
Ivie: Lightweight Anchored Explanations of Just-Generated Code
Litao Yan Alyssa Hwang Zhiyuan Wu Andrew Head

ltyan@seas.upenn.edu ahwang16@seas.upenn.edu wuzed@seas.upenn.edu head@seas.upenn.edu
University of Pennsylvania University of Pennsylvania University of Pennsylvania University of Pennsylvania

Philadelphia, PA, USA Philadelphia, PA, USA Philadelphia, PA, USA Philadelphia, PA, USA

1

2
3

Figure 1: Ivie augments the interactive programming assistant with instant explanations that help programmers examine
generated code. When a programming assistant suggests code (italic text above, ➊), Ivie annotates it with brief, informative explanations.
Explanations appear at the level of blocks of code (in the right margin, ➋) and expressions (anchored beneath the line the programmer
hovers over, ➌). For single-line suggestions, expression explanations appear automatically. Ivie’s explanations help programmers break up
complex or unfamiliar suggestions into pieces that can be more readily understood.

ABSTRACT
Programming assistants have reshaped the experience of program-
ming into one where programmers spend less time writing and
more time critically examining code. In this paper, we explore
how programming assistants can be extended to accelerate the
inspection of generated code. We introduce an extension to the
programming assistant called Ivie, or instantly visible in-situ ex-
planations. When using Ivie, a programmer’s generated code is
instantly accompanied by explanations positioned just adjacent to
the code. Our design was optimized for low-cost invocation and
dismissal. Explanations are compact and informative. They describe
meaningful expressions, from individual variables to entire blocks
of code. We present an implementation of Ivie that forks VS Code,
applying a modern LLM for timely segmentation and explanation of

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05.
https://doi.org/10.1145/3613904.3642239

generated code. In a lab study, we compared Ivie to a contemporary
baseline tool for code understanding. Ivie improved understanding
of generated code, and was received by programmers as a highly
useful, low distraction complement to the programming assistant.

CCS CONCEPTS
• Human-centered computing → Interactive systems and tools.

KEYWORDS
Programming assistants, instructive copilots, anchored explana-
tions, comprehension support, variable levels of detail, brevity, easy
invocation, easy dismissal, label overlays
ACM Reference Format:
Litao Yan, Alyssa Hwang, Zhiyuan Wu, and Andrew Head. 2024. Ivie:
Lightweight Anchored Explanations of Just-Generated Code. In Proceedings
of the CHI Conference on Human Factors in Computing Systems (CHI ’24),
May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 15 pages.
https://doi.org/10.1145/3613904.3642239

1 INTRODUCTION
Since their recent release, programming assistants have begun to
reshape the process of writing code. Programming assistants are

https://orcid.org/0009-0009-5077-354X
https://orcid.org/0009-0006-4827-8505
https://orcid.org/0009-0001-8016-5985
https://orcid.org/0000-0002-1523-3347
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3613904.3642239
https://doi.org/10.1145/3613904.3642239
mailto:head@seas.upenn.edu
mailto:wuzed@seas.upenn.edu
mailto:ahwang16@seas.upenn.edu
mailto:ltyan@seas.upenn.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642239&domain=pdf&date_stamp=2024-05-11

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yan et al.

a kind of interactive programming aid that help a programmer
write code. The predominant interaction model is exemplifed by
GitHub Copilot [22]. Under this model, the programming assis-
tant anticipates code that the programmer is going to write—either
the remainder of a line, or even many lines at once—and proposes
that code to the programmer. A programmer can then accept the
code with a simple command, like pressing the “Tab” key. Produc-
tion programming assistants have become very good at proposing
code, even long chunks of code, should the programmer’s code
resemble something seen in the massive corpora of code that the
programming assistant was trained on.

This interaction model has proven to be both desirable and use-
ful. Programming assistants have seen massive adoption. Copilot
estimates adoption by 1.2 million users [15]. They have seen inte-
gration into some of the most commonly-used code editors such
as VS Code. And they are used to generate a lot of code: recent
estimates suggest that as much as 30% [34] or 40% [15] of a pro-
grammer’s code originates from programming assistants when in
active use. The widespread and frequent usage of programming
assistants suggests that they may be here to stay.

For the efort that they save, programming assistants introduce
another kind of efort. Namely, programming assistants eliminate
efort writing code and replace it with efort reviewing code [4].
Studies have reported programmers spending an undesired amount
of time understanding and debugging generated code [3, 61]; they
spend time examining generated code [3], often examining details
of generated code’s logic in depth [34]. Obstacles to understanding
generated code include its use of previously-unknown APIs or
methods, structural complexity [34], and the length of generated
code [3, 34]. For particularly long generations, programmers have
described themselves as “distracted by everything [the assistant] is
throwing at [them],” “lost in the sauce,” and “discombobulated” [3].
Perhaps troublingly, programmers have reported understanding
less of how and why generated code works [4], with one lab study
suggesting that programmers apportion less attention to generated
code than that written by human authors [1].

This raises the question of whether our modern notion of the
programming assistant is incomplete. A widely-used metaphor for
programming assistants is that they are copilots. If a programming
assistant is a copilot, it is one that does its work without explaining
its actions. Its actions are visible, but the copilot makes no efort
to make them understandable. This is desirable when the copilot’s
actions are familiar, like when it generates code with known idioms.
However, it is less desirable when the copilot’s actions are unfamil-
iar, like when it generates code with unfamiliar APIs and structures.
If programmers are expending efort to understand generated code,
perhaps the notion of the copilot needs to be expanded to one of an
instructive copilot that prioritizes the programmer’s understanding
by explaining its work.

In this paper, we explore this notion of the instructive copilot.
We develop a tool, Ivie, which provides lightweight, anchored,
AI-generated explanations of just-generated code. When using an
editor with Ivie, programmers see generated code instantly accom-
panied by brief labels that explain what the code does (Figure 1).
These labels are meant to answer questions like “what does this
parameter do?” or “what does this segment of generated code do?”

That is, they are tailored to helping programmers understand un-
familiar APIs and idioms in the generated code. We call the labels
instantly visible in-situ explanations (i.e., Ivie). The labels are de-
signed for tight integration into the modern workfow of generating,
reviewing, and accepting code; they are meant to eliminate extra-
neous time it takes to provide answers to basic questions about the
code prior to the programmer accepting or rejecting the code. The
labels are very easy to invoke and dismiss. They explain code at the
level of both blocks (for long, multi-line generations) and expres-
sions (for dense one-liners). By providing instant, brief, anchored
explanations, Ivie seeks to remove information costs intrinsic to
comparable forms of support for understanding generated code
like chatbot-based programming helpers (e.g., [20, 21, 38]) or code
explainers that require code selection (e.g., [17, 23]).

Ivie has a straightforward architecture, leveraging an of-the-
shelf LLM to segment code into explainable units (at both the expres-
sion and block level), and create brief explanations of those units.
Most of Ivie’s code consists of presentation logic that overlays LLM
outputs as anchored explanations in the editor. We demonstrate the
viability of bringing Ivie to production editors by implementing it
in the widely-used Visual Studio Code [62].

We present a detailed in-lab usability study of Ivie. The study
explores Ivie’s impact on the experience of understanding gener-
ated code containing unfamiliar APIs. The study compared Ivie to a
contemporary AI-based help-seeking baseline, namely a GPT-based
in-editor chatbot that can answer questions about selected code.
Our study shows that there is a clear place in the ecosystem of pro-
gramming tools for Ivie: it was preferred to the chatbot by nearly
all participants. Ivie led to improved comprehension of generated
code, while decreasing perceived task load. Participants described
Ivie as being highly useful without being distracting. They charac-
terized Ivie as a complementary addition to a modern programming
workspace alongside documentation and chatbot help.

In summary, this paper contributes:

• The notion of an instructive copilot as a programming as-
sistant that not only generates code, but also supports its
understanding with timely, anchored, brief explanations.

• The implementation of this idea in Ivie, an extension to the
programming assistant that augments generated code with
overlay descriptions that are brief, informative, instantly
visible, and easy to dismiss.

• A usability study that confrms Ivie’s value as an desirable
complement to a programming assistant that improves code
comprehension with low task load and distraction.

2 BACKGROUND AND RELATED WORK

2.1 User experience of programming assistants
In recent years, a number of tools have incorporated large language
models (LLMs) to provide production-level assistance for generating
and describing code. These tools, often called “programming assis-
tants,” include GitHub Copilot [22], OpenAI GPT-4 [40], Amazon
CodeWhisperer [2], IntelliCode Compose [56], and CodeT5+ [64].
As programming assistants have been adopted by a growing num-
ber of programmers, researchers have begun to examine their efect
on programming activity. Some of these studies have characterized

Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

the tools’ infuence on how programmers understand code, partic-
ularly generated code [1, 3, 34, 36, 61, 67]. We detailed takeaways
from these studies in detail in Section 1; in brief, programmers
report understanding less of the generated code than they do of the
code they write, spending time examining the code, and sometimes
fnding the generated code difcult to read. These observations
motivate our focus on developing aids to support the reading of
generated code.

A recent study by Barke et al. [3] characterized interaction with
programming assistants as consisting of two modes: acceleration,
where the assistant helps a programmer write code of the kind
they already have some idea how to write; and exploration, where
the programming assistant assists a programmer in determining
and carrying out goals. We posit that a tool like Ivie could be
being useful in supporting both modes of interaction. As our results
suggest in Section 6.1, explanations of the kind Ivie provides can
be helpful in learning about the behavior of unfamiliar code that
might be generated during exploration, as well as in providing a
timely comprehension aid for longer and more complex code that
might appear in the middle of acceleration.

2.2 Program comprehension
Program comprehension—or the process of understanding com-
puter code—is an essential and frequent programming activity. In
one study, program comprehension accounted for as much as 50%
of programmers’ time [66]. Program comprehension has been re-
searched in depth by the HCI and software engineering research
communities (see for instance reviews by Détienne [14] and Crich-
ton [13]). In some theories of program comprehension (e.g., [14]),
comprehension relies on the identifcation of schemas—or mean-
ingful structures—in the code, and synthesis of those schemas into
a mental model of the program. We see the role of Ivie as recog-
nizing unfamiliar schemas in code on a programmer’s behalf, and
explaining them in approachable terms.

Program comprehension is sometimes considered as taking place
either top-down or bottom-up. When following a top-down ap-
proach, programmers form hypotheses about a program’s intent,
and then verify those hypotheses by looking for recognizable fea-
tures or “beacons” in the code [6, 55]. When following a bottom-up
approach, programmers progressively group units of the code into
larger and larger abstractions [43, 52, 63]. We consider Ivie as pri-
marily supporting a bottom-up approach to comprehension with
its explanations of expressions; at the same time, its block-level
explanations provide some support for top-down comprehension,
albeit at the level of dozens of lines of code.

Numerous prior studies have sought to characterize the kinds
of questions that arise as programmers read and write code [16,
32, 47, 54]. Duala-Ekoko and Robillard [16], for instance, identifed
20 difcult questions that programmers faced when working with
unfamiliar APIs. Many of these are answerable using Ivie. For
instance, we have seen Ivie answer questions like “what roles do
the arguments of a given method play in its usage,” “what is the
valid range of values for a primitive argument or a given method,”
and “how do I determine the outcome of a method call?” from Duala-
Ekoko and Robillard [16]’s study, or “what is the ‘correct’ way to
use or access this data structure” from Sillito et al. [54]’s study.

Ivie is tuned to answer questions about the high-level behavior of
passages of code a couple dozen lines in length, as well as the role
of individual expressions in the behavior of a statement.

There exist many methods for evaluating program comprehen-
sion, including think-aloud protocols [49, 63], memorization [43, 51,
55], comprehension tasks [55], fMRI readings [53], near-infrared
spectroscopy [37], EEG [19], and eye tracking [1, 31, 50, 57]. Tang
et al. [57] recently observed programmers’ gaze when validating
and fxing generated code; their study was able to reveal periods of
careful attention to generated code. Our own study measures com-
prehension primarily through a set of questions about generated
code, and coarse gaze-based measures of attention.

2.3 Interactive program comprehension aids
The HCI literature is replete with interactive systems research fo-
cused on helping people understand programs. Recently-developed
research systems have supported the understanding of programs
in many senses. For instance, they have supported sensemaking
about code [30] and APIs [29] with novel annotation afordances,
understanding of code examples with concept-annotated code snip-
pets [69] and collated views of API usages [24, 68], and understand-
ing how existing web pages are implemented with new methods to
inspect their underlying source [7, 10, 26].

Some of this research has, like Ivie, focused on supporting in-situ
understanding of code—that is, augmenting the editor in a way that
helps a programmer understand the code that is within their focus.
Hofswell et al. [27] introduced a grammar of in-editor visualiza-
tions that can be used to understand the values of myriad data types
with a small footprint. The projection boxes project [33] provides
a framework for live programming with Python where values of
expressions can be viewed adjacent to the lines on which they ap-
pear. LEAP [18] applies this idea to support the comprehension of
AI-generated code. Tutorons [25] explores a similar notion to this
paper, generating brief “microexplanations” for individual lines of
code that appear in tutorials to provide on-demand comprehension
assistance. A design space of related forms of on-demand help was
explored by Potter et al. [44] in their design of ExplainThis. Ivie is
inspired by this prior work, exploring how some of the above afor-
dances could be brought into the editor to support expression- and
block-level code understanding in an era where LLMs are powerful
enough to segment and explain code on demand.

A growing number of tools have brought LLMs into the code
editor to support code understanding. Notable contemporary exam-
ples include CodeHelp [35], EasyCode [17], Genie AI [20], GitHub
Copilot X [21]. Nam et al. [38] recently designed and evaluated a
system of this kind, which supports explanation of selected code,
details of API calls used in the code, explanations of domain-specifc
terms, and provision of usage examples for an API, with a study
showing advantages over web browser-based help. Ivie explores an
interaction model where similar kinds of support are provided, in a
way that is tightly integrated with the programming assistant to
instantly provide clarifying information to programmers without
diverting their attention away from the code.

3 SYSTEM
The purpose of Ivie is to help programmers acquire an understand-
ing of whether generated code matches their intentions, and how

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yan et al.

they should modify it if it does not. It has a particular focus on
helping programmers understand unfamiliar APIs and idioms in
generated code. When combined with a programming assistant like
Copilot, Ivie embodies the idea of an instructive copilot—that is, a
copilot that it explains its work in a way that empowers a user to
further refne its output. There is considerable nuance in develop-
ing a usable instructive copilot. A fundamental tension is showing
information to programmers in a way that is simultaneously in-
stant and unobtrusive. Below, we describe a set of design goals for
instructive copilots that we believe address this tension. The goals
are motivated by best practices in interaction design, and by choices
that arose during Ivie’s iterative development. The goals serve to
crystallize how our vision departs from contemporary, chat-based
approaches to programming help (Section 2.3). Specifcally, we posit
that instructive copilots should provide explanations that are:

D1. Anchored. Programmers should not have to divert their at-
tention from generated code to get assistance in understanding it.
Doing so could induce split attention [9] and undesired cognitive
load. Instead, explanations should appear in-situ, next to the code.

D2. Lightweight. Explanations should support a basic understand-
ing of the code at a glance. They should be simple enough that they
impose only a small load on programmers’ working memory. This
is consistent with the principle of minimalism, wherein documen-
tation is kept concise and focused on users’ tasks [8].

Furthermore, guided by standard usability recommendations in
favor of speeding up frequent actions and allowing fexible ordering
of tasks [39], we recommend that explanations are:

D3. Easy to invoke. Programmers should not need to expend any
efort to see explanations.

D4. Easy to dismiss. Explanations should be dismissed automati-
cally when they are no longer needed.

D5. Accessible anytime. While explanations should be hidden
when not needed, it should be easy for programmers to bring ex-
planations back for any generated code when they need them.

We also posit that explanations should appear at multiple multi-
ple levels of abstraction. As discussed in Section 2.2, programmers
need to understand the behavior of code not only at the level of
individual expressions, but also higher-level structures. Finally, ex-
planations of neighboring expressions should appear in parallel,
because the task of understanding a programming statement often
requires making sense of the interrelated behaviors of its compo-
nent expressions. In the upcoming sections, we describe how these
goals are addressed in the design and implementation of Ivie.

3.1 Interface Design
Ivie is designed to deliver on the design goals with the following
afordances. We direct readers to Figure 1, demo video, and the
scenario (Section 4) to see how these afordances appear to users.

3.1.1 Expression-level explanations. When the programming assis-
tant suggests a single-line suggestion, Ivie shows explanations of
major expressions that make up that line (Figure 4). Major expres-
sions are automatically identifed using an LLM (see Section 3.2.2).

Then these expressions are assigned brief descriptive labels. These
expression-level explanations are designed to adhere to the design
goals, with the following choices:

Anchored (D1). To reduce split attention that arises when ac-
cessing conventional forms of documentation, explanations appear
anchored alongside the code, as close to the expressions they explain
as possible. Labels are associated with expressions using proximity
and shared color on the borders of the expression and label. They
appear beneath the suggestion, as we anticipate the context above a
line of code will be more important than the context below it when
the programmer is choosing whether to accept the suggestion. In
the case where many labels are generated, some of the labels are
moved further away from their expressions, in which case leader
lines are used to associate expressions with labels. The programmer
can hover over a label to highlight just that label and underline
the corresponding expression. Labels track the code even as the
programmer scrolls, zooms, and resizes the editor.

Ivie does not currently support foating explanations that stand
apart from the code. Floating explanations could be useful in sit-
uations where there is more to explain that what appears in the
code—like other arguments to an API that were not generated.

Lightweight (D2). Explanations are very short—typically only 1–
2 sentences long. Because the explanations are short, programmers
have the opportunity to get the gist of an expression very quickly.
A consequence of the labels’ brevity is that they take up little
visual space, allowing programmers to continue to refer to the
surrounding code as they consider whether to accept a suggestion.

Easy to invoke (D3). Explanations are (near) instantaneous—they
appear within seconds of the appearance of a suggestion (i.e., as
quickly as our implementation retrieves them). Appearing auto-
matically, they require no efort to invoke. They also appear for
all expressions in a line at once. The parallel appearance of expla-
nations can help a programmer visually segment the line into its
meaningful parts, and synthesize an understanding of the line by
referring to the interrelated meanings of its expressions.

Easy to dismiss (D4). In-situ explanations run the risk of being
unwelcome should they distract a programmer. To reduce this risk,
we made it easy to dismiss explanations. Explanations are automat-

ically dismissed as soon as a suggestion is accepted, or as soon as
the programmer clicks away from the suggestion.

3.1.2 Block-level explanations. When the programming assistant
suggests a long block of code (two or more lines), Ivie helps a
programmer understand the high-level steps taken by the code
by showing explanations of blocks of code (i.e., contiguous sets of
lines) in the right margin (see example in Section 4). The interaction
design around block-level explanations is the same as expression-
level explanations, with the following diferences:

Appearance in the margins. To avoid the risk of occluding code,
block-level explanations appear in the right margin. They appear
just to the right of the right-most character in the suggested code, or
if the suggestion is very long, right after the 80th character. Fading is
used on the left side of the explanations to suggest that code is being
hidden underneath them. The explanations are associated with

Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 2: The implementation of an instructive copilot for
programming. Ivie creates interactive overlays that explain sug-
gestions made by a programming assistant. When the programming
assistant (e.g., Copilot) displays the suggestion, Ivie submits that
suggestion in a prompt to an LLM, requesting that the code be
segmented and explained. Ivie then integrates the explanations
into the editor as overlays beneath the expressions they explain.

lines of code with a single border on the left side of the explanation
indicating the extent of code lines to which the explanation applies.

Expression-level drill-down. When using early prototypes of Ivie,
we found that block-level explanations provided a useful entry
point to understand suggestions, but sometimes they did not go
into enough detail about what parts of the code did. Therefore, we
extended block-level explanations to allow programmers to access
details about the code on-demand, allowing them to hover over any
line to see expression-level explanations for that line.

3.1.3 Making explanations accessible anywhere, anytime (D5). Ivie
was designed to automatically dismiss explanations to reduce their
imposition on programmers. A consequence of this choice is that
programmers lose access to explanations when they accept code,
when they may wish to continue seeing them. Ivie provides a button
that allows programmers to see explanations after they have ac-
cepted suggestions. Once they press this button, explanations show
not just for the generated code, but for the entire fle: block-level
explanations are shown in the margins, and the programmer can
hover over any line in order to see expression-level explanations.

3.2 Implementation
A tool like Ivie can be implemented in a straightforward way, dele-
gating much of the work to external tools and focusing mostly on

Please dissect the following line of code, and explain

the unfamiliar vocabulary and structures with less than

15 words each. Include ranges for parameter values and

describe how changes in these parameters will affect

the output.

Prompt:

fig, ax = plt.subplots(2, 1, figsize=(14, 10))

Output:

plt.subplots $#$ Create a figure and set of subplots.

2, 1 $#$ 2 rows, 1 column of subplots.

figsize=(14, 10) $#$ Width and height of entire figure.

fig $#$ The whole window/figure containing subplots.

ax $#$ Array of individual subplot axes.

Prompt:

df_all.merge(df_Apr, on='City', how='left',

suffixes=('_all', '_apr'))

Output:

Figure 3: A prompt for requesting expression-level explana-
tions of generated code. This prompt requests explanations of
suggested code. It provides a single example of how it would like
code suggestions to be split into expressions with accompanying
brief explanations of those expressions.

tailoring their output and tight editor integration. In this section
we describe how Ivie works. A visual summary of Ivie’s implemen-
tation appears in Figure 2. From suggestion to explanation, Ivie
undertakes the following steps:

3.2.1 Activating Ivie. Ivie’s explanations are triggered when a
programming assistant—in our implementation, GitHub Copilot—
proposes a suggestion. Ivie listens for suggestions by registering a
listener with an internal VS Code API that is triggered whenever
“ghost text” (VS Code’s phrase for an in-editor suggestion) appears
in the editor. Ivie collects the ghost text, and then composes a query
to an LLM to retrieve explanations.

3.2.2 Requesting explanations. Ivie then generates explanations.
Explanations are composed of two parts:

• A segmentation of the code into explainable parts (i.e., blocks
or expressions)

• Natural language descriptions of those parts

Explanations are generated by querying a contemporary LLM.
We use the GPT-3.5 text-davinci-003 model, and access it through
OpenAI’s API. The LLM is prompted to simultaneously split and
explain the code (see an example in Figure 3). The prompt asks for
explanations to be brief yet informative. The prompt includes a
single example demonstrating the intended output.

One of two prompts is submitted to the LLM, depending on
the size of the suggestion; diferent prompts are used to generate
block-level explanations and expression-level explanations. We set
the temperature to 0.5 and max_token to 1000; these parameters
were chosen to achieve good explanations with as little latency as
possible. When a suggestion consists of two or more lines, Ivie actu-
ally submits many requests: block-level explanations are requested
for the full suggested text, and expression-level explanations are
requested for all of the constituent lines, in parallel. Prompts and
parameters appear in the supplemental material.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yan et al.

Figure 4: Explaining expressions. After a programming assistant suggests code, Ivie fetches explanations of that code. If the suggestion
consists of a single line, Ivie reveals explanations of meaningful expressions within that line, such as function calls, and parameters for those
calls. The purpose of these explanations is to make explicit the intent of code that may not be self-evident (as might be the case for the
programmer seeking to understand the precise behavior of the suggested table merge operation above).

Our experiences with the LLM suggests that it achieved perfor-
mance that was, while not perfect, quite good. In a test we ran
of 100 generated explanations for two API calls used in our us-
ability study (namely, “cv.GaussianBlur(img, (5, 5), 0)” and
“cv.Canny(img, 100, 200)”), we assessed 97% as being correct.
Our criteria for correctness were that explanations needed to be
complete (i.e., the function name, return value, and all arguments
were described), explanations needed to be accurate (i.e., expla-
nations refected the labeled expressions without any false infor-
mation), and that the code needed to be properly segmented (i.e.,
the LLM correctly detected the bounds of each expression without
bleeding over into adjacent expressions or delimiters). The positive
usability results in Section 6 suggest that the current error rate
around expression segmentation and explanations yields a positive
frst-use experience. Our discussion elaborates on tensions around
using AIs for explaining code in comprehension tools.
3.2.3 Rendering explanations. Upon receipt of a response from the
LLM, explanations are rendered as overlays on top of the editor
widget. For expression-level explanations, explanations are ren-
dered all at once. For block-level explanations, we request streamed
responses from the LLM (i.e., setting the stream parameter to true).
Because block-level explanation requests take longer to fulfll, this
allowed us to render explanations for blocks as they are received,
rather than waiting for all of them to become available.

Then, explanations are placed next to the expressions they ex-
plain. The default position of an expression label is left-aligned
beneath an expression. Label placements are further adjusted to
avoid overlap. If two labels overlap, the label to the right is moved
rightward until there is no longer overlap. Labels are limited to a
maximum width (approximately a few words long) to prevent any
one label from taking up too much horizontal space. If a label is ren-
dered far away from its expression (which we encode as less than
50% horizontal overlap with the expression), leader lines are added
to visually link all explanations to their accompanying expressions.

Requesting explanations for the entire fle. When a programmer
clicks Ivie’s button for showing explanations of the entire fle’s
contents (Section 3.1.3), Ivie submits queries to the LLM as if the
entire fle’s contents were one multi-line suggestion. This has the
limitation that when the programmer requests explanations, the

explanations might change each time a request is made. This is an
artifact of the current implementation; we believe future implemen-
tations of Ivie should preserve explanations between requests.

4 SCENARIO
In this section, we describe the experience of interacting with Ivie
in a brief narrative walkthrough. For a demonstration of interacting
with Ivie, we encourage readers to view the accompanying video
fgure. Imagine Dorothy, a climate scientist who is about to perform
exploratory data analysis of longitudinal climate data about the
Amazon rainforest. Dorothy plans to use a common code-based
data analysis toolset: namely, a contemporary code editor equipped
with Copilot, and a Python environment with the pandas data
manipulation library and Matplotlib visualization library pre-
installed. In this scenario, Dorothy is using a code editor that has
been extended with Ivie. Dorothy has passing knowledge of pandas
and Matplotlib—enough to do work with them—though she often
consults online resources to fnd out how to fne tune the API
functions to manipulate and visualize data as she would like.

Viewing expression explanations. After Dorothy has spent some
time loading, cleaning, and manipulating her data, she decides
that she is ready to merge some felds from a derived data frame—
df_Apr—back into the main data frame containing all of her data—
df_all. When she queries Copilot for a suggestion of how to merge
the two frames, she sees the following suggestion, augmented with
explanations from Ivie (Figure 4).

Without Ivie, many parts of this line of code would have been
difcult to understand. For instance, does a “left” join preserve all
of the rows from the df_all, df_Apr, or both? What values ap-
pear in the new columns for rows from df_all that do not have a
corresponding row in df_Apr? The overlay explanations answer
these questions, and others. All rows in df_all will be maintained;
NaN values will be inserted wherever the merged rows have new
columns. The explanations remind Dorothy to add a guard to her
code to check for NaN values. Dorothy is also reminded that the
names of some of the columns will change, as the suffixes argu-
ment will rename columns that appear in both data frames. In this
way, Dorothy acquires a detailed idea of the result of the merge that

Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 5: Explaining multi-line suggestions. When a programming assistant suggests multiple lines of code, Ivie splits up and explains
that code. Its explanations appear in the right margin of the editor. The explanations are meant to help a programmer get a high-level
understanding of the code. In the pictured scenario, these explanations might help the programmer understand that the two longest sections
of the code suggestion confgure each of two subplots, each with a diferent slice of the data.

otherwise would need to have been pieced together from selective
reading within the Pandas documentation.

Viewing high-level explanations of code suggestions. Later, Dorothy
arrives at a stage of analysis where she would like to visualize a
slice of her data. She would like to examine the temperature and
rainfall for the cities that have experienced each most extremely.
She outlines a Python function for visualization, and then Copilot
makes a 16-line suggestion. Ivie augments the suggestion with
descriptive labels (Figure 5).

The explanations help Dorothy orient to the code. Her initial
skim of the code leads her to erroneously interpret that the function
sets up one fgure, and then confgures the x-axis (in the sequence
of lines beginning with “ax[0])”, and then the y-axis (in lines be-
ginning with “ax[1]”). She pauses to examine the labels that Ivie
provides in the right margin, and by the time she reads the third
label, she realizes that the blocks of code she associated with the x-
and y-axes in fact confgure two distinct plots. Now she knows that
she can edit the block of code for “ax[0]” to confgure the plot for
the temperature data for the city with maximum temperature. She
further validates her understanding of what individual lines of code
do by hovering over them—as she hovers over each line, expression-
level explanations show for that line. These explanations allow
Dorothy to understand how she can confgure the formatting string
“%0.1f” to include more signifcant digits, and that she can use the
“integer” parameter to confgure whether ticks in the y-axis of the
second plot are constrained to integer values.

5 STUDY DESIGN
To evaluate Ivie, we conducted a usability study. The study fo-
cused on the impact of Ivie on working with generated code using
unfamiliar APIs. We sought answers to the following questions:

Q2. Does Ivie infuence how much attention programmers give
to generated code? Our hypothesis was that programmers would
more closely examine generated code when it was accompanied by
lightweight explanations.

Q3. How distracting is Ivie? While Ivie was designed to only
minimally distract programmers, we sought evidence of just how
much distraction they really experienced.

Q4. How does Ivie compare to chat-based AI code comprehension
aids? What are the benefts and downsides of Ivie compared to
other contemporary alternatives for comprehension assistance?

5.1 Participants
32 programmers were recruited from academic mailing lists in the
computer science department at the University of Pennsylvania.
31% were doctoral students, 63% were master’s students, and 3%
were bachelor’s students.1 16% of participants reported their level
of skill with Python to be advanced, and 50% reported profcient,
31% 2 beginner, and 3% no experience.

As intended, programmers were largely unfamiliar with the
libraries involved in the programming tasks. The main library used
in the tasks was the OpenCV computer vision library [41]. 38% of
programmers reported no experience with this library, 53% were
beginners, and 9% were profcient. When asked how familiar they
were with computer vision generally, 31% were not at all familiar,
53% a little familiar, 13% somewhat familiar, and 3% very familiar.
Participants also had very little experience with the library used in
the open-ended programming task (see Appendix B).

31% of programmers had previously used Copilot. 90% of the pro-
grammers who had used Copilot reported using it for a few months
or less, and only one participant reported using it for nearly a year

1Some percentages describing participant backgrounds do not add up to 100%. This
refects occasional non-response to questionnaire items.
2All profciency questions allowed participants to report the level of “expert.” No
participants selected this level for any question.

Q1. Does Ivie improve understanding of generated code? Ivie’s goal
is to explain generated code to support high-level understanding,
so we evaluated programmers’ understanding of generated code.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yan et al.

(as reported in a multiple-choice question). Although these partici-
pants had previously used Copilot, we anticipated they would not
experience a bias in the form of a novelty efect with Ivie, because
our baseline was also novel in extending Copilot’s functionality.
Because our baseline involved interacting with an LLM-based chat-
bot, programmers were also asked about their experience using
LLM-based chatbots. All (100%) participants had previously used
ChatGPT before, and 59% had additionally used some other chat-
based AI. 38% reported having a few months of experience using
chat-based AI, 47% had about half a year, 13% had about one year,
and 3% reported between one and two years of experience.

5.2 Baseline
Our study compared Ivie to a strong modern baseline. The base-
line was the modern VS Code IDE with its built in documentation
tooltips, access to a web browser, and an editor plugin providing an
AI-based chatbot. We call our baseline condition the “chat condition”
due the presence of the chatbot.

We chose a chatbot plugin for the baseline to represent a family of
recently-developed AI-based code comprehension plugins (e.g., [12,
20, 21]). In these plugins, the main feature is a chat window to left
side of the editor where a programmer can ask questions about their
code, and follow-up questions after the chatbot responds. These
plugins often support the ability to select arbitrary code and request
an explanation of that code from the editor’s menus. We chose the
plugin “EasyCode” [17] which provides all these features and has
lower latency among alternatives.

To promote parity between the baseline and Ivie, we confgured
both the chatbot and Ivie to use GPT-3.5 for their explanations.
Aside from the presence of the chat functionality, the editor was
confgured identically for both the baseline and Ivie.

5.3 Procedure
Each participant came to our lab for a one-hour-long session. To
reduce demand characteristics [42] that might have biased a par-
ticipant in favor of Ivie, we told them our goal was to understand
the infuence of two explanation tools—both the chat baseline and
Ivie—on understanding generated code. To avoid leaking our role
in developing Ivie, we referred to both tools using pseudonyms
“chat explanations” and “overlay explanations.” Participants con-
sented and completed a questionnaire about their programming
background before completing the following stages:3

5.3.1 Tutorial. The programmer was instructed in the use of all
tools used in the study—Copilot, the chat baseline, and Ivie. The tu-
torial consisted of a 5-minute slide presentation, and an activity the
programmer was guided to create a data visualization with Copilot
and invoke both the baseline and Ivie to access explanations.

5.3.2 Timed Programming Tasks. The programmer then undertook
two timed programming tasks (Tasks A and B), one with Ivie, and
one with the baseline, with order of tasks and interfaces counterbal-
anced. Each task required the programmer to write a short snippet
of image manipulation code using OpenCV. As a prompt, partici-
pants were provided an input image, a target output image, a goal

3All questionnaires, task instructions, starter code, and assessments can be viewed in
the supplemental material.

(e.g., “blur the image so it resembles the target image”), and starter
code. Both tasks were designed to be similar in complexity and fo-
cus. Each task require understanding of an OpenCV API that would
be unfamiliar to the programmer. The tasks were validated through
extensive piloting until we were confdent that programmers would
almost always be recommended the expected APIs by Copilot, and
that the explanations from Ivie would be coherent. Tasks lasted 5
minutes each. This amount of time was sufcient to ensure that
all programmers would make some progress (e.g., achieve some
blurring of an image), while introducing a cutof that let us compare
how closely each programmer approached to the target parameters
across conditions. Programmers were allowed to use a web browser
in either condition, though no programmers did so.

After each task, the programmer reported task difculty using
the NASA-TLX questionnaire [58] and answered Likert scale ques-
tions about how useful the available tools were in helping them
understand generated code. To decrease the likelihood that program-
mers studied code to an unnatural degree during the programming
tasks, we had them complete both tasks before telling them that
their understanding of code would be assessed.

5.3.3 Timed Comprehension Assessments. After each programming
task, comprehension of generated code was assessed with a timed
assessment. The assessment focused solely on the OpenCV API
call—i.e., what we believed would be unfamiliar generated code—
that was used for image manipulation in the programming task.
Each assessment consisted of 20 “yes” / “no” questions about the
API call, including the function name and its arguments (see details
in Appendix A). Our choice to time the assessment was inspired
by priming tests that have been used in program comprehension
(e.g., [43]), where response time in answering questions is used to
measure the strength of learned associations. A potential threat
to validity is that answers to comprehension questions resembled
Ivie’s in length (i.e., programmers indicated the meaning of an
expression by selecting from a set of short text descriptions). We
note, however, that answers resembled descriptions of expressions
similarly well for the the baseline and Ivie. After running the study,
a follow-up investigation of 12 randomly-sampled programmers’
session videos showed that, of the correct answers, 83.3% exactly
matched the description of the expression from Ivie, and 88.9%
exactly matched the description of the expression shown by the
baseline. The diference is that descriptions of expressions appeared
as part of much longer texts in the chat baseline, which is just the
problem that Ivie is meant to address.

5.3.4 Open-Ended Programming Task. The programmer was given
the remainder of the time (typically 10 minutes) to explore Ivie’s
support for an exploratory programming task (see details in Ap-
pendix B). This task was designed to help participants ground
qualitative feedback on the anticipated usefulness of the tool.

5.3.5 Qestionnaire + Interview. The programmer flled out a ques-
tionnaire where they refected on the usability of Ivie and the
baseline. If there was time remaining in the session, we conducted
a brief semi-structured interview.

5.4 Measures
To answer our research questions, we measured the following:

Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

1. Code comprehension. We measured programmers’ accuracy
and speed in replying to comprehension questions.

2. Attention. We measured attention as the amount of time a
programmer fxated on generated code. A Tobii Pro Spark eye
tracker [59] was used to collect gaze position during all of the
programming tasks. The code editor was instrumented to log the
positions of all generated code, as well as the baseline’s chat window,
and all of the labels that Ivie showed. The eye tracker was calibrated
before each of the programming tasks.4

3. Distraction. Programmers answered Likert scale questions
about how distracting they found Ivie’s expression explanations,
its block explanations, and the chat baseline. They reported task
load using the NASA-TLX index.

4. Comparisons to baseline. Programmers answered Likert scale
questions comparing Ivie to the baseline, and were asked to elabo-
rate on the comparative benefts of the two tools.

5.5 Analysis
All comprehension questions were assessed using linear mixed-
efects models. These models incorporated the tool, the order of
tools, task order, and interactions as fxed efects, and participant
ID as a random efect. Statistical signifcance was assessed using
an F-test with Satterthwaite’s estimate of efective degrees of free-
dom [48], with the Holm-Bonferroni method [28] to correct �-
values. For comparisons of Likert scale responses, we assess sig-
nifcance with a two-tailed Wilcoxon signed-rank test [65]. For all
tests, the threshold for statistical signifcance was � = 0.05. Quali-
tative themes from questionnaires and interviews were determined
following a thematic analysis process [5, Chapter 5], wherein one
author performed an initial open coding and axial coding pass, a
second author revised the complete results, and then the frst author
validated and made slight adjustments the revised results before
writing reports that appear below.

6 RESULTS

6.1 RQ1. Ivie improves code understanding
Comprehension questions. Programmers answered comprehen-

sion questions signifcantly more correctly for tasks completed with
Ivie than with the baseline (see Figure 6) (� = 23.6, � < 0.001).
When using, Ivie, they answered an average of 90.2% of questions
correctly, in contrast to 65.0% with the baseline (� = 26.7%). Pro-
grammers also answered questions more quickly with Ivie (� = 9.82,
� = 0.011), answering questions in an average of 2.8 seconds
(� = 1.0) about code they had seen in the Ivie condition, versus 3.6
seconds (� = 1.3) for the baseline condition.

Self-reported understanding. In their Likert scale feedback, pro-
grammers agreed that they understood the code when using Ivie
(������ = 7 out of 7 on a Likert scale, � = 0.92), and found the
explanations helpful for clarifying the code (������ = 7, � = 0.87).
They reported signifcantly higher agreement than for the baseline
for both questions (������ = 6, � = 1.69, � = 22, � = 0.002, and
������ = 5.5, � = 1.94; � = 26, � = 0.001) (see Figure 8).

4With the exception of the frst fve participants, for whom the eye tracker was cali-
brated only once at the beginning of the frst timed programming task.

Task A

0
20
40
60
80

100

C
o

rr
ec

tn
es

s
(%

)

Baseline Ivie
0

2

4

6

8

T
im

e
(i

n
 s

ec
o

n
d

s)

Task B

0
20
40
60
80

100

Baseline Ivie
0

2

4

6

8

Figure 6: Comprehension results. Each data point for a box plot
corresponds to a programmer’s score on the assessment or their
average question response time. Data is clustered by which tool
(Ivie or baseline) was used for the programming task (Task A or
B) associated with the assessment. For correctness, higher values
are preferred. For time, lower values are preferred. The diferences
of Ivie vs. chat baseline on both correctness (� < 0.001) and time
(� = 0.011) are statistically signifcant.

Task progress. An indirect measure of code understanding is pro-
grammers’ ability to successfully perform the programming task.
We observed that 4 programmers ended a task in an error state with
the baseline, whereas no programmers did so in the Ivie condition.
Appendix C further discusses that, for 2 of 4 confgurable param-
eters in the APIs under study, programmers arrived signifcantly
closer to the target values.

6.2 RQ2. No observed efect of Ivie on attention
Duration of attention on generated code. Programmers spent less

time less time looking at generated code in the Ivie condition
(� = 3.36 minutes, � = 1.56) in comparison to chat baseline (chat
baseline: � = 4.13 minutes, � = 1.59). However, the test did not iden-
tify this diference as statistically signifcant. (� = 4.25, � = 0.14).

Self-reported efect on attention. Some programmers reported
that Ivie infuenced the way they looked at code when answer-
ing the open-ended questions, and in particular that they more
closely examining the generated code with Ivie (P12, P31, P32). P32,
for instance, told us that “when using [Ivie] , I carefully examine
the completions instead of quickly accepting them.” P12 described
themselves as “checking everything” when using Ivie. Program-
mers sometimes felt that Ivie encouraged the behavior of carefully
examining code (P1, P26).

6.3 RQ3. Ivie is not (too) distracting
Task load. Programmers reported task load following each pro-

gramming task. Task load was assessed using fve dimensions from
the NASA task load index: mental demand, hurry, performance,
efort, and frustration. On all dimensions of task load, Ivie was seen
as imposing less load than the baseline, including mental demand
(Ivie: ������ = 2, � = 0.92 vs. baseline: ������ = 3.5, � = 1.62;
� = 4.5, � < 0.001), hurry (Ivie: ������ = 2, � = 1.23 vs. base-
line: ������ = 4, � = 1.61; � = 10, � < 0.001), performance
(Ivie: ������ = 1, � = 1.15 vs. baseline: ������ = 4, � = 1.70;

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yan et al.

Mental Demand Hurry Performance Effort Frustration
1

2

3

4

5

6

7
Baseline Ivie

A
gr
ee
m
en

t

Figure 7: Task load results. Shown are programmers’ responses
to 5 items from the NASA Task Load Index, collected after each
timed programming task. Responses are grouped by which tool
was used in the task. For all items, lower values are preferred.

� = 40, � < 0.001), efort (Ivie: ������ = 2, � = 1.02 vs. baseline:
������ = 4, � = 1.56; � = 16, � < 0.001) and frustration (Ivie:
������ = 1, � = 0.56 vs. baseline: ������ = 3, � = 1.79; � = 0,
� < 0.001) (see also Figure 7).

Self-reported distraction. After each task, programmers were
asked to report how distracting they found the explanations pro-
vided by the tool in that task. Ivie’s explanations were reported as
not distracting (������ = 1 out of 7 on a 7-point scale, � = 1.01),
and signifcantly less distracting than the explanations from the
chat baseline (������ = 3, � = 1.72; � = 30, � < 0.001, also see
Figure 8). In the closing questionnaire, programmers reported that
Ivie was less overwhelming (������ = 2, � = 0.94) and distracting
(������ = 2, � = 1.02) than the chat baseline (where 1 indicated
that the chat baseline was worse, and 5 indicated that Ivie was
worse, also see Figure 9).

6.4 RQ4. Ivie complements chat-based AI code
comprehension aids

Direct comparisons to baseline. As mentioned above, program-
mers reported Ivie as being signifcantly less distracting and over-
whelming than the chat baseline, and reported better understanding
the code. When comparing the two tools on a 5-point Likert scale
(with 5 indicating a preference for Ivie) programmers also reported
that Ivie’s explanations were clearer (������ = 5, � = 0.87). Quali-
tative feedback painted a picture of Ivie as complementary to tools
like the chat baseline. In the words of P3, they were both “great tools
to use, both have their utilities. Hard to choose only one out of them.
Would be helpful to use in conjunction.” Discussion Section 7.2.1
talks at length about the perceived benefts of Ivie, including the
conciseness and anchored nature of the explanations. Perhaps for
these reasons, participants largely indicated that if they were to
choose one of the two tools for future tasks involving AI-generated
code, they would prefer Ivie (������ = 4.5 of 5, � = 0.99) (see also
Figure 9). The comparative advantages of the chat baseline were
its support for acquiring conceptual understanding for a task (P22),
and deciding what code to write (P6, P26), level of detail in expla-
nations (P3, P29, P32), and the ability to ask follow-up clarifcation
questions (P5, P8, P10, P21). The ability to ask follow-up questions
seemed a particularly resonant feature—22 of 32 programmers in-
dicated in their questionnaires that the ability to ask follow-up
questions of the chat baseline was either somewhat or very useful.

7 DISCUSSION AND FUTURE WORK

7.1 Limitations
Our study fndings are limited in the following ways. First, our
results represent usability among a limited sample of the broader
programmer population. The participants in our study were primar-
ily master’s and doctoral students. About two-thirds of participants
had not used Copilot before the study. We anticipate that experi-
ences with Ivie would vary for programmers who are less experi-
enced at programming (and so less able to progress generally), more
experienced (and so more knowledgeable about their toolsets), and
those who have more established workfows of writing code with
programming assistants (and therefore perhaps more resistant to
extensions to those programming assistants).

Second, our metric of fxation time does not necessarily capture
the aspects of attention that are important. We measured attention
as the total amount of time spent looking at generated code. This
is a coarse-grained measure, in that it is does not diferentiate
between desirable attention—like the frst read-through of code—
from undesirable attention—like time spent debugging code that
was not properly understood. In retrospect, we note that more
nuanced measures may be necessary to assess whether generated
code is attracting the kind of attention it should.

Finally, the study only examined a very limited subset of tasks.
The tasks were narrow, focusing on the understanding of individual
APIs in short generated programs. To assess the utility of Ivie in
supporting programming practice more broadly requires evaluation
on a broader set of tasks of various domains and levels of complexity.

7.2 Design implications for instructive copilots
From our design and study, what do we now know about the efec-
tive design of instructive copilots?

7.2.1 Reexamining the design goals. A frst question is: are the
design goals we posed in Section 3 useful guides for instructive
copilots? Qualitative feedback provides validation for these goals
as useful guides for instructive copilots in this domain:

D1. Anchored. One of the benefts of Ivie was that its explana-
tions were “visually accessible” (P15). Participants appreciated that
they were targeted to specifc places in the code (P6) and “dissected
the parameters.” (P4) This stood in contrast to chat-based help,
which was seen as giving “long paragraphs of general ideas” (P26)
and requiring one to move their “sight outside of my code editor,
which was pretty annoying.” (P11).

D2. Lightweight. Another frequently-mentioned advantage of
Ivie was the lightweight nature of the explanations. Participants
appreciated the conciseness of explanations (P4, P6, P15, P18, P22),
describing them as easier to understand (P22, P25), simpler (P23),
and less overwhelming (P4). In contrast, the chat explanations were
often seen as providing too much information (P2, P6, P9, P24).

D3. Easy to invoke. Participants appreciated that Ivie’s explana-
tions appeared instantaneously (P11, P19), and in particular that
the explanations appeared right after Copilot generated the code
(P12, P28). One questionnaire item asked participants how useful
they found the ability to receive explanations instantaneously; 20
of 32 participants reported it to be at least somewhat useful.

Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

30 25 20 15 10 5 0 5 10 15 20 25 30
Number of responses

4 2 4 4 9 9BaselineUnderstood Copilot-generated code
2 4 8 18Ivie

3 2 2 3 6 7 9BaselineExplanations clarified Copilot code
1 2 7 22Ivie

1 7 1 3 7 4 9BaselineExplanations provided useful info
1 1 3 27Ivie

3 5 3 3 7 5 5BaselineExplanations fit my workflow
1 1 1 5 23Ivie

2 3 3 4 3 7 10BaselineWould use in future tasks
6 25Ivie

2 6 3 5 4 2 10BaselineExplanations improved efficiency
2 6 21Ivie

7 7 4 6 5 2 1BaselineExplanations were distracting
18 10 1 2 1Ivie

2 2 5 5 6 6 6BaselineFound explanations useful overall
1 1 9 21Ivie

Strongly disagree Strongly agree

Figure 8: Self-report refections on tool usability following timed programming tasks. Shown are programmers’ responses to 8
self-report questions asked on a 7-point Likert scale after each timed programming task.

D4. Easy to dismiss. Participants generally did not comment on
the dismissal mechanism. To us, this indicates that for most partici-
pants the design was unremarkable and ft adequately. That said,
some participants wished explanations were always-on (i.e., never
dismissed) (P17, P24, P26), and P32 wished for a toggle button to
turn explanations on and of.

D5. Accessible anytime. Following the Ivie task, 25 of 32 par-
ticipants conveyed that it was at least somewhat useful to access
explanations at any time. Some participants (P19, P26) conveyed
that they would have liked if there was even less friction to bring
explanations back up.

7.2.2 Expanding the design goals. Our study also revealed opportu-
nities to extend our notion of the instructive copilot. We pose three
additional design goals, following participant feedback. Namely,
generated explanations should be:

D6. Expandable. Explanations should let programmers ask for
more details. Several participants wished for the ability to expand
explanations (P12, P18, P20). As envisioned by P12, “ideally, every-
thing starts with a short explanation. If I don’t understand some-
thing, I could click for more details on that parameter.” One way
to expand explanations is to let programmers submit follow-up
questions about explanations to their AIs (P6, P8, P11, P21, P23).

D7. Adaptable. Explanations should be adapted to the program-
mer. Some participants desired that Ivie adapted explanations to
them (P11, P28). Explanations were seen as unnecessary for code
that programmers already familiar with (P27, P30, P31). When an
explanation did not convey any useful information, it was sug-
gested that the explanation was not shown (P6, P31); for instance,
P6 singled out one such explanation, saying that “Descriptions like
‘object’ are unhelpful. Filtering such terms would improve [Ivie’s
explanations].” Future instructive copilots could be selective about
what is explained and how, if they were extended to have a reason-
able notion of programmer knowledge and needs.

D8. Controllable. It should be possible for users to confgure
what content is explained and how it is explained. Some partici-
pants asked for controls that allowed them to infuence the level of
detail in explanations (P5, P22). They also desired control over the
granularity at which code was explained (i.e., at the expression- or
block-level) (P19, P22). Furthermore, some wished for the ability to
request explanations for specifc code selections (P6, P17, P18).

7.2.3 Bringing instructive copilots outside of the code editor. While
in this paper we validate the idea of the instructive copilot as an aug-
mentation to the code editor, we envision that instructive copilots
could be useful in other AI generation settings as well. In particular,
an instructive copilot could be useful in any setting where there is
a timely opportunity for a user to learn more about AI-generated
content. For example, perhaps a digital artist would wish to better
understand how they reproduce a visual efect that was performed
by an AI. For that artist, an instructive copilot might annotate the
graphical objects it edited, and reveal the sequence of tools that
could be used to attain that efect manually. Another example is
writer who is working with AI to compose a passage that is full of
references to external work. Perhaps the instructive copilot would
describe the nature of the referenced work for any of the refer-
ences that it generates of which the writer is unfamiliar. We suspect
that all such settings would beneft from the same design goals of
anchored, lightweight explanations that are easy to invoke and ac-
cessible anytime. Where we believe there is interesting variation to
explore between applications is in three aspects of an explanation:

Why are explanations needed? For programming assistants, in-
structive copilots are useful for helping people understand unfa-
miliar parts of generated code. In other applications, we foresee
several reasons to explain AI-generated content. The frst reason is
that the generated content is confusing, as in the case of unfamiliar
code or, say, generated math notation. A second reason is if a user
wants to verify AI-generated content, as is the case of a writer who
wishes to check a set of generated citations, or follow along with

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yan et al.

Figure 9: Summative self-report refections. Programmers compared Ivie to the baseline on a 5-point ordinal scale according to fve
diferent dimensions of usability (see labels on left). Pictured is an overall consensus that Ivie better helped programmers understand
generated code, Ivie’s explanations were easier to understand, programmers would rather use Ivie for future tasks involving AI-generated
code, and the explanations from the chat baseline were more overwhelming and distracting.

an AI-generated proof. A third reason is to know how to reproduce
AI-generated content, as is the case of the artist who wants to know
how an AI achieved a visual efect. The reason for explanation
infuences the next decisions of what gets explained and how.

The unit of explainable material. In the context of programming
assistants, we foresaw that programmers would need to understand
individual expression (i.e., components of API calls) and blocks of
code (e.g., multi-line idioms). In other scenarios, users would need
explanations of generated graphical objects and citations; of texts
at the level of individual words (like jargon), phrases (claims), full
passages (chains of reasoning), and even multimedia content like
segments of audio and video (e.g., efects produced in creativity
tools). There needs to be a mechanism for segmenting AI-generated
content (as we do with an external LLM) to identify explainable
units and allows them to serve as anchors.

The explanation. The content of an explanation follows from
the purpose of explanation. If an explanation is meant to clear up
confusing material, it might provide generated descriptions or links
to external references. If it is instead meant to aid in the verifcation
of AI-generated content, it might instead link to additional docu-
ments that provide supporting or conficting information. And if
it is meant to help someone reproduce AI-generated content, then
it might provide procedures for doing so. In the case of program-
ming assistants, we recommended that explanations be extremely
concise, in part because the explanations would be interspersed
between code generations that may be just seconds apart. In other
settings, it may be less necessary for explanations to be concise,
particularly if they are providing complex external information that
may be supportive in verifying AI-generated content.

Dismissal mechanism. Our design makes use of automatic dis-
missal when a user clicks away from generated content. This may
not be the only appropriate choice. In other cases, where a user
wants to continually refer back to the explanation (as in a writer
who may want to continue looking at clips from a cited document),
it may be better to preserve explanations until the user moves their
focus away from the current paragraph or section. In other circum-
stances, it may be appropriate for explanations to be always-on, as
was the desire of some programmers in our study.

7.2.4 A critique of using AI to explain AI-generated content. The
possibility of prototyping a tool like Ivie has only recently become
possible with the release of contemporary AI tools. As with all AIs,

those used by Ivie make mistakes. If the AI for Ivie makes a mistake,
a programmer may draw inappropriate conclusions about the be-
havior of their code. In the worst case, this could lead to signifcant
bugs and negative side efects in the generated code. In less severe
cases, it could lead the programmer to reject useful suggestions,
or slow them down as they attempt to comprehend code. In this
way, one of the motivations of this tool—to better inform users
about their AI-generated content—is undermined in part because
AI-generated explanations may be themselves incorrect.

We see these potential downside as further motivating research
in AI to produce validated texts. In the meantime, Ivie might still
be deployable in settings where they provide value despite inaccu-
racies. Programmers already use tools like ChatGPT [11] as a code
understanding aid. Conventional documentation itself contains in-
accuracies and outdated information [46, 60], and programmers
adjust to this reality. Amidst inaccuracies, we see Ivie as playing a
role in supporting more exploratory tasks where the potential dam-
age of misunderstanding is limited, and in being consulted alongside
up-to-date documentation for higher-stakes development tasks.

8 CONCLUSION
In this paper, we propose the notion of an instructive copilot, a
generative AI assistant that provides just-in-time explanations of
its generations. We explore this idea in the setting of programming
assistants, developing a tool called Ivie that explains unfamiliar
APIs in generated code. Our goals in designing Ivie were to pro-
vide explanations that were anchored to expressions in generated
code, lightweight, easy to invoke, easy to dismiss, and accessible
anytime. In a usability study, Ivie led to better comprehension of un-
familiar APIs in generated code versus a chat AI baseline. Ivie also
reduced task load and self-reported distraction. Programmers pre-
ferred Ivie and saw Ivie’s concise explanations as complementary
to longer-form programming help like AI chat aids. Furthermore,
our study revealed opportunities to improve explanations by mak-
ing them expandable, adaptable, and confgurable. Altogether, this
work shows the value of lightweight, anchored AI support as a tool
in the programming help-seeking toolkit.

ACKNOWLEDGMENTS
We thank our colleagues from Penn HCI for their feedback on
prototypes, study designs, and paper drafts. We also thank Sorin
Lerner for advice on how to implement overlays for VSCode.

Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

REFERENCES
[1] Naser Al Madi. 2023. How Readable is Model-generated Code? Examining Read-

ability and Visual Inspection of GitHub Copilot. In Proceedings of the International
Conference on Automated Software Engineering. ACM, Article 205.

[2] Amazon CodeWhisperer. Retrieved July 25, 2023 from https://aws.amazon.com/
codewhisperer/

[3] Shraddha Barke, Michael B. James, and Nadia Polikarpova. 2023. Grounded
Copilot: How Programmers Interact with Code-Generating Models. Proc. ACM
Program. Lang., Article 78 (April 2023).

[4] Christian Bird, Denae Ford, Thomas Zimmermann, Nicole Forsgren, Eirini
Kalliamvakou, Travis Lowdermilk, and Idan Gazit. 2022. Taking Flight with
Copilot: Early insights and opportunities of AI-powered pair-programming tools.
Queue 20, 6 (2022), 35–57.

[5] Ann Blandford, Dominic Furniss, and Stephann Makri. 2016. Qualitative HCI
research: Going behind the scenes. Morgan & Claypool Publishers.

[6] Ruven Brooks. 1983. Towards a theory of the comprehension of computer
programs. International journal of man-machine studies 18, 6 (1983), 543–554.

[7] Brian Burg, Amy J. Ko, and Michael D. Ernst. 2015. Explaining visual changes in
web interfaces. In Proceedings of the Symposium on User Interface Software and
Technology. ACM, 259–268.

[8] John M Carroll. 1990. The Nurnberg funnel: Designing minimalist instruction for
practical computer skill. MIT Press.

[9] Paul Chandler and John Sweller. 1992. The split-attention efect as a factor in
the design of instruction. British Journal of Educational Psychology 62, 2 (1992),
233–246.

[10] Kerry Shih-Ping Chang and Brad A. Myers. 2012. WebCrystal: Understanding
and Reusing Examples in Web Authoring. In Proceedings of the CHI Conference
on Human Factors in Computing Systems. ACM, 3205–3214.

[11] ChatGPT. Retrieved September 15, 2023 from https://chat.openai.com
[12] Codeium. Retrieved July 25, 2023 from https://marketplace.visualstudio.com/

items?itemName=Codeium.codeium
[13] William Perry Crichton. 2022. Revisiting Program Slicing with Ownership-Based

Information Flow. Ph. D. Dissertation.
[14] Françoise Détienne. 2001. Software Design–Cognitive Aspects. Springer Science

& Business Media.
[15] Thomas Dohmke. 2022. GitHub Copilot is generally available to all developers.

Retrieved July 25, 2023 from https://github.blog/2022-06-21-github-copilot-is-
generally-available-to-all-developers/

[16] Ekwa Duala-Ekoko and Martin P. Robillard. 2012. Asking and answering ques-
tions about unfamiliar APIs: An exploratory study. In Proceedings of the Interna-
tional Conference on Software Engineering. IEEE, 266–276.

[17] EasyCode. Retrieved July 25, 2023 from https://www.easycode.ai/
[18] Kasra Ferdowsi, Ruanqianqian Huang, Michael B. James, Nadia Polikarpova,

and Sorin Lerner. 2023. Live Exploration of AI-Generated Programs. (2023).
arXiv:2306.09541 [cs.HC]

[19] Thomas Fritz, Andrew Begel, Sebastian C. Müller, Serap Yigit-Elliott, and Manuela
Züger. 2014. Using Psycho-Physiological Measures to Assess Task Difculty in
Software Development. In Proceedings of the International Conference on Software
Engineering. ACM, 402–413.

[20] Genie AI. Retrieved July 25, 2023 from https://marketplace.visualstudio.com/
items?itemName=genieai.chatgpt-vscode

[21] GitHub Copilot X. Retrieved July 25, 2023 from https://github.com/features/
preview/copilot-x

[22] GitHub Copilot · Your AI pair programmer. Retrieved July 25, 2023 from
https://github.com/features/copilot

[23] GitHub Next | Code Brushes. Retrieved September 10, 2023 from https://
githubnext.com/projects/code-brushes/

[24] Elena L. Glassman, Tianyi Zhang, Björn Hartmann, and Miryung Kim. 2018.
Visualizing API Usage Examples at Scale. In Proceedings of the CHI Conference on
Human Factors in Computing Systems. ACM, Article 580.

[25] Andrew Head, Codanda Appachu, Marti A Hearst, and Björn Hartmann. 2015.
Tutorons: Generating context-relevant, on-demand explanations and demonstra-
tions of online code. In Proceedings of the Symposium on Visual Languages and
Human-Centric Computing. IEEE, 3–12.

[26] Joshua Hibschman and Haoqi Zhang. 2016. Telescope: Fine-tuned discovery of
interactive web UI feature implementation. In Proceedings of the Symposium on
User Interface Software and Technology. ACM, 233–245.

[27] Jane Hofswell, Arvind Satyanarayan, and Jefrey Heer. 2018. Augmenting Code
with In Situ Visualizations to Aid Program Understanding. In Proceedings of the
CHI Conference on Human Factors in Computing Systems. ACM, Article 532.

[28] Sture Holm. 1979. A simple sequentially rejective multiple test procedure. Scan-
dinavian journal of statistics (1979), 65–70.

[29] Amber Horvath, Michael Xieyang Liu, River Hendriksen, Connor Shannon, Emma
Paterson, Kazi Jawad, Andrew Macvean, and Brad A. Myers. 2022. Understanding
How Programmers Can Use Annotations on Documentation. In Proceedings of
the CHI Conference on Human Factors in Computing Systems. ACM, Article 69.

[30] Amber Horvath, Brad A. Myers, Andrew Macvean, and Imtiaz Rahman. 2022.
Using Annotations for Sensemaking About Code. In Proceedings of the Symposium
on User Interface Software and Technology. ACM, Article 61.

[31] Philipp Kather, Rodrigo Duran, and Jan Vahrenhold. 2021. Through (Tracking)
Their Eyes: Abstraction and Complexity in Program Comprehension. ACM
Transactions on Computing Education, Article 17 (November 2021).

[32] Amy J. Ko, Robert DeLine, and Gina Venolia. 2007. Information needs in collocated
software development teams. In Proceedings of the International Conference on
Software Engineering. IEEE, 344–353.

[33] Sorin Lerner. 2020. Projection Boxes: On-the-Fly Reconfgurable Visualization
for Live Programming. In Proceedings of the CHI Conference on Human Factors in
Computing Systems. ACM, Article 367.

[34] Jenny T. Liang, Chenyang Yang, and Brad A. Myers. 2024. A Large-Scale Survey
on the Usability of AI Programming Assistants: Successes and Challenges. In
Proceedings of the International Conference on Software Engineering. IEEE/ACM,
Article 52.

[35] Mark Lifton, Brad E. Sheese, Jaromir Savelka, and Paul Denny. 2024. Code-
Help: Using Large Language Models with Guardrails for Scalable Support in
Programming Classes. In Proceedings of Koli Calling International Conference on
Computing Education Research. ACM, Article 8.

[36] Hussein Mozannar, Gagan Bansal, Adam Fourney, and Eric Horvitz. 2024. Reading
Between the Lines: Modeling User Behavior and Costs in AI-Assisted Program-
ming. (2024). To appear.

[37] Takao Nakagawa, Yasutaka Kamei, Hidetake Uwano, Akito Monden, Kenichi
Matsumoto, and Daniel M. German. 2014. Quantifying programmers’ mental
workload during program comprehension based on cerebral blood fow measure-
ment: A controlled experiment. In Proceedings of the International Conference on
Software Engineering. ACM, 448–451.

[38] Daye Nam, Andrew Macvean, Vincent Hellendoorn, Bogdan Vasilescu, and
Brad A. Myers. 2024. Using an LLM to Help With Code Understanding. In
Proceedings of the International Conference on Software Engineering. To appear.

[39] Jakob Nielsen. 1994. Enhancing the explanatory power of usability heuristics. In
Proceedings of the CHI conference on Human Factors in Computing Systems. ACM,
152–158.

[40] OpenAI. 2023. GPT-4 Technical Report. (2023). arXiv:2303.08774 [cs.CL]
[41] OpenCV. Retrieved September 15, 2023 from https://opencv.org/
[42] Martin T Orne. 2017. On the social psychology of the psychological experiment:

With particular reference to demand characteristics and their implications. In
Sociological methods. Routledge, 279–299.

[43] Nancy Pennington. 1987. Stimulus structures and mental representations in
expert comprehension of computer programs. Cognitive psychology 19, 3 (1987),
295–341.

[44] Hannah Potter, Ardi Madadi, René Just, and Cyrus Omar. 2022. Contextual-
ized Programming Language Documentation. In Proceedings of the International
Symposium on New Ideas, New Paradigms, and Refections on Programming and
Software. ACM.

[45] PyGame. Retrieved September 15, 2023 from https://www.pygame.org
[46] Martin P. Robillard and Robert DeLine. 2011. A feld study of API learning

obstacles. Empirical Software Engineering 16 (2011), 703–732.
[47] Caitlin Sadowski, Kathryn T. Stolee, and Sebastian Elbaum. 2015. How developers

search for code: a case study. In Proceedings of the Joint Meeting on Foundations
of Software Engineering. ACM, 191–201.

[48] Franklin E. Satterthwaite. 1946. An approximate distribution of estimates of
variance components. Biometrics bulletin 2, 6 (1946), 110–114.

[49] Teresa M. Shaft and Iris Vessey. 1995. The Relevance of Application Domain
Knowledge: The Case of Computer Program Comprehension. Information systems
research 6, 3 (1995), 286–299.

[50] Bonita Sharif and Jonathan I. Maletic. 2010. An Eye Tracking Study on camelCase
and under_score Identifer Styles. In Proceedings of the International Conference
on Program Comprehension. IEEE, 196–205.

[51] Ben Shneiderman. 1976. Exploratory experiments in programmer behavior.
International Journal of Computer & Information Sciences 5 (1976), 123–143.

[52] Ben Shneiderman and Richard Mayer. 1979. Syntactic/semantic interactions in
programmer behavior: A model and experimental results. International Journal
of Computer & Information Sciences 8 (1979), 219–238.

[53] Janet Siegmund, Christian Kästner, Sven Apel, Chris Parnin, Anja Bethmann,
Thomas Leich, Gunter Saake, and André Brechmann. 2014. Understanding
understanding source code with functional magnetic resonance imaging. In
Proceedings of the International Conference on Software Engineering. ACM, 378–
389.

[54] Jonathan Sillito, Gail C. Murphy, and Kris De Volder. 2006. Questions Program-
mers Ask during Software Evolution Tasks. In Proceedings of the International
Symposium on Foundations of Software Engineering. ACM, 23–34.

[55] Elliot Soloway and Kate Ehrlich. 1984. Empirical Studies of Programming Knowl-
edge. IEEE Transactions on Software Engineering SE-10, 5 (1984), 595–609.

[56] Alexey Svyatkovskiy, Shao Kun Deng, Shengyu Fu, and Neel Sundaresan. 2020.
IntelliCode Compose: Code Generation using Transformer. In Proceedings of the
Joint Meeting on European Software Engineering Conference and Symposium on

https://aws.amazon.com/codewhisperer/
https://aws.amazon.com/codewhisperer/
https://chat.openai.com
https://marketplace.visualstudio.com/items?itemName=Codeium.codeium
https://marketplace.visualstudio.com/items?itemName=Codeium.codeium
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://github.blog/2022-06-21-github-copilot-is-generally-available-to-all-developers/
https://www.easycode.ai/
https://arxiv.org/abs/2306.09541
https://marketplace.visualstudio.com/items?itemName=genieai.chatgpt-vscode
https://marketplace.visualstudio.com/items?itemName=genieai.chatgpt-vscode
https://github.com/features/preview/copilot-x
https://github.com/features/preview/copilot-x
https://github.com/features/copilot
https://githubnext.com/projects/code-brushes/
https://githubnext.com/projects/code-brushes/
https://arxiv.org/abs/2303.08774
https://opencv.org/
https://www.pygame.org

CHI ’24, May 11–16, 2024, Honolulu, HI, USA Yan et al.

the Foundations of Software Engineering. ACM, 1433–1443.
[57] Ningzhi Tang, Meng Chen, Zheng Ning, Aakash Bansal, Yu Huang, Collin McMil-

lan, and Toby Jia-Jun Li. 2023. An Empirical Study of Developer Behaviors
for Validating and Repairing AI-Generated Code. In Proceedings of the Annual
Workshop at the Intersection of PL and HCI.

[58] TLX @ NASA Ames - Home. Retrieved September 15, 2023 from https://
humansystems.arc.nasa.gov/groups/TLX/

[59] Tobii. Enter the world of eye tracking with Tobii Pro Spark - Tobii. Retrieved
September 15, 2023 from https://www.tobii.com/products/eye-trackers/screen-
based/tobii-pro-spark

[60] Gias Uddin and Martin P. Robillard. 2015. How API documentation fails. IEEE
Software 32, 4 (2015), 68–75.

[61] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs.
experience: Evaluating the usability of code generation tools powered by large
language models. In Extended Abstracts of the CHI Conference on Human Factors
in Computing Systems. ACM, Article 332.

[62] Visual Studio Code. Retrieved September 15, 2023 from https://code.visualstudio.
com/

[63] A. von Mayrhauser and A. M. Vans. 1993. From program comprehension to tool
requirements for an industrial environment. In Proceedings of the Workshop on
Program Comprehension. IEEE, 78–86.

[64] Yue Wang, Hung Le, Akhilesh Gotmare, Nghi Bui, Junnan Li, and Steven Hoi.
2023. CodeT5+: Open Code Large Language Models for Code Understanding
and Generation. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Association for Computational Linguistics, 1069–1088.

[65] Frank Wilcoxon. 1992. Individual comparisons by ranking methods. In Break-
throughs in Statistics: Methodology and Distribution. Springer, 196–202.

[66] Xin Xia, Lingfeng Bao, David Lo, Zhenchang Xing, Ahmed E. Hassan, and Shan-
ping Li. 2017. Measuring program comprehension: A large-scale feld study with
professionals. IEEE Transactions on Software Engineering 44, 10 (2017), 951–976.

[67] Frank F. Xu, Bogdan Vasilescu, and Graham Neubig. 2022. In-IDE Code Genera-
tion from Natural Language: Promise and Challenges. ACM Trans. Softw. Eng.
Methodol. 31, Article 29 (March 2022).

[68] Litao Yan, Elena L. Glassman, and Tianyi Zhang. 2021. Visualizing Examples of
Deep Neural Networks at Scale. In Proceedings of the CHI Conference on Human
Factors in Computing Systems. ACM, Article 313.

[69] Litao Yan, Miryung Kim, Bjoern Hartmann, Tianyi Zhang, and Elena L. Glassman.
2022. Concept-Annotated Examples for Library Comparison. In Proceedings of
the Symposium on User Interface Software and Technology. ACM, Article 65.

A TIMED COMPREHENSION ASSESSMENT
The comprehension assessments asked two kinds of questions:

• Identify the API. The participant was told to imagine that
they were trying to achieve a particular image manipula-
tion goal and then shown the name of an API. They were
asked whether the API could be used to achieve that goal.
8 questions were shown, 1 with the correct API from the
programming task, and 7 with incorrect APIs either entirely
made up or taken from the OpenCV documentation.

• Identify the purpose of a parameter. The participant
was shown the API signature without parameter names (e.g.,
“cv.Canny(❶, ❷, ❸)”). They were directed to a specifc pa-
rameter (e.g., “❶”), shown a phrase (e.g., “higher threshold”)
and asked if the phrase described that parameter. 4 questions
were shown for each parameter, with 1 correct description
and 3 incorrect ones. We asked 12 such questions.

The test interface and procedure was designed so that response
time measured only time to think and respond, to the extent possible.
Responses were entered by pressing numeric pad keys “1” (for
yes), “2” (for no), or “3” (for unsure), and then the Enter key to
confrm. The programmer was trained in this system on sample
questions before answering any of the questions we planned to

analyze. They were told to answer questions as quickly as they
were able. Screenshots of the assessment interface and a listing of
all questions can be viewed in the supplemental material.

B OPEN-ENDED PROGRAMMING TASK
For the open-ended programming task, participants were asked to
create a lightweight version of the classic Mario platformer game
using Pygame [45], a 2D game development library for Python.
Participants were given no starter code. Rather, they were provided
with a blank code Python script, a terminal from which they could
run that script, and a folder containing graphics they could use in
their game. Links to these graphics are listed in the supplemental
material. Participants had access to Ivie, EasyCode (the baseline
chat AI), and the web. The task was designed to require program-
mers to see a signifcant number of unfamiliar API methods and
Pygame-specifc programming idioms. 78% participants reported
having no prior experience with Pygame, and 22% reported being
beginners. Most participants were unfamiliar with the domain of
game development—72% were not at all familiar, 19% a little familiar,
and 9% somewhat familiar. Participants were not expected to fnish,
but rather to just make some progress. About half of participants
got to a stage of development where a Mario sprite appeared on
the screen and could be controlled with arrow keys.

C ASSESSING PROGRESS ON TIMED
PROGRAMMING TASKS

A supplementary measure of task success was the extent to which
participants’ fnal code resembled a reference implementation. Each
task required programmers to confgure a set of parameters for an
image processing API to control visual efects like blur or edge
tracing to replicate a target image. In both the Ivie and baseline
condition, we collected the values of parameters in participants’
code at the time they were cut of. For 2 of 4 parameters, participants
were signifcantly closer to the target values when they used Ivie
versus using the baseline (see Figure 10). For the other 2 parameters,
the diferences were not signifcant. Signifcance was assessed by
conducing an unpaired �-test of the L1 distance of parameter values
to the target values for 1D parameters, and L2 distance for 2D
parameters (e.g., the ksize tuple). Detailed results are as follows:
For task A, there were two parameters. The frst parameter, “ksize,”
had a target value of (21, 21). The L2 distance of programmers’
fnal parameters to this target value was 1.41 (� = 11.8) in the
Ivie condition versus 14.8 (� = 16.3) in the baseline condition; this
diference was statistically signifcant (� = 0.004). No signifcant
diference was seen for the distance to the target value for the
second parameter “sigmaX” between Ivie (� = 2.56, � = 2.89) and
the baseline (� = 7.81, � = 29.84; � = 0.19). For task B, programmers
were signifcantly closer to the target value of the “threshold_low”
parameter in the Ivie condition (� = 10.62, � = 11.16) than in the
baseline condition (� = 50.31, � = 46.38; � = 0.003), though not for
the for the “threshold_high” parameter (Ivie: � = 8.44, � = 39.79
vs. baseline: � = 20.0, � = 46.77; � = 0.472).

https://humansystems.arc.nasa.gov/groups/TLX/
https://humansystems.arc.nasa.gov/groups/TLX/
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-spark
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-spark
https://code.visualstudio.com/
https://code.visualstudio.com/

Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Baseline Ivie Target Error-inducing value

(a) Task A (b) Task B

5 10 15 20 25 30
0

5

10

15

20

25

30

parameter 1 (ksize)

p
ar

am
et

er
 2

 (s
ig

m
aX

)

0 20 40 60 80 100
100

125

150

175

200

225

250

parameter 1 (threshold_low)

p
ar

am
et

er
 2

 (t
h

re
sh

o
ld

_h
ig

h
)

Figure 10: Convergence on parameter values. Shown are plots conveying how far participants were from the reference solution when
they ran out of time in each timed programming task. Each plot visualizes a parameter space for the key API function that the programmer
need to use in a task. Each task required confguration of two parameters. All parameters are 1-dimensional numeric, except for “ksize”
(“parameter 1” in (a)), which was a tuple of two values, which were often set to be equal; we show only one of the values from the tuple.
Red dots mark target confgurations, which are (21, 5) for task A and (10, 155) for task B. Light blue dots represent values achieved when
programmers used Ivie, and dark blue plots represent values achieved in the baseline condition. Some points overlap: for instance, there are
5 overlapping baseline points in (a) at (5, 0); 8 overlapping baseline points in (b) at (50, 150) (this was frequently the default initial generated
confguration); and 3 overlapping baseline points in (b) at (100, 200).

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 User experience of programming assistants
	2.2 Program comprehension
	2.3 Interactive program comprehension aids

	3 System
	3.1 Interface Design
	3.2 Implementation

	4 Scenario
	5 Study Design
	5.1 Participants
	5.2 Baseline
	5.3 Procedure
	5.4 Measures
	5.5 Analysis

	6 Results
	6.1 RQ1. Ivie improves code understanding
	6.2 RQ2. No observed effect of Ivie on attention
	6.3 RQ3. Ivie is not (too) distracting
	6.4 RQ4. Ivie complements chat-based AI code comprehension aids

	7 Discussion and Future Work
	7.1 Limitations
	7.2 Design implications for instructive copilots

	8 Conclusion
	Acknowledgments
	References
	A Timed comprehension assessment
	B Open-ended programming task
	C Assessing Progress on Timed Programming Tasks

