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ABSTRACT 
Electromyography (EMG) enables hands-free interactions by de-
tecting muscle activity at different human body locations. Previ-
ous studies have demonstrated that input performance based on 
isometric contractions is muscle-dependent and can benefit from 
synchronous biofeedback. However, it remains unknown whether 
stimulation before interaction can help to localize and tense a mus-
cle faster. In a response-based VR experiment (N=21), we inves-
tigated whether prior stimulation using visual or tactile cues at 
four different target muscles (biceps, triceps, upper leg, calf) can 
help reduce the time to perform isometric muscle contractions. The 
results show that prior stimulation decreases EMG reaction times 
with visual, vibrotactile, and electrotactile cues. Our experiment 
also revealed important findings regarding learning and fatigue at 
the different body locations. We provide qualitative insights into 
the participants’ perceptions and discuss potential reasons for the 
improved interaction. We contribute with implications and use 
cases for prior stimulated muscle activation. 
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1 INTRODUCTION 
Surface electromyography (sEMG), hereafter referred to as elec-
tromyography, measures the electrical potential generated by skele-
tal muscles. This technique is extensively used in medical diag-
nostics, rehabilitation, and human-computer interaction (HCI). By 
translating muscle activity to input, electromyography (EMG)-based 
systems enable natural, hands-free interactions, crucial in muscle-
computer interfaces, assistive technologies, and for accessibility. 

Understanding EMG-based interaction requires distinguishing 
between isotonic contractions where muscles change length during 
movement [50, 102], and isometric contractions, where muscles 
exert tension without length alteration [102], requiring conscious 
activation. Isometric contractions with EMG improve control in as-
sistive systems for users with limited movement, aiding therapists, 
researchers, and developers [100, 125], and provide accessible solu-
tions for users with physical disabilities to interact with computing 
devices [7]. Isometric EMG interfaces also enable a novel layer of 
motionless, subtle, and unobtrusive (social) interactions [23, 96, 121]. 
Its use in rehabilitation and sports is also known for analgesic ef-
fects [104]. 

In all human-machine interfaces, including EMG-based systems, 
there is a delay between user input and system response. This 
latency is crucial in disrupting the user experience, especially in 
real-time applications such as in virtual reality (VR). Reducing 
this delay is a key challenge in the field of EMG interface design. 
Biofeedback, providing visual and tactile modalities simultaneously 
with isometric EMG interaction, has been shown to modestly yet 
beneficially improve user performance, and finger tapping on the 
muscle site before interaction aided in its localization and activa-
tion [121]. The process of muscle priming, a phenomenon from 
neurophysiology, suggests that prior stimulation of muscles can 
enhance performance and cognitive processing [30, 31, 40, 123]. 
Similarly, muscle activation during warm-up exercises can lead to 
improvements in various metrics [12, 42, 134]. Priming could speed 
up the recognition and interpretation of muscle activity, a principle 
we explore in our experimental study using prior stimulation of dif-
ferent muscles to improve the input speed of an EMG device. This 

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642091
https://doi.org/10.1145/3613904.3642091
https://valentin.schwind@fb2.fra-uas.de
https://thomas.kosch@hu-berlin.de
https://hmahmood@stud.fra-uas.de
https://weyers@stud.fra-uas.de
https://lferreir@stud.fra-uas.de
https://jessica.sehrt@fb2.fra-uas.de
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642091&domain=pdf&date_stamp=2024-05-11


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Sehrt et. al. 

is important for interaction designers who aim to implement input 
techniques for real-time and responsive systems (typing, pointing, 
selecting) for users with and without (motor) disabilities. Stimu-
lation prior to the muscle actuation has the potential to maintain 
the user’s sense of agency, as it lets users cognitively associate 
the initiation of movement to their intent. This is in contrast to 
stimulation, e.g., via electrical muscle stimulation (EMS), during the 
muscle actuation [68] and may render it particularly advantageous 
for applications within the realm of learning. 

The approach of using prior stimulation can support on-body 
notifications in VR, which are preferred over visual ones [115, 143], 
offering new possibilities of assistive systems with EMG response-
based commands, e.g., to enhance gamers’ VR experiences [99], 
or supportive systems using tactile alerts, e.g., while driving [3]. 
Users of prosthetic systems can benefit from shortened training of 
functional mapping by prior stimulated on-body feedback [1, 71, 
113]. Learning scenarios with goal-oriented tasks and repetitions 
can be improved by muscle priming to (re)gain motor control of 
dedicated muscle sites for researchers, therapists and their patients 
in the field of neurophysiology and telemedicine [77, 137], or for 
(industrial) workers during remote instructions [11]. 

This paper investigates the impact of visual and tactile prior 
stimulation modalities on reaction times in EMG-based input using 
a Vienna Test System approach. We consider visual, vibrotactile, 
and electrotactile modalities as prior stimulation due to their quick 
response times over sensations such as temperature, smell, taste, 
or perceptions from organs in the vestibular system [49, 76]. We 
did not use auditive stimulation due to its perception as disturbing 
feedback modality in related studies [35, 121]. Shielded from exter-
nal influences, we conducted the study in VR. We tested the prior 
stimulation modalities on four key muscles, finding that such stim-
ulation consistently shortened isometric contraction times. Notably, 
the Gastrocnemius cap. med. muscle in the inner calf responded 
significantly faster than the other muscles. Our analysis provides 
insights into improved interaction performance and implications 
for EMG-based applications that utilize prior stimulated muscle 
activation across various locations of the human body. 

2 RELATED WORK 
In the following, we report on relevant research on muscle activity 
as an interaction technique and the sensory stimulation technolo-
gies we use in our system. We highlight their roles in both medical 
and interactive fields, emphasizing how they enhance human body 
perception, and user experiences in HCI, augmented reality (AR) 
and VR. 

2.1 Electromyography (EMG) 
Human muscle contractions generate electrical potentials recorded 
by EMG using surface electrodes on the skin above the muscle [55]. 
Standardized protocols for EMG signal assessment and electrode 
placement have been proposed by the European Recommendations 
for Surface Electromyography (SENIAM) project [48]. EMG is a 
critical tool in assessing muscular diseases [127, 139] and facilitating 
functional muscle recovery [8, 48, 135]. It is essential to distinguish 
between isotonic and isometric contractions [26, 37, 102], allowing 
for automatic classification of the isometric contraction type [103]. 

In the fields of biomedical and interactive applications, EMG 
was leveraged for active hardware and software control [94, 100], 
thereby gaining popularity in non-medical research, particularly for 
enhancing body awareness, motion, interactive device control [19, 
54, 88], and assisted control of interaction-based selections [7]. Thus, 
apart from its general relevance in rehabilitation and sports [8, 
64, 104, 127], EMG-based input mechanisms find applications in 
exoskeletons [89, 133], prosthetic control [16, 114], teleoperated 
robotic systems [5, 51, 144], and VR. Isometric EMG is preferred 
for avoiding unintended motion-based input, or when movement is 
infeasible, e.g., in electric wheelchairs for those with disabilities [97, 
125]. 

2.2 Stimulating Sensory Perception 
Vibrotactile stimulation, which uses mechanical vibrations to en-
gage skin receptors, has been applied to improve body aware-
ness [92], with research in HCI exploring optimal placement [33], 
intensity [53], and user perception [141]. Vibrotactile patterns can 
stimulate tactile sensations in virtual reality [130], affect muscle ac-
tivity [56, 57, 62, 95], and assist amputees or those with neuropathol-
ogy [58, 110]. Such stimulations aid in balance rehabilitation [137], 
enhance EMG-controlled computing systems [83, 136], and prior 
vibrotactile stimulation (at the index finger) can increase force pro-
duction, likely due to a brain response for limb stabilization and 
pattern memory [56]. 

While vibrotactile feedback stimulates skin receptors, electro-
tactile stimulation applies electrical currents to skin nerve end-
ings to induce tactile sensations [62, 140]. Electrical currents with 
shorter pulse widths ( 50-125 𝜇s) and lower intensities are known 
as transcutaneous electrical nerve stimulation (TENS) [87], provid-
ing electrotactile feedback without muscle contraction, in contrary 
to electrical currents with longer pulse widths ( 150-350 𝜇s) and 
higher intensities, causing muscle contraction by depolarization of 
deeper muscle fibers, known as EMS [108, 131]. TENS can inhibit 
the transmission of pain signals to the brain by instead targeting 
dedicated sensory nerve fibers (A-beta fibers) [59, 60], responsible 
for transmitting tactile sensations from the location of the cur-
rent [6, 14, 69, 111]. While TENS is used in the rehabilitative field 
for pain management [60, 74], it can be supportive for dementia [15], 
for tactile feedback with prosthetics [32], in VR [132], or to simulate 
muscle proprioception [63]. 

We employed TENS for electrotactile feedback hypothesizing 
that repeated muscle priming [45] with electrotactile feedback 
aids in developing an internal body map. The human body pri-
marily perceives tactile stimuli through mechanoreceptors in the 
skin [22, 112], which play a crucial role in how an individual per-
ceives their own body [27]. However, visual modalities, alongside 
tactile ones, can also significantly contribute to body localization 
and awareness as shown by experiments like the virtual/rubber 
hand illusion [13, 107, 120]. Body awareness, the systematic cog-
nitive processing of sensory cues, involves both visual and tactile 
stimulation in HCI [29, 93] with recent research focusing on using 
these for biofeedback in EMG interaction with the own body [36, 64– 
67, 70, 121]. Similar research in HCI addressed the mechanism using 
isotonic contractions [78] e.g., while playing music instruments [61], 
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Figure 1: The placement of EMG electrodes [1], vibration motors [2], and TENS electrodes [3] at the four tested muscle locations: 
Biceps brachii (upper front arm), Triceps brachii caput laterale (upper back arm), Vastus medialis (upper leg), and Gastrocnemius 
caput medialis (calf). 

however, it is less understood for isometric contractions with prior 
vibro- and electrotactile stimulation. 

2.3 EMG in HCI and AR/VR 
EMG signal research in HCI includes developing muscle-computer 
interfaces for gesture detecting and human-device interaction [4], 
remote rehabilitative exercise monitoring [77], and creating haptic 
full-body immersive experiences using EMG in VR [25]. EMG is 
widely used in AR/VR for various health-related and interactive 
applications [18, 52, 72, 85, 118, 135], with feedback stimuli enhanc-
ing immersion and engagement [38, 82, 90, 98, 101, 105]. Wearable 
EMG systems enable off-desktop mobile applications [81] and in-
teractive communication tools [119]. In AR/VR, EMG feedback for 
active control has expanded into motor imagery applications, such 
as direct limb control for amputees [2, 28, 106] and post-stroke 
rehabilitation [52]. 

2.4 Summary 
Previous work uses EMG to measure isometric contractions for 
various applications including hands-free interaction in real-time 
systems [33, 53, 59, 60, 62, 92, 95, 130, 141]. Research indicates 
that vibrations as prior stimulation can affect muscle activity [56, 
57]. However, it is currently unknown if this principle applies to 
isometric contractions and electrotactile stimulation. Additionally, 
the impact of these factors on muscle reaction time, vital for hands-
free, real-time interactions remains unclear. 

3 METHOD 
To answer the research questions if tactile prior stimulation of 
muscles could lead to faster reaction times using an EMG device, we 
conducted a response-based experiment in VR and, thus, shielded 
users from external influences. As humans use their arms and legs 
in different ways, we also hypothesized that there are differences 
in the corresponding muscles’ input. 

3.1 Study Design 
We conducted a user study in VR using a full-factorial within-
subject design to investigate the effects of two independent vari-
ables: Prior Stimulation and Muscle Location on the reaction 
time as dependent variable. We used EMG for performance assess-
ment and conducted subjective pre- and post-assessments. Four 
levels of Prior Stimulation, and four levels of Muscle Location 
resulted in sixteen conditions presented to the participants twice 
in randomized order. 

3.2 Independent Variables 
3.2.1 Prior Stimulation. The four levels of Prior Stimulation 
were no, visual, vibrotactile, and electrotactile stimulation. Prior 
Stimulation was presented before the signal for the reaction test. 
The visual conditions consisted of a schematic anatomical line draw-
ing with the corresponding muscle highlighted in red (see Figure 3). 
The vibrotactile conditions consisted of a vibration applied at the 
center of the corresponding muscle, and the electrotactile condi-
tions consisted of a TENS impulse at the corresponding muscle. 
Each Prior Stimulation was presented for the same duration of 3 
seconds during the trial procedure (see Figure 3). 

3.2.2 Muscle Location. With the paradigm of hands-free interac-
tion in mind, we tested four levels of Muscle Location frequently 
used by related work: the upper front arm (Biceps brachii) [2, 124], 
the upper back arm (Triceps brachii caput laterale) [2, 121], the 
upper leg (Vastus medialis) [77], and the calf (Gastrocnemius ca-
put medialis) [77, 99] (see Figure 1). To ensure reproducibility and 
comparability, we tested the four limb muscles exclusively on the 
right side of the body. The EMG and TENS electrodes were posi-
tioned uniformly with enough space for the vibration motors. Thus, 
the EMG signal was not influenced by any movements (e.g., head 
movements at the shoulder), breathing, or talking (e.g., by natural 
movements of the chest). 
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3.3 Dependent Variables 
3.3.1 Objective Measures. The key quantitative measure in our 
study is the time the participants needed to tense their muscles. 
Reaction time was determined using EMG signals recorded at 1000 
Hz and analyzed with the raw data (see Data Analysis). 

3.3.2 Subjective Measures. We conducted a subjective muscle as-
sessment both before and after the experiment by asking partici-
pants to rate the ability to tense each Muscle Location using a 
visual analog scale (VAS) ranging from 0 to 10. Post-Experiment, 
participants completed the Raw NASA Taskload Index (RTLX), a 
standard tool in HCI for workload assessments [46] with two addi-
tional questions on perceived pain and fatigue. They also responded 
to a questionnaire using a 7-point Likert scale evaluating the ex-
tent to which various Prior Stimulations aided in identifying the 
tested Muscle Locations (subjective survey on muscle localiza-
tion and reaction time), and whether they perceived any changes 
in their reaction time during the experiment. Finally, we conducted 
semi-structured interviews to gain further insights into the partici-
pant’s exhaustion, positive and negative experiences, preferences, 
and overall impression of the experiment. 

3.4 Task 
Participants’ reaction times were measured using a modified Vi-
enna Test System (VTS) adapted for VR according to Prieler et 
al. [47]. In its setup, participants responded to alternating red and 
green lights, with the green light and a beeping tone serving as 
the stimuli. They reacted by tensing specific muscles, indicated 
by text and highlighted on a schematic anatomical drawing. Each 
trial began with 2 seconds of rest, followed by a 3-second prior 
stimulation phase, then stimuli appeared randomly between 3 and 
13 seconds, lasting 2 seconds. Trials were 20 seconds each, with 
varying combinations of Prior Stimulation, Muscle Location, 
and stimuli timing, presented twice in random order (see Figure 3). 
The whole experimental procedure resulted in 192 conditions and a 
total duration of 64 minutes. The fixed duration of the experiment, 
with variable timeframes for employing prior stimulation and con-
sidering the muscle location, enables the reliable determination of 
both reaction times and muscle fatigue effects. 

3.5 Apparatus 
A virtual 3D environment for the simple reaction test was created 
using Unity Engine (Version 2021.3.5f1) running on a PC with AMD 
Ryzen 5900X, GeForce RTX 3070, and 16 GB RAM. The minimalis-
tic scene contained a 3D panel for displaying test instructions and 
stimuli. An HTC Vive Pro with 90 fps was used as head-mounted 
display (HMD) and tracked using four lighthouse boxes for high 
accuracy. Muscle activity was monitored using a Biosignalplux 4-
Channel Hub1 with EMG sensors at 1000 Hz sampling rate with 
16-bit resolution and Kendall H124SG electrodes. The integrated 
low-noise high-speed operational amplifiers performed bandpass fil-
tering and amplification on the base of bitalino technology [41]. Two 
Sanitas SEM 47 EMS/TENS devices were used with self-adhesive 
electrodes according to the manual (see Figure 2). 

1https://www.pluxbiosignals.com/collections/research-kits/products/copy-of-
explorer 

Arduino Uno R3 
microcontroller 

4x solid-state relays 

2x Sanitas SEM 47 
EMS/TENS device 

Biosignalplux 
4-Channel Hub 

4x vibration motors 
4x set TENS electrodes 
4x set EMG electrodes 
1x ground electrode 

Figure 2: Apparatus with the hardware components, consist-
ing of two EMS/TENS devices, an Arduino R3 microcontroller, 
and four solid state relays, connected to the participant by 
four pairs of TENS electrodes on the one hand and a Biosig-
nalplux 4-Channel Hub, connected to the participant by four 
pairs of EMG electrodes (and a ground electrode). 

The Unity3D Ardity API (9600 Baud) with an Arduino UNO R3 
controlled four solid-state relays (Vishay LH1546ADF optocoupler) 
acting like switches of four TENS channels, as well as four coin-type 
vibration motors (Iduino TC-9520268) operating at maximum duty 
cycle of 3.3 V. Stimuli audio source was a neutral beeping tone2 . An 
orange-colored (RGB: 255,133,57) circle that indicated the muscle 
strength was clipped using radial fill (radial 360°) from 0.2 fill to 
1, presented in the heads-up display (HUD) and linearly mapped 
using the muscle strength tension from the EMG raw signal. Stimuli 
lights were made with opaque rendering mode and green-colored 
(RGB: 0,255,43) and red-colored (RGB: 255,76,52) spot-type light 
sources. The system featured real-time monitoring of EMG signals 
and participant VR view. 

3.6 Study Procedure 
In the following, we divide the study procedure into three phases: 
(1) introduction and dry run, (2) body/electrode preparation, and 
(3) the EMG experiment in VR. 

3.6.1 Phase 1: Introduction and Dry-run. Participants consented to 
use their images and video, then provided demographics, working 
and sports habits. They were introduced to the goals of the study 
and rated their muscle tensing ability using a VAS scale. We clarified 
relevant terms and conducted a dry run to ensure understanding 
of the reaction time test. Participants adjusted their HMD settings, 
including audio. During the dry run, they responded verbally to 
stimuli without muscle location descriptions. We confirmed their 
understanding and repeated the dry run in VR. We explained and 
demonstrated isometric muscle tension at all four muscle locations 
on the left side of the participant’s body. 

3.6.2 Phase 2: Body/Electrode Preparation. We calibrated the TENS 
device for electrotactile stimulation, initially attaching electrodes 
to the left side of the body to avoid priming effects. The two digital 
Sanitas EMS/TENS SEM 43 devices were set to TENS "program 
10", 25 Hz impulse frequency, and impulse width to 50 𝜇s. The 

2https://freesound.org/people/barb/sounds/12637/ (Public Domain) 
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Figure 3: Participant sitting in the apparatus with the hardware components attached (left). The illustration shows the trial 
procedure scheme of all conditions tested. The trial procedure started with 2 seconds resting, 3 seconds from the pool of 
randomized levels of prior stimulations (no, visual, vibrotactile, or electrotactile), 15 seconds in which the green light and 
sound randomly appeared for 2 seconds after 3, 5, 7, 9 or 11 seconds. Thus, all participants experienced the same experimental 
trial length (64 min). Each prior stimulation, muscle location, and duration until the green light/tone were presented twice and 
in a fully randomized order. 

participants preferred TENS intensities ranging from 8-52 mA for 
biceps, 20-56 mA for triceps, 20-80 mA for upper leg, and 28-100 
mA for calf. Placement followed the manufacturer’s manual, with 
skin preparation involving alcoholic pads and shaving, if necessary. 
We set the TENS strength for all muscle locations by asking if a 
stinging or burning sensation or any discomfort was felt. If neces-
sary, electrodes were re-positioned and the intensity was adjusted 
until a light muscle tension was observable, keeping it just under 
this threshold. We mirrored the electrode placements to the right 
side of the participant’s body using rulers and visual estimates for 
accuracy. Participants sat with elbows and knees at a 90°, hand palm 
up, and feet positioned using a stencil drawing. One participant 
desired to reduce the TENS signal strength after mirroring. 

EMG electrodes were attached to the right side of the body, 
with adjustments for strong EMG signal, following SENIAM guide-
lines [48]. Due to limited space on the muscle bulges, we prioritized 
the signal strength over adhering strictly to the guidelines. We 
monitored EMG biosignal for correct amplitude registration plac-
ing electrodes according to anatomical landmarks. Two electrodes 
were placed at a distance of 0.5 cm on each muscle bulge and a 
reference electrode consistently to the elbow joint bone. We stuck 
vibration motors with adhesive tape next to the electrode arrange-
ments at the center or a maximum of 1 cm apart from the center 
of the muscle on each muscle location. The setup is detailed in 
Figure 1. 

3.6.3 Phase 3: EMG Experiment in VR. Participants were intro-
duced to the functionality of the EMG and VR system, including an 
orange circle for muscle strength biofeedback. They were instructed 
to avoid limb movement and respond quickly to stimuli. Participants 
were again free to ask any questions before starting the reaction 

time task in VR. We adjusted the value for calf two steps lower 
for one participant. The experimenters noted the comments of the 
participants during the experiment. We kept track of the upcoming 
conditions in the console monitor of Unity3D on one monitor for a 
general overview. We checked if TENS stimulation and vibration 
were working properly during the whole experiment procedure 
and also if the correct muscles were appropriately targeted, ensur-
ing participants concentration. Post-experiment, participants were 
debriefed, shared individual observations, rated muscle tensing 
ability on a VAS, filled out the RTLX, the subjective survey, and we 
collected their qualitative feedback in a semi-structured interview. 

3.7 Participants 
The study received ethical clearance according to our institution’s 
regulations and hygiene protocols for user studies. Participants 
were recruited via institutional email lists, social media, and refer-
rals, excluding those with cardiac issues, metallic implants (e.g., 
screws), cardiovascular complications, recent infections or surg-
eries, by explicit advisory. Six interested participants were pre-
excluded from the study due to heart problems (𝑁 = 4) or metallic 
implants (𝑁 = 2). All participants had the option to withdraw 
without penalty. 

Twenty-four participants were initially recruited. Student volun-
teers (𝑁 = 14) from computer science or mechanical engineering 
were rewarded with credit points for their study participation. In-
stitutional employees (𝑁 = 7) were reimbursed with their working 
hours. External participants (𝑁 = 3) were remunerated with 3 . One 
participant withdrew, and data of two were unusable due to techni-
cal issues. Thus, the final analysis included twenty-one participants 

3https://github.com/JessicaSehrt/ReactionTest_EMG-V_vT_eT_priorStim 
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(7 self-identified as female, 14 self-identified as male), mean age 
was 26.76 (𝑆𝐷 = 4.5643), ranging from 18 to 37. 

3.8 Data Analysis 
We recorded the EMG signal as raw data and in a frame-based 
format, including the conditions, timestamps, and metadata. In line 
with previous research on EMG event detection, a Taeger-Kaiser 
energy operator (TKEO) [24, 84, 126] using the seawave package 
for R4 was applied for EMG signal processing and smoothing with 
parameters according to Biosignalplux. As recommended by the 
Vienna test system (VTS), [47], the mean reaction times (RTs) of 
all trials and repetitions were aggregated for each subject. The 
actual RT was calculated using the Bisection Extremum Distance 
Estimator (BEDE) method [20, 21] on the TKEO processed EMG 
signal during the 20 sec onset period (green light phase) provided 
by the inflection package5 for R. 

BEDE is an algorithmic method used for efficiently estimating 
the extremum of a function by iteratively bisecting the interval 
and evaluating distances to identify the point of extremum. The 
BEDE method [20, 21] does not require a functional hypothesis 
for the data, therefore its utility lies in its ability to provide a fast 
and reliable determination of the inflection point, representing the 
moment of highest signal increase. This approach eliminates the 
subjectivity and potential inaccuracies associated with threshold-
based criteria, with no need for an initial calibration phase that 
potentially biases the participants’ muscle performance. Based on 
the BEDE method we calculated the mean and the fastest (and 
minimal) average reaction time in each condition. Examples of data 
processed are shown in Figure 4. 

Additionally, we analyzed the maximum value of the smoothed 
EMG signal to pinpoint when the highest amplitude occurred. For 
this, we employed polynomial regressions with locally estimated 
scatterplot smoothing fit (loess) using an automatic parameter se-
lection (auto span) identified by generalized cross-validation (GCV). 
The same method was used to evaluate how the reaction times 
varied throughout the experiment. The whole data set included 
3,838,041 samples and is available at GitHub6 . 

4 RESULTS 
For statistical analysis, all RTs were log-transformed to remove 
any skewness from the data and ensure normal distribution. If 
Mauchly’s assumption of sphericity was not confirmed, we applied 
Greenhouse-Geisser correction for the degrees of freedom on the 
factor using the rstatix package7 in R. 

4.1 Reaction Time (RT) 
Normality was confirmed using Shapiro Wilk’s tests for all con-
ditions (𝑝 > .118) except one (biceps-vibration with 𝑝 = .042). 
However, visual inspection of the QQ plot and histogram showed 
that the data clearly followed a normal distribution. A repeated 
measures analysis of variance (RM-ANOVA) revealed a significant 
effect of Prior Stimulation, 𝐹 (3, 60) = 7.868, 𝑝 < .001, 𝜂 2 

𝑝 = 0.282, 

4https://rdrr.io/cran/seewave/man/TKEO.html
5https://rdrr.io/cran/inflection/
6https://github.com/JessicaSehrt/ReactionTest_EMG-V_vT_eT_priorStim
7https://rdrr.io/cran/rstatix/ 

and Muscle Location, 𝐹 (2.00, 39.91) = 8.324, 𝑝 = .001, 𝜂 2 
𝑝 = 0.305, 

however, there was no interaction effect of Prior Stimulation 
× Muscle Location, 𝐹 (9, 180) = 1.616, 𝑝 = .146, 𝜂 2 

𝑝 = 0.075. We 
performed a pairwise t-test post hoc comparison using Bonferroni 
corrected p-values based on the two main effects. Among the modal-
ities, we found a significant difference between electrotactile and 
no (𝑝 = .014, 𝑑 = −0.341), vibrotactile and no (𝑝 = .002, 𝑑 = 0.405), 
and visual and no stimulation (𝑝 < .001, 𝑑 = 0.442). Regarding 
the muscles, the analysis also revealed a significant difference be-
tween biceps and calf (𝑝 < .001, 𝑑 = 0.622), biceps and triceps 
(𝑝 = .047, 𝑑 = 0.297), triceps and calf (𝑝 = .002, 𝑑 = −0.401), as 
well as between upper leg and calf (𝑝 < .001, 𝑑 = −0.557). Other 
combinations were not significant. All means are shown in Figure 5. 
The results indicate that the RT depends on Muscle Location and 
Prior Stimulation. The participants showed the fastest muscle 
responses when a prior location stimulation was used. As we had 
no interaction effect, this finding is independent of the muscles 
tested. The fastest power was the calf. 

4.2 Minimum RT 
We were also interested in the fastest possible response of each 
participant to learn how the participants could ideally perform 
during the experiment. Shaprio-Wilk test was significant in one 
condition (upper leg and electrotactile, 𝑝 = .026, all other conditions 
𝑝 > .060), visual inspection of the QQ plot and histogram, however, 
showed that the data follows a normal distribution. A RM-ANOVA 
revealed a significant effect of Prior Stimulation, 𝐹 (3, 60) = 3.433, 
𝑝 = .022, 𝜂 2 

𝑝 = 0.147, Muscle Location, 𝐹 (3, 60) = 3.306, 𝑝 = .026, 
𝜂 2 
𝑝 = 0.142, and there was an interaction effect of Prior Stimula-
tion × Muscle Location, 𝐹 (9, 180) = 1.985, 𝑝 = .043, 𝜂 2 

𝑝 = 0.090. 
Due to the interaction effect, we performed four univariate ANOVAs 
on each modality for each muscle. As the tests for biceps (𝑝 = .003) 
and upper leg (𝑝 = .049) were significant, we performed a post hoc 
pairwise t-test comparison using Bonferroni corrected p-values and 
found regarding the biceps a significant difference between vibro-
tactile and visual stimulation (𝑝 = .004) and between vibrotactile 
and no stimulation (𝑝 = .043). No further significant differences 
were found. Thus, the results showed that at the biceps, the mini-
mum reaction times were lower using vibrotactile than with visual 
stimulation or no stimulation. All means of the minimum RTs are 
shown as points in Figure 5. 

4.3 Time of Highest Amplitude 
We also determined the inflection points on the saddle of the first 
EMG signal bulge to understand when the strongest voluntary 
muscle contraction occurred. The log-transformed times’ normality 
violation test was insignificant, except in one condition (biceps 
and electrotactile, 𝑝 = .002, all other conditions 𝑝 > .107). How-
ever, visual inspection of the QQ plot and histogram showed that 
the data follows a normal distribution; we performed parametric 
tests. A RM-ANOVA revealed a significant effect of Prior Stimu-
lation, 𝐹 (3, 60) = 3.069, 𝑝 = .035, 𝜂 2 

𝑝 = 0.133, Muscle Location, 
𝐹 (2.31, 46.3) = 13.628, 𝑝 < .001, 𝜂 2 

𝑝 = 0.405, however, there was 
no interaction effect of Prior Stimulation × Muscle Location, 
𝐹 (9, 180) = 1.661, 𝑝 = .101, 𝜂 2 

𝑝 = 0.077. Pairwise post hoc t-test 

https://rdrr.io/cran/seewave/man/TKEO.html
https://rdrr.io/cran/inflection/
https://github.com/JessicaSehrt/ReactionTest_EMG-V_vT_eT_priorStim
https://rdrr.io/cran/rstatix/


Improving EMG Response Times through Visual and Tactile Prior Stimulation in VR CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

0.00

0.25

0.50

0.75

1.00

5 10 15

Trial Time (sec.)

N
or

m
al

iz
ed

 E
M

G
 V

al
ue

A

0.00

0.25

0.50

0.75

1.00

5 10 15

Trial Time (sec.)

N
or

m
al

iz
ed

 E
M

G
 V

al
ue

B

0.00

0.25

0.50

0.75

1.00

5 10 15

Trial Time (sec.)

N
or

m
al

iz
ed

 E
M

G
 V

al
ue

C

0.00

0.25

0.50

0.75

1.00

5 10 15

Trial Time (sec.)

N
or

m
al

iz
ed

 E
M

G
 V

al
ue

D

Figure 4: Four randomly selected trial data sets of the 20 sec. onset periods (A-D) illustrating the data processing. The absolute 
value of the raw signal (black line) was processed and smoothed using the Teager-Kaiser energy tracking operator (red line). 
The individual reaction time of each trial was then determined using a Bisection Extremum Distance Estimator (BEDE) operator 
based on the normalized signal (dark red line). BEDE determines the inflection point at the curve incline (vertical blue line) 
and the final reaction time (RT) measurement. 
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comparisons using Bonferroni correction showed significant differ-
ences among the modalities between vibrotactile and no (𝑝 = .015, 
𝑑 = 0.286), and visual and no stimulation (𝑝 = .006, 𝑑 = 0.319). 
Regarding the muscles, the analysis also revealed significant differ-
ences between all comparisons (all with 𝑝 < .001), except between 
biceps and triceps as well as upper leg and calf (both 𝑝 = 1). The 

results generally support the findings of the effects of Muscle Lo-
cation and Prior Stimulation. The aggregated signals with the 
times of the maximal amplitude are shown in Figure 6. 

4.4 Reaction Time vs Signal Strength 
As the experiment lasted the same duration of all participants and 
all conditions were performed in fully randomized order, we ana-
lyzed how the reaction times and the amplitude of the EMG signal 
evolved. We were interested in the increase/decrease of the muscles’ 
activity and analyzed the reaction times and max. EMG amplitude 
as a function of time using a generalized mixed-effect regression 
model with Experimental Time and Muscles as predictors. The re-
gressions for reaction times (𝑅 2 = 0.083, 𝐴𝐼𝐶 = 12283.82) and max. 
EMG amplitude (𝑅 2 = 0.082, 𝐴𝐼𝐶 = −3936.437) were significant 
(both 𝑝 < .001). The scatterplots (not illustrated) of standardized 
residuals indicated that the data met the assumptions of homogene-
ity of variance, linearity, and homoscedasticity for both regression 
analyses. All regression equations can be found in Figure 7 and fits 
of reaction time and EMG amplitude are shown in Figure 7. For 
reaction times, the slopes for the calf significantly (𝑝 = .002) tend 
towards a negative value, indicating the reaction times for that mus-
cle decreased over time. No effects were found for the normalized 
values of the amplitudes. However, the correlations between both 
variables were significant (all with 𝑝 ≤ .001) and negatively and 
weakly correlated for the biceps (𝜌 = −0.20), triceps (𝜌 = −0.19), 
upper leg (𝜌 = −0.14), and moderately for calf (𝜌 = −0.38). This 
indicates that the calf was getting faster during the experiment, 
however, moderately at the cost of signal strength. 

4.5 EMG Classification 
To understand how well a standard machine-learning algorithm 
could classify muscle activation, location, and modality, we per-
formed EMG signal classification in a sliding window approach (0.5 
sec./500 samples). This examination allows us to understand our 
data set, determine if the findings can be incorporated into future 
applications, and learn the nuances of data differentiation. As all 
EMG recordings in our data set were labeled by our software, we 
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Figure 6: Grid plot of all participants’ aggregated EMG signal curves separated by muscles and modalities. The plots illustrate 
the individual characteristics of the raw data and the loess fit and show the time of the highest amplitude of the EMG signal. 

were able to train our models based on ground truth. We used a 
standard feature extraction of the 24 most commonly used feature 
metrics stated by the literature [9, 142]: mean, median, standard 
deviation, minimum, maximum, root mean square (RMS), number 
of slope sign changes (SSC), waveform length (WL), skewness, kur-
tosis, Willison Amplitude (WAMP), Absolute Temporal Moment 
(TM), average amplitude change (AAC), variance, LOG Detector 
(LOD), integral absolute value (IAV), mean frequency (MNF), me-
dian density frequency (MDF), my pulse percentage rate (MPR), 
signal-to-noise ratio (SNR), and four auto-regressive coefficients 
using ARIMA (ARC1-4). The data was split into 70% training and 
30% test sets. To ensure the validity of muscle classification, we did 
not use the four input streams from the EMGs in parallel but only 
took the signal of the corresponding trial. For classification, we 
used a random forest8 classifier, which is more robust against over-
fitting, can handle large feature spaces more effectively, provide 
importance measures, which can be helpful for feature selection, 

8https://rdrr.io/cran/randomForest/ 

and generally faster and more scalable in training compared to 
other approaches such as SVMs [43, 80, 116]. 

Muscle Location Prediction. The most exciting aspect of the per-
formance analysis of the classifiers was the accuracy of the muscles’ 
location prediction. Determining the location of the EMG signal 
can help to automatically classify the forces and their movements 
in a wide range of future applications and wearable devices. We 
found an overall accuracy of 80.70%, a sensitivity from 78.83% to 
82.59%, and a high specificity from 91.84% to 95.76%. The detection 
rate among all muscles ranged from 19.89 to 20.75% (𝜅 = 0.742, 
Mcnemar’s Test 𝑝 < .001). The confusion matrix of the result can 
be found in Figure 8. 

Muscle Activation Prediction. While the overall prediction ac-
curacy (94.56%), sensitivity (98.79%), and detection rate (88.82%) 
of the classifier of tensing the muscles were high, the specificity 
and ability of the model (𝜅 = 0.650, Mcnemar’s Test 𝑝 < .001) to 
correctly identify negative cases were relatively low (56.90%). The 
visual exploration of the data (cf. Figure 4) indicates that this was 
caused by the late response times of the participants and the time 

https://rdrr.io/cran/randomForest/
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the calf was significantly decreased during the experiment. No signal strength trends were observed, but correlation analysis 
revealed a potential negative relationship between reaction time and amplitude. Straight solid lines show the linear trends; the 
dashed curve is the smoothed loess fit. 

they needed to tense their muscles. This suggests threshold-based 
or biofeedback-based approaches will likely perform better than 
ML-based classifiers trained by data in blind trials. 

Stimulation Modality Prediction. The overall accuracy in predict-
ing the modality (27.06%), the sensitivity of the model (from 26.15% 
to 27.82%), and the detection rate (from 6.56% to 7.09%) was very 
low (𝜅 = 0.650, Mcnemar’s Test 𝑝 < .001). The results indicate 
that the EMG signal is no reliable predictor of the muscle acti-
vation modality. As the classifier could not differentiate between 
the modalities, we also assume that the prior stimulation did not 
significantly interfere with the signals. 

4.6 Subjective Assessments 
4.6.1 Support of Stimulation. After the experiment, we asked par-
ticipants to rate to which extent they agreed that a stimulation 
helped them locate a muscle. An aligned rank transform (ART) 
RM-ANOVA revealed a significant effect of Prior Stimulation, 
𝐹 (3, 300) = 160.704, 𝑝 < .001, 𝜂 2 

𝑝 = 0.616, and Muscle Loca-
tion, 𝐹 (3, 300) = 2.792, 𝑝 = .041, 𝜂 2 

𝑝 = 0.027, without an inter-
action effect between Prior Stimulation × Muscle Location, 
𝐹 (9, 300) = 0.537, 𝑝 = .847, 𝜂 2 

𝑝 = 0.016. Post hoc pairwise com-
parisons using Wilcoxon signed rank using Bonferroni correction 
showed significant differences between all modalities (𝑝 < .038). 
Among the muscles, we found a significant difference between up-
per leg and triceps (𝑝 = .011); however, not between the other pairs 
(𝑝 > .052). The results (see Figure 9) indicate that the participants 
tend to agree that best location accuracy could be achieved using 
electrotactile stimulation and that all prior stimulation modalities 

were preferred over none. Interestingly, the participants noticed 
that mainly the upper leg and not the calf, such as in the objective 
measure, benefited from stimulation. 

4.6.2 Fatigue. We also asked the participants which muscle loca-
tion they felt the most and less exhausted after the experiment. As 
most exhausted biceps was mentioned by nine participants (42.86%), 
triceps (28.57%) and upper leg (28.57%) were each mentioned by six 
participants, and calf by two (9.52%) while also two (9.52%) stated 
no muscle was most exhausted. As a less fatigued muscle, eight 
participants (38.10%) said that their biceps, six (28.57%) that their 
calf, three (14.29%) that their upper leg, and two (9.52%) that their 
triceps was the least exhausted at the end of the study, while two 
(9.52%) felt no muscle was less exhausted. 

4.6.3 Task Difficulty. VAS ratings of task difficulty were signif-
icantly affected by the experiment with an effect of Pre-Post, 
𝐹 (1, 140) = 7.863, 𝑝 = .006, 𝜂 2 

𝑝 = 0.053, and Muscle Location, 
𝐹 (3, 140) = 5.137, 𝑝 = .002, 𝜂 2 

𝑝 = 0.099, but without an interaction 
effect of Pre-Post × Muscle Location, 𝐹 (3, 140) = 0.661, 𝑝 = .577, 
𝜂 2 
𝑝 = 0.014. Post hoc pairwise comparisons using Wilcoxon signed 
rank using Bonferroni correction showed significant differences 
between biceps and calf (𝑝 = .007), biceps and triceps (𝑝 = .011), 
as well as between biceps and upper leg (𝑝 = .009) indicating that 
the workload on the biceps (𝑀 = 2.286, 𝑆𝐷 = 2.361) was signif-
icantly lower compared to calf (𝑀 = 3.643, 𝑆𝐷 = 2.694), triceps 
(𝑀 = 3.452, 𝑆𝐷 = 2.530), or upper leg (𝑀 = 3.357, 𝑆𝐷 = 2.685). 
Perceived difficulty of tensing was significantly greater after the ex-
periment (𝑀 = 3.452, 𝑆𝐷 = 2.604) than at its beginning (𝑀 = 2.917, 
𝑆𝐷 = 2.589). 
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sification prediction based on 24 features and a 0.5-sec sliding 
time window (500 samples per entry). The matrix was deter-
mined by random forest machine learning classification. 

4.6.4 NASA-TLX and Subjective Performance. The mean score of 
the NASA-TLX Score was 53.056 (𝑆𝐷 = 17.170), which can be 
considered a high workload for the assessment [44] of the task. The 
majority of the participants (9/21) tend to agree with the statement 
that the modalities increased their reaction times (7/21 neutral, 5/21 
disagree). This contrasts the finding that the majority (8/21) tend to 
agree that it also decreases their reaction times (6/21 neutral, 7/21 
disagree). The majority (14/21) tend to disagree with the statement 
that the modalities did not affect their reaction times (3/21 neutral, 
4/21 disagree). Thus, the subjective metrics indicate that most of the 
participants assumed that their performance changed in the course 
of the experiment. This is supported by the non-linear measures 
(see Figure 6) of, e.g., calf and triceps and the qualitative statements. 

4.7 Qualitative Results 
Thematic analysis helped structure and understand participant feed-
back from post experiment interviews and experimenter notes. Two 
researchers independently coded the statements to identify com-
mon categories and patterns, then merged these into overarching 
themes, resolving any discrepancies through discussion. 

4.7.1 Prior Stimulation helps in Localization of the Muscle. The 
prior stimulation modalities were predominantly assessed as sup-
portive for identifying which muscles had to be activated during the 
reaction time task in comparison to when no modality was present; 
participants found that they “... help to locate my muscles” (P1, P6, 
P8, P9, P17) and were “better than no signal” (P10). Participants 
noticed they became faster as the prior stimulation modalities “...aid 
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Figure 9: Ratings of the subjective perception of the help-
fulness of each prior stimulation and localization to tense a 
muscle. Electrotactile stimulation was perceived as the most 
helpful among the prior stimulation modalities. The highest 
ratings among the muscles were found for the upper leg and 
calf. All error bars show 95% confidence intervals. 

in quicker reaction time” (P3), “...prepare to flex the muscle within 
a shorter reaction time, compared to no indicator of which muscle 
to flex next.” (P16), and that the muscle localization was facilitated 
by “...a kind of guide as to where I am supposed to tense the mus-
cles.” (P8). Prior stimulation modalities assisted in task preparation, 
as evident in statements like “...a clear indicator of which muscle to 
contract next.” (P7), “...to mentally prepare to flex the muscle.” (P16), 
and “I could better prepare myself to tense the muscles.” (P21). 

In direct comparison, tactile modalities (vibrotactile and elec-
trotactile) were rated as more helpful for muscle localization than 
visual, especially in the actual task of muscle distinction on one’s 
own body and the control of their responses. Participants noted 
that tactile modalities “...help to feel the body part to tense.” (P8, 
P19), “...make you feel the muscle.” (P11), were “recognizable” (P4, 
P10, P19), and “a clear signal” (P14). The visual modalities were 
still evaluated as “...let you recognize the muscle in question more 
quickly than if it is only named as a word.” (P18), while feedback fo-
cused on its general effectiveness as “...very eye-catching and there-
fore sometimes increased attention when I was unfocused.” (P1), 
“...muscle groups were shown clearly in the image.” (P2), “...pictures 
were clear and easy to understand.” (P7, P8, P20), and “...every-
thing was clearly visualised what to do.” (P14). The participants 
noticed a specific distinction between the two tactile modalities, 
and participants commented vibrotactile “...also what helped me 
to locate my muscles, but less than electrotactile.” (P1), and “...is 
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relatively detectable.” (P15), opposed to electrotactile as “...easy de-
tectable.” (P15, P19), as well as [with electrotactile] “...in contrary to 
vibration you feel the muscle.” (P7, P18), which is “...better to locate 
the muscle” (P18). The electrotactile modalities were mentioned to 
enable muscle localization (P17, P20) and favored for “activation 
and location of the muscle” (P17). 

4.7.2 Tactile Prior Stimulation supports Cognitive Processing. Tac-
tile prior stimulation was found to be more helpful for cognitively 
processing muscle localization, offering direct bodily guidance, un-
like the more abstract assistance from visual modalities. The task 
was described as “monotonous (P3, P5, P16), which “...affected the 
concentration.” (P13, P16), “...even with electrotactile and vibra-
tion” (P3), yet “...feeling your muscle groups contract made it easy 
to concentrate on them specifically.” (P19). The visual modality was 
criticized as “...more difficult to figure out which muscle is next, 
than the immediate identification with vibration or electrical stimu-
lation.” (P4), “...difficult to imagine the right muscle exactly on your 
own body...” (P10, P18), “...did not assist in activating the specific 
muscle more strongly or more accurately, does not necessarily en-
sure the correct response.” (P3), highlighting that the visual cues 
offered only a schematic representation of the targeted muscles, 
requiring initial interpretation. That this could even cause a false 
early reaction, became evident when participants stated “...[with 
visual] I had the feeling I would sometimes tense the marked body 
part before getting the signal...” (P21). One participant stated that 
“...picture represented a clear, understandable and easy to interpret 
message. (P7), indicating that the additional process of an interpre-
tation of the seen was necessary, and “...[visual] added no value for 
me, could have also been text.” (P6) indicates that participants first 
had to invest the cognitive effort to read the visualization. 

The vibrotactile “...signal was small or low when compared with 
electrotactile.” (P7), “...not regarding the whole muscle.” (P9), yet 
helpful to “feel the muscle” (P1, P8, P9, P11). Furthermore, elec-
trotactile modalities were noted as particularly useful for muscle 
distinction (P8, P15, P17) and “...made feeling the muscle extremely 
easy.” (P20). Electrotactile modalities were favored for assistance 
as “...makes me alert and focused.” (P3, P13), “...prevents you from 
sleeping.” (P3), while visual “...first increased focus, then almost not 
noticed at all towards the end of the study.” (P1), and vibrotactile 
“...sometimes didn’t catch my attention too much.” (P13), all pointing 
to cognitive stimulation (focus, attention) by the modalities. 

4.7.3 Tactile Stimulation promotes Body Awareness. Participants 
consistently highlighted their bodily processes and changing feel-
ings about using muscle tension or sensations from tactile modal-
ities, summarized as body awareness. One participant expressed 
enjoyment in “...feel the own body inside” and suggested using the 
system “...to get more connected to your own body” (P17). Partici-
pants became aware of their inner sensory body map development 
in statements like “It takes time to understand the experiment. But 
now I get the connection of the muscles and the interface.” (P17), 
“...felt my body tensing the wrong muscles for the targeting quite 
often at the beginning, but came to grips with it with time.” (P18), 
and “...tried to tense the muscles by themselves and feeling they 
did not react as they should.” (P21). Interestingly, participants fa-
miliar with their body processes suggested challenging user with 
“...catches, e.g., visual or electrotactile input but a different prompt, 

e.g., electrotactile on the lower leg and prompt saying please tense 
biceps.” (P20), and ”unusual variations” (P5), both indicating a gam-
ification approach for learning new sensomotoric mappings. Espe-
cially electrotactile provoked the muscle perception as part of the 
body in statements like “...clear feeling between [muscle] tension 
and relaxation.” (P9), “Awakens the muscle feeling.” (P11), and “It 
is kind of crazy what happens to the muscles during electrotactile; 
it first scared me, then I found it interesting.” (P18). Electrotactile 
supported a familiarity with the bodily processes in statements 
like “I liked the way my muscle moves without me controlling 
it.” (P6), and “The contraction is not identical with the contraction 
required.” (P7). The tactile modalities were occasionally perceived 
similarly as “...sometimes, I felt like vibration was the same as elec-
trotactile but with the difference that my muscles weren’t under 
much pressure.” (P13). 

4.7.4 Higher Comfort and System Tolerance with Visual and Vibro-
tactile Prior Stimulation. The experiment was described as ”long” (P15, 
P18), and ”demanding on endurance” (P2, P3, P5, P10, P16), with 
potential ”negative impact on reaction times” (P16). Thereby, modal-
ities enhancing overall comfort were appreciated, and participants 
noted that the visual modalities’ ”...[eye-catching color] made the 
interpretation in such stressful situations easy.” (P7), they were 
”less uncomfortable, more tolerable than tactile modalities" (P4, P16, 
P18), and ”...less "annoying than feeling the vibration or electro-
tactile.” (P10), indicating fairly high comfort and system tolerance 
for the visual modalities. Vibrotactile and Electrotactile modalities 
received a similar count of feedback on comfort, with all comments 
on vibrotactile being notably positive as ”pleasant” (P3, P10), ”com-
fortable”” (P4, P17), ”very mild, but still noticeable enough” (P19), 
”soft” (P5), ”subtle” (P6), ”very delicate, not unpleasant” (P18), ”liked 
lesser intensity” (P21), and even ”...felt fairly relaxing” (P20), point-
ing towards a high system tolerance using vibrotactile modalities. 
Surprisingly, concerning comfort and system tolerance, the elec-
trotactile modality exclusively received negative comments like 
”uncomfortable” (P4, P10, P19, P16, P17), ”unpleasant” (P18), and 
”sometimes too strong” (P3, P5, P13). 

4.7.5 Summary. The participants appreciated the prior stimulation 
modalities as support for muscle localization. Interesting findings 
were that tactile prior stimulation supported cognitive task pro-
cessing and body awareness. Notably, some modalities produced 
potential discomfort. Comments on the visual prior stimulation 
mainly highlighted its inability to link cues to muscles. Vibrotactile 
prior stimulation was seen as the most comfortable but only helpful 
for some. In contrast, the electrotactile prior stimulation received 
notably lower ratings for comfort and system tolerance, yet was the 
most favored for muscle localization assistance. 

5 DISCUSSION 

5.1 General Findings 
In a VR user study, we compared visual, vibrotactile, and electro-
tactile prior stimulation modalities to no prior stimulation at the 
biceps, triceps, upper leg, and calf muscles measuring reaction 
times with EMG. Our results indicate that the reaction times de-
pend on both the prior stimulation modality and muscle location. 
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All proposed prior stimulation modalities (visual, vibrotactile, elec-
trotactile) significantly improved muscle response compared to no 
prior stimulation modality, with no notable differences among them. 
Notably, vibrotactile stimulation significantly enhanced reaction 
times in the biceps, a slower muscle. This means that vibrotactile 
feedback could significantly support the participants in cases where 
the interaction was particularly "challenging." Surprisingly, the calf 
muscle showed the fastest response, aligning with existing research 
on its high information throughput [121]. However, our experi-
mental investigation is the first one, to our knowledge, to uncover 
significant differences in calf muscle performance. 

We hypothesize that improvements in reaction times observed 
across both visual and tactile modalities are due to a mental repre-
sentation of the body schema (c.f. [10]) in the primary somatosen-
sory cortex [107, 122], rather than just activation of local nerve cells. 
The calf’s faster response might be due to lower nerve sensitivity 
(or density) [91], suggesting multisensory integration prioritizes 
less variable stimuli [34]. The low nerve sensitivity in the calf leads 
to a more reliable, "noise-free" signal, aiding the somatosensory 
cortex in effectively localizing that muscle. This could mean mus-
cles in more sensitive areas are harder to discriminate, warranting 
further research. 

The main effects and lack of interaction effects in our experiment 
indicate that the findings could apply to more body muscles. The 
calf’s quick response and its negative correlation with EMG signal 
strength might relate to its role in postural control and locomotion, 
which often requires a fine-tuned balance between quick responses 
and adequate force. An effect of the EMG amplitude would be in line 
with related work on increased EMG amplitude with prior vibro-
tactile stimulation [56]. However, the lack of significant parameter 
slopes remains unknown, and it is unclear if this is the case among 
other muscles. The results from subjective quantitative assessments 
revealed a significant preference for prior stimulation modalities, 
especially electrotactile over no stimulation. While the calf showed 
the fastest reaction time objectively, participants subjectively rated 
that the upper leg benefited most from prior stimulation. Both quan-
titative and qualitative data indicated that participants found tactile 
prior stimulation, particularly electrotactile, useful for muscle lo-
calization and favored the electrotactile cues. Participants reflected 
on the relation of our apparatus to their body awareness in their 
qualitative comments. This diverse feedback suggests our apparatus 
could have a highly versatile utility in assisting both able-bodied 
and disabled individuals, in physical and cognitive aspects. 

These insights are valuable for EMG developers and interaction 
designers, suggesting that prior stimulation using visual and tactile 
modalities can enhance interaction accuracy and speed across var-
ious muscle locations. This has implications for EMG-based user 
interfaces [117] and therapeutic VR applications requiring isomet-
ric muscle control [2, 28, 114]. Systems in VR working with EMG 
currently only provide visual and tactile cues in closed-loop feed-
back settings simultaneously to the EMG interaction and not before. 
Our system introduces an additional feedback layer for enhancing 
communication patterns in VR systems using EMG. 

Our analysis reveals distinct EMG signal shapes in muscles, en-
abling precise muscle classification and accurate placement, crucial 
for future assistive devices with integrated electrodes [73] and 

automated setup [75]. This is especially vital for self-applied wear-
ables in remote scenarios [11, 77], where misapplication is a risk. 
Our approach empowers these devices to autonomously identify 
the correct muscle, a significant step towards smarter, self-learning 
wearables. These wearables could offer real-time, user-friendly feed-
back on proper placement and sensor positioning. Utilizing inflec-
tion points from EMG graphs in Fig. 6 for optimal signal measure-
ment, our system can enhance threshold calibration, customizing 
EMG-based devices for prior stimulation modalities. We provide the 
whole dataset for classification of the EMG-based muscle prediction 
on Github9 . 

5.2 Implications 
Our study’s findings indicate that visual and tactile prior stimulation 
can enhance muscle reaction times, with tactile prior stimulation 
modalities being subjectively favored. These outcomes hold par-
ticular promise for hands-free interaction scenarios that require 
quick responses and are designed with a predetermined pattern, 
allowing the system to anticipate which muscle needs to be acti-
vated next. Prior stimulation patterns in EMG-based interaction 
offer a more accessible approach to learning deterministic input 
commands. On-body cues could prompt which muscles to activate 
next, offering EMG-interfaces as affordable, easy way to interact 
with computing devices beyond traditional hand-based controllers 
such as for games [99]. 

Electrotactile prior stimulation could possibly enhance support-
ive driving scenarios [138] and visual prior stimulation could correct 
industrial machine use [11] by assisting faster adjustments and fa-
cilitating learning of motor control. Tactile prior stimulation could 
enable physical therapists to remotely stimulate patient muscles, 
substituting for direct touch. This could facilitate clearer guidance 
on which muscle to activate next during (tele-)medicine sessions, 
enhancing neurorehabilitation [77] by promoting quicker adapta-
tion to therapy movements. Visual, vibrotactile or electrotactile 
prior stimulation could aid patients in regaining balance in mixed 
reality (MR)-based assisted-training systems that capture the body 
motion and provide tilt feedback [18, 137]. 

Tactile prior stimulation in simulated training environments may 
enhance muscle localization and mental body schema integration, 
potentially speeding up the adaptation to prosthetic limbs [2, 28, 
140] and facilitating quicker movement response in impaired limbs 
during mirror therapy for stroke rehabilitation [86, 109, 135]. Sys-
tems of EMG dexterous prostheses with precise control systems 
are capable of sending and receiving signals to mimic natural sen-
sations [1, 32]. These devices could benefit from additional tactile 
prior stimulation, which simulates the sensation of contact against 
the prosthetic finger to provide feedback comparable to a natural 
touch. This would then prompt the muscle responsible for control-
ling the prosthesis’ finger movement to adjust its tension, thereby 
preventing excessive pressure on grasped objects [17, 113]. 

As one of the main implications of our study, we recommend 
to use the calf for EMG input if low reactions times are desired 
and there is no necessity for a specific body location for the EMG 
acquisition (c.f. [99, 117]). 

9https://github.com/JessicaSehrt/ReactionTest_EMG-V_vT_eT_priorStim 
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5.3 Limitations and Future Work 
Motor learning research demonstrated rapid neuroplastic changes 
through activities like juggling or playing musical instruments [31, 
39]. We observed that participants often activated incorrect muscles 
despite knowing the correct muscle-to-computer mappings, hinting 
at the possibility of intentional "mistaken" activations. Related work 
has suggested the integration of visual and tactile cues in VR to 
augment sensory perception, including compensatory mechanisms 
for deficits in visual perception, proprioception, and spinal cord 
function [128, 129]. Our system, inspired by these studies, aims to 
speed up the training of new neuro-muscular pathways, especially 
from the sensorimotor cortex to the motor cortex using novel visual 
and tactile interactions in an EMG-integrated VR framework. We 
suggest further research on non-linear pre-stimulation modalities 
to improve EMG response times in target muscles and their relation 
to cognitive workload [79]. 

Our current findings are limited to specific muscles, isometric 
activation, and seated position. Future research could explore addi-
tional muscle locations such as the butt, back, or stomach in VR, 
and extend to isotonic contractions and movements. Given the 
effectiveness of tactile prior stimulation, we propose comparing 
mechanical tactile approaches with vibrotactile and electrotactile 
modalities as additional mechanotactile modality, including inten-
sity variations. Our research demonstrates that prior stimulation 
modalities enhance muscle response in EMG-based reaction tests in 
VR, subsequently future studies could explore threshold-based EMG 
interactions in VR, examining metrics beyond reaction time to gain 
further insights into muscle activation variations across different 
locations. The key benefit of using prior and multiple muscle stim-
ulations lies in these applications and in providing tactile feedback 
before threshold-based control. To replicate our findings and for 
further investigations, we provide the source code with instructions 
including the Unity Project and Arduino code on Github10 . 

5.4 Conclusion 
Our research examined the effect of prior stimulation modalities – 
visual, vibrotactile, electrotactile, and none – on isometric muscle 
reaction times in VR utilizing EMG. We observed that all prior stim-
ulation types significantly improved EMG reaction times across 
four muscle locations compared to no prior stimulation, with no 
significant difference in effectiveness among the modalities. No-
tably, the calf muscle showed the quickest response, likely due to 
low nerve sensitivity and enhanced multisensory integration. Sub-
jective assessments corroborated our objective measurements, with 
electrotactile stimulation rated the most assistive. Interestingly, 
participants subjectively felt that the upper leg benefited the most 
from prior stimulation, although objectively, the calf was the fastest 
responder. Our results suggest that prior stimulation influences 
not just local neural circuits but also invokes mental representa-
tions of the body schema. Our research paves the way for more 
responsive and accurate EMG-based user interfaces [117] for vari-
ous applications, including assistive, therapeutic, and hands-free 
applications [2, 7, 28, 99, 114]. 

10https://github.com/JessicaSehrt/ReactionTest_EMG-V_vT_eT_priorStim 
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