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useful tasks on apps from random or human-curated interaction traces. Colored components in this fgure represents the 
primary technical contributions of this paper. 

ABSTRACT 
Macros are building block tasks of our everyday smartphone activ-
ity (e.g., "login", or "booking a fight"). Efectively extracting macros 
is important for understanding mobile interaction and enabling 
task automation. These macros are however difcult to extract at 
scale as they can be comprised of multiple steps yet hidden within 
programmatic components of mobile apps. In this paper, we intro-
duce a novel approach based on Large Language Models (LLMs) to 
automatically extract semantically meaningful macros from both 
random and user-curated mobile interaction traces. The macros 
produced by our approach are automatically tagged with natural 
language descriptions and are fully executable. We conduct multi-

ple studies to validate the quality of extracted macros, including 
user evaluation, comparative analysis against human-curated tasks, 
and automatic execution of these macros. These experiments and 
analyses demonstrate the efectiveness of our approach and the 
usefulness of extracted macros in various downstream applications. 
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• Human-centered computing → Human computer interac-
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1 INTRODUCTION 
The interaction between users and mobile apps can be abstracted, 
understood, and studied at many levels. At the lowest level, for 
example, users’ granular motor movement on mobile devices can 
be studied and characterized by the important Fitts’ Law and its nu-
merous derivatives introduced by the HCI community. On the other 
end of this spectrum, mobile apps can be organized by developer-
defned Views (iOS) or Activities/Intents (Android) that group app 
code and UIs with similar programmatic logic and functionalities. 

An important abstraction among this spectrum is the notion of 
macros. Macros represent well-encapsulated units of users’ engage-
ment with apps with certain needs and/or in certain contexts. For 
example, a macro for a user in a to-do list app might be ‘adding a to-
do list item’. This macro represents a specifc user need and covers 
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how the app might address this user’s problem with a collection of 
actions and parameters in the app. Completing this macro in an app 
would require the user to perform multiple clicks to reach multiple 
screens and set multiple values/parameters (e.g., the due date of the 
item) on each of them. Because macros are important constituents 
of our everyday smartphone activities, extracting them is highly 
valuable for a number of purposes, including interaction automa-

tion, how-to knowledge sharing [13], as well as understanding 
interactive tasks. 

Although extensive work has been conducted in creating macros 
using techniques such as Programming by Demonstration (PBD) [9, 
16, 18], little progress has been made in automatically extracting 
high-level and functionally complex macros from interaction traces. 
Mining these traces, which are often abundant from crawling, is a 
crucial step towards extracting macros at scale. However, automati-

cally extracting macros that represent meaningful user tasks from 
these traces is unfortunately not straightforward. The mappings be-
tween macros to programmatic invocations are often non-linear and 
non-consistent—a macro can involve multiple function calls, span-
ning across multiple views, yet some views can support multiple 
macros. It is therefore difcult to directly instrument or reverse-
engineer these macros based on app source code or user recordings 
which were employed in prior work [1, 27]. Additionally, many of 
these macros are context-dependent. As a result, it is difcult to 
derive a unifed taxonomy of macros, compared to more granular 
classifcations such as classes of icons or UI elements [12, 22, 28], 
which makes global aggregations across the dataset difcult. While 
there are existing eforts that create macros via crowdsourcing [5], 
it remains out of reach for capturing a large proportion of function-
alities of each app and handling a vast variety of apps. 

Recent advances in Large Language Models (LLMs) have enabled 
a new class of methods and models that can understand and interact 
with mobile apps with an unprecedented level of intelligence. LLMs 
have repeatedly been shown to possess common knowledge about 
mobile UIs and users’ daily tasks, enabling applications such as 
conversational interactions, screen summarization for accessibility, 
and multi-step task grounding and planning [30]. Motivated by 
these exciting fndings, we investigate using LLMs to automatically 
extract macros from mobile apps. By ‘inspecting’ UIs converted 
to an HTML format, similar to prior work, and prompting LLMs 
appropriately, we show that LLMs can efectively extract semanti-

cally meaningful macros from apps that cover many interactions by 
describing these macros fexibly in natural language. To make these 
macros automatically executable, we take further steps by feeding 
them back into the LLM to identify elements on the screen and 
parameters required to fulfll the macros, and synthesizing multiple 
execution traces to distill optimal click paths to execute the macros. 
We experiment with our approach on three datasets: RICO [6], Mo-

TIF [5], and a dataset of random crawls of apps that we created. We 
conduct a user study to evaluate the quality of extracted macros; 
we compare extracted macros against human-curated tasks quanti-
tatively; and we test the automatic-executability of these macros 
in a live environment. These experiments and analyses show that 
our approach is efective in extracting meaningful macros from 
arbitrary interaction traces. Our main contribution is three-fold: 

• We contribute a novel approach of using LLMs with a trace-
based chain-of-thought technique and optimal path synthe-
sis to efectively extract large-scale, meaningful macros from 
interaction traces that are abundant in existing datasets. 

• The macros we extracted enrich existing mobile datasets. In 
particular, we extracted a large dataset of 23,777 macros from 
RICO [6], an existing large-scale UI dataset that is widely 
used for mobile interaction analysis and modeling. This new 
dataset of extracted macros will be publicly released1. 

• Beyond evaluating our extracted macros with human users 
and against existing large-scale datasets quantitatively, we 
executed our extracted macros in live environments. These 
evaluation results provide evidences for high efcacy of the 
extracted macros in supporting downstream applications in 
realistic scenarios. 

2 DEFINITION OF MACROS AND PRIOR 
WORK 

To fully understand the value of Macros, and consequently automat-

ically extracting and executing them, we frst defne macros used in 
this work in the context of user-app interactions. The interaction 
between a user and a mobile app can be decomposed into sets of 
chronologically ordered actions �� , screens that the actions was 
initiated from �� , and the UI elements �� that were involved in the 
actions. In each interaction session, a user performs an action on 
each screen on a specifc element or a set of elements, leading to the 
next screen when this process repeats again. Each instance/session 
of interaction can thus be viewed as a trace, where the trace con-
sists of a sequence of triplets of � actions, screens and elements 
(�, �, �)1...� . 

To analyze and aggregate collections of multiple traces, prior 
research have considered these components as various units of in-
teraction. A signifciant amount of prior research have investigated 
UI elements �� as independent units by annotating and classifying 
them [22, 28]. Researchers have also grouped multiple views and el-
ements by their corresponding programmatic implementations [1]. 

This work focuses on a more user-centric defnition for units 
of interaction—Macros. A macro could be defned as a series of 
actions �� that collectively performs a semantic task or achieves a 
user goal. This means a macro could be described in natural lan-
guage, corresponds to a set of actions in a sequence, and all actions 
serve the sole purpose of completing a task meaningful to the user 
(e.g., booking a fight, checking the wait time at a restaurant). The 
collections of views and actions in a macro are often orthogonal 
to those arranged by developer-defned abstractions; an activity 
in Android, for instance, can support multiple macros, yet each 
macro can span across multiple activities. Automatically extracting 
them also requires a diferent type of computational understanding, 
which includes holistic knowledge about the interaction between 
user tasks, usage context, and UI components. We summarize the 
diferences between our work and the aforementioned related work 
in Table 1. 

In the remainder of this section, we compare and contrast vari-
ous prior work against our proposed approaches. We also review 

1
https://github.com/google-research/google-research/tree/master/macro_mining 

https://github.com/google-research/google-research/tree/master/macro_mining
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Table 1: Summary of diferences in interaction units and requirements for extracting them between our work and prior work. 

Research Work Studied Interaction Units Requirements for Extraction 

Semantic 
Classifcation 
[12, 14, 22, 28] 

Individual UI elements and screens Understanding correspondence between graph-
ical, geometric and textual properties of UI ele-
ments and a fxed set of semantic UI concepts 

UI Embeddings 
[3, 8, 17] 

Individual and pairs of UI screens Understanding UI element and screen function-
ality in context of nearby UIs in interaction 

Developer-defned 
Abstractions [1, 27, 29] 

UI Activities, Views, and Packages with 
multiple elements and screens grouped 
and implemented by developers 

Access to source-code or reverse engineering 

Macro Mining (Ours) Multiple UIs grouped by user tasks 
and use-cases 

Holistic understanding of UIs, tasks, and 
contexts in users’ app usage 

prior attempts of extracting macros and potential applications that 
macros could enable. 

2.1 Semantic Understanding of Individual UI 
Elements and Screens 

Individual UI elements and screens are extensively studied by prior 
work as interaction units in traces. Prior works have developed 
two main categories of methods to understand the semantics of 
these elements in relation to users’ interaction intents and needs. 
The frst category of works classifed UI elements [14, 22, 28] and 
screens [12] into fxed sets of researcher-curated semantic and func-
tional concepts (e.g., text input, ‘add’ icon) with crowd-sourcing 
and machine-learning models. The second category of works ex-
plored representing UI screens and elements through free-form text 
annotations or ML-model-embeddings in various UI-based learning 
tasks. Widget Captioning [20] and screen2words [31] respectively 
collect human-provided natural language annotations of UI ele-
ments and screens. Screen2vec [17], UIBert [3], and ActionBert [8] 
explore the development of embeddings for both UI components 
and screens through training ML models on prediction tasks of the 
context and functionality of the interaction units concerned. 

2.2 Developer-defned Abstractions of UIs 
Apps UIs can also be analyzed from the alternative perspective of 
developer-defned abstractions. In Android apps, developers defne 
Activities, Intents, Services and Layouts, which can provide mean-

ing to various parts of the apps [27]. These abstractions allow prior 
work to more easily instrument and analyze them by decompiling 
the app packages (apks) statically [27]. These abstractions have 
also supported the discovery and analysis of design patterns [1] 
and task usage patterns [29] within and across boundaries of apps. 
Beyond UI-related applications, these abstractions have supported 
security- [26] and accessibility-related [34] applications. Neverthe-
less, these abstractions can sometimes be misaligned with actual 
task-based usages of the apps in our use-cases. 

2.3 Defning Macros through demonstration, 
End-User programming, and Task-based 
Applications 

Macro is a familiar concept in research works [18, 23] and commer-

cial applications [10] in the area of Programming By Demonstration 
(PBD), enabling users to record macros to automate complex tasks. 
Prior works have also coupled the concept of macro-authoring with 
conversational interaction with automatic [16] and crowd-based 
systems [9]. 

Researchers have also explored the possibility to infer macros 
directly from natural language without user-demonstrations. MoTIF 
introduces a crowd-sourced dataset that contains interaction traces 
with their task descriptions, and trains model to complete these 
grounding tasks of performing correct actions on the UI screens 
from text descriptions [5]. SAVANT is a system that automatically 
matches user-provided task descriptions with relevant app UIs, pro-
viding shortcuts for users to perform tasks hidden within mobile 
apps [2]. While these models and applications are highly relevant to 
some of the applications we envision our system can support, none 
of these prior work comprehensively discover and generate multi-
ple possible tasks (macros) at a large-scale from merely observing 
interaction traces. 

2.4 LLM-based UI Applications 
Large Language Models (LLMs) have demonstrated impressive gen-
eral reasoning ability [25], and this ability was shown to be ex-
tensible and applicable to the UI domain, with researchers using 
LLMs to enable many types of conversational UI-based interac-
tions without fne-tuning, including question-answering, summa-

rization, and grounding on mobile UIs [30]. Spotlight [15] and 
Pix2struct [11] have further shown that a single pre-trained model 
can achieve state-of-the-art performance in multiple downstream 
UI tasks. These works have provided evidence for LLMs being able 
to operate in the UI domain when provided with reasonable rep-
resentations (e.g., a simplifed HTML representation introduced 
in [30]), which inspires our approach of using LLMs to efectively 
extract semantic tasks from UIs. 
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3 MACRO EXTRACTION AND EXECUTION 
Our extraction system consists of two major steps: task extraction 
and action merging. We frst utilize recent advances in LLMs and 
perform chain-of-thought reasoning [32, 33] at each screen in the 
UI interaction traces. This step further contains three sub-steps: 

(a) Task Discovery: LLM discovers user-tasks on each UI screen; 
(b) Action Grounding: LLM predicts the relevant action for com-

pleting the user-tasks, and; 
(c) Parameter-fnding: LLM predicts additional info required for 

the user-tasks. 

The second major step of the system merges these action traces 
using their screen and action data to form per-app interaction 
graphs, and consequently generates an optimized fnal set of macros 
based on shortest paths on the graphs. 

This entire extraction process is illustrated in Figure 2. We walk 
through this process of extracting an example macro ‘Create a 
reminder’ (shown in Figure 2) in each of the following subsections 
while explaining the implementation details of the system. Finally, 
we also contribute a Macro Replayer that can fexibly execute the 
extracted macros. 

3.1 Notation, Extraction Inputs, and Extraction 
Outputs 

The input to our extraction system is a collection of user interaction 
traces. Each trace � comprises of multiple pairs of screens �� and 
actions �� that leads to the next screen �� +1 = �� (�� ). Each screen 
� has UI elements ��,� . These traces can either be user-provided 
or automatically-crawled. For example, the trace �� in Figure 2 
contains a series of screens from the calendar app UI, with actions 
performed by a random automatic crawler. �1 in this trace is the 
landing page of the calendar, which contains multiple UI elements 
including the calendar icon �1,1. 

�� contains a few random actions �1, �2, and �3 that were per-
formed on the frst screen (such as pressing system buttons or 
scrolling vertically2 

on the page). However, these actions do not 
have any efects on the UI screen, hence the UI screens from �1 to �4 
are identical. On �4, the crawler performed a click action �4 on the 
‘arrow’ button on the bottom right, advancing to the next screen of 
the calendar onboarding page as �5. On �5, �5 was another click on 
the right arrow button, resulting in the fnal onboarding page �6. 
On �6, the ‘Got it’ button was clicked (�6), and the UI advances to 
the main calendar page �7. This cycle continues until the crawler 
reaches a pre-determined maximum number of 30 actions, or if an 
action leads to the crawler exiting the app. Alternatively, a trace 
can be taken directly from a dataset in the same format, such as 
from RICO [6]. 

From all traces of an app, our system automatically extracts 
a collection of macros � = {� = (�, {�}, {�})} where {�} is a 
collection of actions that a user would perform to complete a macro 
task, {�} is the set of additional information required for the task, 
and � is a natural language description of the macro. In the example, 
the extracted macro �� = (�, {�� }, {�� }) has the natural language 
description �� "Create a reminder", a set of actions {�� } that includes 
clicking on the ‘next’ button (�4, �5), clicking on the ‘Got it’ button 

2
Scrolling is handled by starting from an element and scrolling down by a fxed amount. 

(�6), clicking on the ‘add’ FAB button (�7), clicking on the ‘Reminder’ 
button (�8), and clicking on the ‘Save’ button (predicted by LLM). 
This macro also includes the parameters �� of both the title and date 
as required information from the user, as well as their corresponding 
UI elements to enter the information into. 

3.2 Task Extraction 
3.2.1 Task Discovery. The frst step towards extracting macros 
from traces is observing relevant user-tasks from each of the UIs in 
the app in the traces. We convert each screen �� into an HTML repre-
sentation following [30]3. We then pass this HTML representation 
to the LLM to prompt for potential user tasks (Step 1 in Figure 2). 
Taking �9 from Figure 2 as an example, this is a UI for creating a 
calendar reminder. The screen is converted into the HTML format 
that describes all elements on the screen, and was passed to the 
LLM

4 
for processing and generation: 

Prompt 1: Below is a simplifed HTML representation of a 
mobile app: 
<screen> 
<img id="0" class="cancel image" pos="top left"></img> 
<button id="1" class="save" pos="top right">save</button> 
<input id="2" class="title edit" pos="top">remind me to</input> 
<p id="3" class="frst line" pos="top">all day</p> 
<img id="4" class="tile icon" pos="top left"></img> 
<p id="5" class="frst line" pos="top">sun dec 13 2020</p> 
... 
</screen> 
What can a user do with the prompt? 
The user can: -

The responses from the LLM take the form of ‘<(task 1)> -<(task 
2)> ...’, which we can then parse back into a collection of candidate 
descriptions for macros ��,1...� . In this case, the LLM responds with: 

Response 1: Create a reminder 
- Edit the reminder title 
- ... 

We parse the corresponding frst description �9,1 as our example 
macro task description �� = ‘Create a reminder’, from the frst line 
of the LLM response. We then pair each extracted macro description 
with all actions from the trace that lead the UI from the starting 
screen of the app to the current screen �1...� −1. These are then 
treated as candidate macros. The example macro candidate �� 

′ 
is 

(�� =‘Create a reminder’, �1...8), which includes the random scrolls 
and button clicks that lead to the reminder creation screen. 

Once all macro candidates are extracted from all screens from all 
traces, our system groups and deduplicates highly similar macros by 
their descriptions (e.g., ‘create a reminder’ should be the same macro 
as ‘add a reminder’). We embed each description with Sentence-T5 

3
Each interactive element � is represented by an HTML element, with its position 
represented as strings that correspond to one of nine grids on the screen (e.g., top left, 
top right, etc.). The text content or content description of the element is taken directly 
as the content of the HTML element, and the semantic class of the element [14] is 
converted to the tag of the HTML element.

4
The HTML representation is redacted in the prompt example for brevity, the full LLM 
inputs/outputs are available in Appendix C. 
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<screen> … </screen>

What can the user do with the app?
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Figure 2: Full macro extraction system for a single example macro: ‘Create a reminder’. Our system extracts K macros from all 
N traces for each app in the actual datasets. 

(a large transformer-based sentence-encoder) [24], and incremen- the LLM with the macro description (�� in the ‘create a reminder’ 
tally group similar text descriptions by their cosine similarities

5
. example) and the HTML representation of the screen that it arrived 

We also flter out macro candidates that have generic and/or short at after the clicks (�9 from example, Step 2 in Figure 2): 
descriptions with heuristics defned in Appendix A. We then ran-
domly sample one macro candidate from each of these groups as 
the candidates for next step of processing. 

3.2.2 Action Grounding. To fnalize a set of actionable macros, 
we need to predict the fnal actions �̂ that complete the macros, 
since they might not be provided by the source traces. We prompt 

5
We add a text description into an existing group if its similarity with this group falls 
under a certain threshold and the group is most similar to the description. 

Prompt 2: Below is a simplifed HTML code of a mobile app: 
<screen> 
... (same as above) ... 
</screen> 
Which element id(s) should the user click on next to accomplish 
the task ‘create a reminder’? 
Respond with only the number(s), or “None” if the user can 
already complete the task on the current page. 
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This provides a set of elements �� = {�� } ∥ ∅ for the correspond-
ing fnal action �� to complete the macro. In our ‘create a reminder’ 
example, the LLM responds with: 

Response 2: 1 

This id (1) corresponds to the ‘save’ button in the UI, which is 
then combined into our macro candidate �� 

′ 
as the predicted action 

�̂� , such that the macro candidate is now � ′ = (�� =‘Create a� 
reminder’, {�1...8, �̂� }). 

3.2.3 Parameter-finding. If a fnal action is predicted by the LLM 
(i.e., the LLM doesn’t return ‘None’ in Section 3.2.2), we further 
prompt the LLM regarding the parameters (extra information) {�� }
needed to complete the candidate macro (Step 3 in Figure 2). Each 
parameter contains a text description and the element that the 
parameter should be entered into. We use the following prompt 
that includes the text description and the ‘save’ button’s id obtained 
above in our example ‘create a reminder’ macro: 

Prompt 3: Below is a simplifed HTML code of a mobile app: 
<screen> 
... (same as above) ... 
</screen> 
The user is trying to complete the task ‘create a reminder’. 
Other than clicking on the element with id 1, list the additional 
information the user needs to enter in the format of (- (info)). 
Answer “None” if no additional information is needed. 

This gives us the text descriptions for the parameters in the form 
of ‘- (description 1) - (description 2)...’. For our example, the LLM 
responds with: 

Response 3: - (title) 
- (date) 

We parse this response and obtain ‘title’ and ‘date’ as the pa-
rameters needed for the ‘create a reminder’ example macro. We 
then prompt the LLM again to obtain the relevant UI element id for 
each parameter. For example, to obtain the element id for the ‘title’ 
parameter: 

Prompt 4: Below is a simplifed HTML code of a mobile app: 
<screen> 
... (same as above) ... 
</screen> 
Where can the user enter title? Answer with only the element id, 
or “None” if no element matches. 

The LLM response will provide us with all information required 
for each parameters that includes the element reference and the 
text description. In our example, the LLM responds with: 

Response 4: 2 

The element with id = 2 corresponds to the element where the 
users enter reminder titles in the creation page. This fnal response 

′
completes the macro candidates � = {(�, {�1...� −1, �̂}, {�� })}. 
With our ‘create a reminder’, the fnal macro candidate is: 

�� = (‘Create a reminder’, {�1...8, �̂� }, 
{(title, element 2), (date, element 5)}) 

This entire workfow of extracting macros adapts chain-of-
thought reasoning for the LLM [32]—we frst prompt it to reason 
about meaningful tasks in UIs, we then prompt it to ground the 
high-level task to act on certain elements on the UIs; fnally, based 
on the actions, we further prompt the LLM to generate relevant 
parameters, creating complete sets of relevant information for the 
macros. We believe the LLM’s prior knowledge on user tasks have 
enabled the generation of meaningful macros beyond merely sum-

marizing or synthesizing content of UIs. 

3.3 Action/Trace Merging and Optimal 
Path-fnding 

The actions within each macro candidate generated by the frst step 
of our system were taken directly from the interaction traces (i.e., 
all actions that the user/agent performed leading up to a certain 
screen �1...� −1). However, these actions are likely sub-optimal, such 
that a user might perform multiple tasks in a single trace, or a 
random computational agent might have to click around multiple 
screens before reaching a task-based UI. To address this problem, 
we build interaction graphs from multiple interaction traces of the 
same app. This discovers shorter paths within each individual trace 
and/or between multiple traces, allowing the tasks in the macros to 
be executed optimally (Step 4 in Figure 2). For our example ‘create 
a reminder’ macro �� , this part of the system optimizes the action 
set �1...8 from the candidate �� 

′ 
above, since it doesn’t require 9 

clicks to ‘create a reminder’. 

3.3.1 Overall Graph Structure. To build the interaction graph, we 
frst defne a root node �� as the frst node that the app lands on. 
Each node in this graph refers to an action (not a screen). Then, 
for an action �� taken in the trace and its corresponding element 
��,� , we fnd the existing node ��,� by the current node ��,� ’s id (or 
create a new one if it doesn’t exist), and add a connection between 
��,� −1 (��,0 = �� ) and ��,� . We also create or fnd the nodes for each 
actionable element ��, � in screen �� , and connect the corresponding 
nodes � �,� to ��,� −1. In the example ‘create a reminder’ macro, the 
root node contains outgoing edges that corresponds to �1 and �4, 
since the element for �4 (the right arrow in the bottom right) can 
be found on the frst screen �1. 

While an interaction graph typically models screens as nodes 
and actions as edges, we depart from this paradigm and encode 
actions as nodes and screens as edges. Each node could be thought 
of as the state reached after performing the action �� that the node 
is labeled with. And each edge could be represented by the screen 
that the action at the target node of the edge is performed on. The 
main advantage for such representation is that the extracted macros 
are robust to changes in the screens—the merging is done between 
the actions, in which a node is reached as long as the same action 
was performed. We are also defning a similarity metric at the action 
level (i.e., element) as opposed to at the screen level, which allows 
us to fexibly include diferent levels of context depending on the 
action being performed. 
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3.3.2 Node Identification and Merging. We identify and merge 
nodes by their ids. Each node’s id is a combination of the following 
attributes of the element that the previous action was performed 
on: resource_id, text (content), content description, and class (in 
Android). If both text and content descriptions are empty, we frst 
traverse the view hierarchy downwards to adopt the combination 
of text and content descriptions of the element’s descendants. If 
no text was found from its descendants, we traverse up the view 
hierarchy until a node with text or content description was found 
and adopt those attributes from this ancestor node. This procedure 
was inspired by the observation that meaningful text annotations 
that refect the functionality of UI elements could be found near 
them in the view hierarchy, hence uniquely identifying the action-
elements. In our example ‘create a reminder’ macro, this allows us 
to identify the right arrow for �4 to be accessible in �1, such that in 
the UI, a user is able to click on the next button immediately after 
landing on the frst screen. 

3.3.3 Optimal Path-finding. After an interaction graph was built, 
breadth-frst-search is performed for all macros from the root node, 
and shortest paths from the root replaces the action set for all 
macro candidates, forming the fnal set of extracted macros � = 
{(�, �opt, {�})} where �opt contains the last node in the original 
action set (corresponds to LLM-predicted �̂� ) and the actions of the 
shortest path from the root to that node. In our example ‘create a 
reminder’ macro, this allows us to skip over �2 to �5, such that the 
fnal macro only contains �1 (the frst landing page of the UI) and �6 
(the fnal screen of the calendar description page that contains ‘Got 
it’) to proceed with the rest of the macro. Note that this optimization 
is performed across multiple traces, allowing all shortest path to 
be found for various macros and functionalities in the UI. This 
produces the fnal macro for the example in Figure 2: 

�� = (‘Create a reminder’, {�4, �6, �7, �8, �̂� }, 
{(title, element 2), (date, element 5)}) 

3.4 Automatic Macro Replayer 
To automatically execute a macro �� , we perform its associated 
actions from the landing screen of the app, which includes both the 
optimal actions to the relevant task screen and the LLM-inferred 
action for task completion. At each time step �� ∈ �opt, we perform 
fuzzy matching and match elements that is similar to the original 
referenced elements with a Jaccard similarity metric, based on a 
set of text-based attributes of the elements. Moreover, to allow 
fexibility and error-tolerance in execution, we check for future 
actions in the macro if a certain action is not matched on a screen, 
and skip the actions before the matched future actions. We execute 
these actions on an Android device with adb6. This allows us to 
fully close the loop and complete the task defned in the macro 
automatically. 

3.5 LLM and System Implementation Details 
The LLM used in all steps in the system is based on PaLM2-Bison [7]. 
For all LLM-generated responses, we use top-p decoding and could 
regenerate responses if none of the previous ranked generations 

6
https://developer.android.com/tools/adb 

follow our expected format, or contains hallucinated UI element 
IDs. However, these LLM-based syntax failures are extremely rare 
in practice (0.0244% of the macros), and we remove those that 
contain them. The rest of the macro extraction and execution system 
was implemented with Python and Apache Beam framework

7 
for 

efcient distributed computation. The source code of the this system 
will be publicly released8. 

4 MACRO DATASETS 
Using the system described above, we extracted macros from the 
RICO dataset [6] and the Rehearsal dataset. We took 4,189 traces 
from the RICO dataset that have complete corresponding annota-
tions in the CLAY dataset [14], with one to a few traces per Android 
app. Each trace contains the UI hierarchy, screenshot, and the user-
performed action in each step of the interaction, allowing us to 
extract the required elements for macros stated above. We extracted 
23,117 macros from these traces, with 8.49 macros from each app 
on average. Each macro contains 3.41 actions on average. Some 
representative examples of this dataset is shown in Figure 4 and 
are discussed in detail in Section 5.2, showcasing our system’s ap-
plicability in a wide range of apps. We open-source these extracted 
macros from RICO8

. 
The Rehearsal dataset contains 162,000 randomly-crawled mobile 

interaction traces of 10 apps, with 16,000 traces per Android app, 
which means it explores each app in greater depth. Similar to RICO, 
each trace contains the UI hierarchies, screenshots, and randomly 
invoked actions on the apps for exhaustively exploring the app 
computationally using emulators. We sample 1,000 traces per app, 
and extracted 3,389 macros from the Rehearsal dataset (338.9 macros 
per app on average). Each macro contains 3.4 actions on average. 
Some representative examples of this dataset is shown in Figure 3, 
which demonstrates of system’s validity in covering many parts of 
a single app and its efectiveness when applied to a large number 
of randomly-crawled, non-user traces. 

5 EVALUATION 
We evaluated the extracted macros with multiple methods targeting 
multiple aspects of the traces. The two main aspects of the macros 
to be evaluated are the quality of the text descriptions � and the 
validity of the UI actions {�}. This ensures that our extracted macros 
are reasonable, valid, and executable. We evaluated each of the 
aforementioned aspects with quantitative experiments, qualitative 
analysis, and user studies. We also designed this set of evaluations 
with the goal to help us understand the possibility for supporting 
potential downstream models and/or applications (further discussed 
in Section 6). 

5.1 Task Description Quality 
To evaluate the quality of the text descriptions � and their relevance 
to realistic user tasks, we frst compare the descriptions extracted 
by our model and crowd-sourced task descriptions from the test set 
of the MoTIF dataset [5]. Each data example in MoTIF contains a 
task description �MoTIF and an interaction trace �MoTIF extracted 
from one of 125 apps. We process the interaction trace �MoTIF 

7
https://beam.apache.org/ 

8
https://github.com/google-research/google-research/tree/master/macro_mining 

https://github.com/google-research/google-research/tree/master/macro_mining
https://6https://developer.android.com/tools/adb
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with our system and extract a set of macros � . Then for each text 
description �� of each extracted macro, we compute a Rouge-L 
F-measure score and Meteor score9 

between �� ∈ � and �MoTIF 
and take the highest Rouge-L and Meteor score (most similar pair) 
as the score for an interaction trace. The high-level intuition is 
that our system should extract a superset of text descriptions as 
the ground-truth in MoTIF, yet should have at least one of them 
covering the task described by the user closely, which is measured 
by the Rouge-L score. The text descriptions in the generated macros 
should also be generally similar to the human-authored descriptions 
without redundant or hallucinated details, which is measured by 
the Meteor score. 

We then report the average scores of this max calculation of each 
ground-truth across the entire dataset. To show the robustness of 
our method against the randomness involved during LLM inference, 
we repeat the same procedure for fve times and report the mean and 
standard deviation. In addition, we show qualitative examples with 
low Rouge-L scores in the Appendix B. We demonstrate that even 
for some examples with low Rouge-L scores, the text descriptions 
generated by our system is still reasonable given the interaction 
traces for these examples. 

To provide reference to our method’s performance, we also de-
veloped two baselines. The frst baseline (Element-Text) is imple-

mented by taking text and content descriptions from all UI elements 
in the MoTIF traces as pseudo descriptions. A comparison against 
this baseline will show the efcacy of our model in extracting and 
reasoning useful tasks beyond repeating text content that already 
exists in the UI. The second baseline (Random-Trace) is imple-

mented by randomly reassigning generated tasks from another 
trace and comparing them against the ground-truth, which shows 
our model’s ability to generate task descriptions specifc to the 
provided app instead of only generating syntactically correct but 
meaningless text. 

The Rouge-L and Meteor scores for our method and the two 
baselines are shown in Table 2. Our system achieves a Rouge-L 
of 0.47 and Meteor of 0.38 for this evaluation, which means our 
system can generate tasks with descriptions much more similar to 
human-authored tasks compared to the baselines. This suggest our 
system is efective in extracting tasks that cover ones that human 
users consider as important and relevant, which is an important re-
quirement for supporting interactive task understanding (discussed 
in Section 6.1). 

Table 2: Rouge-L F-measure and Meteor of our methods 
and baselines when compared against human-provided tasks 
in MoTIF test set. Experiments that involve randomness are 
reported in mean

std format over fve runs. 

Method Rouge-L Meteor 

Ours 
Random-Trace 
Element-Text 

0.4680.005 
0.2500.010 
0.066 

0.3790.003 
0.1510.007 
0.155 

9
Both Rouge-L [21] and Meteor [4] are established metrics in NLP that compute 
textual matching. 

5.2 Qualitative Examples 
To further demonstrate the efectiveness of our extracted macros 
and show the validity of the macro actions, we qualitatively evaluate 
multiple macros extracted from the Rehearsal dataset (Figure 3) and 
the RICO dataset (Figure 4) respectively. In Figure 3, we observe 
that our system is able to extract highly complex and non-trivial, 
hidden macros that are useful for the user—in the settings app, 
our system is able to extract multiple traces that have features 
unobvious to the user, such as using a QR code to enter SSID and 
security details, hiding profanity in the live caption feature, and 
changing the display size of the screen. This observation is further 
echoed by our fndings from the user study, such that a signifcant 
proportion of the tasks were not known to the participants prior 
to the study in Section 5.4. This provides evidence for our system 
and macro dataset to support applications in how-to knowledge 
sharing (discussed in Section 6.3). 

In the calendar app, it is able to extract some highly complex 
macros with a large number of steps, such as setting a monthly 
reminder on the second sunday of every month. In addition, our 
extraction system is also able to properly handle scrolling, in which 
it is able to scroll down through the settings to expose the appro-
priate elements to ‘set a timer sound’. These are important features 
for supporting UI automation (discussed in Section 6.2). 

In Figure 4, we further show our system’s applicability to a wider 
range of apps with varying features from the RICO dataset. In the 
app built for the American Football team Tampa Bay Buccaneers, 
our system was able to extract a multi-step macro that opens the 
shop of the team. In the WHNT news app, the system is able to infer 
the app’s feature to display temperature in either the Celsius or 
Fahrenheit scale by simply observing the temperature reading texts 
from the UI. These macros demonstrate the ability of our system 
to understand common user tasks and mobile app UIs, and make 
appropriate predictions for relevant macros and tasks in broader 
contexts. 

5.3 Trace Optimality 
An important feature of our system is to extract optimal paths for 
executing the macro tasks by building interaction graphs. While 
there are no ground-truth data for optimal paths currently available 
for the tasks, we report the statistics of our macros in RICO and 
Rehearsal dataset before (pre-optimized) and after (post-optimized) 
running the Action/Trace merging steps introduced in Section 3.3. 
The extracted macros from the RICO dataset contain 6.05 actions 
pre-optimization on average, and they contain 3.41 actions post-
optimization. This represents a 43.6% reduction in the fnal macro 
lengths. The extracted macros from the Rehearsal dataset contain 
7.51 actions pre-optimization on average, and they contain 3.40 
actions post-optimization. This represents a 54.7% reduction in the 
fnal macro lengths. Our system is able to efectively reduce the 
required efort for performing the macro tasks by removing around 
half of the steps in the macros from both datasets. 

5.4 User Evaluation of Extracted Macros 
To more comprehensively validate the efectiveness of our system 
in extracting useful macros, we conducted a user study to gather 
users’ ratings on the quality of our macros. We randomly sampled 
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“Set up a monthly reminder on the second sunday of every month”

“Set the timer sound”

(swipe)

“Add a clock for home time zone when traveling.”

“Hide profanity in live caption”

“Lock the sim card”

(swipe)

“Change the display size of the screen”

“Scan a QR code to automatically enter the SSID 
and security details”

App:

Settings

Clock

App:

“Jump to the current day”

(swipe)

Calendar

App:

“View events by day, 3 days, week, or month”

Figure 3: Macro extraction results for apps in the Rehearsal dataset. 
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“View the shop”

(swipe)

App:

Tampa Bay
Buccaneers

“See the current temperature in Fahrenheit and Celsius”

(swipe)

App:

WHNT News

Figure 4: Macro extraction results for apps in the RICO dataset. 

60 extracted macros from 3 apps in the Rehearsal dataset. We chose 
apps from the Rehearsal dataset since they are mostly system apps 
that are well-known to most mobile users. The scale of macros 
extracted from these apps also allows us to evaluate each of them in 
depth. We also conducted the same study on the PixelHelp dataset 
that contains descriptions and human-curated tasks, which can be 
considered as the ‘golden standard’ of the target macros that our 
system aims to extract; we comparatively analyze the results in this 
section. 

For each interaction trace/macro, we show our participants the 
optimized/human-curated trace screenshots and the task descrip-
tion, and ask them to provide answers for the following questions: 

• Q1. On a scale of 1-5, does the task match the trace well? 
• Q2. On a scale of 1-5, is this a reasonable task and trace for 
mobile users? 

• Q3. Did you know how to perform this task before seeing 
this example? (Yes/No) 

We also collected open-ended feedback at the end of the study. 
We recruited 11 participants to evaluate each set of macros through 
a mailing list internal to our organization. Our participants have 
9-20 years of experience using smartphones (� = 13.0 years). Two 
of our participants are experts in app testing, hence highly familiar 
with the tasks on these apps. We advised our participants to take 
approximately 60 minutes to complete the study. Each participant 
received compensation equivalent to $40 USD in value. 

The results are summarized in Table 3. Our participants rated 
3.85 out of 5 for the correspondence between the descriptions and 
the actions in the macros (Q1). Over 70% of the responses for 
this question have ratings equal or above 4 (corresponds to the 
description), demonstrating our system’s ability to extract valid 
tasks that matches the macros’ descriptions. 

Our participants rated 4.11 out of 5 for the reasonableness of the 
macros (Q2) on average, with over 75% of the responses having rat-
ings equal or above 4, and over 50% having ratings of 5 (considered 
highly reasonable by the users). This shows that our system is able 
to efectively extract reasonable macros from the apps in general. 
Moreover, both correspondence and reasonableness ratings (Q1 and 
Q2) attained by the macro extracted by our proposed system ap-
proach those obtained by tasks in the PixelHelp dataset, refecting 
a similar quality of extracted Macros compared to human-extracted 
tasks in the PixelHelp dataset [19]. Nevertheless, participants refect 
that ‘some of the clicks (in the traces) seemed inefcient, or (they 

were) unsure why the UI would click in a certain area’ (P1), which 
leads to the remaining quality gap between human-curated tasks 
and macros mined automatically by our system. We believe such 
inefciency originates from the limitations of our systems, which 
will be further discussed in Section 7. 

Finally, an important and interesting fnding from this study 
is that our participants did not know how to perform 48.2% of 
the tasks prior to seeing the macros (Q3). This percentage is also 
comparable to that of the PixelHelp dataset. This reveals a great 
potential for our system to support task discovery and tutorial 
generation (discussed in Section 6.3), such that almost half the tasks 
discovered by our system are non-trivial tasks supported by the 
app, similar to the collection of human-curated tasks (PixelHelp). 
Our system can automatically fnd tasks that users are unfamiliar 
with and present reasonable steps for them to complete the tasks, 
all coupled with conversational interactions given the high-level 
descriptions also extracted by our system. 

5.5 Execution Success 
While extracting representative and relevant macro descriptions 
is an important frst step towards mining useful macros, the end-
goal of having these macros is to be able to execute them in real 
environments. Replayable macros provide the possibility for mod-

els and systems to operate within the natural language modality 
and interact with mobile apps and devices efectively, supporting 
automation for interactions (discussed in Section 6.2). 

Towards this goal, we built a live environment to examine the 
success rate of executing the extracted macro in Android devices, 
hence evaluating the end-to-end performance of our system. We 
took 60 extracted macros from the Rehearsal dataset, re-executing 
them in the live environment, and recording the success rate for 
the Macro Replayer in reaching the fnal screen of the macros by 
manually inspecting them. The live environment was developed 
and deployed as Android emulators, using Pixel 4 devices with 
Android version 30. 

On average, 76.7% of the macros extracted by our system were 
successfully executable in the live environment. This not only 
shows that a large proportion of extracted macros are valid and are 
replayable in realistic environments, but also the high efectiveness 
of our Macro Replayer in automating the tasks specifed in the 
macros. 
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Table 3: User study results (mean
std

) for the PixelHelp Dataset (human-curated tasks) [19] and our extracted macros. 

Macro Source Q1. Correspondence (?/5) ↑ Q2. Reasonableness (?/5) ↑ Q3. Unknown Task % 

PixelHelp (Human-Curated) 4.121.23 4.251.10 47.4%49.9% 

Ours 3.851.40 4.111.15 48.2%50.0% 

6 ENVISIONED APPLICATIONS 
Based on our system development and fndings, we envision multi-

ple future applications supported and enabled by our contributions. 

6.1 Interactive Task Understanding and 
Modeling 

Our contributed dataset expands UI understanding of existing 
datasets to interactive task understanding that involve text descrip-
tions and multiple screens/actions. We envision this dataset to be 
capable of supporting multiple downstream machine-learning ap-
plications, including the training of agent models that can act on 
UIs based on high-level goals for navigation and task completion. 
Other than agent models, we also envision the dataset to support 
generative design applications. While existing works focus on gen-
erating individual UI designs, annotated traces with semantically 
meaningful tasks can be used to train models that can generate se-
quences of diferent UI screens that supports high-level tasks and/or 
user-stories, greatly expanding the applicability of these models in 
realistic design scenarios. 

Moreover, we also envision our contributions to help facilitate 
and accelerate UX development processes. For example, UX design-
ers can use the proposed method to visualize and test macros on 
app prototypes, or search for similar macros in other apps. 

6.2 Interaction Automation 
Another major area that we envision our work to support is the 
automation of user interactions, such as enabling conversational 
task-based interactions and task shortcuts for apps. While conversa-
tional interactions can currently be efectively supported by LLMs, 
acting directly in the UI space is challenging for LLMs. Our meth-

ods enable task-based interactions in the natural language space, 
such that LLMs can directly select and rank macros by their text 
descriptions based on existing conversations with users (which is 
a space more familiar to LLMs), and the macros can be directly 
executed on apps with potentially higher success rate compared to 
having the LLMs directly act on the UI elements. 

Task shortcuts are another important area of UI automation 
explored by prior works [2]. Nevertheless, to our knowledge none 
of them allow for the automatic discovery of new tasks and they 
require users to provide task descriptions to utilize the shortcuts. 
Our methods can enable a new set of applications that do not assume 
users to possess comprehensive prior knowledge of the tasks. 

6.3 How-to Knowledge Sharing 
Beyond understanding interactive tasks and supporting automation, 
our proposed method can support the discovery and sharing of how-
to knowledge in apps, such as automatically generating tutorials 
in apps without requiring additional efort of the app developers. 

Our approach can be coupled with automatic crawlers to obtain 
UIs without users’ manual exploration (such as the approach we 
took for the Rehearsal dataset in Section 4), and hence can discover 
macros that correspond to tasks unseen by users. Our fndings 
in Section 5.4 also validate that a large proportion of tasks fully-
automatically discovered by our system were novel to the users, and 
we envision our system to be used to educate users in performing 
new tasks and/or taking more optimal paths in known tasks. 

7 LIMITATIONS AND FUTURE WORK 
Our work has several limitations that warrant future investiga-
tion. The frst limitation is the limited representational power and 
uniqueness of the element/node identifers. We currently rely on 
resource_ids and nearby text contents through a carefully designed 
algorithm to identify identical UI actions, but even this can be insuf-
fcient at times when resource_id and text content are non-unique, 
resulting in the incorrect merging and path-fnding of some macros 
that pass through these nodes with duplicated resource_ids that 
should have been unique. For example, in the macro in Figure 5, 
the action performed on the third screen �3 was incorrect, such that 
clicking on the ‘settings’ button (marked with 1) in the Figure) does 
not lead to the next screen �4. This is because the fourth screen �4 
can be reached from another ‘settings’ button that looks identical 
and with an identical resource_id, but was used in a diferent screen 
and diferent context. This led to an invalid optimization performed 
by our system. Future work shall explore the inclusion of dynamic 
amount of context around the elements, or utilize learning-based ap-
proaches (e.g., element embeddings [17, 19, 20] with thresholding) 
to identify similar UI elements for merging. 

Another important limitation of our system is the assumption 
that all actions are stateless and will lead to the same result when 
the same actions are performed on it. This assumption might not 
be true for some apps, such as those that contain dynamic content. 
For instance, the macro in Figure 5 is to ‘allow’ the ‘media sounds’ 
setting. However, clicking on the switch on the fourth screen �4 
will lead to the system disabling media sounds since the setting 
is already enabled. Adequately representing and handling context 
information of the actions is another important area of future work. 

8 CONCLUSIONS 
In this paper, we introduced a novel LLM-based system for automat-

ically extracting semantically meaningful macros from any interac-
tion traces. Our system frst extracts meaningful tasks from each 
UI in the app, and consequently merges them into a compact and 
comprehensive set of efcient macros. Our evaluation shows that 
the extracted macros are highly relevant to realistic human-curated 
tasks when comparing against an existing large-scale dataset. The 
majority of the macros can also be successfully executed, and are 
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"Allow media sounds from videos, games, and other media."

1) Duplicated ID

2) State Confusion
App:

Settings

s3 s4

Figure 5: Limitations of our current macro mining system illustrated by a single Macro example. 

considered to be reasonable and valid by the participants of our 
user study. We believe the dataset and the system can support im-

portant future applications in interaction automation, interactive 
task understanding, and how-to knowledge sharing. 
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MoTIF Ground-truth: "Bookmark the Comfort Suites in Urbana Champaign University Area"
Predicted (Ours): "Search for hotels by entering a keyword (e.g. "comfort") in the input field.

RoUGE-L:
 0.174

MoTIF Ground-truth: "Select one-way flight from CMI to PAR for April 10th for 
2 adults in first class"

Predicted (Ours): "Book flights."

RoUGE-L:
 0.105

MoTIF Ground-truth: "Show me the temperature forecast over New Orleans Louisiana"
Predicted (Ours): "Review the app's privacy policy"

RoUGE-L:
 0.133

a)

b)

c)

Figure 6: Examples with low Rouge-L scores. 
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Table 4: LLM inputs and outputs example for the ‘create a reminder’ example macro. 

Substep LLM Input LLM 
Output 

3.2.1 Task 
Discovery 

Below is a simplifed HTML code of a mobile app: 
<screen> 
<img id="0" class="cancel image" pos="top left"></img> 
<button id="1" class="save" pos="top right">save</button> 
<input id="2" class="title edit" pos="top">remind me to</input> 
<p id="3" class="frst line" pos="top">all day</p> 
<img id="4" class="tile icon" pos="top left"></img> 
<p id="5" class="frst line" pos="top">sun dec 13 2020</p> 
<button id="6" alt="start time 8 00 am" pos="top right">8 00 am</button> 
<p id="7" class="frst line" alt="does not repeat" pos="top">does not repeat</p> 
<img id="8" class="tile icon" pos="top left"></img> 
</screen> 
What can a user do with the prompt? 
The user can: -

create a reminder 
- edit the reminder title 
- set the reminder time 
- set the reminder date 
- choose whether the reminder 
repeats 

3.2.2 Action Below is a simplifed HTML code of a mobile app: 1 
Grounding <screen> 

<img id="0" class="cancel image" pos="top left"></img> 
<button id="1" class="save" pos="top right">save</button> 
<input id="2" class="title edit" pos="top">remind me to</input> 
<p id="3" class="frst line" pos="top">all day</p> 
<img id="4" class="tile icon" pos="top left"></img> 
<p id="5" class="frst line" pos="top">sun dec 13 2020</p> 
<button id="6" alt="start time 8 00 am" pos="top right">8 00 am</button> 
<p id="7" class="frst line" alt="does not repeat" pos="top">does not repeat</p> 
<img id="8" class="tile icon" pos="top left"></img> 
</screen> 
Which element id(s) should the user click on next to accomplish the task Create a 
reminder? 
Respond with only the number(s), or "None" if the user can already complete the 
task on the current page. 

C FULL LLM INPUTS AND OUTPUTS 
EXAMPLE 

Tables 4 and 5 lists the full LLM inputs and outputs for the extraction 
system on �9 of Figure 2, the representative macro example of ‘create 
a reminder’ used in Section 3. 
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Table 5: LLM inputs and outputs example for the ‘create a reminder’ example macro (continued). 

Substep LLM Input LLM 
Output 

3.2.3a 
Parameter 
Text 

Below is a simplifed HTML code of a mobile app: 
<screen> 
<img id="0" class="cancel image" pos="top left"></img> 
<button id="1" class="save" pos="top right">save</button> 
<input id="2" class="title edit" pos="top">remind me to</input> 
<p id="3" class="frst line" pos="top">all day</p> 
<img id="4" class="tile icon" pos="top left"></img> 
<p id="5" class="frst line" pos="top">sun dec 13 2020</p> 
<button id="6" alt="start time 8 00 am" pos="top right">8 00 am</button> 
<p id="7" class="frst line" alt="does not repeat" pos="top">does not repeat</p> 
<img id="8" class="tile icon" pos="top left"></img> 
</screen> 
The user is trying to complete the task create a reminder. 
Other than clicking on the element with id 1, list the additional information the 
user needs to enter in the format of (- (info)). Answer "None" if no additional infor-
mation is needed. 

- (title) 
- (date) 

3.2.3b Below is a simplifed HTML code of a mobile app: 2 
Parameter <screen> 
Element <img id="0" class="cancel image" pos="top left"></img> 

<button id="1" class="save" pos="top right">save</button> 
<input id="2" class="title edit" pos="top">remind me to</input> 
<p id="3" class="frst line" pos="top">all day</p> 
<img id="4" class="tile icon" pos="top left"></img> 
<p id="5" class="frst line" pos="top">sun dec 13 2020</p> 
<button id="6" alt="start time 8 00 am" pos="top right">8 00 am</button> 
<p id="7" class="frst line" alt="does not repeat" pos="top">does not repeat</p> 
<img id="8" class="tile icon" pos="top left"></img> 
</screen> 
Where can the user enter the title? Answer with only the element id, or "None" if 
no element matches. 
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