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Figure 1: PepperPose is a companion robot system that optimized to estimate the pose of a user when they move and act 
diversely in an open space. The magic lies in its ability of actively tracking a person and fnding the optimal viewpoint for 
pose estimation. With PepperPose, the user does not need to wear any devices for accurate action sensing results, and such a 
capacity opens up new opportunities in embodied interaction and intelligence. 

ABSTRACT 
Accurate full-body pose estimation across diverse actions in a user-
friendly and location-agnostic manner paves the way for interactive 
applications in realms like sports, ftness, and healthcare. This task 
becomes challenging in real-world scenarios due to factors like 
the user’s dynamic positioning, the diversity of actions, and the 
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varying acceptability of the pose-capturing system. In this context, 
we present PepperPose, a novel companion robot system tailored 
for optimized pose estimation. Unlike traditional methods, Pepper-
Pose actively tracks the user and refnes its viewpoint, facilitating 
enhanced pose accuracy across diferent locations and actions. This 
allows users to enjoy a seamless action-sensing experience. Our 
evaluation, involving 30 participants undertaking daily functioning 
and exercise actions in a home-like space, underscores the robot’s 
promising capabilities. Moreover, we demonstrate the opportunities 
that PepperPose presents for human-robot interaction, its current 
limitations, and future developments. 

CCS CONCEPTS 
• Human-centered computing → Interaction devices; • Com-
puting methodologies → Motion capture; Robotic planning. 
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1 INTRODUCTION 
Many renowned research works [40, 53, 70] have underscored the 
signifcance of accurate full-body pose estimation, particularly in 
contexts where actions involving multiple body parts become the 
essential channel for information exchange. This is especially appli-
cable in felds such as athlete training [50], exercise coaching [42], 
and sports rehabilitation [11, 61]. In these situations, the ability to 
extract detailed kinematic features from a full-body pose is critical 
for the efective operation of these interactive systems. However, 
implementing a pose-capturing system in an open and real-world 
environment poses a considerable challenge. This is largely due 
to the unpredictability of the target’s movements across various 
spatial locations and the diversity of their actions. Furthermore, 
it is crucial to take into account the acceptability of naive users, 
particularly when they are required to wear devices or stay within 
a specifc area to enjoy the service. 

To reach a balance between user comfort and pose estimation 
accuracy, we seek a versatile, fexible, and interactive co-pilot that 
can actively perceive the skeletal poses of the user when they move 
and act in an open area. Given the recent advancement in robotics, 
employing a visual robot for this purpose emerges as a promising 
solution. Nonetheless, this poses unique challenges and questions 
in driving the robot with its visual system. In this explorative work, 
we target one central question: how to enable a visual robot 
to adaptively adjust its position and viewpoint for optimal 
pose estimation across diferent spatial positions and action 
types? This is critical for vision-based systems, as the occlusion 
caused by a fxed viewing angle and diverse facing directions of 
the user can signifcantly reduce the accuracy. 

Addressing these issues, this paper presents PepperPose, a pose 
estimation-centric robotic system integrated with the humanoid 
Pepper robot [6]. We trained the robot to actively track the target 
user when they move, and adjust the viewpoint to improve pose 
estimation results. Consequently, PepperPose can function as a 
fundamental action-sensing platform that eliminates the need for 
users to wear additional devices or remain within a restricted area. 
We evaluated the performance of this system in a real-world experi-
ment that involves 30 participants. Particularly, we quantify its pose 
estimation accuracy by leveraging the synchronized high-fdelity 
pose obtained from the participant’s full-body motion capture suit 
integrating Inertial Measurement Units (IMUs), its track losing rate, 
and speed in moving onto the optimal observation position in re-
sponse to various participant actions. While the current cost of such 
a robot may be unafordable, we highlight the potential of a robotic 
pose estimation solution that could provide richer interaction op-
portunities with minimal impact on user experiences. By working 

closely with the industry and public interest groups (e.g., hospital, 
gyms, and sports teams), we anticipate that early applications of 
PepperPose are on the horizon. 

2 RELATED WORK 
Human pose estimation has been a subject of extensive research 
over the past decade, with solutions utilizing a variety of devices 
(e.g., camera of diferent capacities, stand-alone IMUs, mobile phone, 
bracelet, smartwatch, earbud, Wi-Fi, and mm Wave etc.) deployed 
for diferent purposes and under diverse conditions. Here, we frst 
review the pose estimation studies in two categories: those that 
adopt external devices, and those that apply wearable sensors. We 
further review relevant advances in active perception using robots. 
Through this literature review, we identify a gap in the research: 
limited eforts have been made to liberate the user from the 
need to wear equipment while also providing accurate pose 
estimations as they move across diferent locations and act 
diversely; meanwhile, previous pose estimation systems have 
largely neglected to consider interaction with the user. This 
forms the basis of our motivation and the direction of our research. 

2.1 Estimate Pose with External Devices 
2.1.1 With Stationary Devices. Studies focusing on pose estimation 
using vision-oriented systems typically share a common charac-
teristic: they aim for, and often require, the captured pose to be 
accurate. Such precision could better drive their downstream appli-
cations in felds such as rehabilitation [61], VR [72], digital human 
[31], and so on. The devices employed in these studies range from 
monocular RGB [13, 20, 46, 77] and RGB-D (Kinect [1], Intel Re-
alSense [7]) cameras to professional ones like OptiTrack [5] and 
Vicon [9]. Although these solutions ofer high-accuracy pose esti-
mation, the use of vision-captured systems is signifcantly restricted 
by their stationary positioning and coverage, which can limit their 
efectiveness and adaptability in open environments. We believe 
that a user-friendly, mobile platform equipped with a camera could 
provide a promising solution to balance pose estimation quality 
with mobility. Additionally, there is an emerging trend of utiliz-
ing wireless sensing devices (e.g., Wi-Fi [22, 52, 75] and mm Wave 
[41, 55]) for full-body pose estimation. However, these studies are 
still in their exploratory stages, and the pose estimation provided 
by their systems tends to be less accurate. 

2.1.2 With Dynamic Drones. There are several studies that employ 
drones (also referred to as aerial robots) to capture the human 
action [24, 28, 32]. An earlier work by Zhou et al., [81] takes the 
advantage of using a drone to actively record the action of a user 
in the wild and developed algorithms to reconstruct 3D body pose 
data from the video. The work by Cheng et al. [16] reconstructs 
the 3D mesh of human body using an aerial robot mounted with 
a depth camera. Given a participant in a static posture (standing 
still and punching posture in their experiments), the robot was 
able to fnd the shortest fying route surrounding the person to 
capture the 3D body mesh. This proved faster than its previous 
work, FlyCap [68], which adopts a fxed fying trajectory during the 
capture. In more dynamic settings, such as when the user is walking 
or running, Tallamraju et al. [59] presented a model that is able to 
put the target person within the center of the captured frame when 
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they walk in diverse directions. They further analyzed the impact of 
moving speed and distance between the drone and the user on pose 
estimation accuracy. Boonsongsrikul et al. [12] conducted a more 
relevant study, where the drone follows the user closely as they 
walk freely and capture the full-body pose simultaneously. While 
these works support the idea of using a mobile device mounted with 
a camera for less constrained action capturing, they primarily focus 
on simple situations where the target is static or merely moving 
around. Additionally, the use of drones in domestic settings raises 
concerns in safety and comfort of the user. The noise produced 
by these devices has been criticized by researchers working on 
human-robot interaction [56, 64, 66]. By contrast, our study utilizes 
PepperPose, which operates on the ground level and captures poses 
of the participant while they move and perform various actions. In 
the future, its voice interface and robot arms have the potential to 
provide richer interaction with the user, in comparison to drones. 

2.2 Estimate Pose with Wearable Sensors 
When the application scenario of the pose-tracking system extends 
beyond a pre-defned area, acquiring accurate full-body pose be-
comes rather challenging. In such cases, the most practical solution 
often involves the use of wearable systems equipped with inertial 
sensors. Notably, commercial products from companies like Movella 
Xsens [2], Noitom [3], and Rokoko [8] ofer solutions in the form 
of suits embedded with numerous IMUs (typically 17). These suits, 
usually wireless in today’s market, ofer the user increased freedom 
in terms of mobility and orientation. Nevertheless, these inertial 
sensor systems are not without their drawbacks. Long-standing is-
sues with pose-shifting, where errors accumulate over time, persist. 
Additionally, the practicality of wearing such a suit for everyday 
use is questionable due to potential discomfort and inconvenience. 
For the latter issue, recent eforts have been directed towards using 
less IMUs for pose estimation. By leveraging SMPL [44], a paramet-
ric human body model, signifcant advancements have been made 
in using 4 to 17 IMUs to approach full-body pose reconstructions 
[25, 60, 73]. Mollyn et al. [47] proposed a system that utilizes IMUs 
present in commodity devices (mobile phones, smartwatches, and 
earbuds) for full-body pose estimation. This approach signifcantly 
improves user comfort since it eliminates the need for specialized 
sensors. Another recent research has enabled the use of a VR head-
set for ego-body pose estimation [38], envisioning the scenario of 
sensing a VR user’s activities in a domestic environment. However, 
pose estimation with fewer sensors usually results in less accuracy. 
Specifcally, the system has to infer the movement of body parts 
to which sensors are not attached. Another promising approach 
involves the use of soft fabric-based devices [80]. This method has 
shown positive strides in pose reconstruction, although it is still in 
its developmental phase within the lab setting. 

2.3 The Active Perception of a Robot 
We fnd the following studies in the area of active perception-
oriented robot control that are informative to our work. The capac-
ity of active perception is the basis for a visual robot to understand 
the physical environment [37]. Therein, its perception may include 
object recognition for manipulation [19] and scene recognition for 
navigation [26]. More recently, researchers start to introduce the 

human action data for the robot to imitate the human behaviors. 
Zimmermann et al. [82] trained action models for the robot given 
body pose data, as such the robot learns to interact with objects 
in a way similar to the human demonstrator. Weigend et al. [65] 
mapped the arm gesture into the trajectory that a robot arm could 
follow. To the best of our knowledge, there is no study done on ac-
tive full-body pose estimation across locations and diverse human 
actions using a visual robot placed on the ground. In this work, we 
transform a popular visual humanoid robot, pepper, into an active 
pose estimation machine, which automatically track and adjust its 
viewpoint for optimal estimation results. Upon pose estimation, 
in the future, this robot system can be further adapted to ofer 
pose-driven interactions with the user. 

3 VIEWPOINTS IN VISUAL POSE ESTIMATION 
For vision-captured system, including the visual robot system like 
PepperPose, a major issue that afects their pose estimation quali-
ties is the occlusion caused by external objects, the facing direction 
and postures of the user, and proportion of their body in the frame, 
especially when the camera is put at a fxed viewpoint. To provide 
a clear picture of this problem and construct prior knowledge to aid 
the functioning of PepperPose, we conducted a preliminary exper-
iment with a user conducting everyday functioning and exercise 
actions. These actions also compose our following main evaluation. 
We frst fxed the distance between the camera and the user, result-
ing in an approximate 80% vertical proportion of the standing-up 
human body in the captured frame, to analyze the impact of dif-
ferent observational angles, and then adopted the optimal angle 
learned therein to drive the analysis on the distance. 

3.1 View Angles 
We captured the footage from 8 view angles split by 45◦ degrees 
surrounding the participant (158 cm tall) at a distance of 1.5 me-
ters per each complete action execution. The camera of a mobile 
phone that captures videos in 1080P@60Hz was used. By default, 
the degree is set as 0 for the facing direction of the participant, 
which increases along the counterclockwise circle. To calculate 
the pose estimation quality, we adopted confdence scores output 
by the 2D pose estimator of PoseFormerV2 [78], an open-sourced 
tool for 3D full-body pose estimation. Specifcally, the metric is 
calculated as the average confdence scores of all the body joints 
for the action’s duration per each view angle. It is notable that this 
method is a representative of 3D full-body pose estimation with 
monocular RGB cameras [39, 63, 74, 79], where their inputs are 2D 
pose sequences that are either provided by the dataset or acquired 
using of-the-shelf estimators such as HRNet [58], CPN [15], and 
stacked hourglass network [48].Therefore, results presented in this 
evaluation should be informative about the viewpoint issues exist-
ing in current vision-captured system, and to our design on using 
a robot for this task. 

Figure 2 illustrates the results. Obviously, there is a range of 
view angles that could return pose estimation results with better 
qualities, and such a range depends on the action type. Particularly, 
we can see that the quality is mostly afected by orientations of the 
individual as well as occlusions caused by body parts. Thereon, we 
categorize these 14 actions used in this study into three groups given 
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Figure 2: The results of analyzing the impact of viewing angles on pose estimation qualities, together with the illustration 
of actions that are considered in this work. Whilst there is a range of angles per action type that provide pose estimation 
results with high qualities, the view angle that returns the best result is highlighted by placing the camera icon at the respective 
observational position. 

their similarities in postures, where each group has a similar range 
of suitable view angles. We have standing (with actions of number 
2, 4, 7, 9, 10, 11), bending (with actions of number 1, 8, and 12), and 
reclining (with actions of number 3, 5, 6, 13, and 14). We believe 
these three categories reasoned here shall apply to actions that 
are not covered by this study, making room for the generalization 
capacity of PepperPose to unseen actions in real life. The suitable 
view angle is 0◦ (facing the person) for standing, 45◦ or 315◦ for 
bending, and 90◦ or 270◦ for reclining. This serves as important 
prior knowledge to support the functioning of PepperPose. 

3.2 View Distances 
The distance between the user and the robot (camera) afects the 
pose estimation quality [59], as it leads to diferent proportions of 
the target in captured frames. Through another analysis, we build 
such a prior knowledge to aid the control of PepperPose in terms 
of the distance it should keep away from the user. We directly use 
the optimal view angle acquired in the last subsection per each 
action to conduct this analysis. The same mobile phone is used as 
the camera. By controlling the vertical proportion of the standing 
participant (180 cm tall) in the captured frame, we adopt the same 
quality metric used above to show the impact of diferent distances 
that result in proportions ranging from 90% (camera put close to the 
subject, approximately 1 meter in our experiment) to 20% (camera 
put far from the subject, approximately 5 meters in our experiment). 

Figure 3 reports the results. Across all action types, we observed 
that a distance resulting in the target’s vertical proportions occu-
pying 50% to 80% of the captured frame is optimal. This range ap-
pears to ofer promising pose estimation quality. Given the diverse 
heights of our participants, we follow this range to adopt a distance 
range of 1.5 meters to 2.5 meters for PepperPose’s operation in this 
work. This also meets our safety requirements, ensuring that the 
robot does not interfere with the user during intense exercise or 
movement in the space. 

It’s worth noting that our evaluations on view angles and dis-
tances could get slightly afected by the performance of this specifc 
participant, e.g., for the action of leg lift in kneeling position, the 
pose estimator may fnd the view angle of 90◦ to be better than 270◦ 

when their left leg lifts higher than the right one. Additionally, for a 
proper estimation upon a skinny person, the view distance could be 
shorter than what for a person with a bigger size. Nevertheless, it 
is natural, since the individual bias is another challenging factor to 
vision-captured pose estimation methods. Moreover, the distance 
is also determined by the Field of View (FOV) of the camera, i.e., 
a camera with a narrower view range needs a longer distance to 
put the subject in its captured frame. In addition, in our evaluation 
below, we also consider mobile actions, e.g., carrying objects (e.g., 
a cardboard box with loads) in walking and sweeping the foor, 
which are left out in this analysis. This is mainly because, for these 
actions, a proper capture is achieved by tracking the user at the 
front -right or -left position. 
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Figure 3: The results of analyzing the impact of distances 
between the camera and the user. We test the distances that 
result in diferent vertical proportions of a standing-up hu-
man in the captured frame, ranging from 90% to 20%. The 
optimal view angle for each action is used. The action types 
are denoted by numbers, as shown in Figure 2. 

4 IMPLEMENTATIONS 
A digital twin of the Pepper robot is frst trained in a simulated 
environment using online reinforcement learning, where it uses the 
active visual perception capacity to interact with animated people 
driven by the action data collected from a real-world experiment. 

4.1 Data Collection for Robot Training 
We used the simulation environment of Nvidia’s Omniverse [4] 
to conduct the training of PepperPose. In this training, we aim to 
refne the action space (i.e., all the possible actions) of the robot, 
and help establish its kinematics model that controls the robot’s 
linear and angular velocities and orientations of its body and head. 
This learning-based method aims to enable the robot to operate in 
a natural and smooth manner, and is more efcient and efective 
than directly manipulating APIs. To drive the virtual people’ action 
in this environment, we used data collected from 100 diverse par-
ticipants in a home-like environment using a motion capture suit 
mounted with 17 IMUs from Noitom [3]. Actions we collected are 
the ones shown in Figure 2, while the action of carrying a suitcase 
or a cushion during walking is additionally added. We designed a 
natural and continuous experimental procedure, where the partici-
pant conducted each action on their own, with a basic instruction 
shown on the TV informing the type of action and number of rep-
etitions should be conducted. A complete experimental session 
lasts for approximately 15 to 20 minutes. Figure 4 demonstrates the 
data-collection environment, the suit we made to improve user’s 
comfort, the collected 3D pose data, and the interaction between 
Pepper and people in Omniverse. As shown, the pose estimation 
module of PepperPose functions well on capturing the intermediate 

Figure 4: To collect realistic data for training PepperPose, we 
(a) transformed the lab space into a home-like environment 
and (b-c) self-made comfortable suits with Velcro pads to 
accommodate the IMU sensors. (d-f) PepperPose is trained 
to interact with the people in Omniverse driven by such full-
body 3D pose data. (g-h) By referring to the ground truth 
pose, the pose estimation module of PepperPose functions 
well on the simulated people. 

2D pose of the virtual people, suggesting that Omniverse is quite 
suitable for the training of PepperPose. 

4.2 The PepperPose Framework 
Figure 5 presents an overview of the PepperPose framework. By 
using its visual system (i.e., the integrated monocular RGB camera 
of Pepper that captures video at 360P@10fps), the robot is trained to 
actively track the user and refne its viewpoint for better pose esti-
mations. Specifcally, the functioning of PepperPose relies on three 
modules. First, operating on the captured video frames, the pose 
estimation module extracts the 3D full-body poses, with 2D poses 
as the intermediates. Second, given the poses, the pose classifcation 
module classifes the action of the user into one of the three groups 
(i.e., standing, bending, and reclining) that characterize the coarse 
postures of actions considered in this study, as are discussed in 
Section 3.1. Thereon, the robot is able to retrieve the knowledge of 
the range of viewing angles that can lead to better pose estimation 
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Figure 5: The framework of PepperPose. 

results. With such knowledge, the decision-making module plans 
the route to move to that position. It is notable that, by operating on 
poses, PepperPose demonstrates strong generalization capabilities 
from the training in Omniverse to real-world environments. 

4.2.1 Pose Estimation Module. We use the of-the-shelf 3D pose 
estimator, namely PoseFormerV2 [78] to acquire 3D full-body pose 
estimations from the captured frame. To prepare the input sequence 
for this method in real time, we duplicate each captured frame by 
the robot to acquire frame-wise pose estimation results. The esti-
mated poses are the output of PepperPose for its initial functioning, 
which are then the input to the following modules that drive the 
robot to actively fnd the suitable viewpoint. Here, we would like 
to note that this pose estimation module is actually run on the 
graphic processing unit (GPU) of an additional machine, given the 
high computational loads it creates that overwhelm the current 
hardware capacity of Pepper. We made some engineering eforts to 
reduce the latency caused by transmission control protocol (TCP) 
communication (i.e., resulting in an interval of approximately 300 
ms between sending a single frame to the machine and receiving 
the estimated pose). We believe this temporary limitation is trivial, 
given the fast development of compute in mobile platforms as well 
as cloud computing. 

4.2.2 Pose Classification Module. Given the three categories of 
actions (i.e., standing, bending, and reclining), when the robot rec-
ognizes one of them, it would be able to locate the view angle 
quickly. In addition, another advantage of downsampling the 14 
actions into these three groups during the process of viewpoint 
searching is that it facilitates a better ft with pose data retrieved 
from suboptimal viewpoints, since a simpler classifcation task on 
the three categories tends to be more compatible with such less 
accurate pose data. We conducted an ofine training for our pose 
classifcation module with the data collected in the home-like en-
vironment. It should be noted that the data used for this ofine 
training does not overlap with the data used in the online training 
of PepperPose in Omniverse. Since the three categories of actions 
are built based on their characteristics of postures, from standing to 
reclining, we look into the angle between each part of body and the 
ground plane to represent such a posture shift. That is, we compute 
the angles between the vectors formed by every two adjacent nodes 
in the 3D human skeleton and their projections onto the ground 
plane (i.e., setting the Y component of the vectors to zero). The use 
of angular features computed per frame within approximately 4ms 
benefts the real-time operation of a robot, and eliminates the need 

for data normalization. We employ a simple yet efcient support 
vector machine (SVM) model using a radial basis function (RBF) 
kernel as the classifer, which produces a promising accuracy with 
a macro F1 score of 0.9489 on the test set during training. In general, 
the pose classifcation module receives skeletal data provided by the 
pose estimation module, computes the angular features, and then 
returns the classifcation result. The result is usually acquired by 
applying majority-voting among multiple frames when necessary. 

4.2.3 Decision-Making Module. With the classifed action category 
as a query to retrieve the pre-defned knowledge on viewpoints, 
via goal-conditioned reinforcement learning (RL) and Rapidly-
exploring Random Tree Star (RRT*) algorithm [14, 35], the decision-
making module locates the viewpoint for better pose estimations 
and plans the shortest moving path. As is shown in Figure 6, this 
module is based on a 2D coordinate system < �,� > embedded 
in the navigation system of Pepper robot. Specifcally, during this 
decision-making process, PepperPose needs to leverage and/or com-
pute the following information: 

Figure 6: The projection fgure of our decision-making pro-
cess in searching for the viewpoint. For the current action of 
this user, two suitable viewpoints are acquired according to 
the prior knowledge, which are defned by the angle � against 
the facing direction of the user (clockwise and counterclock-
wise) and the distance DU→V in-between. Pepperpose estab-
lishes a simple real-world < �,� > coordinate system to build 
the movement space, where it estimates its distance DR→U 
from the user and the orientation � of the user against the �+ 
direction. Thereon, it plans the route towards the viewpoint. 

• The prior knowledge on viewpoints, including the view an-
gle � against the facing direction of the user given the current 
category of the user’s action, and the safe distance DU→V the 
robot should keep from the user, which are already set given our 
analysis discussed in Section 3. 

• Positioning of the robot, including its coordinate (�R, �R) and 
orientation � created by the facing direction of the robot and the 
�+ direction of the coordinate system, which are provided by the 
robot’s navigation system directly. Specially, the robot is learned 
to put the user at the center of its captured frame, which ensures 
that it always face the user. 

• Positioning of the user, including their coordinate (�U, �U) and 
orientation � created by the facing direction of the user and the �+ 
direction of the coordinate system. To compute these, Pepperpose 
frst estimates its distance DR→U from the user given the average 
proportion in the frame of lengths of several action-invariant 
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Figure 7: The layout of our real-world experimental space. We put the essential equipment for actions apart from each other, 
as to help the participant to move and face diversely during the experiment, challenging the functioning of diverse pose 
estimation systems. The RGB and depth cameras are added as baseline methods for comparison. 

bones, e.g., the distance between the joints of head and neck. 
Then, the orientation of the user is computed by mapping the Z+ 
direction of the captured pose in the camera coordinate system 
onto the real-world < �,� > system. Therein, the Z+ direction is 
computed as the norm of the plane formed by two vectors, namely 
Jℎ��� → J���ℎ� _�ℎ������ and J���ℎ� _�ℎ������ → J�� � � _�ℎ������ , 
where J denotes the joint coordinate. 

• Inferring the viewpoint, given the above information, the co-
ordinates (��, �� ), � ∈ [1, 2, ..., � ] of the � doable viewpoints 
can be computed using geometric positioning methods. 

During the inference phase, the reinforcement learning con-
troller efciently processes the current environmental data and ro-
bot’s status, leveraging the trained model to make quick, informed 
decisions towards achieving the goal. This includes real-time ad-
justments based on the robot’s position, the targeted viewpoint, 
and any environmental constraints, ensuring that the reinforce-
ment learning controller can guide the robot through complex en-
vironments with minimal delay. Particularly, when tracking is lost, 
PepperPose will rotate in place to recapture the user. Please refer 
to Appendix for detailed information regarding the training pro-
cess implemented in Omniverse, as well as the simulation-to-real 
(sim2real) transformation of the system to the real-world scenario. 

5 EVALUATION 
We conduct an experiment with 30 participants (20 female, 10 male) 
aged from 19 to 30 (M: 24.1, SD: 2.65) using standard benchmark 
metrics for measuring pose estimation accuracies, and collect their 
self-reported user experiences towards the use of PepperPose as 
a companion robot in real life. Our participants have an average 
height of 168.34 cm (SD=9.28 cm), and an average BMI of 22.08 (SD 
of 3.14). Before their arrival, 10 of them reported Neutral for their 
frequency and profciency in using robots, 12 are infrequent users 
and have limited knowledge, and only 8 reported more frequent 
and profcient use experiences with robots. This study is approved 
by the Institutional Review Board (IRB) of the University. 

5.1 The Design of a Real-World Experiment 
As an embodied system, we look into the interaction of PepperPose 
with the physical environment and real users. Here, we present a 
real-world experiment that simulates the situation of using Pep-
perPose to acquire the 3D body pose of a user when they perform 
diverse actions and change their locations and facing directions in 
a 4m×6m home-like space. 

5.1.1 Devices and Equipment. We adopt the commercial robot 
Pepper [6], with its internal fat 2D RGB camera operating in 
320P@10fps with FOV of 54.4◦ × 44.6◦, the battery lasting for ap-
proximately 10 hours, and a height of 120cm. For ground truth body 
poses, we use 17 wireless wearable IMU sensors from Noitom [3] 
together with our self-made suits. The software from the manufac-
turer provides the 3D pose data. To aid the real-world experiment 
on daily functioning and exercise actions, aside from the necessary 
furniture (e.g., a desk, chair, sofa, yoga pad, and bed), we addition-
ally added some small objects (e.g., a check board and fruits) on the 
desk, a broom with dustpan, a cardboard box with 5kg load, and a 
few plants. A projector with a screen is used to show instructions 
during the experiment. Figure 7 demonstrates the arrangement 
of these elements. Throughout the experiment, we intentionally 
altered the directions of the chair and the yoga pad to test the 
adaptability of PepperPose. 

5.1.2 Experimental Procedure. In this experiment, we ask each 
participant to perform the actions (as shown in Figure 2), with 
walking and changing the facing direction added in between. We 
also introduce tasks such as walking while carrying a cardboard box 
and sweeping the foor. Each of the actions that is position-static is 
repeated three times. Before the data collection stage, we provide a 
brief overview of all the actions to help the participants get familiar 
with them. To collect natural and continuous data for our evaluation, 
we opt for moderate experimental control rather than detailed 
instructions. This involves displaying the number of repetitions 
and the type of remaining actions with a projector and a screen 
positioned adjacent to the experimental space. Please kindly refer to 
Appendix for a sample of the slides used for instruction. Participants 
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were also asked to maintain a moving speed slower than 1 meter 
per second, in line with the best moving speed (approximately 0.5 
meter per second) of Pepper robot. The distance moved between 
diferent actions ranges from 2 to 5 meters. 

5.1.3 Baseline Methods. We compare the performance of Pepper-
Pose against three stationary wide-angle RGB cameras (operating 
in 720p, 30Hz, FOV of 106◦ × 90◦) and an Azure Kinect DK depth 
camera [1] (operating in WFOV 2 × 2 Binned mode, 512 × 512 pixels, 
15Hz, FOV of 120◦ × 120◦). It should be noted that this experiment 
does not account for scene changes that typically occur when a user 
moves across diferent rooms or locations. Such changes render the 
use of stationary cameras less efective and not directly comparable 
to PepperPose. We position the four cameras at the boundaries of 
the experimental space, at a distance that ensures they capture the 
entire scene. In the following, we refer to the camera put in front 
of the user at their initial position as Depth Camera0◦, the camera 
put at the position lateral to the user as Camera90◦, and the rest 
cameras put at the respective angles as Camera45◦ and Camera65◦. 
For RGB camera, the same pose estimator used by PepperPose, 
namely PoseFormerV2 [78], is used to acquire the pose data of the 
user. For depth camera, the ofcial Azure Kinect Body Tracking 
API 1 is used to acquire the 3D pose data. 

5.2 The Questionnaire for User Study 
We adapt the Negative Attitudes towards Robots Scale (NARS) [49] 
to design a 5-likert scale questionnaire, in order to gain a deeper 
understanding of user perceptions regarding the integration of a 
robot for action sensing in their everyday environments. The ques-
tions we included are as follows, where each question corresponds 
to a particular dimension of the user’s potential attitude towards a 
robot. The options are: “Very Disagreed, Disagreed, Neutral, Agreed, 
Very Agreed.”. To avoid the infuence of irrelevant factors, we ask 
the users to not consider the potential cost of having such a robot 
for their personal use. 
• Acceptability: I feel comfortable to have a robot system like Pep-
perPose to use in real life; 

• Usefulness: I fnd the functioning of PepperPose useful; 
• Expectation: I would like to see more applications built on Pep-
perPose given my needs; 

• Trust: I would follow the advice from a robot expert like Pepper-
Pose if they are made under the guidance of domain professionals 
(personal coach, clinical physiotherapist, psychologist, etc.); 

• Preference: If needed, I prefer to receive the support from a real 
person instead of a robot; 

• Concern: I am worried about the negative infuence of this kind 
of robot to our society. 
We further conducted non-structured interviews to gather their 

extended feedback, providing insights for the next-step develop-
ment of this embodied interaction research. 

5.3 Evaluation Protocol 
Through this real-world experiment with users, we aim to assess the 
efectiveness and efciency of PepperPose in accurately capturing 
the human pose. Therefore, in alignment with prior research [13, 20, 

1https://microsoft.github.io/Azure-Kinect-Body-Tracking/release/1.1.x/index.html 

46, 47, 77], we use and/or propose the following metrics to evaluate 
the performance of PepperPose: 
• Mean Per Joint Position Error (MPJPE, in centimeters, cm): 
MPJPE measures the error between the data of two human body 
poses as the mean Euclidean distance between each correspond-
ing pair of joints; given the ground truth pose returned from 
IMUs, for each input pose, we implemented the following strate-
gies to maintain a fair comparison, i) the exclusion of frames 
where the robot directly afected the estimation, e.g., occluding 
the subject from the camera, or the estimator wrongly recog-
nized the robot as the human, ii) the design of a strict frame-wise 
normalization process, including skeleton matching and normal-
ization, trajectory removal, Z+ normalization, and root (pelvis) 
alignment; additionally, since the camera of Pepper used in this 
study operates at 10Hz, we frst synchronize the poses from difer-
ent devices and sample the respective frames from the stationary 
cameras and wearable system for a proper comparison; 

• Track Losing Rate (percent, %): We count the ratio of frames 
where the method does not even detect the existence of a human, 
a common problem for vision-captured MoCap system; 

• Reaction Speed (second, s): Particularly for PepperPose, we 
measure the time spent on moving to the suitable viewpoint after 
a user starts an action; the moving actions (i.e., sweeping the 
foor and carrying a cardboard) are left out in this evaluation 
since the robot is closely tracking the user when they move; we 
manually compare the confdence of poses to what acquired from 
the better viewpoints listed in Section 3.1 to determine the time 
spent on moving to the better viewpoint. 
For the frst two metrics, we conduct Friedman test and post-

hoc Wilcoxon Signed-Rank test with Bonferroni corrections to 
analyze the statistical signifcance. For visualizations, we present 
representative samples collected from our researchers instead of 
the data collected from real participants during the experiment, 
complying with our ethical requirements. Please kindly refer to 
the video fgure of using PepperPose in diferent scenes for a more 
vivid understanding of its performance. 

6 RESULTS 
We frst compare the performances of PepperPose with that of 
stationary RGB and depth cameras. Then, we look into the self-
reported feedbacks from participants. 

6.1 The Comparison of Performances 
6.1.1 Accuracy in Pose Estimation. Figure 8 presents the pose es-
timation accuracies, measured by MPJPE (cm), of PepperPose and 
stationary cameras against the ground truth pose. The average ac-
curacy computed across the frames per participant of each method 
difers signifcantly between each other (X2 (4) = 101.28, � = 5.25 × 
10−21). The post-hoc Wilcoxon Signed-Rank test with Bonferroni 
corrections shows that PepperPose (M=18.58, SD=2.07, � <0.01/5) is 
signifcantly better than Camera45◦ (M=31.38, SD=3.06), Camera65◦ 

(M=28.30, SD=3.63), Camera90◦ (M=36.15, SD=3.08), and Depth 
Camera0◦ (M=25.91, SD=3.46). Camera65◦ and Depth Camera0◦ 

are signifcantly better than Camera45◦ and Camera90◦ (� <0.01/5). 
However, Camera65◦ and Depth Camera0◦ do not difer signif-
cantly from each other (� =0.023). Figure 9 presents some qualitative 

https://microsoft.github.io/Azure-Kinect-Body-Tracking/release/1.1.x/index.html


PepperPose: Full-Body Pose Estimation with a Companion Robot CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

Figure 9: Visualizations of the pose estimation results. Unlike PepperPose (a, c, e, and g) that can actively move and refne its 
viewpoint, stationary cameras are largely afected by unwanted orientations of the user (b, d, and f) and occlusions that caused 
by external objects in the environment (h). 

Figure 8: (Top) The comparison of pose estimation perfor-
mances using PepperPose, stationary RGB and depth cam-
eras; the mean and standard deviation are added to each box. 
(Bottom) The positioning of RGB and depth cameras. 

visualizations of the poses estimated from one of the researchers in 
the experimental space with these devices. As also highlighted in 
earlier sections, we can see that the increase of errors of station-
ary cameras is mainly caused by the occlusion of body parts (e.g., 
caused by undesired orientation of the user) and external objects 
(a common situation when the user is not put in an empty space). 
Generally, this result demonstrates the great potential of using Pep-
perPose for active pose estimation, which provides the user with 
more freedom on acting and moving in an open space. 

6.1.2 Track Losing Rate. Figure 10 (a) reports the track losing rates 
of PepperPose and the cameras. While these methods signifcantly 

difer from each other (X2 (4) = 30.22, � = 4.42 × 10−6), the signif-
cance is only found between the depth camera (M= 5.87%, SD=3.62%, 
� <0.01/5) and each of the others. It should be noted that, for most 
operating time of all the methods, the track losing rate is low, with a 
ratio of less than 10%. By checking with the captured depth videos, 

Figure 10: (a) The comparison of track losing rates (%) of Pep-
perPose, stationary RGB and depth cameras. (b) The reaction 
speed (second, s) of PepperPose in diferent action categories. 
The mean and standard deviation are added to each box. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA C. Wang et al. 

Figure 11: A visualization of PepperPose’s captured sequence 
of a user who suddenly changed from standing to bending, 
approaching the marginal of captured frames (b and d), and 
eventually the track is lost (c). 

we found two major issues that may account for the comparably 
higher track losing rate of the depth camera: i) given the humanoid 
design of Pepper robot, the depth sensor tends to wrongly recog-
nize the robot as human more often than the RGB cameras; ii) by 
switching to the wide-angle mode (e.g., WFOV 2 × 2 binned mode), 
the operating distance is reduced from approximately 5 meters to 2 
meters, which in our case would cause track losing when the sub-
ject is sitting on the sofa when the WFOV mode is used to include 
the whole experimental space. 

Figure 11 provides the visualization of a sequence of tracking 
results of PepperPose. While the robot is trying to track the user 
when they move, the sudden change of action categories from stand-
ing to bending caused the tracking loss. For stationary cameras, 
occlusions are still the main reason for causing the lost in tracking. 

6.1.3 Reaction Speed. We compute the reaction speed of Pepper-
Pose per each category of actions, with results shown in Figure 
10 (b). At most, PepperPose is able to fnd the proper viewpoints 
after the user’s start of an action within 5 seconds in this space. 
Such a speed is largely afected by the Pepper robot used in this 
study, which only has a maximum straight line speed of 0.5m/s. By 
looking at the on-site videos, we also notice the following factors 
that could impact the reaction speed: i) The Speed of the User, 
when the user moves too fast, our adopted Pepper robot needs a 
longer interval before getting to the better viewpoint; ii) Network 
Trafc, we used Wi-Fi to transfer the captured frames to an exter-
nal GPU for pose estimation, which was used to plan the route to 
better viewpoints; thus, the reaction of PepperPose in this setting 
could get largely afected when the communication is too busy. 

6.2 Insights from the User Study 
Here, we frst analyze user feedback from questionnaires on their 
experiences with PepperPose, considering their prior knowledge 
and experiences gained during the experiment. We then share com-
ments from participants who provided notable opinions. 

6.2.1 Qestionnaire. Figure 12 reports results of the questionnaire. 
It is encouraging to learn that, most participants see values in using 
PepperPose (24/30=80%), expect to see more downstream appli-
cations built on PepperPose (26/30=86.67%). Only 3 participants 
(3/30=10%) found it less comfortable to have a robot to use in real 

Figure 12: Questionnaire results of the user study, presented 
per each dimension as defned in Section 5.2. 

life. Whilst this positive result could be attributed to the young 
participants recruited in this study, it is meaningful too since only 
8 of them reported to be more frequent and profcient robot users. 
The educational background seems not to be a clear factor on the 
acceptability of robots, since all of them are at least undergraduate 
students. In addition, most participants (26/30=86.67%) expressed 
that a robot built under professional guidance is a trustworthy 
source of advices to follow, showing the importance of collaborat-
ing with domain experts (e.g., gym coach, clinical physios, etc.) in 
future development. In the comparison of receiving supports from a 
human and a robot, the preference of people become more diverse. 
Participants who are willing to take advices from robot experts 
also prefer to have supports from a real person. More generally, a 
few participants (8/30=26.67%) think the use of robots may pose a 
negative infuence on the society. 

6.2.2 Interview. To reveal more insights from the questionnaire 
results, we conducted a non-structured interview with the par-
ticipants that showed interesting opinions above. We believe the 
opinions received from these prospective users are rather valuable 
to guide the development of future research and manufacturing of 
the industry. We report the interview as follows: 
• In terms of the Acceptability of using a robot like PepperPose 
in real life, people mainly talked about the match between the 
functioning of PepperPose with their needs, as well as the privacy 
issues typically associated with similar visual systems. Partici-
pants reported that: “It was not that comfortable to be watched by 
a humanoid robot at the beginning, which became more acceptable 
when I understood that this robot could act as a physio to improve 
my health”, “I felt quite comfortable in this experiment, the robot 
gave me a sense of care when I was acting in the living room”. These 
point to the importance of operating the robot to meet necessary 
needs, rather than a pose estimation platform alone. 

• We also collect the Expectation towards the future development 
of PepperPose, which is informative and inspiring. Most of them 
desire an interactive robot coach for ftness training, and one 

https://8/30=26.67
https://26/30=86.67
https://26/30=86.67
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participant put it even more clear that: “I would expect this robot 
can teach me new actions, by displaying the demo on a screen, and 
provide me with instant feedback”. Another participant highlights 
the usefulness of multimodal sensing and contextual service 
recommendations: “It would be great if this robot can read my 
emotions according to not only my actions but also my physiological 
signals, e.g., by connecting with my smartwatch, and plan my daily 
routine given the outside weather and trafc status”. Indeed, by 
using PepperPose, the next step can be swiftly moved onto the 
design of a fully-interactive embodied agent, and empowering it 
with multi-modalities. 

• For Trust and Preference of robots vs. human, while most of 
our participants expressed trust towards the functioning of Pep-
perPose in the future, they tend to have diferent preferences 
given their diverse personalities and appreciations of specifc 
roles a robot or human can play in their life. Some of them value 
the lower cost of using robots for long-term care and monitoring 
than human, and some highlight the simpler social attribute of 
robots over human: “Interacting with robots can waive myself from 
cognitive loads in dealing with human, since they sidestep awk-
ward moments and unwanted socializing, especially for introverted 
individuals; in this way, we can focus on functionality”. Whereas, 
several participants expressed a preference for human interac-
tion, noting: “When it comes to emotional comfort and hands-on 
care, the reliable and vivid presence of a human is needed, especially 
when the reliability of a robot is uncertain”. While the community 
is working hard to improve the naturalness and sufciency of 
robots, we recognize that the decision to utilize robots is highly 
personal and dependent on the specifc context. 

• Towards the concerns about potential negative social impacts 
of using similar robots in a large scale, participants showed two 
opposite views. Some once again mentioned the security, privacy, 
and ethical issues, and one said that: “If this leads to job losses 
among specialists, we might face situations where professional 
expertise is unavailable when needed”; whereas, one participant 
highlighted that: “I believe robots lead to reduced cost and more 
comprehensive sensing capabilities than human in certain tasks, 
which can reduce unnecessary repetitive works for human”. 

7 OPPORTUNITIES WITH PEPPERPOSE 
PepperPose could provide exciting interaction opportunities to the 
user in many downstream applications. Here, we provide some 
potential use cases of PepperPose in its following development. 

7.1 A Robot Physio and Coach for Fitness and 
Rehabilitation 

There is a growing interest in providing people with a virtual physio 
for exercise and rehabilitation guidance at home [27, 33, 36, 62]. 
However, similar to the fndings reported in our earlier sections, 
existing methods are also limited by their action-sensing implemen-
tations. They usually struggle with the granularity of the captured 
action that could lead to diferent levels of feedback and guidance to 
the user, vs. user’s comfort in wearing extra devices and/or staying 
in a constrained area. Furthermore, their form of feedback is mostly 
limited to visualizations that report the progress of the program and 
evaluation score of the performed action. Figure 13 demonstrates 

Figure 13: The estimated poses of a user conducting hand 
and leg extension in kneeling position, together with the 
description and feedback from a physio in natural language. 

the skill of a clinical physiotherapist in understanding the action of 
a user and responding with professional feedback. We argue that 
such a vivid interaction between the user and the physio can be 
established using PepperPose soon: First, for action understanding, 
the latest development on action-language modeling [21, 30] has 
pointed to the possibility of establishing expert-like description of 
the action of users, which calls for accurate estimation of full-body 
poses, matching the basic function of PepperPose. Second, the large 
language model can act properly to provide professional feedback 
by having access to the knowledge, e.g., via retrieval-enhanced 
language modeling [23, 51, 57], while the voice interface of this 
kind of humanoid robot can work to deliver the message. 

7.2 Context-Aware Action Sensing for 
Vulnerable Populations 

The objects and scenes a user interacts with provide a full pic-
ture of their actions [10, 17]. In comparison to non-visual systems, 
vision-captured MoCap methods are able to acquire these contex-
tual information for a comprehensive understanding of actions. In 
this way, a visual MoCap system, e.g., PepperPose, is able to provide 
richer opportunities for downstream tasks. For instance, once it rec-
ognizes the heavy suitcase a person wants to carry, it may remind 
the person to squat frst and lift the bag to avoid hurting the back. 
Here, we present a proof-of-concept example about the feasibility of 
transforming PepperPose into such a contextual sensing interface 
given the recent advances in multimodal language modeling. We 
use mPLUG-Owl [71], a state-of-the-art framework that empowers 
a large language model with the multimodal capacity, as a plug-and-
play visual parsing model that has the potential to work seamlessly 
with PepperPose in the future. We directly use the online demo2 

to process our collected video frames. In the online demo, we use 
the following hyperparameters: 512 for max output tokens, 1 for 
temperature, 3 for Top K, 0.9 for Top p, 1 for length_penalty, 1 
for beam size, 2 for no_repeat_ngram_size, and 28 for number of 
frames with sampling selected. Figure 14 presents the contextual 
sensing results. As the participant is conducting the same action 
(e.g, picking up an object and lying down), the natural language 

2https://www.modelscope.cn/studios/damo/mPLUG-Owl/summary/ 

https://www.modelscope.cn/studios/damo/mPLUG-Owl/summary/
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Figure 14: Results of visual parsing with mPLUG-Owl, a multimodal language model. By simply sending pre-defned prompts 
given the action type, this model helps the system to understand the comprehensive context of the action a person is involved 
with, which is nearly impossible by referring to the pose data alone. 

output returned by mPLUG-Owl provides a comprehensive picture 
of the activity. Although the current capacity of this multimodal 
model is not perfect, e.g., it by mistake recognizes the bottle of 
water as a small box and the lab space as the gym, the general in-
sights about the weight of the item and the judgement on suitability 
derived from the visual input are correct. Additionally, this online 
demo only took approximately 2 to 4 seconds before starting the 
output, which could be easily improved by local deployments or 
advanced cloud computing. Driven by this capacity, we additionally 
envision the following two use cases. 

7.2.1 A Functional Partner for Children. Humanoid robot is ap-
pealing to children, and this new space for interaction with these 
younger users is also attracting some attention recently. Such a 
robot can help the children with their homework to increase their 
motivation and engagement [70]. Alternatively, the robot can sim-
ply act as a toy that can actively participate in the physical activities 
of children [29]. Some studies further look into the medical impact 
of a humanoid robot on supporting the children with autism [54]. 
Thereon, Pepperpose can fully exploit its capacity in understand-
ing the actions of children, and provide support in various forms 
under the guidance of domain experts, respectively. For this case, 
the use of a robot for action sensing becomes rather appropriate, 

since asking a child to wear devices is not feasible, and they may 
naturally fnd it more acceptable to move freely in a space and have 
such a robot friend as a company. 

7.2.2 Monitoring Disease Development at Home. Last but not least, 
PepperPose can operate closely with patients that beneft from a 
long-term monitor of their motor capacities. In the latest works by 
Ricotti et al. [53] and Kadirvelu et al. [34], researchers demonstrate 
how a motion capture system using wearable suits can help mon-
itor the development of motor-impactful diseases like Duchenne 
muscular dystrophy and Friedreich’s ataxia, respectively. This is 
important, as for these conditions, the patient usually needs to visit 
their physicians at a certain frequency to report their latest status 
and inform the doctors’ decision of interventions. A motion capture 
system deployed at home can largely reduce such an efort, and 
ofers a more convenient platform for patient-doctor interactions. 
Moreover, wearing a full-body motion capture suit can be chal-
lenging for these people, while PepperPose may act as a promising 
alternative to carry out such a monitoring task. 

8 LIMITATIONS AND DEVELOPMENT 
Our exploration of using a mobile visual robot, Pepper, for active 
pose estimation has revealed limitations of existing hardware and 
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the proposed framework. Here, we describe them in detail as to 
open the space for future work. 

8.1 The Hardware of PepperPose 
The functioning of PepperPose requires three core pieces of hard-
ware, the mobile platform, the camera, and the GPU. In our current 
practice with the Pepper robot, we only tested with its fat 2D RGB 
camera operating at 360P@10Hz and have to communicate via TCP 
with an external GPU to conduct pose estimations. These some-
times resulted in the lost of tracking, given the limited range of 
viewing angles and the low processing frequency. From another per-
spective, current algorithms and models for 3D pose estimation are 
not well adapted for real-time operations, and create a high demand 
on compute. While our experiments have showcased promising 
results in active pose estimation, we acknowledge the need for both 
hardware and software enhancements before applying it to a range 
of downstream tasks. 

8.2 Fitting with Diverse Environments 
Real-world environments often present unexpected obstacles and 
challenges, making the safe and efcient operation of PepperPose a 
complex task. For instance, ground-moving robots like Pepper typi-
cally require a fat surface, a condition not always guaranteed due 
to common household features like blankets and stairs. While these 
issues are prevalent for the daily use of robots, potential solutions 
may involve enhanced navigation strategies and integration with 
other sensing systems, such as stationary cameras. For PepperPose 
specifcally, adopting a robot with a smaller size, improved mobility, 
and a wide-angle camera could be a viable solution. This approach 
would better accommodate constrained and crowded spaces while 
minimizing collision risks. Importantly, PepperPose is not con-
fned to the Pepper robot; our proposed framework is designed 
to be lightweight and efective, suitable for any mobile visual plat-
form. PepperPose can also beneft from the use of advanced pose 
estimators, e.g., those proposed to handle occlusions existing in 
complex scenes [43, 45, 69, 76]. In parallel, we recognize the critical 
need to develop user-protection strategies in future developments, 
particularly for downstream tasks. This entails collaborating with 
domain experts to clearly delineate its functional boundary and 
implementing robust privacy protection measures. 

8.3 The Extension to Multi-Agent Scenarios 
The present confguration of PepperPose does not account for sce-
narios involving multiple users. During our real-world experiments, 
we had to conceal ourselves and isolate the experimental space with 
white boards to prevent the robot from mistakenly tracking some-
one else within its feld of view. One solution to this issue is to 
integrate person identifcation algorithms, which would enable the 
robot to consistently focus on the designated target user. Alter-
natively, adapting the robot for multi-user environments presents 
another avenue for development. In such cases, employing multi-
agent reinforcement learning [18] or advanced multi-agent large 
language models [67] could signifcantly enhance the system’s ca-
pability. These technologies would allow PepperPose to navigate 
complex interactions with various users, each having unique re-
quirements and behaviors. This approach would not only rectify 

current limitations but also expand the system’s applicability to 
more dynamic and varied user interactions. 

9 OPEN SOURCE 
In the development of this work, one of the major challenges was 
the scarcity of reference materials, open-source tools, and datasets 
for training within the newly unveiled Omniverse environment. 
This platform is vital for our community, as it ofers extensive 
support for human-robot interaction research through its com-
prehensive APIs and tools. Consequently, to support future de-
velopment of this community on robot-involved HCI, we release 
the technical document detailing how to run simple-to-complex 
robot-human interaction experiments in Omniverse, action data 
from real participants that can aid the replication of PepperPose, 
all the essential codes, assets, and useful tools. Please refer to 
https://github.com/Mvrjustid/pepperpose for more details. 

10 CONCLUSION 
This paper presents PepperPose, a companion robot system de-
veloped to track a user’s movements and adapt its viewpoint to 
various actions for active full-body pose estimations.PepperPose 
eliminates the need for a user to wear special devices or remain 
within a restricted area, while still delivering high-quality full-body 
poses. The robot’s training utilizes realistic action data in a simu-
lation environment geared towards human-robot interaction. We 
have showcased its efectiveness through an experiment in a home-
like space involving 30 participants engaged in a range of actions, 
positions, and orientations. In the future, Pepperpose could serve 
as the fundamental embodied interaction platform to drive rich ap-
plications by leveraging its active pose estimation capacity, diverse 
interactive channels (e.g., its robot arm and voice interface), and 
the concurrent development of semantics parsing and language 
generation of multimodal language models. 
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A APPENDIX 

A.1 Goal-Conditioned Reinforcement Learning 
in Omniverse 

We used goal-conditioned reinforcement learning (RL) with Omni-
verse simulator to refne the action space (i.e., the set of all possible 
actions of a robot) of Pepper robot and build its kinematics model. 
In this way, after the simulation, the robot is able to track the user 
in a smooth and safe manner. This approach requires us to consider 
the movement of the Pepper robot as a Markov decision process, 
allowing the use of RL techniques such as domain randomization. 
Through assigning random goals, the agent can gradually learn 
to reach goals around them with consideration of the kinematics 
of the robot. Here, we report the goal-conditioned RL used in this 
study that involves three major components, namely environment 
setup, observation, and reward, as follows: 
• Environmental Setup: As stated previously, we use Nvidia Om-
niverse for constructing our simulated learning environment, 
which includes parallel learning agents. The robot model is 
trained using the Proximal Policy Algorithm within the Orbit 
library framework 3, an RL training extension of Omniverse de-
signed for simulations with models like Pepper and human char-
acters. The virtual human model is initially created in Blender 4 

using our collected MoCap data and subsequently imported 
into Omniverse. Similarly, the virtual Pepper robot is integrated 
by converting its ofcial Unifed Robotics Description Format 
(URDF) asset 5 into Universal Scene Description (USD) models. 

• Observation: The observation data pertaining to the Pepper 
robot encompasses various elements. These include the precise 
coordinates and orientation of the robot itself, and the randomly 
sampled viewpoints. 

• Reward: Given a goal-conditioned policy, we train the Pepper in 
simulation to go to any given position, driven by the kinematics 

3https://github.com/NVIDIA-Omniverse/Orbit 
4https://www.blender.org/ 
5https://github.com/ros-naoqi/pepper_robot/blob/master/pepper_description/urdf/ 
pepper1.0_generated_urdf/pepper.urdf 
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dynamics it has been assigned to. The general reward is defned 
as the negative Euclidean distance between the position of the 
pepper robot and the position of the goal it has been assigned to. 
Aside from goal-conditioned RL, we also deployed Rapidly ex-

ploring Random Tree Star (RRT*) algorithm to establish a path 
planning capability of the robot. This process involves refning 
paths to achieve the shortest possible route and efectively navigat-
ing around obstacles by generating and incrementally optimizing a 
tree of possible paths from the starting point to the goal. 

A.2 Sim2Real Deployment 
After the training, the pepper robot can reach the provided goal as 
a position swiftly. During the testing stage, we provide the corre-
sponding location and orientation of the virtual human model, the 
relative distance between the robot and the human. Furthermore, 
we also consider the visual information captured by the Pepper 
robot in the form of images. To get a frst-person view, we mounted 
a camera element to the simulated Pepper robot and compare the 
diferences between the pose estimated by utilizing the estimator 
referred to as PoseformerV2 [78] and the ground truth pose of the 
realistic action data that is used to drive the action of simulated peo-
ple. The captured frames in this environment are realistic, making 
it possible for us to directly test the performance of the proposed 
framework in simulation and tune parameters for controllers and 
planners, e.g., goal assignment per time step for the RL model, path 
planner given the prior knowledge on viewpoints, and evaluate 
action spaces and kinematics model of the robot. Figure 4 illustrates 
the ground truth and the estimated poses. In each parallel environ-
ment, a random human action is sampled, while the task of the 
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Pepper robot is to optimize the overall estimation accuracy. After 
selecting the action space and the establishment of the kinematics 
model, the next step is to deploy these with a Pepper robot in the 
real world. This includes using a simple yet efcient Proportional 
Integral Derivative (PID) controller to control the robot’s velocity, 
allowing the robot to reach the desired viewpoint suggested by 
other modules of PepperPose. 

Figure 15: The slides used in our real-world experiment, 
which act as the instruction to inform the participant about 
which action to conduct, changing orientation, and the re-
maining repetitions. 
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