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Figure 1: Ivie augments the interactive programming assistant with instant explanations that help programmers examine 
generated code. When a programming assistant suggests code (italic text above, ➊), Ivie annotates it with brief, informative explanations. 
Explanations appear at the level of blocks of code (in the right margin, ➋) and expressions (anchored beneath the line the programmer 
hovers over, ➌). For single-line suggestions, expression explanations appear automatically. Ivie’s explanations help programmers break up 
complex or unfamiliar suggestions into pieces that can be more readily understood. 

ABSTRACT 
Programming assistants have reshaped the experience of program-
ming into one where programmers spend less time writing and 
more time critically examining code. In this paper, we explore 
how programming assistants can be extended to accelerate the 
inspection of generated code. We introduce an extension to the 
programming assistant called Ivie, or instantly visible in-situ ex-
planations. When using Ivie, a programmer’s generated code is 
instantly accompanied by explanations positioned just adjacent to 
the code. Our design was optimized for low-cost invocation and 
dismissal. Explanations are compact and informative. They describe 
meaningful expressions, from individual variables to entire blocks 
of code. We present an implementation of Ivie that forks VS Code, 
applying a modern LLM for timely segmentation and explanation of 
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generated code. In a lab study, we compared Ivie to a contemporary 
baseline tool for code understanding. Ivie improved understanding 
of generated code, and was received by programmers as a highly 
useful, low distraction complement to the programming assistant. 
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1 INTRODUCTION 
Since their recent release, programming assistants have begun to 
reshape the process of writing code. Programming assistants are 
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a kind of interactive programming aid that help a programmer 
write code. The predominant interaction model is exemplifed by 
GitHub Copilot [22]. Under this model, the programming assis-
tant anticipates code that the programmer is going to write—either 
the remainder of a line, or even many lines at once—and proposes 
that code to the programmer. A programmer can then accept the 
code with a simple command, like pressing the “Tab” key. Produc-
tion programming assistants have become very good at proposing 
code, even long chunks of code, should the programmer’s code 
resemble something seen in the massive corpora of code that the 
programming assistant was trained on. 

This interaction model has proven to be both desirable and use-
ful. Programming assistants have seen massive adoption. Copilot 
estimates adoption by 1.2 million users [15]. They have seen inte-
gration into some of the most commonly-used code editors such 
as VS Code. And they are used to generate a lot of code: recent 
estimates suggest that as much as 30% [34] or 40% [15] of a pro-
grammer’s code originates from programming assistants when in 
active use. The widespread and frequent usage of programming 
assistants suggests that they may be here to stay. 

For the efort that they save, programming assistants introduce 
another kind of efort. Namely, programming assistants eliminate 
efort writing code and replace it with efort reviewing code [4]. 
Studies have reported programmers spending an undesired amount 
of time understanding and debugging generated code [3, 61]; they 
spend time examining generated code [3], often examining details 
of generated code’s logic in depth [34]. Obstacles to understanding 
generated code include its use of previously-unknown APIs or 
methods, structural complexity [34], and the length of generated 
code [3, 34]. For particularly long generations, programmers have 
described themselves as “distracted by everything [the assistant] is 
throwing at [them],” “lost in the sauce,” and “discombobulated” [3]. 
Perhaps troublingly, programmers have reported understanding 
less of how and why generated code works [4], with one lab study 
suggesting that programmers apportion less attention to generated 
code than that written by human authors [1]. 

This raises the question of whether our modern notion of the 
programming assistant is incomplete. A widely-used metaphor for 
programming assistants is that they are copilots. If a programming 
assistant is a copilot, it is one that does its work without explaining 
its actions. Its actions are visible, but the copilot makes no efort 
to make them understandable. This is desirable when the copilot’s 
actions are familiar, like when it generates code with known idioms. 
However, it is less desirable when the copilot’s actions are unfamil-
iar, like when it generates code with unfamiliar APIs and structures. 
If programmers are expending efort to understand generated code, 
perhaps the notion of the copilot needs to be expanded to one of an 
instructive copilot that prioritizes the programmer’s understanding 
by explaining its work. 

In this paper, we explore this notion of the instructive copilot. 
We develop a tool, Ivie, which provides lightweight, anchored, 
AI-generated explanations of just-generated code. When using an 
editor with Ivie, programmers see generated code instantly accom-
panied by brief labels that explain what the code does (Figure 1). 
These labels are meant to answer questions like “what does this 
parameter do?” or “what does this segment of generated code do?” 

That is, they are tailored to helping programmers understand un-
familiar APIs and idioms in the generated code. We call the labels 
instantly visible in-situ explanations (i.e., Ivie). The labels are de-
signed for tight integration into the modern workfow of generating, 
reviewing, and accepting code; they are meant to eliminate extra-
neous time it takes to provide answers to basic questions about the 
code prior to the programmer accepting or rejecting the code. The 
labels are very easy to invoke and dismiss. They explain code at the 
level of both blocks (for long, multi-line generations) and expres-
sions (for dense one-liners). By providing instant, brief, anchored 
explanations, Ivie seeks to remove information costs intrinsic to 
comparable forms of support for understanding generated code 
like chatbot-based programming helpers (e.g., [20, 21, 38]) or code 
explainers that require code selection (e.g., [17, 23]). 

Ivie has a straightforward architecture, leveraging an of-the-
shelf LLM to segment code into explainable units (at both the expres-
sion and block level), and create brief explanations of those units. 
Most of Ivie’s code consists of presentation logic that overlays LLM 
outputs as anchored explanations in the editor. We demonstrate the 
viability of bringing Ivie to production editors by implementing it 
in the widely-used Visual Studio Code [62]. 

We present a detailed in-lab usability study of Ivie. The study 
explores Ivie’s impact on the experience of understanding gener-
ated code containing unfamiliar APIs. The study compared Ivie to a 
contemporary AI-based help-seeking baseline, namely a GPT-based 
in-editor chatbot that can answer questions about selected code. 
Our study shows that there is a clear place in the ecosystem of pro-
gramming tools for Ivie: it was preferred to the chatbot by nearly 
all participants. Ivie led to improved comprehension of generated 
code, while decreasing perceived task load. Participants described 
Ivie as being highly useful without being distracting. They charac-
terized Ivie as a complementary addition to a modern programming 
workspace alongside documentation and chatbot help. 

In summary, this paper contributes: 

• The notion of an instructive copilot as a programming as-
sistant that not only generates code, but also supports its 
understanding with timely, anchored, brief explanations. 

• The implementation of this idea in Ivie, an extension to the 
programming assistant that augments generated code with 
overlay descriptions that are brief, informative, instantly 
visible, and easy to dismiss. 

• A usability study that confrms Ivie’s value as an desirable 
complement to a programming assistant that improves code 
comprehension with low task load and distraction. 

2 BACKGROUND AND RELATED WORK 

2.1 User experience of programming assistants 
In recent years, a number of tools have incorporated large language 
models (LLMs) to provide production-level assistance for generating 
and describing code. These tools, often called “programming assis-
tants,” include GitHub Copilot [22], OpenAI GPT-4 [40], Amazon 
CodeWhisperer [2], IntelliCode Compose [56], and CodeT5+ [64]. 
As programming assistants have been adopted by a growing num-
ber of programmers, researchers have begun to examine their efect 
on programming activity. Some of these studies have characterized 
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the tools’ infuence on how programmers understand code, partic-
ularly generated code [1, 3, 34, 36, 61, 67]. We detailed takeaways 
from these studies in detail in Section 1; in brief, programmers 
report understanding less of the generated code than they do of the 
code they write, spending time examining the code, and sometimes 
fnding the generated code difcult to read. These observations 
motivate our focus on developing aids to support the reading of 
generated code. 

A recent study by Barke et al. [3] characterized interaction with 
programming assistants as consisting of two modes: acceleration, 
where the assistant helps a programmer write code of the kind 
they already have some idea how to write; and exploration, where 
the programming assistant assists a programmer in determining 
and carrying out goals. We posit that a tool like Ivie could be 
being useful in supporting both modes of interaction. As our results 
suggest in Section 6.1, explanations of the kind Ivie provides can 
be helpful in learning about the behavior of unfamiliar code that 
might be generated during exploration, as well as in providing a 
timely comprehension aid for longer and more complex code that 
might appear in the middle of acceleration. 

2.2 Program comprehension 
Program comprehension—or the process of understanding com-
puter code—is an essential and frequent programming activity. In 
one study, program comprehension accounted for as much as 50% 
of programmers’ time [66]. Program comprehension has been re-
searched in depth by the HCI and software engineering research 
communities (see for instance reviews by Détienne [14] and Crich-
ton [13]). In some theories of program comprehension (e.g., [14]), 
comprehension relies on the identifcation of schemas—or mean-
ingful structures—in the code, and synthesis of those schemas into 
a mental model of the program. We see the role of Ivie as recog-
nizing unfamiliar schemas in code on a programmer’s behalf, and 
explaining them in approachable terms. 

Program comprehension is sometimes considered as taking place 
either top-down or bottom-up. When following a top-down ap-
proach, programmers form hypotheses about a program’s intent, 
and then verify those hypotheses by looking for recognizable fea-
tures or “beacons” in the code [6, 55]. When following a bottom-up 
approach, programmers progressively group units of the code into 
larger and larger abstractions [43, 52, 63]. We consider Ivie as pri-
marily supporting a bottom-up approach to comprehension with 
its explanations of expressions; at the same time, its block-level 
explanations provide some support for top-down comprehension, 
albeit at the level of dozens of lines of code. 

Numerous prior studies have sought to characterize the kinds 
of questions that arise as programmers read and write code [16, 
32, 47, 54]. Duala-Ekoko and Robillard [16], for instance, identifed 
20 difcult questions that programmers faced when working with 
unfamiliar APIs. Many of these are answerable using Ivie. For 
instance, we have seen Ivie answer questions like “what roles do 
the arguments of a given method play in its usage,” “what is the 
valid range of values for a primitive argument or a given method,” 
and “how do I determine the outcome of a method call?” from Duala-
Ekoko and Robillard [16]’s study, or “what is the ‘correct’ way to 
use or access this data structure” from Sillito et al. [54]’s study. 

Ivie is tuned to answer questions about the high-level behavior of 
passages of code a couple dozen lines in length, as well as the role 
of individual expressions in the behavior of a statement. 

There exist many methods for evaluating program comprehen-
sion, including think-aloud protocols [49, 63], memorization [43, 51, 
55], comprehension tasks [55], fMRI readings [53], near-infrared 
spectroscopy [37], EEG [19], and eye tracking [1, 31, 50, 57]. Tang 
et al. [57] recently observed programmers’ gaze when validating 
and fxing generated code; their study was able to reveal periods of 
careful attention to generated code. Our own study measures com-
prehension primarily through a set of questions about generated 
code, and coarse gaze-based measures of attention. 

2.3 Interactive program comprehension aids 
The HCI literature is replete with interactive systems research fo-
cused on helping people understand programs. Recently-developed 
research systems have supported the understanding of programs 
in many senses. For instance, they have supported sensemaking 
about code [30] and APIs [29] with novel annotation afordances, 
understanding of code examples with concept-annotated code snip-
pets [69] and collated views of API usages [24, 68], and understand-
ing how existing web pages are implemented with new methods to 
inspect their underlying source [7, 10, 26]. 

Some of this research has, like Ivie, focused on supporting in-situ 
understanding of code—that is, augmenting the editor in a way that 
helps a programmer understand the code that is within their focus. 
Hofswell et al. [27] introduced a grammar of in-editor visualiza-
tions that can be used to understand the values of myriad data types 
with a small footprint. The projection boxes project [33] provides 
a framework for live programming with Python where values of 
expressions can be viewed adjacent to the lines on which they ap-
pear. LEAP [18] applies this idea to support the comprehension of 
AI-generated code. Tutorons [25] explores a similar notion to this 
paper, generating brief “microexplanations” for individual lines of 
code that appear in tutorials to provide on-demand comprehension 
assistance. A design space of related forms of on-demand help was 
explored by Potter et al. [44] in their design of ExplainThis. Ivie is 
inspired by this prior work, exploring how some of the above afor-
dances could be brought into the editor to support expression- and 
block-level code understanding in an era where LLMs are powerful 
enough to segment and explain code on demand. 

A growing number of tools have brought LLMs into the code 
editor to support code understanding. Notable contemporary exam-
ples include CodeHelp [35], EasyCode [17], Genie AI [20], GitHub 
Copilot X [21]. Nam et al. [38] recently designed and evaluated a 
system of this kind, which supports explanation of selected code, 
details of API calls used in the code, explanations of domain-specifc 
terms, and provision of usage examples for an API, with a study 
showing advantages over web browser-based help. Ivie explores an 
interaction model where similar kinds of support are provided, in a 
way that is tightly integrated with the programming assistant to 
instantly provide clarifying information to programmers without 
diverting their attention away from the code. 

3 SYSTEM 
The purpose of Ivie is to help programmers acquire an understand-
ing of whether generated code matches their intentions, and how 
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they should modify it if it does not. It has a particular focus on 
helping programmers understand unfamiliar APIs and idioms in 
generated code. When combined with a programming assistant like 
Copilot, Ivie embodies the idea of an instructive copilot—that is, a 
copilot that it explains its work in a way that empowers a user to 
further refne its output. There is considerable nuance in develop-
ing a usable instructive copilot. A fundamental tension is showing 
information to programmers in a way that is simultaneously in-
stant and unobtrusive. Below, we describe a set of design goals for 
instructive copilots that we believe address this tension. The goals 
are motivated by best practices in interaction design, and by choices 
that arose during Ivie’s iterative development. The goals serve to 
crystallize how our vision departs from contemporary, chat-based 
approaches to programming help (Section 2.3). Specifcally, we posit 
that instructive copilots should provide explanations that are: 

D1. Anchored. Programmers should not have to divert their at-
tention from generated code to get assistance in understanding it. 
Doing so could induce split attention [9] and undesired cognitive 
load. Instead, explanations should appear in-situ, next to the code. 

D2. Lightweight. Explanations should support a basic understand-
ing of the code at a glance. They should be simple enough that they 
impose only a small load on programmers’ working memory. This 
is consistent with the principle of minimalism, wherein documen-
tation is kept concise and focused on users’ tasks [8]. 

Furthermore, guided by standard usability recommendations in 
favor of speeding up frequent actions and allowing fexible ordering 
of tasks [39], we recommend that explanations are: 

D3. Easy to invoke. Programmers should not need to expend any 
efort to see explanations. 

D4. Easy to dismiss. Explanations should be dismissed automati-
cally when they are no longer needed. 

D5. Accessible anytime. While explanations should be hidden 
when not needed, it should be easy for programmers to bring ex-
planations back for any generated code when they need them. 

We also posit that explanations should appear at multiple multi-
ple levels of abstraction. As discussed in Section 2.2, programmers 
need to understand the behavior of code not only at the level of 
individual expressions, but also higher-level structures. Finally, ex-
planations of neighboring expressions should appear in parallel, 
because the task of understanding a programming statement often 
requires making sense of the interrelated behaviors of its compo-
nent expressions. In the upcoming sections, we describe how these 
goals are addressed in the design and implementation of Ivie. 

3.1 Interface Design 
Ivie is designed to deliver on the design goals with the following 
afordances. We direct readers to Figure 1, demo video, and the 
scenario (Section 4) to see how these afordances appear to users. 

3.1.1 Expression-level explanations. When the programming assis-
tant suggests a single-line suggestion, Ivie shows explanations of 
major expressions that make up that line (Figure 4). Major expres-
sions are automatically identifed using an LLM (see Section 3.2.2). 

Then these expressions are assigned brief descriptive labels. These 
expression-level explanations are designed to adhere to the design 
goals, with the following choices: 

Anchored (D1). To reduce split attention that arises when ac-
cessing conventional forms of documentation, explanations appear 
anchored alongside the code, as close to the expressions they explain 
as possible. Labels are associated with expressions using proximity 
and shared color on the borders of the expression and label. They 
appear beneath the suggestion, as we anticipate the context above a 
line of code will be more important than the context below it when 
the programmer is choosing whether to accept the suggestion. In 
the case where many labels are generated, some of the labels are 
moved further away from their expressions, in which case leader 
lines are used to associate expressions with labels. The programmer 
can hover over a label to highlight just that label and underline 
the corresponding expression. Labels track the code even as the 
programmer scrolls, zooms, and resizes the editor. 

Ivie does not currently support foating explanations that stand 
apart from the code. Floating explanations could be useful in sit-
uations where there is more to explain that what appears in the 
code—like other arguments to an API that were not generated. 

Lightweight (D2). Explanations are very short—typically only 1– 
2 sentences long. Because the explanations are short, programmers 
have the opportunity to get the gist of an expression very quickly. 
A consequence of the labels’ brevity is that they take up little 
visual space, allowing programmers to continue to refer to the 
surrounding code as they consider whether to accept a suggestion. 

Easy to invoke (D3). Explanations are (near) instantaneous—they 
appear within seconds of the appearance of a suggestion (i.e., as 
quickly as our implementation retrieves them). Appearing auto-
matically, they require no efort to invoke. They also appear for 
all expressions in a line at once. The parallel appearance of expla-
nations can help a programmer visually segment the line into its 
meaningful parts, and synthesize an understanding of the line by 
referring to the interrelated meanings of its expressions. 

Easy to dismiss (D4). In-situ explanations run the risk of being 
unwelcome should they distract a programmer. To reduce this risk, 
we made it easy to dismiss explanations. Explanations are automat-

ically dismissed as soon as a suggestion is accepted, or as soon as 
the programmer clicks away from the suggestion. 

3.1.2 Block-level explanations. When the programming assistant 
suggests a long block of code (two or more lines), Ivie helps a 
programmer understand the high-level steps taken by the code 
by showing explanations of blocks of code (i.e., contiguous sets of 
lines) in the right margin (see example in Section 4). The interaction 
design around block-level explanations is the same as expression-
level explanations, with the following diferences: 

Appearance in the margins. To avoid the risk of occluding code, 
block-level explanations appear in the right margin. They appear 
just to the right of the right-most character in the suggested code, or 
if the suggestion is very long, right after the 80th character. Fading is 
used on the left side of the explanations to suggest that code is being 
hidden underneath them. The explanations are associated with 
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Figure 2: The implementation of an instructive copilot for 
programming. Ivie creates interactive overlays that explain sug-
gestions made by a programming assistant. When the programming 
assistant (e.g., Copilot) displays the suggestion, Ivie submits that 
suggestion in a prompt to an LLM, requesting that the code be 
segmented and explained. Ivie then integrates the explanations 
into the editor as overlays beneath the expressions they explain. 

lines of code with a single border on the left side of the explanation 
indicating the extent of code lines to which the explanation applies. 

Expression-level drill-down. When using early prototypes of Ivie, 
we found that block-level explanations provided a useful entry 
point to understand suggestions, but sometimes they did not go 
into enough detail about what parts of the code did. Therefore, we 
extended block-level explanations to allow programmers to access 
details about the code on-demand, allowing them to hover over any 
line to see expression-level explanations for that line. 

3.1.3 Making explanations accessible anywhere, anytime (D5). Ivie 
was designed to automatically dismiss explanations to reduce their 
imposition on programmers. A consequence of this choice is that 
programmers lose access to explanations when they accept code, 
when they may wish to continue seeing them. Ivie provides a button 
that allows programmers to see explanations after they have ac-
cepted suggestions. Once they press this button, explanations show 
not just for the generated code, but for the entire fle: block-level 
explanations are shown in the margins, and the programmer can 
hover over any line in order to see expression-level explanations. 

3.2 Implementation 
A tool like Ivie can be implemented in a straightforward way, dele-
gating much of the work to external tools and focusing mostly on 

Please dissect the following line of code, and explain 

the unfamiliar vocabulary and structures with less than 

15 words each. Include ranges for parameter values and 

describe how changes in these parameters will affect 

the output.

Prompt:

fig, ax = plt.subplots(2, 1, figsize=(14, 10))

Output:

plt.subplots $#$ Create a figure and set of subplots.

2, 1 $#$ 2 rows, 1 column of subplots.

figsize=(14, 10) $#$ Width and height of entire figure.

fig $#$ The whole window/figure containing subplots.

ax $#$ Array of individual subplot axes.

Prompt:

df_all.merge(df_Apr, on='City', how='left', 

suffixes=('_all', '_apr'))

Output:

Figure 3: A prompt for requesting expression-level explana-
tions of generated code. This prompt requests explanations of 
suggested code. It provides a single example of how it would like 
code suggestions to be split into expressions with accompanying 
brief explanations of those expressions. 

tailoring their output and tight editor integration. In this section 
we describe how Ivie works. A visual summary of Ivie’s implemen-
tation appears in Figure 2. From suggestion to explanation, Ivie 
undertakes the following steps: 

3.2.1 Activating Ivie. Ivie’s explanations are triggered when a 
programming assistant—in our implementation, GitHub Copilot— 
proposes a suggestion. Ivie listens for suggestions by registering a 
listener with an internal VS Code API that is triggered whenever 
“ghost text” (VS Code’s phrase for an in-editor suggestion) appears 
in the editor. Ivie collects the ghost text, and then composes a query 
to an LLM to retrieve explanations. 

3.2.2 Requesting explanations. Ivie then generates explanations. 
Explanations are composed of two parts: 

• A segmentation of the code into explainable parts (i.e., blocks 
or expressions) 

• Natural language descriptions of those parts 

Explanations are generated by querying a contemporary LLM. 
We use the GPT-3.5 text-davinci-003 model, and access it through 
OpenAI’s API. The LLM is prompted to simultaneously split and 
explain the code (see an example in Figure 3). The prompt asks for 
explanations to be brief yet informative. The prompt includes a 
single example demonstrating the intended output. 

One of two prompts is submitted to the LLM, depending on 
the size of the suggestion; diferent prompts are used to generate 
block-level explanations and expression-level explanations. We set 
the temperature to 0.5 and max_token to 1000; these parameters 
were chosen to achieve good explanations with as little latency as 
possible. When a suggestion consists of two or more lines, Ivie actu-
ally submits many requests: block-level explanations are requested 
for the full suggested text, and expression-level explanations are 
requested for all of the constituent lines, in parallel. Prompts and 
parameters appear in the supplemental material. 
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Figure 4: Explaining expressions. After a programming assistant suggests code, Ivie fetches explanations of that code. If the suggestion 
consists of a single line, Ivie reveals explanations of meaningful expressions within that line, such as function calls, and parameters for those 
calls. The purpose of these explanations is to make explicit the intent of code that may not be self-evident (as might be the case for the 
programmer seeking to understand the precise behavior of the suggested table merge operation above). 

Our experiences with the LLM suggests that it achieved perfor-
mance that was, while not perfect, quite good. In a test we ran 
of 100 generated explanations for two API calls used in our us-
ability study (namely, “cv.GaussianBlur(img, (5, 5), 0)” and 
“cv.Canny(img, 100, 200)”), we assessed 97% as being correct. 
Our criteria for correctness were that explanations needed to be 
complete (i.e., the function name, return value, and all arguments 
were described), explanations needed to be accurate (i.e., expla-
nations refected the labeled expressions without any false infor-
mation), and that the code needed to be properly segmented (i.e., 
the LLM correctly detected the bounds of each expression without 
bleeding over into adjacent expressions or delimiters). The positive 
usability results in Section 6 suggest that the current error rate 
around expression segmentation and explanations yields a positive 
frst-use experience. Our discussion elaborates on tensions around 
using AIs for explaining code in comprehension tools. 
3.2.3 Rendering explanations. Upon receipt of a response from the 
LLM, explanations are rendered as overlays on top of the editor 
widget. For expression-level explanations, explanations are ren-
dered all at once. For block-level explanations, we request streamed 
responses from the LLM (i.e., setting the stream parameter to true). 
Because block-level explanation requests take longer to fulfll, this 
allowed us to render explanations for blocks as they are received, 
rather than waiting for all of them to become available. 

Then, explanations are placed next to the expressions they ex-
plain. The default position of an expression label is left-aligned 
beneath an expression. Label placements are further adjusted to 
avoid overlap. If two labels overlap, the label to the right is moved 
rightward until there is no longer overlap. Labels are limited to a 
maximum width (approximately a few words long) to prevent any 
one label from taking up too much horizontal space. If a label is ren-
dered far away from its expression (which we encode as less than 
50% horizontal overlap with the expression), leader lines are added 
to visually link all explanations to their accompanying expressions. 

Requesting explanations for the entire fle. When a programmer 
clicks Ivie’s button for showing explanations of the entire fle’s 
contents (Section 3.1.3), Ivie submits queries to the LLM as if the 
entire fle’s contents were one multi-line suggestion. This has the 
limitation that when the programmer requests explanations, the 

explanations might change each time a request is made. This is an 
artifact of the current implementation; we believe future implemen-
tations of Ivie should preserve explanations between requests. 

4 SCENARIO 
In this section, we describe the experience of interacting with Ivie 
in a brief narrative walkthrough. For a demonstration of interacting 
with Ivie, we encourage readers to view the accompanying video 
fgure. Imagine Dorothy, a climate scientist who is about to perform 
exploratory data analysis of longitudinal climate data about the 
Amazon rainforest. Dorothy plans to use a common code-based 
data analysis toolset: namely, a contemporary code editor equipped 
with Copilot, and a Python environment with the pandas data 
manipulation library and Matplotlib visualization library pre-
installed. In this scenario, Dorothy is using a code editor that has 
been extended with Ivie. Dorothy has passing knowledge of pandas 
and Matplotlib—enough to do work with them—though she often 
consults online resources to fnd out how to fne tune the API 
functions to manipulate and visualize data as she would like. 

Viewing expression explanations. After Dorothy has spent some 
time loading, cleaning, and manipulating her data, she decides 
that she is ready to merge some felds from a derived data frame— 
df_Apr—back into the main data frame containing all of her data— 
df_all. When she queries Copilot for a suggestion of how to merge 
the two frames, she sees the following suggestion, augmented with 
explanations from Ivie (Figure 4). 

Without Ivie, many parts of this line of code would have been 
difcult to understand. For instance, does a “left” join preserve all 
of the rows from the df_all, df_Apr, or both? What values ap-
pear in the new columns for rows from df_all that do not have a 
corresponding row in df_Apr? The overlay explanations answer 
these questions, and others. All rows in df_all will be maintained; 
NaN values will be inserted wherever the merged rows have new 
columns. The explanations remind Dorothy to add a guard to her 
code to check for NaN values. Dorothy is also reminded that the 
names of some of the columns will change, as the suffixes argu-
ment will rename columns that appear in both data frames. In this 
way, Dorothy acquires a detailed idea of the result of the merge that 



Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

Figure 5: Explaining multi-line suggestions. When a programming assistant suggests multiple lines of code, Ivie splits up and explains 
that code. Its explanations appear in the right margin of the editor. The explanations are meant to help a programmer get a high-level 
understanding of the code. In the pictured scenario, these explanations might help the programmer understand that the two longest sections 
of the code suggestion confgure each of two subplots, each with a diferent slice of the data. 

otherwise would need to have been pieced together from selective 
reading within the Pandas documentation. 

Viewing high-level explanations of code suggestions. Later, Dorothy 
arrives at a stage of analysis where she would like to visualize a 
slice of her data. She would like to examine the temperature and 
rainfall for the cities that have experienced each most extremely. 
She outlines a Python function for visualization, and then Copilot 
makes a 16-line suggestion. Ivie augments the suggestion with 
descriptive labels (Figure 5). 

The explanations help Dorothy orient to the code. Her initial 
skim of the code leads her to erroneously interpret that the function 
sets up one fgure, and then confgures the x-axis (in the sequence 
of lines beginning with “ax[0])”, and then the y-axis (in lines be-
ginning with “ax[1]”). She pauses to examine the labels that Ivie 
provides in the right margin, and by the time she reads the third 
label, she realizes that the blocks of code she associated with the x-
and y-axes in fact confgure two distinct plots. Now she knows that 
she can edit the block of code for “ax[0]” to confgure the plot for 
the temperature data for the city with maximum temperature. She 
further validates her understanding of what individual lines of code 
do by hovering over them—as she hovers over each line, expression-
level explanations show for that line. These explanations allow 
Dorothy to understand how she can confgure the formatting string 
“%0.1f” to include more signifcant digits, and that she can use the 
“integer” parameter to confgure whether ticks in the y-axis of the 
second plot are constrained to integer values. 

5 STUDY DESIGN 
To evaluate Ivie, we conducted a usability study. The study fo-
cused on the impact of Ivie on working with generated code using 
unfamiliar APIs. We sought answers to the following questions: 

Q2. Does Ivie infuence how much attention programmers give 
to generated code? Our hypothesis was that programmers would 
more closely examine generated code when it was accompanied by 
lightweight explanations. 

Q3. How distracting is Ivie? While Ivie was designed to only 
minimally distract programmers, we sought evidence of just how 
much distraction they really experienced. 

Q4. How does Ivie compare to chat-based AI code comprehension 
aids? What are the benefts and downsides of Ivie compared to 
other contemporary alternatives for comprehension assistance? 

5.1 Participants 
32 programmers were recruited from academic mailing lists in the 
computer science department at the University of Pennsylvania. 
31% were doctoral students, 63% were master’s students, and 3% 
were bachelor’s students.1 16% of participants reported their level 
of skill with Python to be advanced, and 50% reported profcient, 
31% 2 beginner, and 3% no experience.  

As intended, programmers were largely unfamiliar with the 
libraries involved in the programming tasks. The main library used 
in the tasks was the OpenCV computer vision library [41]. 38% of 
programmers reported no experience with this library, 53% were 
beginners, and 9% were profcient. When asked how familiar they 
were with computer vision generally, 31% were not at all familiar, 
53% a little familiar, 13% somewhat familiar, and 3% very familiar. 
Participants also had very little experience with the library used in 
the open-ended programming task (see Appendix B). 

31% of programmers had previously used Copilot. 90% of the pro-
grammers who had used Copilot reported using it for a few months 
or less, and only one participant reported using it for nearly a year 

1Some percentages describing participant backgrounds do not add up to 100%. This 
refects occasional non-response to questionnaire items. 
2All profciency questions allowed participants to report the level of “expert.” No 
participants selected this level for any question. 

Q1. Does Ivie improve understanding of generated code? Ivie’s goal 
is to explain generated code to support high-level understanding, 
so we evaluated programmers’ understanding of generated code. 
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(as reported in a multiple-choice question). Although these partici-
pants had previously used Copilot, we anticipated they would not 
experience a bias in the form of a novelty efect with Ivie, because 
our baseline was also novel in extending Copilot’s functionality. 
Because our baseline involved interacting with an LLM-based chat-
bot, programmers were also asked about their experience using 
LLM-based chatbots. All (100%) participants had previously used 
ChatGPT before, and 59% had additionally used some other chat-
based AI. 38% reported having a few months of experience using 
chat-based AI, 47% had about half a year, 13% had about one year, 
and 3% reported between one and two years of experience. 

5.2 Baseline 
Our study compared Ivie to a strong modern baseline. The base-
line was the modern VS Code IDE with its built in documentation 
tooltips, access to a web browser, and an editor plugin providing an 
AI-based chatbot. We call our baseline condition the “chat condition” 
due the presence of the chatbot. 

We chose a chatbot plugin for the baseline to represent a family of 
recently-developed AI-based code comprehension plugins (e.g., [12, 
20, 21]). In these plugins, the main feature is a chat window to left 
side of the editor where a programmer can ask questions about their 
code, and follow-up questions after the chatbot responds. These 
plugins often support the ability to select arbitrary code and request 
an explanation of that code from the editor’s menus. We chose the 
plugin “EasyCode” [17] which provides all these features and has 
lower latency among alternatives. 

To promote parity between the baseline and Ivie, we confgured 
both the chatbot and Ivie to use GPT-3.5 for their explanations. 
Aside from the presence of the chat functionality, the editor was 
confgured identically for both the baseline and Ivie. 

5.3 Procedure 
Each participant came to our lab for a one-hour-long session. To 
reduce demand characteristics [42] that might have biased a par-
ticipant in favor of Ivie, we told them our goal was to understand 
the infuence of two explanation tools—both the chat baseline and 
Ivie—on understanding generated code. To avoid leaking our role 
in developing Ivie, we referred to both tools using pseudonyms 
“chat explanations” and “overlay explanations.” Participants con-
sented and completed a questionnaire about their programming 
background before completing the following stages:3 

5.3.1 Tutorial. The programmer was instructed in the use of all 
tools used in the study—Copilot, the chat baseline, and Ivie. The tu-
torial consisted of a 5-minute slide presentation, and an activity the 
programmer was guided to create a data visualization with Copilot 
and invoke both the baseline and Ivie to access explanations. 

5.3.2 Timed Programming Tasks. The programmer then undertook 
two timed programming tasks (Tasks A and B), one with Ivie, and 
one with the baseline, with order of tasks and interfaces counterbal-
anced. Each task required the programmer to write a short snippet 
of image manipulation code using OpenCV. As a prompt, partici-
pants were provided an input image, a target output image, a goal 

3All questionnaires, task instructions, starter code, and assessments can be viewed in 
the supplemental material. 

(e.g., “blur the image so it resembles the target image”), and starter 
code. Both tasks were designed to be similar in complexity and fo-
cus. Each task require understanding of an OpenCV API that would 
be unfamiliar to the programmer. The tasks were validated through 
extensive piloting until we were confdent that programmers would 
almost always be recommended the expected APIs by Copilot, and 
that the explanations from Ivie would be coherent. Tasks lasted 5 
minutes each. This amount of time was sufcient to ensure that 
all programmers would make some progress (e.g., achieve some 
blurring of an image), while introducing a cutof that let us compare 
how closely each programmer approached to the target parameters 
across conditions. Programmers were allowed to use a web browser 
in either condition, though no programmers did so. 

After each task, the programmer reported task difculty using 
the NASA-TLX questionnaire [58] and answered Likert scale ques-
tions about how useful the available tools were in helping them 
understand generated code. To decrease the likelihood that program-
mers studied code to an unnatural degree during the programming 
tasks, we had them complete both tasks before telling them that 
their understanding of code would be assessed. 

5.3.3 Timed Comprehension Assessments. After each programming 
task, comprehension of generated code was assessed with a timed 
assessment. The assessment focused solely on the OpenCV API 
call—i.e., what we believed would be unfamiliar generated code— 
that was used for image manipulation in the programming task. 
Each assessment consisted of 20 “yes” / “no” questions about the 
API call, including the function name and its arguments (see details 
in Appendix A). Our choice to time the assessment was inspired 
by priming tests that have been used in program comprehension 
(e.g., [43]), where response time in answering questions is used to 
measure the strength of learned associations. A potential threat 
to validity is that answers to comprehension questions resembled 
Ivie’s in length (i.e., programmers indicated the meaning of an 
expression by selecting from a set of short text descriptions). We 
note, however, that answers resembled descriptions of expressions 
similarly well for the the baseline and Ivie. After running the study, 
a follow-up investigation of 12 randomly-sampled programmers’ 
session videos showed that, of the correct answers, 83.3% exactly 
matched the description of the expression from Ivie, and 88.9% 
exactly matched the description of the expression shown by the 
baseline. The diference is that descriptions of expressions appeared 
as part of much longer texts in the chat baseline, which is just the 
problem that Ivie is meant to address. 

5.3.4 Open-Ended Programming Task. The programmer was given 
the remainder of the time (typically 10 minutes) to explore Ivie’s 
support for an exploratory programming task (see details in Ap-
pendix B). This task was designed to help participants ground 
qualitative feedback on the anticipated usefulness of the tool. 

5.3.5 Qestionnaire + Interview. The programmer flled out a ques-
tionnaire where they refected on the usability of Ivie and the 
baseline. If there was time remaining in the session, we conducted 
a brief semi-structured interview. 

5.4 Measures 
To answer our research questions, we measured the following: 



Ivie: Lightweight Anchored Explanations of Just-Generated Code CHI ’24, May 11–16, 2024, Honolulu, HI, USA 

1. Code comprehension. We measured programmers’ accuracy 
and speed in replying to comprehension questions. 

2. Attention. We measured attention as the amount of time a 
programmer fxated on generated code. A Tobii Pro Spark eye 
tracker [59] was used to collect gaze position during all of the 
programming tasks. The code editor was instrumented to log the 
positions of all generated code, as well as the baseline’s chat window, 
and all of the labels that Ivie showed. The eye tracker was calibrated 
before each of the programming tasks.4 

3. Distraction. Programmers answered Likert scale questions 
about how distracting they found Ivie’s expression explanations, 
its block explanations, and the chat baseline. They reported task 
load using the NASA-TLX index. 

4. Comparisons to baseline. Programmers answered Likert scale 
questions comparing Ivie to the baseline, and were asked to elabo-
rate on the comparative benefts of the two tools. 

5.5 Analysis 
All comprehension questions were assessed using linear mixed-
efects models. These models incorporated the tool, the order of 
tools, task order, and interactions as fxed efects, and participant 
ID as a random efect. Statistical signifcance was assessed using 
an F-test with Satterthwaite’s estimate of efective degrees of free-
dom [48], with the Holm-Bonferroni method [28] to correct �-
values. For comparisons of Likert scale responses, we assess sig-
nifcance with a two-tailed Wilcoxon signed-rank test [65]. For all 
tests, the threshold for statistical signifcance was � = 0.05. Quali-
tative themes from questionnaires and interviews were determined 
following a thematic analysis process [5, Chapter 5], wherein one 
author performed an initial open coding and axial coding pass, a 
second author revised the complete results, and then the frst author 
validated and made slight adjustments the revised results before 
writing reports that appear below. 

6 RESULTS 

6.1 RQ1. Ivie improves code understanding 
Comprehension questions. Programmers answered comprehen-

sion questions signifcantly more correctly for tasks completed with 
Ivie than with the baseline (see Figure 6) (� = 23.6, � < 0.001). 
When using, Ivie, they answered an average of 90.2% of questions 
correctly, in contrast to 65.0% with the baseline (� = 26.7%). Pro-
grammers also answered questions more quickly with Ivie (� = 9.82, 
� = 0.011), answering questions in an average of 2.8 seconds 
(� = 1.0) about code they had seen in the Ivie condition, versus 3.6 
seconds (� = 1.3) for the baseline condition. 

Self-reported understanding. In their Likert scale feedback, pro-
grammers agreed that they understood the code when using Ivie 
(������ = 7 out of 7 on a Likert scale, � = 0.92), and found the 
explanations helpful for clarifying the code (������ = 7, � = 0.87). 
They reported signifcantly higher agreement than for the baseline 
for both questions (������ = 6, � = 1.69, � = 22, � = 0.002, and 
������ = 5.5, � = 1.94; � = 26, � = 0.001) (see Figure 8). 

4With the exception of the frst fve participants, for whom the eye tracker was cali-
brated only once at the beginning of the frst timed programming task. 
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Figure 6: Comprehension results. Each data point for a box plot 
corresponds to a programmer’s score on the assessment or their 
average question response time. Data is clustered by which tool 
(Ivie or baseline) was used for the programming task (Task A or 
B) associated with the assessment. For correctness, higher values 
are preferred. For time, lower values are preferred. The diferences 
of Ivie vs. chat baseline on both correctness (� < 0.001) and time 
(� = 0.011) are statistically signifcant. 

Task progress. An indirect measure of code understanding is pro-
grammers’ ability to successfully perform the programming task. 
We observed that 4 programmers ended a task in an error state with 
the baseline, whereas no programmers did so in the Ivie condition. 
Appendix C further discusses that, for 2 of 4 confgurable param-
eters in the APIs under study, programmers arrived signifcantly 
closer to the target values. 

6.2 RQ2. No observed efect of Ivie on attention 
Duration of attention on generated code. Programmers spent less 

time less time looking at generated code in the Ivie condition 
(� = 3.36 minutes, � = 1.56) in comparison to chat baseline (chat 
baseline: � = 4.13 minutes, � = 1.59). However, the test did not iden-
tify this diference as statistically signifcant. (� = 4.25, � = 0.14). 

Self-reported efect on attention. Some programmers reported 
that Ivie infuenced the way they looked at code when answer-
ing the open-ended questions, and in particular that they more 
closely examining the generated code with Ivie (P12, P31, P32). P32, 
for instance, told us that “when using [Ivie] , I carefully examine 
the completions instead of quickly accepting them.” P12 described 
themselves as “checking everything” when using Ivie. Program-
mers sometimes felt that Ivie encouraged the behavior of carefully 
examining code (P1, P26). 

6.3 RQ3. Ivie is not (too) distracting 
Task load. Programmers reported task load following each pro-

gramming task. Task load was assessed using fve dimensions from 
the NASA task load index: mental demand, hurry, performance, 
efort, and frustration. On all dimensions of task load, Ivie was seen 
as imposing less load than the baseline, including mental demand 
(Ivie: ������ = 2, � = 0.92 vs. baseline: ������ = 3.5, � = 1.62; 
� = 4.5, � < 0.001), hurry (Ivie: ������ = 2, � = 1.23 vs. base-
line: ������ = 4, � = 1.61; � = 10, � < 0.001), performance 
(Ivie: ������ = 1, � = 1.15 vs. baseline: ������ = 4, � = 1.70; 
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Figure 7: Task load results. Shown are programmers’ responses 
to 5 items from the NASA Task Load Index, collected after each 
timed programming task. Responses are grouped by which tool 
was used in the task. For all items, lower values are preferred. 

� = 40, � < 0.001), efort (Ivie: ������ = 2, � = 1.02 vs. baseline: 
������ = 4, � = 1.56; � = 16, � < 0.001) and frustration (Ivie: 
������ = 1, � = 0.56 vs. baseline: ������ = 3, � = 1.79; � = 0, 
� < 0.001) (see also Figure 7). 

Self-reported distraction. After each task, programmers were 
asked to report how distracting they found the explanations pro-
vided by the tool in that task. Ivie’s explanations were reported as 
not distracting (������ = 1 out of 7 on a 7-point scale, � = 1.01), 
and signifcantly less distracting than the explanations from the 
chat baseline (������ = 3, � = 1.72; � = 30, � < 0.001, also see 
Figure 8). In the closing questionnaire, programmers reported that 
Ivie was less overwhelming (������ = 2, � = 0.94) and distracting 
(������ = 2, � = 1.02) than the chat baseline (where 1 indicated 
that the chat baseline was worse, and 5 indicated that Ivie was 
worse, also see Figure 9). 

6.4 RQ4. Ivie complements chat-based AI code 
comprehension aids 

Direct comparisons to baseline. As mentioned above, program-
mers reported Ivie as being signifcantly less distracting and over-
whelming than the chat baseline, and reported better understanding 
the code. When comparing the two tools on a 5-point Likert scale 
(with 5 indicating a preference for Ivie) programmers also reported 
that Ivie’s explanations were clearer (������ = 5, � = 0.87). Quali-
tative feedback painted a picture of Ivie as complementary to tools 
like the chat baseline. In the words of P3, they were both “great tools 
to use, both have their utilities. Hard to choose only one out of them. 
Would be helpful to use in conjunction.” Discussion Section 7.2.1 
talks at length about the perceived benefts of Ivie, including the 
conciseness and anchored nature of the explanations. Perhaps for 
these reasons, participants largely indicated that if they were to 
choose one of the two tools for future tasks involving AI-generated 
code, they would prefer Ivie (������ = 4.5 of 5, � = 0.99) (see also 
Figure 9). The comparative advantages of the chat baseline were 
its support for acquiring conceptual understanding for a task (P22), 
and deciding what code to write (P6, P26), level of detail in expla-
nations (P3, P29, P32), and the ability to ask follow-up clarifcation 
questions (P5, P8, P10, P21). The ability to ask follow-up questions 
seemed a particularly resonant feature—22 of 32 programmers in-
dicated in their questionnaires that the ability to ask follow-up 
questions of the chat baseline was either somewhat or very useful. 

7 DISCUSSION AND FUTURE WORK 

7.1 Limitations 
Our study fndings are limited in the following ways. First, our 
results represent usability among a limited sample of the broader 
programmer population. The participants in our study were primar-
ily master’s and doctoral students. About two-thirds of participants 
had not used Copilot before the study. We anticipate that experi-
ences with Ivie would vary for programmers who are less experi-
enced at programming (and so less able to progress generally), more 
experienced (and so more knowledgeable about their toolsets), and 
those who have more established workfows of writing code with 
programming assistants (and therefore perhaps more resistant to 
extensions to those programming assistants). 

Second, our metric of fxation time does not necessarily capture 
the aspects of attention that are important. We measured attention 
as the total amount of time spent looking at generated code. This 
is a coarse-grained measure, in that it is does not diferentiate 
between desirable attention—like the frst read-through of code— 
from undesirable attention—like time spent debugging code that 
was not properly understood. In retrospect, we note that more 
nuanced measures may be necessary to assess whether generated 
code is attracting the kind of attention it should. 

Finally, the study only examined a very limited subset of tasks. 
The tasks were narrow, focusing on the understanding of individual 
APIs in short generated programs. To assess the utility of Ivie in 
supporting programming practice more broadly requires evaluation 
on a broader set of tasks of various domains and levels of complexity. 

7.2 Design implications for instructive copilots 
From our design and study, what do we now know about the efec-
tive design of instructive copilots? 

7.2.1 Reexamining the design goals. A frst question is: are the 
design goals we posed in Section 3 useful guides for instructive 
copilots? Qualitative feedback provides validation for these goals 
as useful guides for instructive copilots in this domain: 

D1. Anchored. One of the benefts of Ivie was that its explana-
tions were “visually accessible” (P15). Participants appreciated that 
they were targeted to specifc places in the code (P6) and “dissected 
the parameters.” (P4) This stood in contrast to chat-based help, 
which was seen as giving “long paragraphs of general ideas” (P26) 
and requiring one to move their “sight outside of my code editor, 
which was pretty annoying.” (P11). 

D2. Lightweight. Another frequently-mentioned advantage of 
Ivie was the lightweight nature of the explanations. Participants 
appreciated the conciseness of explanations (P4, P6, P15, P18, P22), 
describing them as easier to understand (P22, P25), simpler (P23), 
and less overwhelming (P4). In contrast, the chat explanations were 
often seen as providing too much information (P2, P6, P9, P24). 

D3. Easy to invoke. Participants appreciated that Ivie’s explana-
tions appeared instantaneously (P11, P19), and in particular that 
the explanations appeared right after Copilot generated the code 
(P12, P28). One questionnaire item asked participants how useful 
they found the ability to receive explanations instantaneously; 20 
of 32 participants reported it to be at least somewhat useful. 
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30 25 20 15 10 5 0 5 10 15 20 25 30
Number of responses

4 2 4 4 9 9BaselineUnderstood Copilot-generated code
2 4 8 18Ivie

3 2 2 3 6 7 9BaselineExplanations clarified Copilot code
1 2 7 22Ivie

1 7 1 3 7 4 9BaselineExplanations provided useful info
1 1 3 27Ivie

3 5 3 3 7 5 5BaselineExplanations fit my workflow
1 1 1 5 23Ivie

2 3 3 4 3 7 10BaselineWould use in future tasks
6 25Ivie

2 6 3 5 4 2 10BaselineExplanations improved efficiency
2 6 21Ivie

7 7 4 6 5 2 1BaselineExplanations were distracting
18 10 1 2 1Ivie

2 2 5 5 6 6 6BaselineFound explanations useful overall
1 1 9 21Ivie

Strongly disagree Strongly agree

Figure 8: Self-report refections on tool usability following timed programming tasks. Shown are programmers’ responses to 8 
self-report questions asked on a 7-point Likert scale after each timed programming task. 

D4. Easy to dismiss. Participants generally did not comment on 
the dismissal mechanism. To us, this indicates that for most partici-
pants the design was unremarkable and ft adequately. That said, 
some participants wished explanations were always-on (i.e., never 
dismissed) (P17, P24, P26), and P32 wished for a toggle button to 
turn explanations on and of. 

D5. Accessible anytime. Following the Ivie task, 25 of 32 par-
ticipants conveyed that it was at least somewhat useful to access 
explanations at any time. Some participants (P19, P26) conveyed 
that they would have liked if there was even less friction to bring 
explanations back up. 

7.2.2 Expanding the design goals. Our study also revealed opportu-
nities to extend our notion of the instructive copilot. We pose three 
additional design goals, following participant feedback. Namely, 
generated explanations should be: 

D6. Expandable. Explanations should let programmers ask for 
more details. Several participants wished for the ability to expand 
explanations (P12, P18, P20). As envisioned by P12, “ideally, every-
thing starts with a short explanation. If I don’t understand some-
thing, I could click for more details on that parameter.” One way 
to expand explanations is to let programmers submit follow-up 
questions about explanations to their AIs (P6, P8, P11, P21, P23). 

D7. Adaptable. Explanations should be adapted to the program-
mer. Some participants desired that Ivie adapted explanations to 
them (P11, P28). Explanations were seen as unnecessary for code 
that programmers already familiar with (P27, P30, P31). When an 
explanation did not convey any useful information, it was sug-
gested that the explanation was not shown (P6, P31); for instance, 
P6 singled out one such explanation, saying that “Descriptions like 
‘object’ are unhelpful. Filtering such terms would improve [Ivie’s 
explanations].” Future instructive copilots could be selective about 
what is explained and how, if they were extended to have a reason-
able notion of programmer knowledge and needs. 

D8. Controllable. It should be possible for users to confgure 
what content is explained and how it is explained. Some partici-
pants asked for controls that allowed them to infuence the level of 
detail in explanations (P5, P22). They also desired control over the 
granularity at which code was explained (i.e., at the expression- or 
block-level) (P19, P22). Furthermore, some wished for the ability to 
request explanations for specifc code selections (P6, P17, P18). 

7.2.3 Bringing instructive copilots outside of the code editor. While 
in this paper we validate the idea of the instructive copilot as an aug-
mentation to the code editor, we envision that instructive copilots 
could be useful in other AI generation settings as well. In particular, 
an instructive copilot could be useful in any setting where there is 
a timely opportunity for a user to learn more about AI-generated 
content. For example, perhaps a digital artist would wish to better 
understand how they reproduce a visual efect that was performed 
by an AI. For that artist, an instructive copilot might annotate the 
graphical objects it edited, and reveal the sequence of tools that 
could be used to attain that efect manually. Another example is 
writer who is working with AI to compose a passage that is full of 
references to external work. Perhaps the instructive copilot would 
describe the nature of the referenced work for any of the refer-
ences that it generates of which the writer is unfamiliar. We suspect 
that all such settings would beneft from the same design goals of 
anchored, lightweight explanations that are easy to invoke and ac-
cessible anytime. Where we believe there is interesting variation to 
explore between applications is in three aspects of an explanation: 

Why are explanations needed? For programming assistants, in-
structive copilots are useful for helping people understand unfa-
miliar parts of generated code. In other applications, we foresee 
several reasons to explain AI-generated content. The frst reason is 
that the generated content is confusing, as in the case of unfamiliar 
code or, say, generated math notation. A second reason is if a user 
wants to verify AI-generated content, as is the case of a writer who 
wishes to check a set of generated citations, or follow along with 
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Figure 9: Summative self-report refections. Programmers compared Ivie to the baseline on a 5-point ordinal scale according to fve 
diferent dimensions of usability (see labels on left). Pictured is an overall consensus that Ivie better helped programmers understand 
generated code, Ivie’s explanations were easier to understand, programmers would rather use Ivie for future tasks involving AI-generated 
code, and the explanations from the chat baseline were more overwhelming and distracting. 

an AI-generated proof. A third reason is to know how to reproduce 
AI-generated content, as is the case of the artist who wants to know 
how an AI achieved a visual efect. The reason for explanation 
infuences the next decisions of what gets explained and how. 

The unit of explainable material. In the context of programming 
assistants, we foresaw that programmers would need to understand 
individual expression (i.e., components of API calls) and blocks of 
code (e.g., multi-line idioms). In other scenarios, users would need 
explanations of generated graphical objects and citations; of texts 
at the level of individual words (like jargon), phrases (claims), full 
passages (chains of reasoning), and even multimedia content like 
segments of audio and video (e.g., efects produced in creativity 
tools). There needs to be a mechanism for segmenting AI-generated 
content (as we do with an external LLM) to identify explainable 
units and allows them to serve as anchors. 

The explanation. The content of an explanation follows from 
the purpose of explanation. If an explanation is meant to clear up 
confusing material, it might provide generated descriptions or links 
to external references. If it is instead meant to aid in the verifcation 
of AI-generated content, it might instead link to additional docu-
ments that provide supporting or conficting information. And if 
it is meant to help someone reproduce AI-generated content, then 
it might provide procedures for doing so. In the case of program-
ming assistants, we recommended that explanations be extremely 
concise, in part because the explanations would be interspersed 
between code generations that may be just seconds apart. In other 
settings, it may be less necessary for explanations to be concise, 
particularly if they are providing complex external information that 
may be supportive in verifying AI-generated content. 

Dismissal mechanism. Our design makes use of automatic dis-
missal when a user clicks away from generated content. This may 
not be the only appropriate choice. In other cases, where a user 
wants to continually refer back to the explanation (as in a writer 
who may want to continue looking at clips from a cited document), 
it may be better to preserve explanations until the user moves their 
focus away from the current paragraph or section. In other circum-
stances, it may be appropriate for explanations to be always-on, as 
was the desire of some programmers in our study. 

7.2.4 A critique of using AI to explain AI-generated content. The 
possibility of prototyping a tool like Ivie has only recently become 
possible with the release of contemporary AI tools. As with all AIs, 

those used by Ivie make mistakes. If the AI for Ivie makes a mistake, 
a programmer may draw inappropriate conclusions about the be-
havior of their code. In the worst case, this could lead to signifcant 
bugs and negative side efects in the generated code. In less severe 
cases, it could lead the programmer to reject useful suggestions, 
or slow them down as they attempt to comprehend code. In this 
way, one of the motivations of this tool—to better inform users 
about their AI-generated content—is undermined in part because 
AI-generated explanations may be themselves incorrect. 

We see these potential downside as further motivating research 
in AI to produce validated texts. In the meantime, Ivie might still 
be deployable in settings where they provide value despite inaccu-
racies. Programmers already use tools like ChatGPT [11] as a code 
understanding aid. Conventional documentation itself contains in-
accuracies and outdated information [46, 60], and programmers 
adjust to this reality. Amidst inaccuracies, we see Ivie as playing a 
role in supporting more exploratory tasks where the potential dam-
age of misunderstanding is limited, and in being consulted alongside 
up-to-date documentation for higher-stakes development tasks. 

8 CONCLUSION 
In this paper, we propose the notion of an instructive copilot, a 
generative AI assistant that provides just-in-time explanations of 
its generations. We explore this idea in the setting of programming 
assistants, developing a tool called Ivie that explains unfamiliar 
APIs in generated code. Our goals in designing Ivie were to pro-
vide explanations that were anchored to expressions in generated 
code, lightweight, easy to invoke, easy to dismiss, and accessible 
anytime. In a usability study, Ivie led to better comprehension of un-
familiar APIs in generated code versus a chat AI baseline. Ivie also 
reduced task load and self-reported distraction. Programmers pre-
ferred Ivie and saw Ivie’s concise explanations as complementary 
to longer-form programming help like AI chat aids. Furthermore, 
our study revealed opportunities to improve explanations by mak-
ing them expandable, adaptable, and confgurable. Altogether, this 
work shows the value of lightweight, anchored AI support as a tool 
in the programming help-seeking toolkit. 
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A TIMED COMPREHENSION ASSESSMENT 
The comprehension assessments asked two kinds of questions: 

• Identify the API. The participant was told to imagine that 
they were trying to achieve a particular image manipula-
tion goal and then shown the name of an API. They were 
asked whether the API could be used to achieve that goal. 
8 questions were shown, 1 with the correct API from the 
programming task, and 7 with incorrect APIs either entirely 
made up or taken from the OpenCV documentation. 

• Identify the purpose of a parameter. The participant 
was shown the API signature without parameter names (e.g., 
“cv.Canny(❶, ❷, ❸)”). They were directed to a specifc pa-
rameter (e.g., “❶”), shown a phrase (e.g., “higher threshold”) 
and asked if the phrase described that parameter. 4 questions 
were shown for each parameter, with 1 correct description 
and 3 incorrect ones. We asked 12 such questions. 

The test interface and procedure was designed so that response 
time measured only time to think and respond, to the extent possible. 
Responses were entered by pressing numeric pad keys “1” (for 
yes), “2” (for no), or “3” (for unsure), and then the Enter key to 
confrm. The programmer was trained in this system on sample 
questions before answering any of the questions we planned to 

analyze. They were told to answer questions as quickly as they 
were able. Screenshots of the assessment interface and a listing of 
all questions can be viewed in the supplemental material. 

B OPEN-ENDED PROGRAMMING TASK 
For the open-ended programming task, participants were asked to 
create a lightweight version of the classic Mario platformer game 
using Pygame [45], a 2D game development library for Python. 
Participants were given no starter code. Rather, they were provided 
with a blank code Python script, a terminal from which they could 
run that script, and a folder containing graphics they could use in 
their game. Links to these graphics are listed in the supplemental 
material. Participants had access to Ivie, EasyCode (the baseline 
chat AI), and the web. The task was designed to require program-
mers to see a signifcant number of unfamiliar API methods and 
Pygame-specifc programming idioms. 78% participants reported 
having no prior experience with Pygame, and 22% reported being 
beginners. Most participants were unfamiliar with the domain of 
game development—72% were not at all familiar, 19% a little familiar, 
and 9% somewhat familiar. Participants were not expected to fnish, 
but rather to just make some progress. About half of participants 
got to a stage of development where a Mario sprite appeared on 
the screen and could be controlled with arrow keys. 

C ASSESSING PROGRESS ON TIMED 
PROGRAMMING TASKS 

A supplementary measure of task success was the extent to which 
participants’ fnal code resembled a reference implementation. Each 
task required programmers to confgure a set of parameters for an 
image processing API to control visual efects like blur or edge 
tracing to replicate a target image. In both the Ivie and baseline 
condition, we collected the values of parameters in participants’ 
code at the time they were cut of. For 2 of 4 parameters, participants 
were signifcantly closer to the target values when they used Ivie 
versus using the baseline (see Figure 10). For the other 2 parameters, 
the diferences were not signifcant. Signifcance was assessed by 
conducing an unpaired �-test of the L1 distance of parameter values 
to the target values for 1D parameters, and L2 distance for 2D 
parameters (e.g., the ksize tuple). Detailed results are as follows: 
For task A, there were two parameters. The frst parameter, “ksize,” 
had a target value of (21, 21). The L2 distance of programmers’ 
fnal parameters to this target value was 1.41 (� = 11.8) in the 
Ivie condition versus 14.8 (� = 16.3) in the baseline condition; this 
diference was statistically signifcant (� = 0.004). No signifcant 
diference was seen for the distance to the target value for the 
second parameter “sigmaX” between Ivie (� = 2.56, � = 2.89) and 
the baseline (� = 7.81, � = 29.84; � = 0.19). For task B, programmers 
were signifcantly closer to the target value of the “threshold_low” 
parameter in the Ivie condition (� = 10.62, � = 11.16) than in the 
baseline condition (� = 50.31, � = 46.38; � = 0.003), though not for 
the for the “threshold_high” parameter (Ivie: � = 8.44, � = 39.79 
vs. baseline: � = 20.0, � = 46.77; � = 0.472). 
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Figure 10: Convergence on parameter values. Shown are plots conveying how far participants were from the reference solution when 
they ran out of time in each timed programming task. Each plot visualizes a parameter space for the key API function that the programmer 
need to use in a task. Each task required confguration of two parameters. All parameters are 1-dimensional numeric, except for “ksize” 
(“parameter 1” in (a)), which was a tuple of two values, which were often set to be equal; we show only one of the values from the tuple. 
Red dots mark target confgurations, which are (21, 5) for task A and (10, 155) for task B. Light blue dots represent values achieved when 
programmers used Ivie, and dark blue plots represent values achieved in the baseline condition. Some points overlap: for instance, there are 
5 overlapping baseline points in (a) at (5, 0); 8 overlapping baseline points in (b) at (50, 150) (this was frequently the default initial generated 
confguration); and 3 overlapping baseline points in (b) at (100, 200). 
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