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ABSTRACT
Acoustic levitation is an emerging technique that has found ap-
plication in contactless assembly and dynamic displays. It uses
precise phase control in an ultrasound transducer array to manage
the positions and movements of multiple particles. Yet, maintain-
ing stable mid-air particles is challenging, with unexpected drops
disrupting the intended motion and position. Here, we present Sta-
bleLev, a data-driven pipeline for the detection and amendment
of instabilities in multi-particle levitation. We first curate a hybrid
levitation dataset, blending optimized simulations with labels based
on actual trajectory outcomes. We then design an AutoEncoder
to detect anomalies in the simulated data, correlating closely with
observed particle drops. Finally, we reconstruct the acoustic field at
anomaly regions to improve particle stability and experimentally
demonstrate successful dynamic levitation for trajectories within
our dataset. Our work provides new insights into multi-particle
levitation and enhances its robustness, which will be valuable in a
wide range of applications.

CCS CONCEPTS
• Human-centered computing → User interface program-
ming; • Computing methodologies→ Machine learning.
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1 INTRODUCTION
Sound wave harnessing to levitate and manipulate objects has
captured the interest of the Human-Computer Interaction (HCI)
community due to its revolutionary possibilities. Acoustic levitation
uses acoustic radiation pressure to create mid-air traps for levitating
objects. This is achieved through phase retrieval algorithms, such as
IBP [24], NAIVE [34], and GS-PAT [34], which shape the activation
signals for a phased array of transducers (PAT).

This technology has spurred novel applications within the HCI
and Graphics community in the past 10 years, like levitation-based
volumetric display [18, 28, 31, 34], data physicalisation [13, 30],
physical interaction with mid-air contents [2, 20], contactless as-
sembly and printing[7, 8], etc. Platforms like OpenMPD [27] have
democratized access to levitation systems, offering a comprehen-
sive software tool for Unity-based application development. Yet, as
we continue to innovate and push the boundaries of displays, as-
semblies, and interactions at the dynamic application level, there’s
a growing demand for more robust levitation to achieve widely
accessible and user-friendly applications, especially given the in-
creasing number of levitation points and evolving trajectories in
the real world, which puts forward higher standards in phase re-
trieval algorithms to meet the demands of more complex levitation
applications.

Existing multi-point phase retrieval algorithms predominantly
rely on simulated outcomes and overlook potential discrepancies
when applied to real-world dynamic levitation scenarios. Dynamic
levitation introduces myriad complexities that lead to unpredictable
failures. Recent empirical studies, such as those by ArticuLev[8]
and DataLev[13], underscore this challenge, reporting variability in
success rates during assembly and animation phases. These findings
illuminate the pressing need for enhanced strategies, especially
as the complexity of 3D movements escalates with an increasing
number of traps.

A significant hurdle in advancing the study of dynamic multi-
point levitation has been the absence of a dedicated dataset to
foster rigorous analysis and algorithm development. Recognizing
this gap, our initial endeavor is the formulation of a comprehensive
dataset. With over 180,000 data points sourced from two distinct
phase retrieval solvers (NAIVE and GSPAT), this dataset serves
as the backbone of our data-driven approach. By combining the
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insights of our study with the potential of this dataset, we aspire
to spark a surge in innovative acoustic levitation research, driving
both dataset expansion and the exploration of more novel research
avenues.

Building on this dataset, we introduce "StableLev", amulti-particle
stability prediction and enhancement pipeline tailored to harness
the power of dynamic levitation data. With the goal of pinpointing
and subsequently rectifying unstable segments within levitation
trajectories, StableLev employs a sophisticated combination of re-
current neural networks (RNN) like long short-term memory net-
works (LSTM) or gated recurrent unit (GRU) with AutoEncoders
(AE) and variational AutoEncoders (VAE). This intricate model ar-
chitecture yields a prediction performance of approximately 90%,
improving the reliability and precision of dynamic levitation stabil-
ity predictions.

In this paper, we make three key contributions that advance the
pursuit of stable and reliable acoustic levitation:

(1) The curation of a first-of-its-kind comprehensive dataset,
amassing over 180,000 data points from two distinct solvers,
acting as a catalyst for data-driven approaches in future
research.

(2) The development and introduction of "StableLev," a state-of-
the-art stability prediction and enhancement pipeline. By
integrating RNNs with VAE and AE, our model achieves a
performance of 90% (𝐹 -score = 0.9) in predicting and rectify-
ing unstable levitation trajectories.

(3) A series of detailed evaluations demonstrating StableLev’s
efficacy and applicability in real-world scenarios, ensuring
dynamic levitation with unmatched stability.

These advancements not only enhance the robustness of current
acoustic levitation systems but also provide a robust foundation for
future innovations in the field.

2 RELATEDWORKS
2.1 Applications with Acoustic Levitation
Recent advancements in acoustic levitation have positioned it as a
versatile interface across diverse fields. For the purpose of physical
displays, floating charts [30] employed the positions of expanded
polystyrene (EPS) particles to depict mid-air scatter plots, effectively
transforming static data into interactive, tangible forms. This novel
representation demonstrated the ability of acoustic levitation to
enable immersive data physicalizations. To represent more intricate
shapes, both LeviProps [28] and ArticuLev [8] introduced optimized
levitation structures and assembly processes. They integrated com-
plex primitives such as threads and fabrics, offering the possibility
of multi-material, dynamic physical displays. Moreover, DataLev
[13] harnessed levitation to produce reconfigurable, multimodal
data physicalizations with enhanced materiality. By combining dif-
ferent materials, DataLev not only presents data but also provides
multi-sensory feedback, enriching the user experience.

LeviCursor [2] introduced a mechanism for manipulating and
stabilizing a levitating particle. Focusing on indirect interactions,
it offers a unique method where distance-based interactions be-
tween a finger and the particle create a way to select and interact
with levitated particles. TipTrap [20] improved the interaction by
enabling closer proximity of the finger to the levitated particle,

utilizing sound scattering from the finger to create a levitation trap
for direct, co-located interaction.

Leveraging the benefits of contactless manipulation, acoustic
levitation has found novel applications in food delivery and 3D
printing. In food delivery systems [38], acoustic levitation has been
used to levitate and deliver food (like miniature burgers) as well as
drinks (like gin and tonic), promising to redefine the gastronomic
experience by allowing chefs to play with food textures and pre-
sentations [39]. Additionally, in the domain of 3D printing, it aids
in maneuvering UV resin and sticks, opening doors to innovative
design possibilities and structures that were previously challenging
or impossible to achieve [7].

2.2 Acoustic Levitation Principles and Advances
Initial acoustic levitation studies employed a single ultrasonic trans-
ducer on a Langevin horn directing towards a reflective surface
[42]. These "single-axis levitators" produce standing wave acoustic
fields, allowing small particles to levitate at points with minimal
acoustic pressure. Here, the Gor’kov potential (𝑈 ) is minimum, and
the acoustic radiation force F = −∇𝑈 , given by the potential’s nega-
tive gradient [4], becomes zero, thus holds particles in the trapping
positions. Particles that are close to standing wave antinodes get
pushed towards the nearest potential well [1].

Recently, phased arrays of transducers (PAT) have replaced the
Langevin horn in acoustic levitation devices [29]. They offer more
acoustic energy, arbitrary movement of levitated particles beyond
the antinodes of a fixed standing wave, and the generation of mul-
tiple acoustic traps[24]. A PAT-based levitator includes a total of 𝑁
transducers arranged into an array or set of arrays [25]. The phase
delays 𝝓 ∈ R𝑁 of these transducers give rise to different complex
acoustic fields 𝒑 ∈ C𝑀 at 𝑀 points in space. For the𝑚th point in
space,𝑚 = [1, ...𝑀], this complex pressure is given by

𝑝𝑚 =

𝑁∑︁
𝑛=1

𝑓𝑚,𝑛 · 𝑒𝑖𝜑𝑛 (1)

where 𝑓𝑚,𝑛 describes the acoustic transmission of a transducer 𝑛
to a point𝑚, given by the piston model [34]. Using phase retrieval
algorithms, one can optimize the transducers’ phases 𝝓 to generate
acoustic fields that include local standing wave patterns that cor-
respond to acoustic traps (Figure 1). To guarantee the generation
of proper sinusoidal standing wave patterns, i.e. the interchange
between acoustic pressure minima and maxima, it has been quite
common to compute phases that maximize the Laplacian of the
Gor’kov potential (known as trapping stiffness) [7, 25, 28]. When
trapping stiffness is maximum, the acoustic radiation forces con-
verge to the trapping positions.

However, many applications such as volumetric displays [12,
18, 34] require high update rates for the transducer phases (i.e.,
>10kHz), and computing trapping stiffness via finite difference
derivatives involves computing acoustic pressure at many points
per trap (i.e., 55 points in [17]) using Eq 1. Instead, direct mini-
mization of the Gor’kov potential (or its simplification) that only
considers spatial derivatives in the principal acoustic wave propa-
gation direction [17] has provided more viable alternatives for fast
multi-point levitation even in the presence of scattering objects.
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(a) Pressure amplitude (b) Gor’kov potential

Figure 1: Illustration of the simulated sound field generated
by Top-Bottom PATs with Two Traps: (a) Depicts the pressure
amplitude distribution around the trap. (b) Depicts the distri-
bution of Gor’kov Potential around the trap. Particles (green
dots in (a), (b)) are suspended at the sound wave’s antinode,
coinciding with the minimum Gor’kov potential.

The most computationally efficient acoustic field optimization for
levitation is to compute acoustic pressure only at the trapping lo-
cation, aiming to create high amplitude focal points that can be
converted into acoustic tweezers via standard levitation signatures
[25]. In symmetric levitation setups (e.g. when no rigid obstacles
are involved), the acoustic pressure of focal points linearly corre-
lates with their trapping stiffness after the application of levitation
signatures[34].

2.3 Acoustic Levitation Stability
While advances have been made in acoustic levitation, particles fre-
quently fall or stray from desired traps during experiments. Single-
axis levitation studies have explored particle stability concerning
size and medium viscosity [10], and others have analyzed levi-
tated droplet oscillation [16]. However, while PAT levitation largely
draws from single-axis principles that assume a plane standing
wave field, the exploration of instabilities in dynamic levitation, es-
pecially involving multiple particles moving in free space, remains
limited.

Recently, it has been shown that for large displacements and
thus fast movements of a single particle in a PAT levitator, the
assumption that forces are linear in the vicinity of the trapping
position is not valid anymore. Instead, the trapping stiffness be-
comes non-linear, which explains the period-doubling bifurcation
of levitated particles [11]. Furthermore, in contrast to single-point
levitation, which usually involves shifts of a focusing phase map
to move particles in 3D space, multi-point levitation requires opti-
mization of transducers’ phases as described in the previous section.
So far, this optimization has been time-invariant, i.e. the transducer
phases 𝝓𝑡 for different movement time steps 𝑡 = [1, ...𝑇 ], are op-
timized independently, which leads to high phase changes 𝚫𝝓𝑡
among transducers between movement frames. High abrupt phase
changes lead to amplitude fluctuations in the transducers’ emission
[37]. That is, the delivered acoustic energy diminished and is not
sufficient to keep particles levitated in mid-air.

On the other hand, current research on acoustic levitation has
only resolved particle misplacements but not particle drops. In an
HCI context, LeviCursor used a motion capture system to avoid
particle placements at the (weaker) secondary traps of the acoustic
tweezer standing wave pattern [2], while LeviProps performed a
simulated annealing to find the trapping positions of highest trap-
ping stiffness to hold an acoustically transparent fabric in mid-air
[28]. Finally, other studies have been occupied with numerical opti-
mization of single-particle trajectories [31], so that the showcased
experimental trajectories better match the desired ones, effectively
reducing particle misplacements.

3 LEVITATION DATASET
In this section, we detail the creation of our hybrid levitation dataset,
which combines simulated and experimental data. This approach
addresses the limitations of existing phase optimizations that ex-
cel in static simulations but falter in dynamic scenarios. We con-
ducted levitation experiments on various multi-particle trajectories,
recording particle positions and categorizing outcomes. Our re-
search offers the first extensive levitation dataset based on rigorous
feature extraction. This paves the way for deeper insights into
acoustophoretic platforms and inspires future ML-driven applica-
tions.

Figure 2 graphically depicts our dataset generation process. This
section outlines our levitation setup and the creation of multi-
particle trajectories used for both experiments and model train-
ing/evaluation. We subsequently explain the intricacies of acoustic
field propagation, optimization, and the hardware setup for cap-
turing particle positions in transducer phase control experiments.
We conclude this section by addressing the pre-processing steps
for the analytical and observed features, setting the stage for the
data-driven models discussed later.

3.1 Multi-particle Trajectories
We utilize a path planning algorithm [5] to generate feasible motion
trajectories for multiple particles. We use a top-bottom 16× 16 PAT
levitation setup which has been adopted as the standard configu-
ration for levitating multiple particles [8, 12, 13, 18, 20, 27, 28, 34].
While levitating 2 or 4 particles is straightforward, higher parti-
cle numbers often lead to more unsuccessful attempts. This arises
from diminished acoustic energy per trap and increased particle
occupation in the working volume. Additionally, due to the trans-
ducers’ directivity, traps generated away from the central axis are
also marginally weaker. A recent study using the same setup [13])
shows that the success rates of 3D animation with 4, 6, and 8 parti-
cles are 90%, 60%, and 40%, respectively. Considering the balance of
difficulty, we focus on generating data for 6-particles in the system.

Initially, particles are randomly assigned 3D start and end po-
sitions within the working volume, We then create collision-free
trajectories, maintainingminimumhorizontal and vertical distances
of 1.4cm and 3cm between particles. Each particle moves at a unique
velocity, with a maximum of 𝑣max = 0.1ms−1 as in [13]. The path
planning algorithm provides checkpoints and constant speeds be-
tween them for each particle. With the PAT’s update rate of 10 kHz,
we interpolate trapping positions between waypoints, determining
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Figure 2: The building procedure of hybrid levitation dataset.

acoustic traps. This leads to a set of position data for all particles at
each time step 𝑡 = [1, ...𝑇 ].

3.2 Analytical Features
In this section, we acquire simulated data for multi-particle trajec-
tories in the form of time series. First, we compute the acoustic
transmission between transducers and trapping positions (see Eq. 1)
and then optimize the transducers’ phases 𝝓𝑡 for each time step
𝑡 . To generate a varied levitation dataset, We employ different
multi-point phase retrieval solvers integrated within the OpenMPD
developing platform [27], such as the NAIVE and the GS-PAT [34]
algorithms. Both algorithms use one pressure point per trap to esti-
mate the phase at the focal points (or traps) and compute the phases
of the transducers 𝝓𝑡 using backward propagation. Considering
the attributes of different algorithms, the NAIVE algorithm does
not optimize the focal points’ phases but rather assumes that all
points will share the same phase. For this reason, it is very common
that among multiple particles, there will be some outliers of lower
focal point amplitude [34]. On the other hand, GS-PAT iteratively
optimizes the estimated point phases, and the generated focal am-
plitudes are generally higher in simulation. However, optimizing
phases leads to large phase changes 𝚫𝝓𝑡 between successive time
steps, which causes transducer amplitude fluctuations [37], and
thus weaker traps and particle drops. Thus, we merge the analytical
features generated by different phase retrieval solvers to reflect
different issues that arise in levitation experiments.

Our analytical features mostly include concise data representa-
tions based on the complex acoustic field generated by the computed
transducers’ phases 𝝓𝑡 and Eq. 1. In this way, we can acquire smaller
size data representations by computing the pressure 𝒑𝑡 only at the
trapping positions, or more physics-oriented data for levitation, like
trapping stiffness 𝑺𝑡 at these points. Similarly, we can compute the
phase change 𝚫𝜽 𝑡 between the computed focal points among time
steps, as any large phase changes𝚫𝝓𝑡 in the transducer domain will
transfer to the (much fewer) focal points. Notably, to incorporate
the periodicity of phase values (i.e., 𝝓𝑡 , 𝜽 𝑡 ∈ [−𝜋, 𝜋] into phase

changes, we calculate the absolute phase change as shown in the
equation 2.���Δ𝜃 (𝑡 ) ��� = min

(���𝜃 (𝑡 ) − 𝜃 (𝑡−1)
��� , 2𝜋 −

���𝜃 (𝑡 ) − 𝜃 (𝑡−1)
���) (2)

3.3 Experimental / Observed Features
Using the motion trajectories from Section 3.1, we conduct levita-
tion experiments to observe actual trajectories and assess motion
stability. The multi-point levitation solvers continuously adjust the
trajectory trap positions at a 10kHz rate using optimized transducer
phases. We pair this with the OptiTrack Flex motion capture sys-
tem, consisting of infrared cameras equipped with LEDs, to track
real-time motion trajectories (See Figure 3). These cameras capture
reflections from levitated particles to determine their 3D positions.
Six cameras, placed at varied angles, cover the levitation volume.
Despite the system’s 120Hz tracking rate being slower than the
levitator’s 10kHz update, it’s apt for our purpose since the particles
move slowly, keeping the dataset manageable.

To minimize the impact of external factors leading to unexpected
drops, before initiating the experiment, we inspect every transducer
to confirm they are functioning and ensure no wind disturbance is
present. During experiments, we use 2 mm-diameter EPS particles
for levitation and mitigate the particle initialization displacement
(to a secondary trap) by using the tracking system’s feedback. We
also ensure the PAT operates at a consistent performance without
overheating (i.e., taking a break and allowing it to cool every 30
minutes).

We track each group of motion trajectories three consecutive
times and record actual trajectories. When a displacement between
the target and the actual (i.e., captured) trajectories of a particle be-
comes larger than 10mm, we consider that particle to have dropped.
If all three attempts are completed without any particle dropping,
we label the group as ’stable’ (normal); otherwise, we label it as ’un-
stable’ (abnormal). Those outcome features of motion performance
will be used in later model training and evaluation. The tracking
process takes approximately 40 hours.
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Figure 3: Motion capture system tracks multi-particle trajec-
tories in the mid-air.

3.4 Data-processing and Dataset Composition
To align the camera’s coordinates with the levitator’s, we applied
an affine transformation to the position data. Before trajectory ex-
periments, we established this transformation matrix by levitating
a particle at 27 predefined locations (a 3D grid of 3 × 3 × 3) and
recording its positions using the motion capture system. This ma-
trix then corrects the captured data to the levitator’s coordinate
system, reducing position-tracking biases.

When tracking multiple particles, the motion capture system
can mismatch particle positions, complicating the task of matching
particle indices to position data. We address this by employing
the Hungarian algorithm [21] to optimize assignments based on
proximity between target and captured positions at each time step,
ensuring accurate tracking trajectories. Additionally, due to optical
variations and particle occlusion, some positions might be missed.
These gaps are filled using interpolation to provide a comprehensive
trajectory.

We merged the analytical and refined experimental data to craft
our final dataset, which consists of time-series data from 200 groups
spanning 902 time steps each. These groups are broken down into 90
from the NAIVE solver and 110 from the GS-PAT solver. This dataset
encompasses analytical features like the Gor’kov potential (𝑈 ),
trapping stiffness (𝑆), focal point amplitude (𝑎), phase (𝜃 ), amplitude
change (Δ𝑎), point phase change (Δ𝜃 ), and average transducer phase
change (Δ̄𝜙). The outcome labels are detailed in Table 1. Notably,
while we used the same motion trajectories for the two solvers, the
resulting features and instabilities varied. The phase instabilities of
GS-PAT are more frequent and can affect all acoustic traps, leading
to more abnormal groups. In contrast, the NAIVE algorithm shows
higher success rates as its amplitude discrepancies usually concern
individual traps. Our hybrid dataset is available online 1.

4 STABLELEV
While research has noted instabilities and drops in multi-point
levitation[8, 13], there’s no documented study predicting such be-
havior during dynamic levitation of multiple particles. Furthermore,

1https://github.com/Lei-Oriana/StableLev

Normal Abnormal
NAIVE 75 15
GS-PAT 32 78

Table 1: Observed outcome labels of running 200 group levi-
tation trajectories by NAIVE and GS-PAT solvers.

strategies for improving stability in dynamic settings are uncharted
in the current literature. Addressing this gap, we introduce Sta-
bleLev, a data-driven solution for optimizing multi-particle stability.
This method unfolds in three phases:

From our dataset and expertise, we pinpoint essential levitation
characteristics (stage: feature curation). Using diverse deep neural
network models, we spot anomalies in unstable trajectories (stage:
anomaly detection). We rectify detected anomalies, bolstering mo-
tion steadiness (stage: anomaly amendment).

4.1 Feature Curation
In our analysis, we utilized a feature correlation heatmap (Figure 4)
to determine the relationships between each analytical feature in
our dataset (section 3.4). The heatmap color scale indicates the
strength of feature correlations. Notably, Gor’kov potential (𝑈 ),
stiffness (𝑆), and focal point amplitude (𝑎) emerge as tightly interre-
lated, all indicating trap intensity. Among these, we prioritize focal
point amplitude (𝑎) due to its computational efficiency, needing just
a singular pressure value per trap, unlike the Gor’kov-associated
features that demand more complex computations[25].

Figure 4: Correlation heatmap of potential analytical features
from the transducers and traps, including Gor’kov potential
(𝑈 ), trapping stiffness (𝑆), focal point amplitude (𝑎), phase (𝜃 ),
amplitude change (Δ𝑎), point phase change (Δ𝜃 ) and average
transducer phase change (Δ̄𝜙).

Additionally, the heatmap reveals phase change (Δ𝜃 ) as another
critical factor impacting trap intensity. Rapid phase transitions
during motion adjustments might induce transducer emission fluc-
tuations [37], an aspect not reflected in intensity-related analytical
features. This realization underscores the significance of the point
phase change (Δ𝜃 ) as an additional feature that can provide valuable
information for anomaly detection.

https://github.com/Lei-Oriana/StableLev
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Figure 5: Anomaly detection model overview using AutoEncoder-based deep neural networks.

4.2 Anomaly Detection
Having identified the focal point amplitude (𝑎) and point phase
change (Δ𝜃 ) as pivotal features, our next aim is to detect instances
of particle drops during the dynamic levitation process. We char-
acterize these drops as anomalies in a time-series dataset, posing
unique challenges due to their unbalanced occurrences and unpre-
dictable behaviors [9, 32].

Deep learning has shown remarkable capabilities in learning
underlying features to detect anomalies[32, 41]. AutoEncoders (AE)
emerge as a promising solution to this anomaly detection challenge.
AEs excel at uncovering non-linear correlations in datasets, cru-
cial for recognizing subtle, unpredicted deviations. Their encoder-
decoder mechanism efficiently reduces data dimensionality, empha-
sizing crucial features while filtering out noise. This ensures accu-
rate anomaly identification even within intricate datasets.[6, 35].

To further bolster anomaly detection capabilities, we integrate
deep AEs with the temporal dynamics of long-short-term memory
(LSTM) and gated recurrent unit (GRU) architectures and the robust-
ness of deep generative models such as variational AutoEncoders
(VAE):

LSTM: A specialized form of RNN, LSTMs adeptly handle long-
term dependencies in sequential data. Equipped with memory cells
and gate units, they can filter noise and retain significant patterns,
rendering them particularly effective for our anomaly detection
challenge [15].

GRU: A variant of RNNs, GRUs address gradient issues inherent
in traditional RNNs. Their memory cells and gated units, including
the update and reset gates, make them adept at processing complex
time-series data and detecting anomalies [14, 36].

VAE: Variational AutoEncoders blend probabilistic generative
models with deep neural network capacities. Their encoders out-
put conditional probability distributions, thus allowing superior
data reconstruction, making them valuable for modeling standard
behaviors in anomaly detection [23, 43].

Using these building blocks, we propose three hybrid anomaly
detector models, namely LSTM AE, GRU AE, and LSTM VAE, all

built on the AE framework. Figure 5 shows our hybrid anomaly
detector designs, where we can represent the encoder and decoder
units with different components, such as LSTM or GRU layers.
For LSTM VAE, we represent the encoder unit by LSTM layers
followed by the distribution function (mean and variance) to learn
the encoder features and decoder unit by LSTM layers, respectively.
A detailed exploration of each unit’s functionality can be found
in Homayouni et al [19]. Table 2 presents the specifications and
hyper-parameters of hybrid AE models.

Utilizing our time-series dataset, our models train on the se-
lected features of each levitated particle. Through the AE’s encoder-
decoder framework, our approach discerns patterns in stable tra-
jectories and pinpoints anomalies in unstable ones. The results
showcasing the efficacy of our anomaly detection approach are
detailed in Figure 6, 7 and Section 5.1.

4.3 Anomaly Amendment
Following our anomaly detection process, we take corrective mea-
sures in the anomaly regions to rectify potential instabilities. Of the
two prominent analytical features critical for detecting anomalies
in real levitation trajectories, namely the focal point amplitude and
phase change, we prioritize rectifying anomalies linked to ampli-
tude (see results in Section 5.2).

Though our AE models predict absolute phase change values
(Δ𝜃 ), and given that our dataset also includes the focal point phase
(𝜃 ), we could technically estimate phase information for amending
anomalies. However, this estimation process introduces complexi-
ties. Namely, it necessitates additional constraints to ensure that the
AE-predicted phase changes remain minimal across consecutive
time frames. Presently, significant phase changes are managed by
interpolating over the entire phase change range across various
time frames. This interpolation, however, hampers the speed of
focal point generation and transitions [37].

In practice, multi-point levitation solvers determine transducer
phases based on a consistent target point amplitude for each trap,
aiming for uniform intensity across traps. However, our anomaly
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Figure 6: Performance F-score error plots for each k-fold hybrid AE model at different reconstruction error threshold values.

detection and observation results indicate that this ideal criterion of-
ten remains unachieved in real experiments, leading to unintended
particle drop. A direct solution to this is adjusting the amplitude of
specific, unstable particles within identified anomaly regions. Given
the anomaly time windows, we can trace back to the corresponding
positions along the trajectory, where we create target trap points.
At these points, we deliberately increase the target amplitude for
unstable particles while maintaining the amplitude for stable ones.

5 RESULTS
5.1 Hybrid AE Models Training and Anomaly

Detection
To train our hybrid models, we first represent the time series data
set of the selected features into a sequence of time windows (𝑇𝑤),
where the selected features of all traps at time step t of each time
window can be depicted as 𝑋1,𝑡 , 𝑋2,𝑡 , . . . , 𝑋𝑘,𝑡 , where, k = 1,. . . , total
features of all traps.

We explored various "look-back periods" or time window sizes
(10, 50, 100, 200, and 500) to train our AE models. Given the abrupt
variations in our feature dataset’s short time steps and the 200
groups of sequences, each with 902 time steps, larger windows
proved inefficient and unwieldy. Hence, we settled on a time win-
dow size ((𝑇𝑤) = 20) to train our model.

We split the dataset from Section 3.4 into training (77 normal
samples: 55 NAIVE, 22 GSPAT) and test sets, which contain both
normal (20 NAIVE, 10 GSPAT) and abnormal samples (15 NAIVE,
78 GSPAT). Given the differing scales of the selected features, we
apply the linear Min-Max scaling method, transforming the feature
values as,

𝑋 =
𝑋original − minnormal

maxnormal −minnormal
(3)

Here, 𝑋 ranges between [0-1], with minnormal and maxnormal
denoting the training dataset’s minimum and maximum values.
Utilizing 5-fold cross-validation [40], we train hybrid models on
sequential data X, encoding with LSTM, GRU, or VAE, then recon-
structing to X̂. The aim is minimizing the mean squared reconstruc-
tion error (𝑅𝐿 = MSE(𝑋 − 𝑋 )).

Time windows or look-back period𝑇𝑤 20
K-fold 5
Number of layers for encoder/decoder 2

Number of memory units or neurons in each layer 64(layer1)
32(layer2)

Activation function tanh
Reconstruction error threshold 𝜂 92%

Table 2: Hyperparamters of hybrid AutoEncoder models.

Utilizing trained models, we predicted on the test dataset, lever-
aging the reconstruction error threshold 𝜼 to distinguish sequence
types. To select the proper threshold, we determine it with the
F-score as the metric of choice[41]. For our detection purpose, we
prioritize Precision (finding as many anomalies as possible) and
Recall (minimizing the missed anomalies) as our evaluation metrics,
since F-Score usually makes a balance between Precision and Recall,
also useful when the distribution of class is imbalanced. So we adopt
the F-score as our metric to select the threshold to distinguish be-
tween normal and abnormal. In K-fold cross-validation, we assessed
variability and uncertainty in predictions of each fold, displaying
performance as error bars on F-score values. Our analyses, shown
in Figure 6, reveal that a 90% - 99% threshold range saw consistent
performance, with mean F-scores approximately between 0.80 and
0.90.

We opt for the LSTM AE hybrid model to enhance stability
and improve dynamic levitation. With a 92% threshold, the model
achieves a mean F-score of 0.9 (with corresponding Precision: 86%,
Recall:95%), demonstrating roughly 90% accuracy in detecting anom-
alies on the test dataset. In our test set, most of the actual abnormal
groups (88 groups) are correctly predicted as abnormal (true posi-
tive), while a few (5 groups) fall into a false negative category. Some
actual normal groups (14 groups) are predicted as abnormal (false
positive), and 16 actual normal groups are predicted as normal (true
negative). Among the true positive groups, we present a few exam-
ples where feature anomalies precede actual particle drop events
(e.g., large position displacement captured by the camera) in Figure
7. Notably, a single anomaly step does not necessarily lead to one
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(a) Group 69 (b) Group 89

Figure 7: The position displacements between target trajectories and real trajectories, with the red dashed lines indicating the
predicted anomaly time windows. Particle 6 dropped in group 69 and particle 4 in group 89.

(a) Group 46 (b) Group 61

Figure 8: Two abnormal groups succeeded after adjustment to the target point amplitude of dropping particles. In group 46 (a)
and group 61 (b), only particle 2 dropped when moving along the target trajectories (dashed line). Anomaly time windows (in
red) are predicted by the anomaly detection model.

(or more) particle drops and we often observe an accumulation of
anomalies before drop events, as indicated by the red dashed lines
in Figure 7.

5.2 Stability Enhancement
Here, we present a few anomalous groups (46, 61, 62, and 67 in Fig-
ure 8, 9) as examples and report the stability enhancement through
the amplitude amendment approach proposed in Section 4.3.

First, we used the processed tracking trajectories in our dataset
and compared them to the target trajectories, identifying which
particles dropped (i.e., particle 2 in Figure 8). Also with the anomaly
time regions, when setting the phase retrieval solver parameters,
we change the unstable trap’s target amplitude to higher than other
previous stable particles (traps). Note that we gradually increase
the target amplitude and find a proper increase. Here, with 30%
of amplitude enhancement at predicted anomalous regions, we
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(a) Group 62 (b) Group 67

Figure 9: Two abnormal groups succeeded after adjusting the target point amplitude, including particles beyond those exclusively
categorized as ’dropping. (a) In group 62, all trajectories get stable after lowering the target amplitude of particle 4. (b) In group
67, all trajectories get stable after lowering the target amplitude of particle 1 and increasing the target amplitude of particle 2.

repeatedly ran the same trajectory for consecutive 3 times as we
did in Section 3, and particle 2 in both groups 46 and 61 arrived at
the endpoint of the trajectory without dropping.

In our examination of amplitude modifications for groups 62 and
67, we noted that exclusively increasing the target amplitude of
the unstable trap does not reliably enhance stability. Across three
repeated tests of a few groups, we found it is uncertain whether
a particular particle will consistently drop, complicating the iden-
tification of the problematic trap. However, during this period of
anomaly, we have the option to either reduce the amplitude of the
stronger trap, increase the amplitude of the relatively weaker one,
or employ a combination of both strategies to comprehensively
address this instability. In group 62 (see Figure 9), after lowering
the trap amplitude of particle 4 by 20%, no drop occurred. Likewise,
by lowering the trap amplitude of particle 1 and increasing the trap
amplitude of particle 2 by 20% within the suggested anomaly time
region, we prevented the drop from happening in group 67.

6 DISCUSSION
6.1 Improvement of Stability Detection and

Enhancement
Harnessing our domain knowledge and utilizing the feature corre-
lation heat map, we have identified two crucial features that are
instrumental in achieving trap stability during the dynamic levita-
tion of multi-particles. Our current model, based on these features,
attained an F-score of 0.9, but incorporating additional correlated
intensity features like Gor’kov potential (U) and stiffness (S) could
further enhance learning and improve model performance. For

instance, the selection of Gor’kov potential (𝑈 ) with focal point am-
plitude (𝑎) in combination with point phase change (Δ𝜃 ) can unveil
previously hidden patterns that can greatly enhance the model’s ef-
ficacy. However, as features like stiffness are more computationally
demanding, the trade-off between the increase in feature dimen-
sions and the associated training costs should be taken into account.

One limitation of our study is its emphasis on anomaly amend-
ment using only one primary feature: the focal point amplitude,
which is straightforward and feasible for existing phase retrieval
algorithms to achieve in real time. Beyond intuitively tuning am-
plitude, we envision that the reconstructed time-series sequences
by our AE models are inherent indicators of stable amplitude and
phase change. By further utilizing that information, it is possible
to tune both amplitude and phase changes to get robust levitation
performance. Our dataset already encompasses time-series data
on varied features. Therefore, the holistic approach to repairing
anomalies could encompass amplitude, phase, and others, marking
a potential avenue for future extensions of our work.

6.2 Generalizability of Dataset and Finding
We observed that various phase retrieval solvers influence stabil-
ity differently due to their inherent properties. To reflect this, we
selected two representative solvers that showcase a range of lev-
itation situations, thereby improving the generalizability of our
dataset. Meanwhile, our data is exclusively derived from the setup
with 16*16 top-bottom PATs, which are commonly used in levita-
tion applications and have shown some performance issues. In the
future, to extend the dataset in different setups (e.g., 8*8 top-bottom
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PATs, V-shaped PATs), researchers can start by establishing the
levitator through the OpenMP framework [27] which is becoming
a standard hardware and solver solution in this field (e.g., adopted
in UIST student innovation contest). Once set up, researchers can
replicate the dataset composition process and train their models
with proper analytical and experimental features.

6.3 Levitation Stability on Various Object
Structures

In this work, we mainly discussed levitation stability on individual
EPS particles, and those observing and experimental features are
based on particle performance. Apart from point objects, other
object structures like threads[8] or fabrics [28] are often employed
for levitation. To consider the stability of such levitation structures,
compared to the individual particles, collective effects (e.g., a set
of traps maintains a fixed relative distance and shares the same
velocity) should be considered when analyzing the features and
making amendments. Single unstable traps can inevitably affect
the neighbor traps, especially when they are physically connected
by threads or fabrics. Therefore, more types of analytical features
and experimental constraints will be introduced for multi-"object"
levitation stability.

6.4 Levitation Stability on Various Object
Materials

Note that levitation stability also varies depending on different
materials. As previous comparisons [13] suggest, liquid particles
achieve less stable motion compared to EPS solid particles under
the same number of traps and moving velocity. Properties such as
density and surface tension of liquid particles [38] play a crucial
role in how particles respond to acoustic pressure and acoustic
radiation force. These forces can cause deformations, changes in
shape, or even particle destruction, which are all dynamic aspects of
particle behavior during levitation. Therefore, when characterizing
the levitation stability of different object materials, it is necessary to
consider more underlying physics properties and different motion
behaviors, going beyond the simple binary distinction of whether
they drop or remain suspended.

6.5 Further Data-driven Explorations
This paper presents StableLev, the first data-driven approach tai-
lored for dynamic multi-point acoustic levitation. It’s crucial to
recognize that prior deep learning endeavors (e.g., [22]) targeting
acoustic phase-modulating devices have primarily hinged on simu-
lated data and focused on creating complex acoustic fields, often
visualized as images. However, such acoustic wavefront shaping
strategies are predominantly suited for static particle manipula-
tions, a prime example being a one-step acoustic fabrication, as
documented in [26]. In stark contrast, StableLev stands out with
its capability to process time series data to successfully bolster the
stability of levitating particles in motion during experiments.

StableLev represents an initial foray into leveraging data for
pinpointing and controlling dynamic acoustic fields. Acoustic lev-
itation inherently grapples with non-linear acoustic phenomena,
which the Gor’kov theory has sought to streamline by assuming

enduring acoustic waves, essentially static in nature. Our open-
sourced hybrid levitation dataset and methodology can inspire
novel research that can, for example, seek explicit equations for the
non-linear dynamics of multi-particle levitation, similar to ongo-
ing research on data-driven discovery of governing physics [3] or
hardware-in-the-loop modeling of interactive devices [33].

7 CONCLUSION
Acoustic levitation, a burgeoning domain, promises groundbreaking
advancements in human-computer interaction. Despite its transfor-
mative potential, challenges in stablemulti-point dynamic levitation
persist. This paper addresses these challenges by introducing "Sta-
bleLev," a data-driven methodology that utilizes a hybrid levitation
dataset that we created as a blend of simulations and real-world data.
With an emphasis on anomaly detection through AutoEncoders,
we effectively pinpoint and rectify unstable levitation trajectories.
Achieving an 𝐹 -score of 0.9, StableLev paves the way for more
reliable acoustic levitation, fostering robustness in contemporary
systems and serving as a foundational pillar for future innovations.
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