study) to distinguish clinical team 
members from the user feedback study participants. 

5.1 Use Cases for Draft Report Generation 
In considering how VLM capabilities can support radiology image 
review and reporting, we discussed whether an AI-generated draft 
report might provide any value. Interestingly, our radiology team 
members likened these to reports they receive from their trainees: 
“I would treat it as a draft report coming from my trainee.” (R2F)R2F 
touched on the diference between draft and preliminary reports, 
noting that only senior radiology trainees were allowed to make a 
report ‘prelim’ – which would be available to the clinical team, and 
would later get ‘amended’ by senior radiologists for any changes. 

This insight led to a detailed discussion on how radiologists cur-
rently review, edit, and sign draft or preliminary reports. R1F shared 
that he looked at the indication (why the request was made) and 
the image frst to form their opinion before looking at the impres-
sion, whereas R2F preferred to immediately review the indication 
and the impression to decide whether she agrees or disagrees. As 
to how much efort was involved in reviewing and editing these 
reports, R2F shared: “Junior trainees’ reports will require more work. 
Depending on how good it is, I might dictate from scratch . . . Senior 
trainees, I usually look at [their reports] and sign. I’ll just say ‘I agree’. 
I’m not going to correct a typo. I might do small edits to say ‘there 
is also this’ . . . If I disagree, I will say “My interpretation is this. . . ” I 
will dictate if it’s a few sentences or type a few words here and there.” 

Throughout our discussions, we repeatedly asked: What makes 
‘a good AI experience’ in radiology? Elaborating on what makes a 
radiology report ‘good’, we teased out three aspects: the report is 
(1) accurate (i.e. fndings are correct); (2) complete (i.e., there are no 
missing fndings); and (3) error-free (i.e. report does not have typos). 
This led us to further probe the value proposition AI might bring 
into radiology in the form of improved report quality and reduced 
reporting time. Radiology team members pointed out that they 
often prioritize speed over quality; they had to work really quickly 
due to the large number of images waiting to be reported. A team 
member asked whether AI-generated fndings in the form of bullet 
points would provide any value if radiologists still had to dictate 
the report by themselves (to reduce the risk of errors). Radiology 
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team members pushed back, noting that the system would not save 
them time in reporting, thus it would provide little value. They 
recalled instances where the voice recognition system introduced 
transcription errors, and stressed that they do not want to spend 
additional time correcting an AI system’s errors: ‘[recounting an 
incorrect transcription of ‘abdominal viscera’ as ‘animal viscera’] 
It was embarrassing. It should be able to correct these, so that I can 
sign without having to read what I dictated.” (R2F) These discussions 
hinted at time savings as a key design requirement for clinician 
acceptance. 

Finally, our conversations brought up the questions: Should a 
draft report be shown to clinicians? R2F refected that this may lead 
to tensions in terms of responsibility and radiologist acceptance: 
“There is an issue of responsibility. Radiologists might think they’re 
out of the loop” (R2F). Both clinicians and radiologists proposed that 
AI-generated fndings could be used for triage and early fagging of 
critical fndings without presenting too much detail. This became 
one of the central themes of exploration in our later study. 

5.2 Use Cases for Visual Search and Querying 
When reviewing visual question-answering capabilities, both clini-
cians and radiologists brought up that they regularly perform web 
searches to look for similar images or clinical information relevant 
to the patient case. These included medical databases and clinical 
guidelines (e.g., nice.org.uk – The National Institute for Health 
and Care Excellence guidelines), as well as websites that provide 
peer-reviewed patient cases (e.g., gpnotebook.com, radiopaedia.org, 
radiologyassistant.nl, uptodate.com). R2F described two scenarios 
where searching similar images was helpful. The frst case included 
situations where she would suspect that there is a pattern in the 
patient image, but cannot be sure what anomaly it might be: “I know 
there is a pattern but I don’t know what it is.” She would use search 
queries that described the pattern (e.g., glass opacities CT lung) to 
fnd similar images to help with diagnostic assessment. The second 
case was having diagnostic uncertainty about the suspected pat-
tern: “I think this is crazy paving, but I haven’t seen crazy paving in 
a while.” She would search for a certain pattern in trusted websites 
(e.g., “crazy paving chest ct radiopaedia” ) to see examples of that 
particular pattern to help disambiguate possible interpretations. 

Both radiologist and clinician team members indicated form-
ing search queries with the abnormality and imaging modality to 
fnd similar cases with an overview of pathologies listing common 
causes: “I’ll look at the diferential diagnoses [listed] . . . [which makes 
me think] I haven’t considered that, but knowing what I know about 
the patient, yeah that makes sense.” (R2F) We discussed how radiolo-
gists might perform visual searches if they had the ability to query 
a region in a patient image, for instance, drawing a bounding box 
and typing ‘is this normal or abnormal’ (image query, text query, or 
image and text query). R1F shared that text query might be prefer-
able: “I would prefer text, because if I’m selecting a lump, anything 
might look like a lump.” R2F however preferred the following search 
query type: “If I could snip a region ... so that I don’t have to translate 
that to a text query.” ; suggesting variations in search preferences. 

Our discussions also touched on clinician-radiologist interac-
tions, and the types of questions asked. Clinicians shared that they 
might ask clarifying questions for less visible fndings: “You said in 

the image [there is this] ... Where is it? Is this normal?” (C2F) Both 
radiologists and clinicians noted that image annotation tools were 
part of the reporting software, yet were rarely used. Clinicians also 
sought information on next steps: “Do you think we need to act 
on this? What [additional] imaging should we order? Who should 
we call about this?” (C2F) Radiologist team members shared that 
such clarifcation interactions can be overwhelming: “Sometimes 
clinicians want to hear from their favorite radiologists that they’ve 
built a trust relationship over the years, which can be overwhelming 
for the radiologist.” (R2F) We discussed that visual annotations and 
image search capabilities might reduce some of the back and forth. 

5.3 Use Cases for Longitudinal Imaging 
VLM capabilities enable the comparison of a patient’s prior images 
for longitudinal assessment, a core practice in radiology reporting 
[2, 116]. Refecting on situations where this capability could be use-
ful, R2F spoke of the challenge of tracking the size of nodules over 
time: “It might look like the size hasn’t changed much [compared to 
the most recent image], but actually it’s grown 5 millimeters compared 
to two years ago.” We envisioned that a system could summarize 
past images and reports to provide key highlights, such as chronic 
events, operations, and the trajectory of abnormalities. 

6 PHASE 2: SKETCHING VLM CONCEPTS 
We identifed four VLM use cases to further design and investigate: 

(1) Draft Report Generation (radiologist only) 
(2) Augmented Report Review (clinician only) 
(3) Visual Search and Querying (clinician & radiologist) 
(4) Patient Imaging History Highlights (clinician & radiologist) 

This section details our design goals and strategies in selecting 
each of these VLM use cases, and elaborates their design. 

6.1 Concept Prioritization 
To select the use cases, we focused on concepts that (i) leverage VLM 
capabilities that combine radiology image-text pairs as recently ex-
emplifed by [8, 17, 137]. These technical works commonly propose 
capabilities for tasks such as: visual question-answering, text-image 
retrieval and report generation. Furthermore, we sought to (ii) cover 
a breadth of required task expertise-AI performance within the design 
space. Recent research highlighted that innovators mainly focus 
on use cases that require high-expertise and near-perfect AI per-
formance (e.g., clinical decision making), yet should investigate 
beyond [143]. In those use cases, requirements for high AI perfor-
mance are bound-up with greater risks if AI comes to fail – both 
for patient care and clinician acceptance. We therefore deliberately 
included use cases that help us explore where lower, yet ‘good 
enough’ AI performance may still provide utility (e.g., visual search, 
summarizing prior patient reports) in addition to more common 
higher-risk, higher-value proposals (e.g., report generation). 

6.2 Design Concepts 
Below we provide an overview and the rationale behind each con-
cept, and enlist the research questions they sought to explore. Click-
through prototypes are further illustrated in the Appendix. 

https://uptodate.com
https://radiologyassistant.nl
https://radiopaedia.org
https://gpnotebook.com
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Figure 2: The Draft Report Generation (radiologist only) concept displayed (a) a chest X-ray image with patient information 
and clinical indication, (b) an AI-generated report in bullet point form, and (c) a narrative report created using the bullet points. 

Figure 3: The Augmented Report Review (clinician only) concept displayed (a) a report overview feature above the full report, 
and (b) an AI assistant feature. 
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Figure 4: The Visual Search and Querying concept displayed (a) a visual selection tool that enabled image search or image and 
text queries, (b) an AI assistant that returned query results without providing an interpretative answer. 

Figure 5: The Patient Imaging History Highlights concept displayed (a) a new X-ray scan, (b) prior patient images, and (c) an 
AI-generated summary of prior images and/or reports. 
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6.2.1 Draf Report Generation. Motivated by the insight that radi-
ologists are accustomed to working with draft reports from their 
trainees, the frst concept explored the idea of an AI-generated 
radiology report as a ‘draft’. The Draft Report Generation concept 
(Figure 2) displayed (a) a chest X-ray image with patient informa-
tion and clinical information, (b) an AI-generated report in short 
sentence form, and (c) a narrative report created using the short 
form report. It demonstrated a scenario where the radiologist could 
review the fndings to see annotations in the image, and edit the 
draft in short form (e.g., crossing out, editing, or adding bullet-point 
style sentences). The short form text – illustrated as bullet-points 
– was sought to assist in spotting mistakes and enables linking 
the outputs to source materials (e.g., referencing to previous scans 
or reports, localizing text fndings in the image). Our goal was to 
explore the balance between introducing friction and slowing down 
radiologists by having them verify the report, and yet still have 
them achieve time savings overall. 

Some concept details were intentionally left open to interpreta-
tion. For instance, the prototype did not detail whether only certain 
parts (e.g., fndings, impression) or the entire report should be gen-
erated as draft. We also did not list the whole report in short form; 
instead we foated the idea of listing abnormalities to report what 
remains as ‘normal’ (a common practice when using templates). 

The concept aimed to explore the following questions: (1) When 
and how would radiologists want to interact with an AI-generated 
draft report, if at all? (2) Could there be utility to having a short form 
report (e.g., bullet points)? (3) Should the draft report be available 
to clinicians? If so, in what level of detail? (4) What is considered 
as ‘good enough’ AI performance for draft reports to be useful? 

6.2.2 Augmented Report Review. Based on our insights on clini-
cians’ information needs, we explored how their review of radiology 
reports could be augmented with VLM capabilities. The Augmented 
Report Review concept (Figure 3) had two main features: (a) a re-
port overview feature shown above the full report, and (b) an AI 
assistant feature. The report overview displayed a list of abnormal 
fndings extracted from the report that can be visually highlighted 
in the patient image to facilitate its localization (e.g., large right 
pleural efusion). The AI assistant showcased numerous prompts 
inspired by clinician questions (e.g., Given the image-based fndings, 
what are the clinical guidelines for pleural efusion?). For this concept, 
a critical design consideration was around latency: vision-language 
models are currently slow and costly. We speculated whether con-
textual queries can be pre-run prompts, where answers could be 
displayed immediately (see Appendix). As an alternative, we also 
sketched the AI assistant feature as a chatbot with a text input feld 
to provide contrasting options. The prototype displayed example 
prompts (e.g., guidelines, suggested investigations) as conversation 
starters to help clinicians envision what might be useful. 

The concept aimed to explore: (1) Would clinicians want to re-
view AI-generated annotations? If so, which fndings are helpful to 
highlight for diferent image modalities (e.g., CT)? (2) Could there 
be any utility to having contextual information when reviewing 
images? (3) What would clinicians query? What would they never 
query? (4) Would there be a need for follow up queries (e.g., a 
chatbot style interaction that can maintain context)? 

6.2.3 Visual Search and Qerying. Building on the insight that ra-
diologists and clinicians perform image searches online, the Visual 
Search and Querying concept (Figure 4) explored potential utility 
by displaying: (a) a visual selection tool that enabled image search 
(e.g., Find similar images that look like this region) or image and 
text queries (e.g., “Is this lump or anatomical variant?” ). In line with 
recent literature showing clinicians look for evidence rather than 
explanations [139], we envisioned this concept to return groups of 
similar images instead of providing an interpretative answer (e.g., 
“Below are two groups of examples showing anatomic variants and 
lumps that look similar to the selected region.” ) (Figure 4b). 

The concept aimed to explore: (1) What would clinicians and 
radiologists visually query? (2) Could there be utility in performing 
image and text queries? (3) Would clinicians prefer to have an 
answer along with image examples (e.g., “Region likely normal” )? 
(4) What might be the data requirements for fnding similar images 
(e.g., past images and reports from a hospital database)? 

6.2.4 Patient Imaging History Highlights. Given that clinicians and 
radiologists commonly review patients’ prior images, the Patient 
Imaging History Highlights concept explored extracting and high-
lighting key insights across a patient’s image history. The prototype 
(Figure 5) displayed: (a) a new X-ray scan, (b) prior images, and 
(c) an AI-generated summary of prior images and/or reports. Ex-
ample highlights included changes in abnormalities (e.g., Left lung 
nodule increased in size from 5 to 8 millimeters); chronic conditions 
(e.g., Chronic nodule in right lung benign, see image reference); and 
operations (e.g., Patient had chest drain on this date). 

The concept aimed to explore: (1) What is relevant to highlight 
in a prior imaging summary? (2) Would a summary based only on 
reports be still useful; what is the least AI can do? (3) Would clini-
cians query prior images? If so, how (e.g., “Show me only abdomen 
CTs” )? (4) How would clinicians envision prior imaging summary 
to best be presented? 

7 PHASE 3: ELICITING USER FEEDBACK 
In the third phase, we sought feedback from a broader set of clin-
icians to understand whether, how and when the VLM-assisted 
radiology imaging concepts might be useful for clinical practice. 
This section reports participants’ feedback on each design concept, 
capturing perceived benefts and suggestions for improvement. 

7.1 Draft Report Generation 
Expectation of near-perfect AI performance: All radiologists 
expressed that having an AI-generated draft report would be valu-
able as long as the model performed really well; with high sen-
sitivity and specifcity. Describing how AI reporting errors could 
add burden, one radiologist explained: “If it misses something, I’ve 
got to say that. If it’s false positive, I either have to click to remove 
it from the report entirely, or I have to change something.” (R2) To 
better understand what would be considered as good enough AI 
performance for this use case, we asked “Out of 10 reports, how 
many are you willing to correct?”. Almost all replied “1 out of 10” 
(R1, R2, R3) or “5 to 10 out of 100” (R5); suggesting the need for 
near-perfect performance for AI-generated draft reports to provide 
real utility. Only one radiologist, a trainee, responded “3 out of 10”, 
noting that the system could make them more confdent even if 
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it did not reduce their workload: “It [would be] getting stuf right 
enough for me to feel comfortable just to edit the 30% of cases where 
it’s going to be wrong.” (R4); suggesting potentially added benefts 
for trainee learning. 

Accounting for fast-paced practice & high workload: Echo-
ing our initial fndings, radiologists noted that their practice is 
fast-paced and high volume: “It is literally going as fast as humanly 
possible. Scrolling through things, looking at image, saying whatever 
I can, go over the spellchecks. Make sure I didn’t say anything really 
wrong and then sign and get on the next one. ... I just need to get my 
job done fast. I don’t get paid more for quality.” (R2). Consequently, 
participants mainly spoke of value as time savings, especially when 
reading multi-slice images such as those captured by CT that take 
signifcantly longer to review and report than i.e. X-rays, and im-
ages that are outside of their subspecialty (R1, R2, R3, R5): “I might 
be a seasoned reporter for lung or cardiac, but as every week it hap-
pens, we’ll get a neck CT ... when you’re not doing it day in day out, 
it’s extremely difcult. You would love an AI which is at least giv-
ing you the salient fndings.” (R5) This suggests a draft report may 
reduce risks of key clinical observations being missed and could as-
sist with image interpretation confdence. Apart from time savings, 
participants also mentioned potential benefts in reduced cognitive 
burden. For simpler X-ray images, R2 for example mentioned: “I 
can do [X-rays] in 10 seconds... [but] there’s the cognitive burden. 
Having to say the words and go through it all is painful.” R4, who 
was a trainee, refected that the main beneft of the system would 
be reducing reporting time rather than the time spent for image 
interpretation: “Regardless of what the system says, I’m still going to 
go through my same search patterns for the fndings and interpreting 
those ... the only area where it’s going to be saving time is in creating 
that draft [prose] report because then I don’t have to worry about the 
wording and if I’ve missed something”. 

Preference for short, standardized reporting: Interestingly, 
when probed whether short form sentences could be useful, all 
radiologists shared that they prefer to work with bullet point style 
fndings instead of prose text. Several participants highlighted the 
literature on structured reporting, which is proposed as a solution 
for improving report quality and consistency [45]: 

“The idea of a narrative report happened in 1898 and 
we’ve not moved on from it. It’s full of hedging, it’s full 
of weird language that only radiologists use: ‘likely to 
be’, ‘cannot exclude’. [This is] what we should be moving 
away from rather than using the technology to reverse 
engineer the future into what we got.” (R3) 

Commenting on how the bullet list fndings in the prototype were 
presented, R1 refected “My reporting style is much more telegraphic. 
So I’ll say ‘large right pleural efusion’, that’s exactly how I’d phrase. 
I wouldn’t say ‘there is’ or ‘is seen’ or all those kinds of phrases. I 
don’t think [they] are helpful, especially for fndings.” Similarly, R3 
advocated for structured fndings for consistency and objectivity: 
“Rather than saying ‘suspected mild cardiomegaly’, you say ‘heart is 
enlarged’ or ‘heart enlarged’, which is a statement. It may be right or 
wrong, but it’s objective.” All these suggest a preference for concise, 
accurate and consistent reporting over the historic use of more 
ambiguous prose text, something that AI reporting could assist in 
standardizing. 

Favoring prioritized fndings & confdence indications to 
assist image interpretation: Additionally, radiologists described 
the benefts of having fndings structured by their clinical relevance 
and the systems’ confdence in the generated outputs. For example, 
a systems capability to compare a current study to a patient’s prior 
image enables ordering report fndings by: what is new, what has 
changed or is unchanged, which gives important context to aid 
image interpretation and subsequent clinical action. For example, 
the sudden ‘new’ appearance of a pneumothorax would require 
urgent clinical attention whilst a reduction in consolidation in 
the patients chest upon pneumonia diagnosis may suggest that 
antibiotic treatment is working. Furthermore, all participants (R1, 
R2, R3, R5) suggested having confdence intervals to communicate 
AI uncertainty: “Rather than using ‘likely to be’, ‘unlikely to be’, 
‘possibly’ ... ‘Likely prostate cancer 4 out of 5’, [which is] more robust 
and easier to interpret.” (R3) One radiologist suggested displaying 
the model confdence and ranking fndings on this basis: “[Say for 
a fnding] I don’t totally agree, I don’t disagree. But if it’s confdence 
is only like 56%, I’m just going to knock that out.” (R2) 

Impressions present key interpretative work: While short 
form, structured reporting was preferred for fndings, some radiol-
ogists (R1, R3) shared that having unstructured, prose text is more 
appropriate for the impression section which is the “non-objective, 
doctor bit” (R3): “The main focus of communication between us and 
the team taking care of the patient is that impression part of the report. 
So it’s really important to me to have that correctly crafted.” (R1) R5 
refected that fndings could be useful, yet the impression will be 
more difcult to get right: “We get a lot of [outsourced] reports from 
teleradiology, which just tell you what the fndings are. A clinician 
will want to know the clinical impression. ... Is a report better than no 
report? I think it is fne if it gets the fndings right, even if it doesn’t do 
all the synthesis clinically.” Given the importance of the impression 
section and its broader interpretative work that may include addi-
tional contextual information, the feedback from our participants 
suggests that clinicians may want to remain in charge of this task; 
positioning AI’s role closer to the extraction of relevant fndings 
from an image rather than its overall clinical interpretation. 

Broading uses of (prose) draft reports: When asked how 
an AI-generated draft report should be presented, all radiologists 
suggested having both bullet points and prose report presented 
together whereby bullet points serve to assist the review, and prose 
for clinical communication: “I could just get rid of [a bullet point] and 
it takes it out of the report, that’s great. Because editing at that level 
is so much easier than editing on the report.” (R2) A few radiologists 
noted that a patient-facing report could also be generated based 
on the list of fndings (R1, R3); suggesting additional use cases and 
user groups. 

In response to making an AI-generated draft report available to 
clinicians, all radiologists thought the AI-generated report could be 
useful for triage purposes, especially in situations where clinicians 
could escalate cases – as long as it did not look too fnal: “The subtlety 
there is that a draft report sounds too fnal in the health culture. But 
a ‘prelim’ or a ‘wet read’, that’s a very rough, not fnal thing. The 
clinicians would take that information and use their judgement to call 
the radiologist or wait for the report.” (R2) Alongside legal, regulatory 
and other organizational requirements to approve any such AI use, 
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this requires a system design that appropriately communicates and 
clearly discloses the nature of preliminary AI-generated contents. 

7.2 Augmented Report Review 
Locating image fndings & their prioritization by clinical 
relevance: Exploring how VLM capabilities could be utilized to 
augment the experiences of clinicians when reviewing the radiology 
report, all described fnding image annotations helpful, especially 
for complex images like CTs. Most clinicians shared that they do not 
receive training to read CTs: “I look at CT scans, but I’m not trained 
to look at CT scans. I’m trained to look at X-rays.” (C5) Some (C3, 
C6, C7) noted that they are comfortable reading CTs mainly within 
their subspeciality: “[In a brain scan] I would 100% be able to localize 
where things are. But if it was a report of a liver I would struggle.” (C7) 
They pointed out that for such multi-slice images, current systems 
require them to manually navigate to the image slice indicated in 
the report to view abnormalities. Having “clickable” fndings, either 
on the report itself or in an overview section, that would direct 
them to the image location of relevance, was perceived valuable to 
save time and make it easier to diferentiate what is in the image: 
“[Looking at a CT scan that had multiple areas of edema infarction] 
As a clinician, you’re like, well, this must be the bit that’s bleeding, 
but this must be the infamed bit. But they look similar to me.” (C1) 
Clinicians additionally described several abnormalities that can be 
difcult to interpret: “Lymph nodes are the thing that people often 
miss on chest X-rays. Small pneumothoraces are difcult to see. The 
diference between a pneumothorax and a bullae [is] a common prob-
lem with the misreading of chest X-rays.” (C6) As such, they ascribed 
value to AI image annotations in aiding their understanding of the 
reported fndings. Furthermore, similar to radiologists’ feedback, 
clinicians refected that an overview section could highlight the 
most important and actionable fndings: “Report overview would 
work best if you constrain it to show the top 6 salient features. We can 
get a lot of information overload if there are 25 of them.” (C7) 

Building an appropriate mental model of the AI: When 
discussing more broadly how AI assistance could feature within 
workfows, one clinician diferentiated for example a radiology as-
sistant from a clinical assistant, whereby the former is embedded 
within the image viewer for radiology-specifc tasks, whereas the 
latter –which is conceived as answering broader clinical questions– 
would be expected to sit within the EHR system: “If I’ve got a radi-
ologist at my fngertips, I’d restrict to asking it the kind of questions I 
might be asking the radiologist. Therefore it belongs in [the radiology] 
screen, whereas some of the other things like, how should I treat this 
patient? I think that belongs in the main body of EHR rather than in 
this radiology reporting system.” (C4) This commentary highlights 
the importance of workfow integration for building an appropriate 
mental model of the AI’s likely purpose and capabilities. 

Cautioning about chat format & too complex queries: In 
response to the AI assistant embodied as chatbot, several clinicians 
(C1, C3, C5, C7) commented that they were unlikely to use an 
assistant in chat form due to time-demands and lack of trust in 
generated, potentially high-risk responses: “I don’t need a chatbot 
function where I’m talking and stuf. I haven’t got the time for it.” 
(C5) Some clinicians raised concerns about responsibility in clinical 
decision making: “I’m not all of a sudden going to ask ChatGPT ‘What 

am I going to do with the brain tumor?’ I’m going to ask my friend 
who’s a specialist of this. There’s a question of responsibility. ” (C1) 
Similarly, in answers to questions what clinicians would not want 
to use an AI assistant for (whether in chat or any other form), C7 – 
an oncologist – emphasized that he would not use it as a prognostic 
tool: “The radiology assistant shouldn’t be used to make predictions. 
It’s not a radiomic analysis in that sense.” Similarly, a cardiothoracic 
physician indicated that she would not ask what’s unknowable: 
“You wouldn’t ask things that are impossible to know. Things that 
are too complicated, like [the patient is] on six other drugs, how are 
they going to interact in combination? I wouldn’t bother asking, I 
wouldn’t trust the answer cause it’s too individualized.” (C6) Another 
concern was around the reinforcement of radiology observations 
that present negative fndings. Here, clinicians stressed that they 
weigh positive fndings more than negatives: “[If someone asks] 
‘Can you confrm there really isn’t a small pneumothorax on this?’ 
Then the answer from the assistant should be ‘No, you can’t’.” (C7) In 
other words, clinicians cautioned the uses of AI for more ambitious, 
high-risk VLM use cases involving prognosis, more complex patient 
cases, or a defnite negation of abnormalities – given more likely 
chances of errors and their negative implications on patient care. 

Focusing on task- and patient-specifc, functional queries: 
However, clinicians described an array of rather functional, task-
specifc queries where they could imagine AI to assist by either 
connecting them to, or extracting information on their behalf. For 
example, clinicians envisioned the AI assistant to perform image-
based quantifcations such as calculations of the cardiothoracic 
ratio (calculated by measuring the maximum diameter of the heart 
and thoracic cavity); Mirels’ score (indicating the risk of bone frac-
ture); sarcopenia index (muscle-fat ratio to track weight loss in 
cancer patients); and waist-to-hip ratio in CT scans. All of these are 
currently calculated manually, often using phone apps: “It would be 
perceived added value if it could be quickly extracted from [an image] 
read, as you wouldn’t calculate it unless you needed.” (C7) In keeping 
with these more functional tasks, participants often envisioned AI 
assisting interactions in familiar forms, such as tool buttons, alerts 
or reminders for specifc conditions and workfows; thereby de-
scribing expectations of the AI being designed as a workfow tool. 
One clinician expressed: “I almost would want the prompt ‘Have 
you thought about this?”’ (C5) whilst simultaneously cautioning 
that such prompts could easily become annoying: “[For guidelines] 
I want to be able to click [on a fnding], guidance, then it searches and 
brings it up for me. I don’t want pop-up fatigue.” (C5) 

Furthermore, clinicians described how such practical, patient-
specifc AI functionality could be achieved even more efectively if 
VLM capabilities were combined with patient EHR data: 

“You want it to give you, here’s their allergies, here’s 
their weight, here’s their renal function, here’s their 
swallow plan. Do they have a cannula in place? And 
here’s their other medications that could interact with 
that medication. If it can pull from the system that 
type of information, excellent, you’re saving me a huge 
amount of time.” (C5) 

Criticizing many of the more generic information that were 
probed in our concept sketch (e.g., clinical features, diferential 
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diagnoses), clinicians emphasized the benefts of including addi-
tional EHR data to provide patient-context relevant information: 
“I don’t need [it to remind me] the 10 common causes of pleural ef-
fusion. What will be really helpful is for it to know that actually in 
this context, hypothyroidism becomes not the 29th thing, but actually 
upping [that to] your top fve you should be considering ... because 
this patient’s got some other clues or signs.” (C3) Similarly, surfacing 
a patient’s eligibility for clinical trials or surfacing specifc hospital 
or NHS level guidelines were described useful (C1, C2, C5, C6, C7); 
re-emphasizing the need for AI information provision to be adapted 
to each patient’s specifc context. 

7.3 Visual Search and Querying 
Aiding interpretation via comparison with relevant patient 
cases: All clinicians and radiologists shared that they perform web 
searches to fnd similar images, though not too frequently (e.g., 
1/week). For this concept, being able to visually search radiology 
images and reports within the context of their hospital and patient 
population was valued the most: “Often you look at a CT scan on 
[internet] and you go ‘my CT scans don’t look anything like that’ [be-
cause it was a diferent generation CT scanner]. So it’s very important 
to visualize the abnormality in the context of the type of imaging 
you would see in your center.” (C7) Most clinicians and radiologists 
wanted to query what is normal, or queries with age and sex: “Re-
cently we had a big debate: What does a 16 year old thymus look like 
normally?” (C6) An intensive care unit (ICU) clinician also described 
the difculty of assessing rare conditions where they overlap with 
other abnormalities, because such cases are too infrequent and 
unfamiliar: 

“Nasogastric (NG) tubes in the wrong place on a chest 
X-ray on someone in ICU with pneumonia is even less 
common [than misplaced NG tubes alone]. So people 
have to simulate abnormalities in their head and com-
pare the X-ray with their simulation. Showing [cases] 
similar to your patient would be useful.” (C1) 

All this suggests potential benefts of VLM use in retrieving or 
simulating other patient cases that enable comparative image as-
sessments for either rare and complex (e.g., querying ‘NG tube’ + 
‘pneumonia’), or normal cases to assist interpretation. For such uses, 
participants again positioned the AI system as a tool for extracting, 
searching or fltering information rather than as a conversational 
interface: “I’d have it as a tool that I can work with, and not conver-
sation.” (R1) Describing how they would use queries to refne image 
search, one clinician added: “To then be able to type in pneumonia 
for example, and then the other [search results] go away. ‘Just female 
patients’ or ‘I’m only interested in people over 75’.” (C7) 

AI insights to provide reassurance to ‘human’ interpreta-
tion: Refecting on when in their workfow visual search and query 
capabilities could be useful, some clinicians suggested their use for 
follow-up questions about the radiology report: “Radiologist might 
have looked at it, but just not commented on it. I just want the reas-
surance, is that normal or not? Is it a nodule? Is it a mass? Is it a piece 
of consolidation? Same goes with head scans. Does this look like quite 
a full brain? Does the patient have hydrocephalus or not?” (C5). Yet, 
other clinicians refected that even with AI functionality to retrieve 
i.e., similar images, they might still want to ask a radiologist to be 

assured: “Would I be reassured if it fashed up a whole load of other 
people’s chest X-rays and said, this was reported as normal and this 
was reported as normal, for yours is probably normal. I’m not sure 
that I would, but maybe.” (C6) Interestingly, none of the participants 
expected the system to provide an answer, and preferred example 
patient cases to inform their decisions: “Here’s a bunch of pictures, 
you decide. And that’s reasonable, right? I’m not asking some kind of 
segmentation to then take responsibility for the decisions.” (C1). This 
suggests preferences for AI use to reassure and aid human image 
interpretation rather than its use as an interpretative agent in itself. 

7.4 Patient Imaging History Highlights 
Reducing laborious information gathering: All radiologists 
and clinicians highly valued having a summary of a patient’s prior 
images highlighting key events and chronic conditions. Searching 
through a patient’s history was a major part of the clinical work-
fow. Recognizing the potential for time savings: “Half of my life is 
kind of spent chasing notes and pre-existing conditions. A sentence 
or two, just about the radiology, would save me a lot of time.” (C1) 
Some clinicians (C3, C7) spoke of a time-reward trade-of: “The 
problem with image interpretation is, how far back do you look when 
interpreting for change?” (C7) They expressed feelings of guilt as 
they mostly look through recent reports, but not images, due to lack 
of time. Radiologists, on the other hand, shared they take a thor-
ough look at past images, yet expressed desires for an automated 
summary: “That is a pretty standard practice already for radiologists, 
but certainly being able to more easily get at that imaging history is 
going to be a help.” (R1) 

Facilitating relevant patient information access: Probing 
what would be useful to highlight, participants mainly described the 
historical status of the patient, such as the baseline lung architecture 
before a patient had pneumonia. Examples included past operations 
(e.g., Do they have a collapsed lung?), key events (e.g., When their 
pacemaker frst appeared or their sternotomy wires frst went in?) 
and changes in abnormalities (e.g., New masses, fuid consolidation, 
rib fractures, are they old or new?). When asked whether a text 
summary would be still useful in comparison to more multimodal, 
VML capabilities (e.g., text summary of key events along with image 
annotations), most participants commented that linked reports 
and visual highlights could aid verifcation: “If you clicked on it 
[for it to show you annotated images], then you can corroborate.” 
(C6) However, several participants emphasized that even a text 
summary would provide an improvement to the current state: “We 
would willingly ingest that information even if it was a little bit 
more clunky.” (C7) Finally, a few clinicians (C3, C6) pointed out that 
unlike radiologists, the interface they use to review prior reports 
only presents a list view without images. As such, they thought 
of AI to still be useful if it could point them, at least, to important 
reports to guide their navigation to the relevant image: “I have to 
click on each one individually, wait for it to load. ... Even if I had a 
little red fag next to it saying ‘open this one, this has got money in it’.” 
(C3). This again highlights the prospective utility of AI in surfacing 
the clinically most relevant insights; and suggests that utility may 
already be achieved with simpler AI capabilities. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yildirim, et al. 

8 DISCUSSION 
Aiming to narrow the gap between (multimodal) frontier AI model 
advances and their successful translation into clinical practice [32, 
44, 97, 100, 130, 132, 149], our work engaged in early phase design 
and user research to identify and co-create clinically relevant use 
cases of VLM capabilities for radiology. Below, we frst discuss the 
fndings from our user feedback sessions, detailing design require-
ments for each use case. We then share our broader refections 
on these insights for human-AI interaction design in radiology 
and healthcare more generally. We conclude with our thoughts on 
the design process for ideating, prioritizing, and sketching VLM 
concepts. 

8.1 Implications for VLMs in Radiology 
Below, we expand on key learnings and critical design considera-
tions that surfaced in our study to inform if, and how, the identifed 
VLM use cases can assist radiologists and clinicians in their work. 

8.1.1 Chat and Qestion-Answering. Our fndings indicate that 
clinicians are unlikely to use conversational systems within their 
radiology work, especially to seek clinical decision support (e.g., 
making prognosis on complex patient cases) due to a lack of time 
to engage in dialogue and lack of trust in generated responses. In-
stead, participants in our study expressed a preference for tool-based 
interactions for well-defned tasks. This suggests the need for a 
broadened focus beyond ‘chatbots’ and ‘AI agents’ as concepts for 
how we envision AI to beneft clinical workfows; and requires the 
development of a richer design vocabulary for AI tooling in health-
care. This is not to say that user acceptance of chat interactions 
could not evolve as use cases become more concrete and familiar. 
Furthermore, unlike clinicians who work under time pressure, con-
versational UIs might be more useful for patients in interacting 
with their medical imaging fndings. Exploring if, and how, VLM 
capabilities could support other user groups marks a clear direction 
for future research. 

8.1.2 Image-Text Search. Our study revealed that searching for 
similar images using credible web sources is a common practice in 
radiology image interpretation when reviewing cases with uncer-
tainty. Both clinicians and radiologists expressed a desire to be able 
to search patient images and reports within their internal hospital 
databases, as images found online were often poor quality and did 
not refect the local patient population. Echoing recent literature 
fndings, participants in our study preferred the AI system to pro-
vide evidence rather than answers [139]. That being said, VLMs are 
unlikely to replace web search: participants emphasized that pro-
viding generic information would not be helpful, as such can easily 
and reliably be retrieved through web lookups. Instead, our design 
exploration focused on comparative queries (e.g., Show me similar 
images that are pneumothorax versus bullae; What is considered nor-
mal in the context of a particular age group or rare condition), which 
might allow for more fexible queries than web search. Future work 
should explore how VLM capabilities lend themselves to unique 
search, flter and retrieval experiences that go beyond what web 
search can provide. 

8.1.3 Report Generation. In line with research on practice guide-
lines for radiology reporting [116], our fndings surfaced the need 

for more efective, precise articulation of imaging fndings. All ex-
pressed a preference for short form fndings (e.g., bullet points) over 
prose, calling for more structured representations clearly indicating 
fndings that are new, changed, unchanged, and normal. Interest-
ingly, participants described the impression section as the “doctor 
bit”; the more carefully crafted, interpretative piece that may in-
clude other contextual information (cf. fndings by [136]), and that 
acts as the main communication within the care team. Radiologists 
regarded the impression section as ‘harder to get right’ compared to 
the fndings, which are based on observations alone. Interestingly, 
radiologists seemed comfortable with the idea of making draft re-
ports available to clinicians, as long as the report did not look too 
fnal, but was a ‘wet read’. These insights suggest that AI research 
eforts for generating draft reports could fnd more acceptance for 
auto-generated fndings, as opposed to an auto-generated impres-
sion (cf. [84]). Should the entire report be generated as a draft, or 
only certain parts? How best to juxtapose AI and human generated 
contents for easy review and editing/correcting? All these remain 
open questions for future research. 

For the draft report generation concept, we took inspiration from 
current practices whereby draft or preliminary reports by a junior 
or senior trainee are reviewed and amended if needed by a senior 
radiologists. The use of AI-generated draft reports brings up many 
questions in terms of the impact on trainees’ education and learning 
experience. While AI-generated draft reports may result in time 
savings, it could take away important opportunities for trainees 
developing their clinical reporting skills. On the other hand, an 
AI draft report could also be seen to provide a useful resource to 
assist trainees’ learning journey and confdence as they acquire 
image interpretation competencies. This design and research space, 
as well as questions on how to develop an appropriate AI reliance 
–upskilling trainees without over-dependency on AI– are complex, 
and present open challenges for future work. 

8.2 Implications for Designing AI in Healthcare 
In this section, we take the learnings from our VLM design explo-
rations to refect on the question “What makes a good AI experience 
in healthcare?” 

8.2.1 Focusing on clinically useful AI applications. Above and be-
yond the vast technical possibilities that new AI foundation models 
provide, this section describes the necessity of balancing these with 
clinical utility, risks of AI fallibility, and AI acceptance. 

Prioritizing lower risk-medium reward use cases: Recent 
research highlighted that AI innovators mainly focus on use cases 
that require high task expertise and near-perfect AI performance 
(e.g., clinical decision making) [143]. Instead, researchers point to 
use cases where moderate-performance AI still could be useful in 
clinical tasks and workfows, such as in triage, workload manage-
ment, and resource optimization. Echoing this [42, 143], our case 
study found that clinicians expect a near-perfect performance for 
use cases that require high clinician expertise (e.g., draft report 
generation). However, we also identifed use cases that required 
medium-expertise, moderate-performance, yet were perceived as 
high value. For example, summarizing prior patient reports requires 
relatively lower expertise –a medical student level task– where hav-
ing a ‘good enough’ summary could be still more useful than no 
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summary. As argued elsewhere [19, 62, 119], this suggests a focus 
in AI development on simpler, more standardized use cases as a 
potentially lower risk and more responsible approach when starting 
to introduce AI innovations into clinical practice. 

AI as information resource, not clinical decision agent: 
Amongst the many new capabilities aforded by VLMs (and other 
multimodal FMs) such as uses of natural language conversation; 
ability to generate or translate content; or predict specifc outcomes; 
we found most uptake for proposals that involved relevant infor-
mation retrieval or summarization. Notably, participants expressed 
low acceptance around ambitious, higher-risk VLM concepts, such 
as generalist medical AI uses for prognosis or to ofer counter-
factual reasoning due to a lack of trust in generated outputs; and 
none of them characterized our design proposals as clinical decision 
support that provides clinician interpretations or treatment recom-
mendations. Instead, they recognized the potential value as reduced 
time and cognitive efort. For instance, draft report generation was 
perceived as valuable for radiologist time savings (if correct), and 
for nudging clinicians to escalate cases to radiologists to seek assis-
tance. Radiologists also described wanting to remain in charge of 
the ‘doctor bit’ and more complicated image interpretations that 
are harder for AI to get right. 

Empowering humans in their expert work: As indicated 
above, instead of applying VLM capabilities as an interpretative 
agent, participants proposed their use for more functional, tedious 
tasks such as calculating medical ratios and scores; assessing organ 
sizes, volumes or density (cf. [72, 97]); retrieving EHR patient data; 
or for administrative support (cf. [110]). Outside these practical 
tasks, AI was positioned as an information resource for assisting 
human interpretation by extracting, highlighting or summarizing 
clinically relevant observations. Examples include AI use to provide 
evidence (e.g. via comparative queries and similar image retrieval, or 
locating image fndings in complex CT scans); for ordering report 
fndings by clinical relevance (or urgency); or deriving imaging 
history highlights. Conceiving of AI’s role as assisting, and ideally 
empowering, healthcare professionals in their expert work likely 
also plays a crucial role for its acceptance and clinical adoption. 

8.2.2 Integrating AI seamlessly into clinical workflows. Intertwined 
with the above AI use cases are considerations of how best to 
integrate AI into fast-paced, high caseload workfows to provide 
utility whilst inviting appropriate frictions to check or correct AI 
outputs. 

Designing context-specifc “workfow tools”: Especially in 
responses to proposals for an ‘ask me anything’ type AI assistant 
feature, we found that such openness did not help clinicians in 
forming mental models; it was not clear to them what they could 
ask, or how the AI assistant would know the answers. Instead, 
they wanted the AI system to be more specialized and focus on 
specifc tasks within their workfow (e.g., fltering search results, 
querying past patient reports). This aligns with user expectations 
around agent expertise that are well documented in the human-
robot interaction literature [83, 107]. As a consequence, we suspect 
that current research aspirations for creating a ‘generalist medical 
AI’ [89, 129] are unlikely to correctly capture clinicians’ mental 
model, which presents a key consideration for the usability of such 
AI systems in healthcare. All this suggests that while (multimodal) 

AI can technically be leveraged for vastly diferent tasks, it may 
be benefcial to design them as context-specifc workfow tools 
with clearly defned purposes to increase their understanding and 
practical utilization. 

Demonstrating clear benefts for disruption or change: 
Given the growing complexity of VLMs and other advanced AI 
models, it is questionable how well, if at all, their workings can be 
explained, or their likelihood to fail be detected [126]. While it is 
common to think of human-in-the-loop approaches to verify and 
correct potentially fallible AI outcomes (e.g., review AI-generated 
draft reports), where such requirements add extra time burden to 
clinicians, or present tasks that they are less interested to perform, 
it risks reducing its utility and uptake in practice (cf. [60, 113, 114, 
125]). If we were to accept that no AI model is always correct, 
designers need to give more consideration to strategies that enable 
clinicians not only to easily verify or quickly correct VLM outputs – 
beyond technical solutions (e.g., self-consistency prompting [119], 
LLM-generated explanations [94], correctness predictions [65]); 
but also develop better strategies to assist AI output justifcations. 
Re-visiting notions of AI uses as provision of evidence rather than 
clinical interpretations, connecting AI outputs to other criteria 
‘external’ to the model [115] may aid clinicians to triangulate those 
outputs across diferent, trustworthy information sources such that 
they can more efectively be accepted or rejected as part of their 
work (cf. [124, 125]). 

Further, we have to take into account that adoption of new AI-
assisted practices can be greeted with reluctance where clinicians 
are asked to change established practices (e.g., move away from 
prose sentence dictation). Readiness to adapt work styles to accom-
modate AI likely requires sufcient benefts of a new approach. 

8.3 Sketching VLM Experiences 
Research investigating the best practices around designing AI prod-
ucts and services noted emergent approaches that blend human-
centered and tech-centered processes, and the use of AI capabili-
ties for sensitizing domain stakeholders [143, 144]. Our case study 
demonstrates that a capability-based approach –starting with both 
user needs and AI capabilities to fnd matches in the problem-
solution space– proved efective for multidisciplinary brainstorm-
ing to identify clinically relevant AI use cases. Moreover, using 
multiple sketches that are framed as instantiations of capabilities 
rather than concrete design proposals to probe clinicians and radi-
ologists (e.g., Knowing that AI can do this, can you think of situations 
where this capability would be useful?) seemed to work well. 

While sketching [22] with VLM capabilities scafolded ideation, 
separating the underlying capability from the form was a challenge. 
For example, the AI literature often uses the term ‘Visual Question-
Answering’ to refer to AI tasks around image-to-text or text-to-
image capabilities, yet these capabilities do not necessarily require a 
conversational form. Similarly, we struggled to envision novel VLM 
interactions that go beyond chatbots, alerts, and recommenders, a 
well-known challenge in AI design literature [140]. We approached 
this challenge by framing VLM capabilities as queries that can 
be formed in diferent ways (e.g., conversational questions, pre-
run prompts, alerts, visual annotations, etc). Interestingly, the way 
participants described VLM interactions resembled robotic process 
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automation: AI that fetches data in the background and presents 
it in an unremarkable manner [141] that can either be included 
or easily ignored. These fndings point to a need for new design 
patterns beyond current paradigms of LLM or VLM uses as chat or 
conversational queries – especially in workfow-oriented contexts. 

Additionally, VLMs as a design material centers considerations 
on balancing a seamless user experience with the time latency 
and fnancial costs (e.g., pre-running complex queries on large 
volumes of data to surface what prompts might be relevant; apply-
ing self-verifcation strategies to reduce risks of AI errors). This 
may determine choices to prioritize smaller, more efcient VLM 
models. Furthermore, designers should evaluate whether VLM (or 
other multimodal AI) capabilities are truly needed and appropri-
ate for a task and explore alternatives. During our user feedback 
sessions, we probed into VLM boundaries by asking ‘Can there be 
simpler, dumber versions of these concepts?’ The Patient Imaging 
History Highlights concept demonstrates this approach well: while 
a multimodal model can summarize rich patient image-report data; 
text-only models may already create value by summarizing pre-
vious report texts or pointing to important reports without text 
extraction and summarization. 

Finally, we see opportunities for design research to investigate 
how to efectively sketch and prototype VLM interactions. In this 
paper, we utilized click-through sketches to scafold clinicians’ 
thinking around what AI can do and how the system might be-
have in specifc use cases. While the concepts were used to probe 
into clinician expectations and AI acceptance, further research is 
needed to substantiate, test, and challenge our insights. Recent 
literature highlights prompt prototyping as a potential research di-
rection for experience prototyping with LLMs and generative AI 
capabilities [63, 103, 131]. Future work should detail and refne 
interactions for the identifed use cases; and extend insights into 
challenges of workfow integration, task completion time, as well 
as error types and their likely implications and mitigation. 

9 CONCLUSION 
Intersecting the felds of HCI, AI and Healthcare, the work in this 
paper presents a frst investigation into the potential utility and 
design requirements for leveraging vision-language model (VLM) 
capabilities in the context of radiology. To this end, we conducted 
a three phase study that involved brainstorming with clinical ex-
perts and sketching four specifc VLM use cases. Our fndings from 
feedback sessions with 13 clinicians and radiologists provide initial 
insights into clinician acceptance and desirability for various identi-
fed VLM use cases, and advance this research by capturing nuanced 
design considerations. Against this backdrop, our work surfaced 
broader insights and challenges for human centered-AI systems in 
healthcare. While much emphasis is currently placed on developing 
more general-purpose AI models that can fexibly be adapted and 
scaled across diferent healthcare contexts, our research highlights 
the importance of bringing new AI capabilities into the focus of spe-
cifc, practical tasks and use contexts to achieve efective workfow 
integration and the formation of useful mental models for AI and its 
intended uses. Notably, we found lesser interest in more ambitious 
VLM concepts that may ofer value in terms of predictive diagnosis 

or counterfactual reasoning on medical outcomes. Instead, partic-
ipants positioned AI as being assistive to health experts’ work to 
help with mundane information extraction and processing tasks; 
thereby serving as a resource for human interpretation (e.g., by 
ofering access to clinical evidence in a patient-specifc manner). 
We further highlight the various trade-ofs that are needed to en-
sure that AI’s utility is balanced with the cost of AI risks; human 
efort in checking or correcting AI outputs; changes in work prac-
tices; as well as AI output latency and compute requirements. We 
encourage HCI researchers to further explore the benefts, risks, 
and limitations of VLMs in radiology workfows, and healthcare in 
general. 
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A APPENDIX A: EXAMPLE RADIOLOGY 
REPORT AND PROTOTYPE FLOWS 

This section contains (a) an example radiology report from the 
MIMIC-CXR dataset [64], and (b) the click-through prototypes used 
for concepts where we had more than a single frame (Draft Report 
Generation, Augmented Report Review, Visual Search and Querying). 
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Figure 6: An example image-report pair from the MIMIC-CXR dataset [64] with (a) the radiology report and (b, c) the chest 
X-rays including the (b) frontal view and (c) the lateral view. 

Figure 7: Click-through prototype fow illustrating the Draf Report Generation concept. 
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Figure 8: Click-through prototype fow illustrating the Augmented Report Review concept. 

Figure 9: Click-through prototype fow illustrating the Visual Search and Querying concept. 
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