
Automatic Macro Mining from Interaction Traces at Scale
Forrest Huang Gang Li

forrest_huang@berkeley.edu leebird@google.com
Google Research Google Research

USA USA

Tao Li Yang Li
tlinlp@google.com liyang@google.com
Google Research Google Research

USA USA

…

Random/Real-user
Interaction Traces UI-Task Extraction

“What can a user do
with this UI?”

LLM “Task 1: …,
 Task 2:…,
 Task 3…”

Action Merging and
Shortest Path Finding

Extracted Macros
Task Description: “Create Goals”

…
Automatic Execution

Fuzzy
Matching
+ Replay

Downstream Applications
UX Understanding

Interaction Automation

How-to Knowledge Sharing

Figure 1: We propose a novel system that can automatically extract semantically meaningful and replayable macros that refect
useful tasks on apps from random or human-curated interaction traces. Colored components in this fgure represents the
primary technical contributions of this paper.

ABSTRACT
Macros are building block tasks of our everyday smartphone activ-
ity (e.g., "login", or "booking a fight"). Efectively extracting macros
is important for understanding mobile interaction and enabling
task automation. These macros are however difcult to extract at
scale as they can be comprised of multiple steps yet hidden within
programmatic components of mobile apps. In this paper, we intro-
duce a novel approach based on Large Language Models (LLMs) to
automatically extract semantically meaningful macros from both
random and user-curated mobile interaction traces. The macros
produced by our approach are automatically tagged with natural
language descriptions and are fully executable. We conduct multi-

ple studies to validate the quality of extracted macros, including
user evaluation, comparative analysis against human-curated tasks,
and automatic execution of these macros. These experiments and
analyses demonstrate the efectiveness of our approach and the
usefulness of extracted macros in various downstream applications.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642074

CCS CONCEPTS
• Human-centered computing → Human computer interac-
tion (HCI).

KEYWORDS
User Task, Macro, Large Language Model, Mobile UI

ACM Reference Format:
Forrest Huang, Gang Li, Tao Li, and Yang Li. 2024. Automatic Macro Mining
from Interaction Traces at Scale. In Proceedings of the CHI Conference on Hu-
man Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI,
USA. ACM, New York, NY, USA, 16 pages. https://doi.org/10.1145/3613904.
3642074

1 INTRODUCTION
The interaction between users and mobile apps can be abstracted,
understood, and studied at many levels. At the lowest level, for
example, users’ granular motor movement on mobile devices can
be studied and characterized by the important Fitts’ Law and its nu-
merous derivatives introduced by the HCI community. On the other
end of this spectrum, mobile apps can be organized by developer-
defned Views (iOS) or Activities/Intents (Android) that group app
code and UIs with similar programmatic logic and functionalities.

An important abstraction among this spectrum is the notion of
macros. Macros represent well-encapsulated units of users’ engage-
ment with apps with certain needs and/or in certain contexts. For
example, a macro for a user in a to-do list app might be ‘adding a to-
do list item’. This macro represents a specifc user need and covers

https://doi.org/10.1145/3613904.3642074
https://doi.org/10.1145/3613904.3642074
https://doi.org/10.1145/3613904.3642074
mailto:permissions@acm.org
mailto:liyang@google.com
mailto:leebird@google.com
mailto:tlinlp@google.com
mailto:forrest_huang@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642074&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Huang et al.

how the app might address this user’s problem with a collection of
actions and parameters in the app. Completing this macro in an app
would require the user to perform multiple clicks to reach multiple
screens and set multiple values/parameters (e.g., the due date of the
item) on each of them. Because macros are important constituents
of our everyday smartphone activities, extracting them is highly
valuable for a number of purposes, including interaction automa-

tion, how-to knowledge sharing [13], as well as understanding
interactive tasks.

Although extensive work has been conducted in creating macros
using techniques such as Programming by Demonstration (PBD) [9,
16, 18], little progress has been made in automatically extracting
high-level and functionally complex macros from interaction traces.
Mining these traces, which are often abundant from crawling, is a
crucial step towards extracting macros at scale. However, automati-

cally extracting macros that represent meaningful user tasks from
these traces is unfortunately not straightforward. The mappings be-
tween macros to programmatic invocations are often non-linear and
non-consistent—a macro can involve multiple function calls, span-
ning across multiple views, yet some views can support multiple
macros. It is therefore difcult to directly instrument or reverse-
engineer these macros based on app source code or user recordings
which were employed in prior work [1, 27]. Additionally, many of
these macros are context-dependent. As a result, it is difcult to
derive a unifed taxonomy of macros, compared to more granular
classifcations such as classes of icons or UI elements [12, 22, 28],
which makes global aggregations across the dataset difcult. While
there are existing eforts that create macros via crowdsourcing [5],
it remains out of reach for capturing a large proportion of function-
alities of each app and handling a vast variety of apps.

Recent advances in Large Language Models (LLMs) have enabled
a new class of methods and models that can understand and interact
with mobile apps with an unprecedented level of intelligence. LLMs
have repeatedly been shown to possess common knowledge about
mobile UIs and users’ daily tasks, enabling applications such as
conversational interactions, screen summarization for accessibility,
and multi-step task grounding and planning [30]. Motivated by
these exciting fndings, we investigate using LLMs to automatically
extract macros from mobile apps. By ‘inspecting’ UIs converted
to an HTML format, similar to prior work, and prompting LLMs
appropriately, we show that LLMs can efectively extract semanti-

cally meaningful macros from apps that cover many interactions by
describing these macros fexibly in natural language. To make these
macros automatically executable, we take further steps by feeding
them back into the LLM to identify elements on the screen and
parameters required to fulfll the macros, and synthesizing multiple
execution traces to distill optimal click paths to execute the macros.
We experiment with our approach on three datasets: RICO [6], Mo-

TIF [5], and a dataset of random crawls of apps that we created. We
conduct a user study to evaluate the quality of extracted macros;
we compare extracted macros against human-curated tasks quanti-
tatively; and we test the automatic-executability of these macros
in a live environment. These experiments and analyses show that
our approach is efective in extracting meaningful macros from
arbitrary interaction traces. Our main contribution is three-fold:

• We contribute a novel approach of using LLMs with a trace-
based chain-of-thought technique and optimal path synthe-
sis to efectively extract large-scale, meaningful macros from
interaction traces that are abundant in existing datasets.

• The macros we extracted enrich existing mobile datasets. In
particular, we extracted a large dataset of 23,777 macros from
RICO [6], an existing large-scale UI dataset that is widely
used for mobile interaction analysis and modeling. This new
dataset of extracted macros will be publicly released1.

• Beyond evaluating our extracted macros with human users
and against existing large-scale datasets quantitatively, we
executed our extracted macros in live environments. These
evaluation results provide evidences for high efcacy of the
extracted macros in supporting downstream applications in
realistic scenarios.

2 DEFINITION OF MACROS AND PRIOR
WORK

To fully understand the value of Macros, and consequently automat-

ically extracting and executing them, we frst defne macros used in
this work in the context of user-app interactions. The interaction
between a user and a mobile app can be decomposed into sets of
chronologically ordered actions �� , screens that the actions was
initiated from �� , and the UI elements �� that were involved in the
actions. In each interaction session, a user performs an action on
each screen on a specifc element or a set of elements, leading to the
next screen when this process repeats again. Each instance/session
of interaction can thus be viewed as a trace, where the trace con-
sists of a sequence of triplets of � actions, screens and elements
(�, �, �)1...� .

To analyze and aggregate collections of multiple traces, prior
research have considered these components as various units of in-
teraction. A signifciant amount of prior research have investigated
UI elements �� as independent units by annotating and classifying
them [22, 28]. Researchers have also grouped multiple views and el-
ements by their corresponding programmatic implementations [1].

This work focuses on a more user-centric defnition for units
of interaction—Macros. A macro could be defned as a series of
actions �� that collectively performs a semantic task or achieves a
user goal. This means a macro could be described in natural lan-
guage, corresponds to a set of actions in a sequence, and all actions
serve the sole purpose of completing a task meaningful to the user
(e.g., booking a fight, checking the wait time at a restaurant). The
collections of views and actions in a macro are often orthogonal
to those arranged by developer-defned abstractions; an activity
in Android, for instance, can support multiple macros, yet each
macro can span across multiple activities. Automatically extracting
them also requires a diferent type of computational understanding,
which includes holistic knowledge about the interaction between
user tasks, usage context, and UI components. We summarize the
diferences between our work and the aforementioned related work
in Table 1.

In the remainder of this section, we compare and contrast vari-
ous prior work against our proposed approaches. We also review

1
https://github.com/google-research/google-research/tree/master/macro_mining

https://github.com/google-research/google-research/tree/master/macro_mining

Automatic Macro Mining from Interaction Traces at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 1: Summary of diferences in interaction units and requirements for extracting them between our work and prior work.

Research Work Studied Interaction Units Requirements for Extraction

Semantic
Classifcation
[12, 14, 22, 28]

Individual UI elements and screens Understanding correspondence between graph-
ical, geometric and textual properties of UI ele-
ments and a fxed set of semantic UI concepts

UI Embeddings
[3, 8, 17]

Individual and pairs of UI screens Understanding UI element and screen function-
ality in context of nearby UIs in interaction

Developer-defned
Abstractions [1, 27, 29]

UI Activities, Views, and Packages with
multiple elements and screens grouped
and implemented by developers

Access to source-code or reverse engineering

Macro Mining (Ours) Multiple UIs grouped by user tasks
and use-cases

Holistic understanding of UIs, tasks, and
contexts in users’ app usage

prior attempts of extracting macros and potential applications that
macros could enable.

2.1 Semantic Understanding of Individual UI
Elements and Screens

Individual UI elements and screens are extensively studied by prior
work as interaction units in traces. Prior works have developed
two main categories of methods to understand the semantics of
these elements in relation to users’ interaction intents and needs.
The frst category of works classifed UI elements [14, 22, 28] and
screens [12] into fxed sets of researcher-curated semantic and func-
tional concepts (e.g., text input, ‘add’ icon) with crowd-sourcing
and machine-learning models. The second category of works ex-
plored representing UI screens and elements through free-form text
annotations or ML-model-embeddings in various UI-based learning
tasks. Widget Captioning [20] and screen2words [31] respectively
collect human-provided natural language annotations of UI ele-
ments and screens. Screen2vec [17], UIBert [3], and ActionBert [8]
explore the development of embeddings for both UI components
and screens through training ML models on prediction tasks of the
context and functionality of the interaction units concerned.

2.2 Developer-defned Abstractions of UIs
Apps UIs can also be analyzed from the alternative perspective of
developer-defned abstractions. In Android apps, developers defne
Activities, Intents, Services and Layouts, which can provide mean-

ing to various parts of the apps [27]. These abstractions allow prior
work to more easily instrument and analyze them by decompiling
the app packages (apks) statically [27]. These abstractions have
also supported the discovery and analysis of design patterns [1]
and task usage patterns [29] within and across boundaries of apps.
Beyond UI-related applications, these abstractions have supported
security- [26] and accessibility-related [34] applications. Neverthe-
less, these abstractions can sometimes be misaligned with actual
task-based usages of the apps in our use-cases.

2.3 Defning Macros through demonstration,
End-User programming, and Task-based
Applications

Macro is a familiar concept in research works [18, 23] and commer-

cial applications [10] in the area of Programming By Demonstration
(PBD), enabling users to record macros to automate complex tasks.
Prior works have also coupled the concept of macro-authoring with
conversational interaction with automatic [16] and crowd-based
systems [9].

Researchers have also explored the possibility to infer macros
directly from natural language without user-demonstrations. MoTIF
introduces a crowd-sourced dataset that contains interaction traces
with their task descriptions, and trains model to complete these
grounding tasks of performing correct actions on the UI screens
from text descriptions [5]. SAVANT is a system that automatically
matches user-provided task descriptions with relevant app UIs, pro-
viding shortcuts for users to perform tasks hidden within mobile
apps [2]. While these models and applications are highly relevant to
some of the applications we envision our system can support, none
of these prior work comprehensively discover and generate multi-
ple possible tasks (macros) at a large-scale from merely observing
interaction traces.

2.4 LLM-based UI Applications
Large Language Models (LLMs) have demonstrated impressive gen-
eral reasoning ability [25], and this ability was shown to be ex-
tensible and applicable to the UI domain, with researchers using
LLMs to enable many types of conversational UI-based interac-
tions without fne-tuning, including question-answering, summa-

rization, and grounding on mobile UIs [30]. Spotlight [15] and
Pix2struct [11] have further shown that a single pre-trained model
can achieve state-of-the-art performance in multiple downstream
UI tasks. These works have provided evidence for LLMs being able
to operate in the UI domain when provided with reasonable rep-
resentations (e.g., a simplifed HTML representation introduced
in [30]), which inspires our approach of using LLMs to efectively
extract semantic tasks from UIs.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Huang et al.

3 MACRO EXTRACTION AND EXECUTION
Our extraction system consists of two major steps: task extraction
and action merging. We frst utilize recent advances in LLMs and
perform chain-of-thought reasoning [32, 33] at each screen in the
UI interaction traces. This step further contains three sub-steps:

(a) Task Discovery: LLM discovers user-tasks on each UI screen;
(b) Action Grounding: LLM predicts the relevant action for com-

pleting the user-tasks, and;
(c) Parameter-fnding: LLM predicts additional info required for

the user-tasks.

The second major step of the system merges these action traces
using their screen and action data to form per-app interaction
graphs, and consequently generates an optimized fnal set of macros
based on shortest paths on the graphs.

This entire extraction process is illustrated in Figure 2. We walk
through this process of extracting an example macro ‘Create a
reminder’ (shown in Figure 2) in each of the following subsections
while explaining the implementation details of the system. Finally,
we also contribute a Macro Replayer that can fexibly execute the
extracted macros.

3.1 Notation, Extraction Inputs, and Extraction
Outputs

The input to our extraction system is a collection of user interaction
traces. Each trace � comprises of multiple pairs of screens �� and
actions �� that leads to the next screen �� +1 = �� (��). Each screen
� has UI elements ��,� . These traces can either be user-provided
or automatically-crawled. For example, the trace �� in Figure 2
contains a series of screens from the calendar app UI, with actions
performed by a random automatic crawler. �1 in this trace is the
landing page of the calendar, which contains multiple UI elements
including the calendar icon �1,1.

�� contains a few random actions �1, �2, and �3 that were per-
formed on the frst screen (such as pressing system buttons or
scrolling vertically2

on the page). However, these actions do not
have any efects on the UI screen, hence the UI screens from �1 to �4
are identical. On �4, the crawler performed a click action �4 on the
‘arrow’ button on the bottom right, advancing to the next screen of
the calendar onboarding page as �5. On �5, �5 was another click on
the right arrow button, resulting in the fnal onboarding page �6.
On �6, the ‘Got it’ button was clicked (�6), and the UI advances to
the main calendar page �7. This cycle continues until the crawler
reaches a pre-determined maximum number of 30 actions, or if an
action leads to the crawler exiting the app. Alternatively, a trace
can be taken directly from a dataset in the same format, such as
from RICO [6].

From all traces of an app, our system automatically extracts
a collection of macros � = {� = (�, {�}, {�})} where {�} is a
collection of actions that a user would perform to complete a macro
task, {�} is the set of additional information required for the task,
and � is a natural language description of the macro. In the example,
the extracted macro �� = (�, {�� }, {�� }) has the natural language
description �� "Create a reminder", a set of actions {�� } that includes
clicking on the ‘next’ button (�4, �5), clicking on the ‘Got it’ button

2
Scrolling is handled by starting from an element and scrolling down by a fxed amount.

(�6), clicking on the ‘add’ FAB button (�7), clicking on the ‘Reminder’
button (�8), and clicking on the ‘Save’ button (predicted by LLM).
This macro also includes the parameters �� of both the title and date
as required information from the user, as well as their corresponding
UI elements to enter the information into.

3.2 Task Extraction
3.2.1 Task Discovery. The frst step towards extracting macros
from traces is observing relevant user-tasks from each of the UIs in
the app in the traces. We convert each screen �� into an HTML repre-
sentation following [30]3. We then pass this HTML representation
to the LLM to prompt for potential user tasks (Step 1 in Figure 2).
Taking �9 from Figure 2 as an example, this is a UI for creating a
calendar reminder. The screen is converted into the HTML format
that describes all elements on the screen, and was passed to the
LLM

4
for processing and generation:

Prompt 1: Below is a simplifed HTML representation of a
mobile app:
<screen>

<button id="1" class="save" pos="top right">save</button>
<input id="2" class="title edit" pos="top">remind me to</input>
<p id="3" class="frst line" pos="top">all day</p>

<p id="5" class="frst line" pos="top">sun dec 13 2020</p>
...
</screen>
What can a user do with the prompt?
The user can: -

The responses from the LLM take the form of ‘<(task 1)> -<(task
2)> ...’, which we can then parse back into a collection of candidate
descriptions for macros ��,1...� . In this case, the LLM responds with:

Response 1: Create a reminder
- Edit the reminder title
- ...

We parse the corresponding frst description �9,1 as our example
macro task description �� = ‘Create a reminder’, from the frst line
of the LLM response. We then pair each extracted macro description
with all actions from the trace that lead the UI from the starting
screen of the app to the current screen �1...� −1. These are then
treated as candidate macros. The example macro candidate ��

′
is

(�� =‘Create a reminder’, �1...8), which includes the random scrolls
and button clicks that lead to the reminder creation screen.

Once all macro candidates are extracted from all screens from all
traces, our system groups and deduplicates highly similar macros by
their descriptions (e.g., ‘create a reminder’ should be the same macro
as ‘add a reminder’). We embed each description with Sentence-T5

3
Each interactive element � is represented by an HTML element, with its position
represented as strings that correspond to one of nine grids on the screen (e.g., top left,
top right, etc.). The text content or content description of the element is taken directly
as the content of the HTML element, and the semantic class of the element [14] is
converted to the tag of the HTML element.

4
The HTML representation is redacted in the prompt example for brevity, the full LLM
inputs/outputs are available in Appendix C.

Automatic Macro Mining from Interaction Traces at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Original User/Random Interaction Trace (x N)

Below is a simplified HTML representation of an app UI:
<screen> … </screen>

What can the user do with the app?

Step 2: Action Grounding

Large Language
Model

+ Grouping
Task: Create a
Reminder

Step 4: Action Merging (Build Interaction Graph from ALL Traces and find nearest path)

Step 1: Task Discovery

Task: Create a Reminder
Which element can the user click to complete the
task? Action: Click

element id: 1

Step 3: Parameter / Info-finding
Extra info other than clicking on the element does
the user have to enter for the task?

Task: Create a Reminder Action: Click element id: 5

Params: {
“title”: “id=2”,
“date”: “id=5”
}

Task: Create a
Reminder

Params: {“title”:
“id=2”, “date”:
“id=5”}

Action: Click
element id: 1

Final Macros
(x K)

Large Language
Model

Large Language
Model

(shorter
path from
another trace)

(shorter
path from
another trace)

Te

s1 s2 s3

e1, 1

e1, 2

a1 a2 a3

a4s4

de

Pe

s9

s9 de(9, 1)

âe

Pe

âe

me

a4 a6 a7 a8

a5 a6

a7s5 s6

a8
s7 s8 s10 s11 s12

a9 a10

a11
a12

Figure 2: Full macro extraction system for a single example macro: ‘Create a reminder’. Our system extracts K macros from all
N traces for each app in the actual datasets.

(a large transformer-based sentence-encoder) [24], and incremen- the LLM with the macro description (�� in the ‘create a reminder’
tally group similar text descriptions by their cosine similarities

5
. example) and the HTML representation of the screen that it arrived

We also flter out macro candidates that have generic and/or short at after the clicks (�9 from example, Step 2 in Figure 2):
descriptions with heuristics defned in Appendix A. We then ran-
domly sample one macro candidate from each of these groups as
the candidates for next step of processing.

3.2.2 Action Grounding. To fnalize a set of actionable macros,
we need to predict the fnal actions �̂ that complete the macros,
since they might not be provided by the source traces. We prompt

5
We add a text description into an existing group if its similarity with this group falls
under a certain threshold and the group is most similar to the description.

Prompt 2: Below is a simplifed HTML code of a mobile app:
<screen>
... (same as above) ...
</screen>
Which element id(s) should the user click on next to accomplish
the task ‘create a reminder’?
Respond with only the number(s), or “None” if the user can
already complete the task on the current page.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Huang et al.

This provides a set of elements �� = {�� } ∥ ∅ for the correspond-
ing fnal action �� to complete the macro. In our ‘create a reminder’
example, the LLM responds with:

Response 2: 1

This id (1) corresponds to the ‘save’ button in the UI, which is
then combined into our macro candidate ��

′
as the predicted action

�̂� , such that the macro candidate is now � ′ = (�� =‘Create a�
reminder’, {�1...8, �̂� }).

3.2.3 Parameter-finding. If a fnal action is predicted by the LLM
(i.e., the LLM doesn’t return ‘None’ in Section 3.2.2), we further
prompt the LLM regarding the parameters (extra information) {�� }
needed to complete the candidate macro (Step 3 in Figure 2). Each
parameter contains a text description and the element that the
parameter should be entered into. We use the following prompt
that includes the text description and the ‘save’ button’s id obtained
above in our example ‘create a reminder’ macro:

Prompt 3: Below is a simplifed HTML code of a mobile app:
<screen>
... (same as above) ...
</screen>
The user is trying to complete the task ‘create a reminder’.
Other than clicking on the element with id 1, list the additional
information the user needs to enter in the format of (- (info)).
Answer “None” if no additional information is needed.

This gives us the text descriptions for the parameters in the form
of ‘- (description 1) - (description 2)...’. For our example, the LLM
responds with:

Response 3: - (title)
- (date)

We parse this response and obtain ‘title’ and ‘date’ as the pa-
rameters needed for the ‘create a reminder’ example macro. We
then prompt the LLM again to obtain the relevant UI element id for
each parameter. For example, to obtain the element id for the ‘title’
parameter:

Prompt 4: Below is a simplifed HTML code of a mobile app:
<screen>
... (same as above) ...
</screen>
Where can the user enter title? Answer with only the element id,
or “None” if no element matches.

The LLM response will provide us with all information required
for each parameters that includes the element reference and the
text description. In our example, the LLM responds with:

Response 4: 2

The element with id = 2 corresponds to the element where the
users enter reminder titles in the creation page. This fnal response

′
completes the macro candidates � = {(�, {�1...� −1, �̂}, {�� })}.
With our ‘create a reminder’, the fnal macro candidate is:

�� = (‘Create a reminder’, {�1...8, �̂� },
{(title, element 2), (date, element 5)})

This entire workfow of extracting macros adapts chain-of-
thought reasoning for the LLM [32]—we frst prompt it to reason
about meaningful tasks in UIs, we then prompt it to ground the
high-level task to act on certain elements on the UIs; fnally, based
on the actions, we further prompt the LLM to generate relevant
parameters, creating complete sets of relevant information for the
macros. We believe the LLM’s prior knowledge on user tasks have
enabled the generation of meaningful macros beyond merely sum-

marizing or synthesizing content of UIs.

3.3 Action/Trace Merging and Optimal
Path-fnding

The actions within each macro candidate generated by the frst step
of our system were taken directly from the interaction traces (i.e.,
all actions that the user/agent performed leading up to a certain
screen �1...� −1). However, these actions are likely sub-optimal, such
that a user might perform multiple tasks in a single trace, or a
random computational agent might have to click around multiple
screens before reaching a task-based UI. To address this problem,
we build interaction graphs from multiple interaction traces of the
same app. This discovers shorter paths within each individual trace
and/or between multiple traces, allowing the tasks in the macros to
be executed optimally (Step 4 in Figure 2). For our example ‘create
a reminder’ macro �� , this part of the system optimizes the action
set �1...8 from the candidate ��

′
above, since it doesn’t require 9

clicks to ‘create a reminder’.

3.3.1 Overall Graph Structure. To build the interaction graph, we
frst defne a root node �� as the frst node that the app lands on.
Each node in this graph refers to an action (not a screen). Then,
for an action �� taken in the trace and its corresponding element
��,� , we fnd the existing node ��,� by the current node ��,� ’s id (or
create a new one if it doesn’t exist), and add a connection between
��,� −1 (��,0 = ��) and ��,� . We also create or fnd the nodes for each
actionable element ��, � in screen �� , and connect the corresponding
nodes � �,� to ��,� −1. In the example ‘create a reminder’ macro, the
root node contains outgoing edges that corresponds to �1 and �4,
since the element for �4 (the right arrow in the bottom right) can
be found on the frst screen �1.

While an interaction graph typically models screens as nodes
and actions as edges, we depart from this paradigm and encode
actions as nodes and screens as edges. Each node could be thought
of as the state reached after performing the action �� that the node
is labeled with. And each edge could be represented by the screen
that the action at the target node of the edge is performed on. The
main advantage for such representation is that the extracted macros
are robust to changes in the screens—the merging is done between
the actions, in which a node is reached as long as the same action
was performed. We are also defning a similarity metric at the action
level (i.e., element) as opposed to at the screen level, which allows
us to fexibly include diferent levels of context depending on the
action being performed.

Automatic Macro Mining from Interaction Traces at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

3.3.2 Node Identification and Merging. We identify and merge
nodes by their ids. Each node’s id is a combination of the following
attributes of the element that the previous action was performed
on: resource_id, text (content), content description, and class (in
Android). If both text and content descriptions are empty, we frst
traverse the view hierarchy downwards to adopt the combination
of text and content descriptions of the element’s descendants. If
no text was found from its descendants, we traverse up the view
hierarchy until a node with text or content description was found
and adopt those attributes from this ancestor node. This procedure
was inspired by the observation that meaningful text annotations
that refect the functionality of UI elements could be found near
them in the view hierarchy, hence uniquely identifying the action-
elements. In our example ‘create a reminder’ macro, this allows us
to identify the right arrow for �4 to be accessible in �1, such that in
the UI, a user is able to click on the next button immediately after
landing on the frst screen.

3.3.3 Optimal Path-finding. After an interaction graph was built,
breadth-frst-search is performed for all macros from the root node,
and shortest paths from the root replaces the action set for all
macro candidates, forming the fnal set of extracted macros � =
{(�, �opt, {�})} where �opt contains the last node in the original
action set (corresponds to LLM-predicted �̂�) and the actions of the
shortest path from the root to that node. In our example ‘create a
reminder’ macro, this allows us to skip over �2 to �5, such that the
fnal macro only contains �1 (the frst landing page of the UI) and �6
(the fnal screen of the calendar description page that contains ‘Got
it’) to proceed with the rest of the macro. Note that this optimization
is performed across multiple traces, allowing all shortest path to
be found for various macros and functionalities in the UI. This
produces the fnal macro for the example in Figure 2:

�� = (‘Create a reminder’, {�4, �6, �7, �8, �̂� },
{(title, element 2), (date, element 5)})

3.4 Automatic Macro Replayer
To automatically execute a macro �� , we perform its associated
actions from the landing screen of the app, which includes both the
optimal actions to the relevant task screen and the LLM-inferred
action for task completion. At each time step �� ∈ �opt, we perform
fuzzy matching and match elements that is similar to the original
referenced elements with a Jaccard similarity metric, based on a
set of text-based attributes of the elements. Moreover, to allow
fexibility and error-tolerance in execution, we check for future
actions in the macro if a certain action is not matched on a screen,
and skip the actions before the matched future actions. We execute
these actions on an Android device with adb6. This allows us to
fully close the loop and complete the task defned in the macro
automatically.

3.5 LLM and System Implementation Details
The LLM used in all steps in the system is based on PaLM2-Bison [7].
For all LLM-generated responses, we use top-p decoding and could
regenerate responses if none of the previous ranked generations

6
https://developer.android.com/tools/adb

follow our expected format, or contains hallucinated UI element
IDs. However, these LLM-based syntax failures are extremely rare
in practice (0.0244% of the macros), and we remove those that
contain them. The rest of the macro extraction and execution system
was implemented with Python and Apache Beam framework

7
for

efcient distributed computation. The source code of the this system
will be publicly released8.

4 MACRO DATASETS
Using the system described above, we extracted macros from the
RICO dataset [6] and the Rehearsal dataset. We took 4,189 traces
from the RICO dataset that have complete corresponding annota-
tions in the CLAY dataset [14], with one to a few traces per Android
app. Each trace contains the UI hierarchy, screenshot, and the user-
performed action in each step of the interaction, allowing us to
extract the required elements for macros stated above. We extracted
23,117 macros from these traces, with 8.49 macros from each app
on average. Each macro contains 3.41 actions on average. Some
representative examples of this dataset is shown in Figure 4 and
are discussed in detail in Section 5.2, showcasing our system’s ap-
plicability in a wide range of apps. We open-source these extracted
macros from RICO8

.
The Rehearsal dataset contains 162,000 randomly-crawled mobile

interaction traces of 10 apps, with 16,000 traces per Android app,
which means it explores each app in greater depth. Similar to RICO,
each trace contains the UI hierarchies, screenshots, and randomly
invoked actions on the apps for exhaustively exploring the app
computationally using emulators. We sample 1,000 traces per app,
and extracted 3,389 macros from the Rehearsal dataset (338.9 macros
per app on average). Each macro contains 3.4 actions on average.
Some representative examples of this dataset is shown in Figure 3,
which demonstrates of system’s validity in covering many parts of
a single app and its efectiveness when applied to a large number
of randomly-crawled, non-user traces.

5 EVALUATION
We evaluated the extracted macros with multiple methods targeting
multiple aspects of the traces. The two main aspects of the macros
to be evaluated are the quality of the text descriptions � and the
validity of the UI actions {�}. This ensures that our extracted macros
are reasonable, valid, and executable. We evaluated each of the
aforementioned aspects with quantitative experiments, qualitative
analysis, and user studies. We also designed this set of evaluations
with the goal to help us understand the possibility for supporting
potential downstream models and/or applications (further discussed
in Section 6).

5.1 Task Description Quality
To evaluate the quality of the text descriptions � and their relevance
to realistic user tasks, we frst compare the descriptions extracted
by our model and crowd-sourced task descriptions from the test set
of the MoTIF dataset [5]. Each data example in MoTIF contains a
task description �MoTIF and an interaction trace �MoTIF extracted
from one of 125 apps. We process the interaction trace �MoTIF

7
https://beam.apache.org/

8
https://github.com/google-research/google-research/tree/master/macro_mining

https://github.com/google-research/google-research/tree/master/macro_mining
https://6https://developer.android.com/tools/adb

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Huang et al.

with our system and extract a set of macros � . Then for each text
description �� of each extracted macro, we compute a Rouge-L
F-measure score and Meteor score9

between �� ∈ � and �MoTIF
and take the highest Rouge-L and Meteor score (most similar pair)
as the score for an interaction trace. The high-level intuition is
that our system should extract a superset of text descriptions as
the ground-truth in MoTIF, yet should have at least one of them
covering the task described by the user closely, which is measured
by the Rouge-L score. The text descriptions in the generated macros
should also be generally similar to the human-authored descriptions
without redundant or hallucinated details, which is measured by
the Meteor score.

We then report the average scores of this max calculation of each
ground-truth across the entire dataset. To show the robustness of
our method against the randomness involved during LLM inference,
we repeat the same procedure for fve times and report the mean and
standard deviation. In addition, we show qualitative examples with
low Rouge-L scores in the Appendix B. We demonstrate that even
for some examples with low Rouge-L scores, the text descriptions
generated by our system is still reasonable given the interaction
traces for these examples.

To provide reference to our method’s performance, we also de-
veloped two baselines. The frst baseline (Element-Text) is imple-

mented by taking text and content descriptions from all UI elements
in the MoTIF traces as pseudo descriptions. A comparison against
this baseline will show the efcacy of our model in extracting and
reasoning useful tasks beyond repeating text content that already
exists in the UI. The second baseline (Random-Trace) is imple-

mented by randomly reassigning generated tasks from another
trace and comparing them against the ground-truth, which shows
our model’s ability to generate task descriptions specifc to the
provided app instead of only generating syntactically correct but
meaningless text.

The Rouge-L and Meteor scores for our method and the two
baselines are shown in Table 2. Our system achieves a Rouge-L
of 0.47 and Meteor of 0.38 for this evaluation, which means our
system can generate tasks with descriptions much more similar to
human-authored tasks compared to the baselines. This suggest our
system is efective in extracting tasks that cover ones that human
users consider as important and relevant, which is an important re-
quirement for supporting interactive task understanding (discussed
in Section 6.1).

Table 2: Rouge-L F-measure and Meteor of our methods
and baselines when compared against human-provided tasks
in MoTIF test set. Experiments that involve randomness are
reported in mean

std format over fve runs.

Method Rouge-L Meteor

Ours
Random-Trace
Element-Text

0.4680.005
0.2500.010
0.066

0.3790.003
0.1510.007
0.155

9
Both Rouge-L [21] and Meteor [4] are established metrics in NLP that compute
textual matching.

5.2 Qualitative Examples
To further demonstrate the efectiveness of our extracted macros
and show the validity of the macro actions, we qualitatively evaluate
multiple macros extracted from the Rehearsal dataset (Figure 3) and
the RICO dataset (Figure 4) respectively. In Figure 3, we observe
that our system is able to extract highly complex and non-trivial,
hidden macros that are useful for the user—in the settings app,
our system is able to extract multiple traces that have features
unobvious to the user, such as using a QR code to enter SSID and
security details, hiding profanity in the live caption feature, and
changing the display size of the screen. This observation is further
echoed by our fndings from the user study, such that a signifcant
proportion of the tasks were not known to the participants prior
to the study in Section 5.4. This provides evidence for our system
and macro dataset to support applications in how-to knowledge
sharing (discussed in Section 6.3).

In the calendar app, it is able to extract some highly complex
macros with a large number of steps, such as setting a monthly
reminder on the second sunday of every month. In addition, our
extraction system is also able to properly handle scrolling, in which
it is able to scroll down through the settings to expose the appro-
priate elements to ‘set a timer sound’. These are important features
for supporting UI automation (discussed in Section 6.2).

In Figure 4, we further show our system’s applicability to a wider
range of apps with varying features from the RICO dataset. In the
app built for the American Football team Tampa Bay Buccaneers,
our system was able to extract a multi-step macro that opens the
shop of the team. In the WHNT news app, the system is able to infer
the app’s feature to display temperature in either the Celsius or
Fahrenheit scale by simply observing the temperature reading texts
from the UI. These macros demonstrate the ability of our system
to understand common user tasks and mobile app UIs, and make
appropriate predictions for relevant macros and tasks in broader
contexts.

5.3 Trace Optimality
An important feature of our system is to extract optimal paths for
executing the macro tasks by building interaction graphs. While
there are no ground-truth data for optimal paths currently available
for the tasks, we report the statistics of our macros in RICO and
Rehearsal dataset before (pre-optimized) and after (post-optimized)
running the Action/Trace merging steps introduced in Section 3.3.
The extracted macros from the RICO dataset contain 6.05 actions
pre-optimization on average, and they contain 3.41 actions post-
optimization. This represents a 43.6% reduction in the fnal macro
lengths. The extracted macros from the Rehearsal dataset contain
7.51 actions pre-optimization on average, and they contain 3.40
actions post-optimization. This represents a 54.7% reduction in the
fnal macro lengths. Our system is able to efectively reduce the
required efort for performing the macro tasks by removing around
half of the steps in the macros from both datasets.

5.4 User Evaluation of Extracted Macros
To more comprehensively validate the efectiveness of our system
in extracting useful macros, we conducted a user study to gather
users’ ratings on the quality of our macros. We randomly sampled

Automatic Macro Mining from Interaction Traces at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

“Set up a monthly reminder on the second sunday of every month”

“Set the timer sound”

(swipe)

“Add a clock for home time zone when traveling.”

“Hide profanity in live caption”

“Lock the sim card”

(swipe)

“Change the display size of the screen”

“Scan a QR code to automatically enter the SSID
and security details”

App:

Settings

Clock

App:

“Jump to the current day”

(swipe)

Calendar

App:

“View events by day, 3 days, week, or month”

Figure 3: Macro extraction results for apps in the Rehearsal dataset.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Huang et al.

“View the shop”

(swipe)

App:

Tampa Bay
Buccaneers

“See the current temperature in Fahrenheit and Celsius”

(swipe)

App:

WHNT News

Figure 4: Macro extraction results for apps in the RICO dataset.

60 extracted macros from 3 apps in the Rehearsal dataset. We chose
apps from the Rehearsal dataset since they are mostly system apps
that are well-known to most mobile users. The scale of macros
extracted from these apps also allows us to evaluate each of them in
depth. We also conducted the same study on the PixelHelp dataset
that contains descriptions and human-curated tasks, which can be
considered as the ‘golden standard’ of the target macros that our
system aims to extract; we comparatively analyze the results in this
section.

For each interaction trace/macro, we show our participants the
optimized/human-curated trace screenshots and the task descrip-
tion, and ask them to provide answers for the following questions:

• Q1. On a scale of 1-5, does the task match the trace well?
• Q2. On a scale of 1-5, is this a reasonable task and trace for
mobile users?

• Q3. Did you know how to perform this task before seeing
this example? (Yes/No)

We also collected open-ended feedback at the end of the study.
We recruited 11 participants to evaluate each set of macros through
a mailing list internal to our organization. Our participants have
9-20 years of experience using smartphones (� = 13.0 years). Two
of our participants are experts in app testing, hence highly familiar
with the tasks on these apps. We advised our participants to take
approximately 60 minutes to complete the study. Each participant
received compensation equivalent to $40 USD in value.

The results are summarized in Table 3. Our participants rated
3.85 out of 5 for the correspondence between the descriptions and
the actions in the macros (Q1). Over 70% of the responses for
this question have ratings equal or above 4 (corresponds to the
description), demonstrating our system’s ability to extract valid
tasks that matches the macros’ descriptions.

Our participants rated 4.11 out of 5 for the reasonableness of the
macros (Q2) on average, with over 75% of the responses having rat-
ings equal or above 4, and over 50% having ratings of 5 (considered
highly reasonable by the users). This shows that our system is able
to efectively extract reasonable macros from the apps in general.
Moreover, both correspondence and reasonableness ratings (Q1 and
Q2) attained by the macro extracted by our proposed system ap-
proach those obtained by tasks in the PixelHelp dataset, refecting
a similar quality of extracted Macros compared to human-extracted
tasks in the PixelHelp dataset [19]. Nevertheless, participants refect
that ‘some of the clicks (in the traces) seemed inefcient, or (they

were) unsure why the UI would click in a certain area’ (P1), which
leads to the remaining quality gap between human-curated tasks
and macros mined automatically by our system. We believe such
inefciency originates from the limitations of our systems, which
will be further discussed in Section 7.

Finally, an important and interesting fnding from this study
is that our participants did not know how to perform 48.2% of
the tasks prior to seeing the macros (Q3). This percentage is also
comparable to that of the PixelHelp dataset. This reveals a great
potential for our system to support task discovery and tutorial
generation (discussed in Section 6.3), such that almost half the tasks
discovered by our system are non-trivial tasks supported by the
app, similar to the collection of human-curated tasks (PixelHelp).
Our system can automatically fnd tasks that users are unfamiliar
with and present reasonable steps for them to complete the tasks,
all coupled with conversational interactions given the high-level
descriptions also extracted by our system.

5.5 Execution Success
While extracting representative and relevant macro descriptions
is an important frst step towards mining useful macros, the end-
goal of having these macros is to be able to execute them in real
environments. Replayable macros provide the possibility for mod-

els and systems to operate within the natural language modality
and interact with mobile apps and devices efectively, supporting
automation for interactions (discussed in Section 6.2).

Towards this goal, we built a live environment to examine the
success rate of executing the extracted macro in Android devices,
hence evaluating the end-to-end performance of our system. We
took 60 extracted macros from the Rehearsal dataset, re-executing
them in the live environment, and recording the success rate for
the Macro Replayer in reaching the fnal screen of the macros by
manually inspecting them. The live environment was developed
and deployed as Android emulators, using Pixel 4 devices with
Android version 30.

On average, 76.7% of the macros extracted by our system were
successfully executable in the live environment. This not only
shows that a large proportion of extracted macros are valid and are
replayable in realistic environments, but also the high efectiveness
of our Macro Replayer in automating the tasks specifed in the
macros.

Automatic Macro Mining from Interaction Traces at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 3: User study results (mean
std

) for the PixelHelp Dataset (human-curated tasks) [19] and our extracted macros.

Macro Source Q1. Correspondence (?/5) ↑ Q2. Reasonableness (?/5) ↑ Q3. Unknown Task %

PixelHelp (Human-Curated) 4.121.23 4.251.10 47.4%49.9%

Ours 3.851.40 4.111.15 48.2%50.0%

6 ENVISIONED APPLICATIONS
Based on our system development and fndings, we envision multi-

ple future applications supported and enabled by our contributions.

6.1 Interactive Task Understanding and
Modeling

Our contributed dataset expands UI understanding of existing
datasets to interactive task understanding that involve text descrip-
tions and multiple screens/actions. We envision this dataset to be
capable of supporting multiple downstream machine-learning ap-
plications, including the training of agent models that can act on
UIs based on high-level goals for navigation and task completion.
Other than agent models, we also envision the dataset to support
generative design applications. While existing works focus on gen-
erating individual UI designs, annotated traces with semantically
meaningful tasks can be used to train models that can generate se-
quences of diferent UI screens that supports high-level tasks and/or
user-stories, greatly expanding the applicability of these models in
realistic design scenarios.

Moreover, we also envision our contributions to help facilitate
and accelerate UX development processes. For example, UX design-
ers can use the proposed method to visualize and test macros on
app prototypes, or search for similar macros in other apps.

6.2 Interaction Automation
Another major area that we envision our work to support is the
automation of user interactions, such as enabling conversational
task-based interactions and task shortcuts for apps. While conversa-
tional interactions can currently be efectively supported by LLMs,
acting directly in the UI space is challenging for LLMs. Our meth-

ods enable task-based interactions in the natural language space,
such that LLMs can directly select and rank macros by their text
descriptions based on existing conversations with users (which is
a space more familiar to LLMs), and the macros can be directly
executed on apps with potentially higher success rate compared to
having the LLMs directly act on the UI elements.

Task shortcuts are another important area of UI automation
explored by prior works [2]. Nevertheless, to our knowledge none
of them allow for the automatic discovery of new tasks and they
require users to provide task descriptions to utilize the shortcuts.
Our methods can enable a new set of applications that do not assume
users to possess comprehensive prior knowledge of the tasks.

6.3 How-to Knowledge Sharing
Beyond understanding interactive tasks and supporting automation,
our proposed method can support the discovery and sharing of how-
to knowledge in apps, such as automatically generating tutorials
in apps without requiring additional efort of the app developers.

Our approach can be coupled with automatic crawlers to obtain
UIs without users’ manual exploration (such as the approach we
took for the Rehearsal dataset in Section 4), and hence can discover
macros that correspond to tasks unseen by users. Our fndings
in Section 5.4 also validate that a large proportion of tasks fully-
automatically discovered by our system were novel to the users, and
we envision our system to be used to educate users in performing
new tasks and/or taking more optimal paths in known tasks.

7 LIMITATIONS AND FUTURE WORK
Our work has several limitations that warrant future investiga-
tion. The frst limitation is the limited representational power and
uniqueness of the element/node identifers. We currently rely on
resource_ids and nearby text contents through a carefully designed
algorithm to identify identical UI actions, but even this can be insuf-
fcient at times when resource_id and text content are non-unique,
resulting in the incorrect merging and path-fnding of some macros
that pass through these nodes with duplicated resource_ids that
should have been unique. For example, in the macro in Figure 5,
the action performed on the third screen �3 was incorrect, such that
clicking on the ‘settings’ button (marked with 1) in the Figure) does
not lead to the next screen �4. This is because the fourth screen �4
can be reached from another ‘settings’ button that looks identical
and with an identical resource_id, but was used in a diferent screen
and diferent context. This led to an invalid optimization performed
by our system. Future work shall explore the inclusion of dynamic
amount of context around the elements, or utilize learning-based ap-
proaches (e.g., element embeddings [17, 19, 20] with thresholding)
to identify similar UI elements for merging.

Another important limitation of our system is the assumption
that all actions are stateless and will lead to the same result when
the same actions are performed on it. This assumption might not
be true for some apps, such as those that contain dynamic content.
For instance, the macro in Figure 5 is to ‘allow’ the ‘media sounds’
setting. However, clicking on the switch on the fourth screen �4
will lead to the system disabling media sounds since the setting
is already enabled. Adequately representing and handling context
information of the actions is another important area of future work.

8 CONCLUSIONS
In this paper, we introduced a novel LLM-based system for automat-

ically extracting semantically meaningful macros from any interac-
tion traces. Our system frst extracts meaningful tasks from each
UI in the app, and consequently merges them into a compact and
comprehensive set of efcient macros. Our evaluation shows that
the extracted macros are highly relevant to realistic human-curated
tasks when comparing against an existing large-scale dataset. The
majority of the macros can also be successfully executed, and are

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Huang et al.

"Allow media sounds from videos, games, and other media."

1) Duplicated ID

2) State Confusion
App:

Settings

s3 s4

Figure 5: Limitations of our current macro mining system illustrated by a single Macro example.

considered to be reasonable and valid by the participants of our
user study. We believe the dataset and the system can support im-

portant future applications in interaction automation, interactive
task understanding, and how-to knowledge sharing.

ACKNOWLEDGMENTS
We thank all anonymous reviewers for their constructive comments
and suggestions in the paper review process. We would also like
to thank Chin-Yi Cheng for his suggestions and assistance in this
project, and all participants in our user study for evaluating macros
and providing feedback.

REFERENCES
[1] Khalid Alharbi and Tom Yeh. 2015. Collect, Decompile, Extract, Stats, and Dif:

Mining Design Pattern Changes in Android Apps. In Proceedings of the 17th
International Conference on Human-Computer Interaction with Mobile Devices and
Services (Copenhagen, Denmark) (MobileHCI ’15). Association for Computing Ma-

chinery, New York, NY, USA, 515–524. https://doi.org/10.1145/2785830.2785892
[2] Deniz Arsan, Ali Zaidi, Aravind Sagar, and Ranjitha Kumar. 2021. App-Based

Task Shortcuts for Virtual Assistants. In The 34th Annual ACM Symposium on User
Interface Software and Technology (Virtual Event, USA) (UIST ’21). Association
for Computing Machinery, New York, NY, USA, 1089–1099. https://doi.org/10.
1145/3472749.3474808

[3] Chongyang Bai, Xiaoxue Zang, Ying Xu, Srinivas Sunkara, Abhinav Rastogi,
Jindong Chen, and Blaise Agüera y Arcas. 2021. UIBert: Learning Generic Mul-

timodal Representations for UI Understanding. In Proceedings of the Thirtieth
International Joint Conference on Artifcial Intelligence, IJCAI-21, Zhi-Hua Zhou
(Ed.). International Joint Conferences on Artifcial Intelligence Organization,
1705–1712. https://doi.org/10.24963/ijcai.2021/235 Main Track.

[4] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An Automatic Metric for MT
Evaluation with Improved Correlation with Human Judgments. In Proceedings
of the ACL Workshop on Intrinsic and Extrinsic Evaluation Measures for Machine
Translation and/or Summarization, Jade Goldstein, Alon Lavie, Chin-Yew Lin,
and Clare Voss (Eds.). Association for Computational Linguistics, Ann Arbor,
Michigan, 65–72. https://aclanthology.org/W05-0909

[5] Andrea Burns, Deniz Arsan, Sanjna Agrawal, Ranjitha Kumar, Kate Saenko, and
Bryan A Plummer. 2022. A Dataset for Interactive Vision Language Navigation
with Unknown Command Feasibility. In European Conference on Computer Vision.
Springer, 312–328.

[6] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan,
Yang Li, Jefrey Nichols, and Ranjitha Kumar. 2017. Rico: A Mobile App Dataset
for Building Data-Driven Design Applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology (Québec City, QC,
Canada) (UIST ’17). Association for Computing Machinery, New York, NY, USA,
845–854. https://doi.org/10.1145/3126594.3126651

[7] Rohan Anil Google, Andrew M. Dai, Orhan Firat, Melvin Johnson, Dmitry Lep-
ikhin, Alexandre Passos, Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng
Chen, Eric Chu, Jonathan H. Clark, Laurent El Shafey, Yanping Huang, Kathy
Meier-Hellstern, Gaurav Mishra, Erica Moreira, Mark Omernick, Kevin Robinson,
Sebastian Ruder, Yi Tay, Kefan Xiao, Yuanzhong Xu, Yujing Zhang, Gustavo Her-
nandez Abrego, Junwhan Ahn, Jacob Austin, Paul Barham, Jan Botha, James
Bradbury, Siddhartha Brahma, Kevin Brooks, Michele Catasta, Yong Cheng, Colin
Cherry, Christopher A. Choquette-Choo, Aakanksha Chowdhery, Clément Crepy,
Shachi Dave, Mostafa Dehghani, Sunipa Dev, Jacob Devlin, Mark Díaz, Nan
Du, Ethan Dyer, Vlad Feinberg, Fangxiaoyu Feng, Vlad Fienber, Markus Freitag,
Xavier Garcia, Sebastian Gehrmann, Lucas Gonzalez, Guy Gur-Ari, Steven Hand,
Hadi Hashemi, Le Hou, Joshua Howland, Andrea Hu, Jefrey Hui, Jeremy Hurwitz,
Michael Isard, Abe Ittycheriah, Matthew Jagielski, Wenhao Jia, Kathleen Kenealy,
Maxim Krikun, Sneha Kudugunta, Chang Lan, Katherine Lee, Benjamin Lee, Eric
Li, Music Li, Wei Li, YaGuang Li, Jian Li, Hyeontaek Lim, Hanzhao Lin, Zhong-
tao Liu, Frederick Liu, Marcello Maggioni, Aroma Mahendru, Joshua Maynez,
Vedant Misra, Maysam Moussalem, Zachary Nado, John Nham, Eric Ni, Andrew
Nystrom, Alicia Parrish, Marie Pellat, Martin Polacek, Alex Polozov, Reiner Pope,
Siyuan Qiao, Emily Reif, Bryan Richter, Parker Riley, Alex Castro Ros, Aurko Roy,
Brennan Saeta, Rajkumar Samuel, Renee Shelby, Ambrose Slone, Daniel Smilkov,
David R. So, Daniel Sohn, Simon Tokumine, Dasha Valter, Vijay Vasudevan, Kiran
Vodrahalli, Xuezhi Wang, Pidong Wang, Zirui Wang, Tao Wang, John Wieting,
Yuhuai Wu, Kelvin Xu, Yunhan Xu, Linting Xue, Pengcheng Yin, Jiahui Yu, Qiao
Zhang, Steven Zheng, Ce Zheng, Weikang Zhou, Denny Zhou, Slav Petrov, and
Yonghui Wu. 2023. PaLM 2 Technical Report. arXiv:2305.10403 [cs.CL]

[8] Zecheng He, Srinivas Sunkara, Xiaoxue Zang, Ying Xu, Lijuan Liu, Nevan Wich-

ers, Gabriel Schubiner, Ruby Lee, and Jindong Chen. 2021. Actionbert: Leveraging
user actions for semantic understanding of user interfaces. In Proceedings of the
AAAI Conference on Artifcial Intelligence, Vol. 35. 5931–5938.

[9] Ting-Hao K. Huang, Amos Azaria, Oscar J. Romero, and Jefrey P. Bigham. 2019.
InstructableCrowd: Creating IF-THEN Rules for Smartphones via Conversations
with the Crowd. Human Computation 6, 1 (Sep. 2019), 113–146. https://doi.org/
10.15346/hc.v6i1.7

[10] Ifttt. [n. d.]. https://ifttt.com/
[11] Kenton Lee, Mandar Joshi, Iulia Raluca Turc, Hexiang Hu, Fangyu Liu, Julian Mar-

tin Eisenschlos, Urvashi Khandelwal, Peter Shaw, Ming-Wei Chang, and Kristina
Toutanova. 2023. Pix2struct: Screenshot parsing as pretraining for visual lan-
guage understanding. In International Conference on Machine Learning. PMLR,
18893–18912.

[12] Luis A. Leiva, Asutosh Hota, and Antti Oulasvirta. 2021. Enrico: A Dataset for
Topic Modeling of Mobile UI Designs. In 22nd International Conference on Human-
Computer Interaction with Mobile Devices and Services (Oldenburg, Germany)
(MobileHCI ’20). Association for Computing Machinery, New York, NY, USA,
Article 9, 4 pages. https://doi.org/10.1145/3406324.3410710

[13] Gilly Leshed, Eben M. Haber, Tara Matthews, and Tessa Lau. 2008. CoScripter:
Automating & Sharing How-to Knowledge in the Enterprise. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems (Florence, Italy)
(CHI ’08). Association for Computing Machinery, New York, NY, USA, 1719–1728.
https://doi.org/10.1145/1357054.1357323

https://doi.org/10.1145/2785830.2785892
https://doi.org/10.1145/3472749.3474808
https://doi.org/10.1145/3472749.3474808
https://doi.org/10.24963/ijcai.2021/235
https://aclanthology.org/W05-0909
https://doi.org/10.1145/3126594.3126651
https://arxiv.org/abs/2305.10403
https://doi.org/10.15346/hc.v6i1.7
https://doi.org/10.15346/hc.v6i1.7
https://ifttt.com/
https://doi.org/10.1145/3406324.3410710
https://doi.org/10.1145/1357054.1357323

Automatic Macro Mining from Interaction Traces at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

[14] Gang Li, Gilles Baechler, Manuel Tragut, and Yang Li. 2022. Learning to Denoise
Raw Mobile UI Layouts for Improving Datasets at Scale. In Proceedings of the 2022
CHI Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA, Article 67,
13 pages. https://doi.org/10.1145/3491102.3502042

[15] Gang Li and Yang Li. 2023. Spotlight: Mobile UI Understanding using Vision-
Language Models with a Focus. In The Eleventh International Conference on
Learning Representations.

[16] Toby Jia-Jun Li, Amos Azaria, and Brad A. Myers. 2017. SUGILITE: Creating
Multimodal Smartphone Automation by Demonstration. In Proceedings of the
2017 CHI Conference on Human Factors in Computing Systems (Denver, Colorado,
USA) (CHI ’17). Association for Computing Machinery, New York, NY, USA,
6038–6049. https://doi.org/10.1145/3025453.3025483

[17] Toby Jia-Jun Li, Lindsay Popowski, Tom Mitchell, and Brad A Myers. 2021.
Screen2Vec: Semantic Embedding of GUI Screens and GUI Components. In Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(Yokohama, Japan) (CHI ’21). Association for Computing Machinery, New York,
NY, USA, Article 578, 15 pages. https://doi.org/10.1145/3411764.3445049

[18] Toby Jia-Jun Li, Marissa Radensky, Justin Jia, Kirielle Singarajah, Tom M. Mitchell,
and Brad A. Myers. 2019. PUMICE: A Multi-Modal Agent That Learns Concepts
and Conditionals from Natural Language and Demonstrations. In Proceedings
of the 32nd Annual ACM Symposium on User Interface Software and Technology
(New Orleans, LA, USA) (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 577–589. https://doi.org/10.1145/3332165.3347899

[19] Yang Li, Jiacong He, Xin Zhou, Yuan Zhang, and Jason Baldridge. 2020. Map-

ping Natural Language Instructions to Mobile UI Action Sequences. In Pro-
ceedings of the 58th Annual Meeting of the Association for Computational Lin-
guistics. Association for Computational Linguistics, Online, 8198–8210. https:
//doi.org/10.18653/v1/2020.acl-main.729

[20] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. 2020.
Widget Captioning: Generating Natural Language Description for Mobile User
Interface Elements. In Proceedings of the 2020 Conference on Empirical Methods in
Natural Language Processing (EMNLP). Association for Computational Linguistics,
Online, 5495–5510. https://doi.org/10.18653/v1/2020.emnlp-main.443

[21] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation of Summaries.
In Text Summarization Branches Out. Association for Computational Linguistics,
Barcelona, Spain, 74–81. https://aclanthology.org/W04-1013

[22] Thomas F. Liu, Mark Craft, Jason Situ, Ersin Yumer, Radomir Mech, and Ranjitha
Kumar. 2018. Learning Design Semantics for Mobile Apps. In Proceedings of the
31st Annual ACM Symposium on User Interface Software and Technology (Berlin,
Germany) (UIST ’18). Association for Computing Machinery, New York, NY, USA,
569–579. https://doi.org/10.1145/3242587.3242650

[23] Rodrigo de A. Maués and Simone Diniz Junqueira Barbosa. 2013. Keep Doing
What i Just Did: Automating Smartphones by Demonstration. In Proceedings of the
15th International Conference on Human-Computer Interaction with Mobile Devices
and Services (Munich, Germany) (MobileHCI ’13). Association for Computing Ma-

chinery, New York, NY, USA, 295–303. https://doi.org/10.1145/2493190.2493216
[24] Jianmo Ni, Gustavo Hernandez Abrego, Noah Constant, Ji Ma, Keith Hall, Daniel

Cer, and Yinfei Yang. 2022. Sentence-T5: Scalable Sentence Encoders from Pre-
trained Text-to-Text Models. In Findings of the Association for Computational
Linguistics: ACL 2022. Association for Computational Linguistics, Dublin, Ireland,
1864–1874. https://doi.org/10.18653/v1/2022.fndings-acl.146

[25] OpenAI. 2023. GPT-4 Technical Report. arXiv:2303.08774 [cs.CL]
[26] Vaibhav Rastogi, Yan Chen, and William Enck. 2013. AppsPlayground: Automatic

Security Analysis of Smartphone Applications. In Proceedings of the Third ACM
Conference on Data and Application Security and Privacy (San Antonio, Texas,
USA) (CODASPY ’13). Association for Computing Machinery, New York, NY, USA,
209–220. https://doi.org/10.1145/2435349.2435379

[27] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin
Schmidt, and Hansjörg Schmauder. 2013. Insights into Layout Patterns of Mobile
User Interfaces by an Automatic Analysis of Android Apps. In Proceedings of
the 5th ACM SIGCHI Symposium on Engineering Interactive Computing Systems
(London, United Kingdom) (EICS ’13). Association for Computing Machinery,
New York, NY, USA, 275–284. https://doi.org/10.1145/2494603.2480308

[28] Srinivas Sunkara, Maria Wang, Lijuan Liu, Gilles Baechler, Yu-Chung Hsiao,
Jindong Chen, Abhanshu Sharma, and James WW Stout. 2022. Towards Better Se-
mantic Understanding of Mobile Interfaces. In Proceedings of the 29th International
Conference on Computational Linguistics. 5636–5650.

[29] Yuan Tian, Ke Zhou, Mounia Lalmas, and Dan Pelleg. 2020. Identifying tasks
from mobile app usage patterns. In Proceedings of the 43rd international ACM
SIGIR conference on research and development in information retrieval. 2357–2366.

[30] Bryan Wang, Gang Li, and Yang Li. 2023. Enabling Conversational Interaction
with Mobile UI using Large Language Models. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (Hamburg, Germany) (CHI
’23). Association for Computing Machinery, New York, NY, USA, Article 432,
17 pages. https://doi.org/10.1145/3544548.3580895

[31] Bryan Wang, Gang Li, Xin Zhou, Zhourong Chen, Tovi Grossman, and Yang
Li. 2021. Screen2Words: Automatic Mobile UI Summarization with Multimodal

Learning. In The 34th Annual ACM Symposium on User Interface Software and
Technology (Virtual Event, USA) (UIST ’21). Association for Computing Machinery,
New York, NY, USA, 498–510. https://doi.org/10.1145/3472749.3474765

[32] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter,
Fei Xia, Ed Chi, Quoc V Le, and Denny Zhou. 2022. Chain-of-Thought
Prompting Elicits Reasoning in Large Language Models. In Advances in
Neural Information Processing Systems, S. Koyejo, S. Mohamed, A. Agar-
wal, D. Belgrave, K. Cho, and A. Oh (Eds.), Vol. 35. Curran Associates,
Inc., 24824–24837. https://proceedings.neurips.cc/paper_fles/paper/2022/fle/
9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf

[33] Tongshuang Wu, Michael Terry, and Carrie Jun Cai. 2022. AI Chains: Transparent
and Controllable Human-AI Interaction by Chaining Large Language Model
Prompts. In Proceedings of the 2022 CHI Conference on Human Factors in Computing
Systems (New Orleans, LA, USA) (CHI ’22). Association for Computing Machinery,
New York, NY, USA, Article 385, 22 pages. https://doi.org/10.1145/3491102.
3517582

[34] Xiaoyi Zhang, Anne Spencer Ross, and James Fogarty. 2018. Robust Annota-
tion of Mobile Application Interfaces in Methods for Accessibility Repair and
Enhancement (UIST ’18). Association for Computing Machinery, New York, NY,
USA, 609–621. https://doi.org/10.1145/3242587.3242616

A MACRO FILTERING
Here, we describe the heuristic used to flter macros in Sec. 3.2. In
general, we want to retain macros that are specifc and flter out
those only contain general words. To do so, we frst defne a list of
common phrases:

setting, settings, app, apps, element, elements, text, input, feld,
button, image, screen, left, right, top, bottom, top-left, top-right,
bottom-left, bottom-right, previous, next, close, cancel, tap, press,
click, confrm, set, enter, navigate.

and a list of non-content words:

is, the, are, and, else, with, to, on, in, at, of, within, without, below,
above, up.

Firstly, we remove non-content words from a macro. Then we
check if the remaining content words are exclusively all common
phrases. If so, we simply remove this macro. Finally, we check if the
underlying macro has any action that matches any of the following
keywords:

cancel, go back, back, go_back, prev, previous, navigate up, navi-
gate_up, try again, (id=.

Doing so helps up avoid cycling trajectories and erroneous ones
from LLM inference.

B LOW ROUGE-L SCORE EXAMPLES
We show three examples with some of the lowest Rouge-L score
attained by our extracted macro, when compared against the MoTIF
dataset in Section 5.1 in Figure 6. In some of these examples, we
observe that some of tasks extracted by our model is reasonable,
but was only missing details required in the MoTIF dataset, such as
the fight destination and date detail required in example a), and the
specifc hotel detail in example b). Moreover, some MoTIF traces
are incomplete, such as example c), and based on the incomplete
traces, we believe our system’s extraction of ‘review the app’s
privacy policy’ is perhaps more reasonable than the ground-truth,
since there is neither temperature forecast nor the location of New
Orleans shown in example c).

https://doi.org/10.1145/3491102.3502042
https://doi.org/10.1145/3025453.3025483
https://doi.org/10.1145/3411764.3445049
https://doi.org/10.1145/3332165.3347899
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.acl-main.729
https://doi.org/10.18653/v1/2020.emnlp-main.443
https://aclanthology.org/W04-1013
https://doi.org/10.1145/3242587.3242650
https://doi.org/10.1145/2493190.2493216
https://doi.org/10.18653/v1/2022.findings-acl.146
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/2435349.2435379
https://doi.org/10.1145/2494603.2480308
https://doi.org/10.1145/3544548.3580895
https://doi.org/10.1145/3472749.3474765
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3491102.3517582
https://doi.org/10.1145/3242587.3242616

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Huang et al.

MoTIF Ground-truth: "Bookmark the Comfort Suites in Urbana Champaign University Area"
Predicted (Ours): "Search for hotels by entering a keyword (e.g. "comfort") in the input field.

RoUGE-L:
 0.174

MoTIF Ground-truth: "Select one-way flight from CMI to PAR for April 10th for
2 adults in first class"

Predicted (Ours): "Book flights."

RoUGE-L:
 0.105

MoTIF Ground-truth: "Show me the temperature forecast over New Orleans Louisiana"
Predicted (Ours): "Review the app's privacy policy"

RoUGE-L:
 0.133

a)

b)

c)

Figure 6: Examples with low Rouge-L scores.

Automatic Macro Mining from Interaction Traces at Scale CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Table 4: LLM inputs and outputs example for the ‘create a reminder’ example macro.

Substep LLM Input LLM
Output

3.2.1 Task
Discovery

Below is a simplifed HTML code of a mobile app:
<screen>

<button id="1" class="save" pos="top right">save</button>
<input id="2" class="title edit" pos="top">remind me to</input>
<p id="3" class="frst line" pos="top">all day</p>

<p id="5" class="frst line" pos="top">sun dec 13 2020</p>
<button id="6" alt="start time 8 00 am" pos="top right">8 00 am</button>
<p id="7" class="frst line" alt="does not repeat" pos="top">does not repeat</p>

</screen>
What can a user do with the prompt?
The user can: -

create a reminder
- edit the reminder title
- set the reminder time
- set the reminder date
- choose whether the reminder
repeats

3.2.2 Action Below is a simplifed HTML code of a mobile app: 1
Grounding <screen>

<button id="1" class="save" pos="top right">save</button>
<input id="2" class="title edit" pos="top">remind me to</input>
<p id="3" class="frst line" pos="top">all day</p>

<p id="5" class="frst line" pos="top">sun dec 13 2020</p>
<button id="6" alt="start time 8 00 am" pos="top right">8 00 am</button>
<p id="7" class="frst line" alt="does not repeat" pos="top">does not repeat</p>

</screen>
Which element id(s) should the user click on next to accomplish the task Create a
reminder?
Respond with only the number(s), or "None" if the user can already complete the
task on the current page.

C FULL LLM INPUTS AND OUTPUTS
EXAMPLE

Tables 4 and 5 lists the full LLM inputs and outputs for the extraction
system on �9 of Figure 2, the representative macro example of ‘create
a reminder’ used in Section 3.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Huang et al.

Table 5: LLM inputs and outputs example for the ‘create a reminder’ example macro (continued).

Substep LLM Input LLM
Output

3.2.3a
Parameter
Text

Below is a simplifed HTML code of a mobile app:
<screen>

<button id="1" class="save" pos="top right">save</button>
<input id="2" class="title edit" pos="top">remind me to</input>
<p id="3" class="frst line" pos="top">all day</p>

<p id="5" class="frst line" pos="top">sun dec 13 2020</p>
<button id="6" alt="start time 8 00 am" pos="top right">8 00 am</button>
<p id="7" class="frst line" alt="does not repeat" pos="top">does not repeat</p>

</screen>
The user is trying to complete the task create a reminder.
Other than clicking on the element with id 1, list the additional information the
user needs to enter in the format of (- (info)). Answer "None" if no additional infor-
mation is needed.

- (title)
- (date)

3.2.3b Below is a simplifed HTML code of a mobile app: 2
Parameter <screen>
Element

<button id="1" class="save" pos="top right">save</button>
<input id="2" class="title edit" pos="top">remind me to</input>
<p id="3" class="frst line" pos="top">all day</p>

<p id="5" class="frst line" pos="top">sun dec 13 2020</p>
<button id="6" alt="start time 8 00 am" pos="top right">8 00 am</button>
<p id="7" class="frst line" alt="does not repeat" pos="top">does not repeat</p>

</screen>
Where can the user enter the title? Answer with only the element id, or "None" if
no element matches.

	Abstract
	1 Introduction
	2 Definition of Macros and Prior Work
	2.1 Semantic Understanding of Individual UI Elements and Screens
	2.2 Developer-defined Abstractions of UIs
	2.3 Defining Macros through demonstration, End-User programming, and Task-based Applications
	2.4 LLM-based UI Applications

	3 Macro Extraction and Execution
	3.1 Notation, Extraction Inputs, and Extraction Outputs
	3.2 Task Extraction
	3.3 Action/Trace Merging and Optimal Path-finding
	3.4 Automatic Macro Replayer
	3.5 LLM and System Implementation Details

	4 Macro Datasets
	5 Evaluation
	5.1 Task Description Quality
	5.2 Qualitative Examples
	5.3 Trace Optimality
	5.4 User Evaluation of Extracted Macros
	5.5 Execution Success

	6 Envisioned Applications
	6.1 Interactive Task Understanding and Modeling
	6.2 Interaction Automation
	6.3 How-to Knowledge Sharing

	7 Limitations and Future Work
	8 Conclusions
	Acknowledgments
	References
	A Macro Filtering
	B LOW Rouge-L SCORE EXAMPLES
	C Full LLM Inputs and Outputs Example

