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ABSTRACT

Due to the availability of increasingly large amounts of visual data,
there is a growing need for tools that can help users find relevant
images. While existing tools can perform image retrieval based on
similarity or metadata, they fall short in scenarios that necessitate
semantic reasoning about the content of the image. This paper ex-
plores a new multi-modal image search approach that allows users
to conveniently specify and perform semantic image search tasks.
With our tool, PhotoScout, the user interactively provides natural
language descriptions, positive and negative examples, and object
tags to specify their search tasks. Under the hood, PhotoScout
is powered by a program synthesis engine that generates visual
queries in a domain-specific language and executes the synthesized
program to retrieve the desired images. In a study with 25 par-
ticipants, we observed that PhotoScout allows users to perform
image retrieval tasks more accurately and with less manual effort.
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1 INTRODUCTION

With the advancement of camera technologies and the prevalence of
social media, photography is more accessible than ever. Nowadays,
people increasingly have access to large volumes of photographs,
taken by themselves or shared by others, that capture unique mo-
ments of their lives. As this volume grows, the task of retrieving
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relevant images from one’s personal library becomes more impor-
tant yet also more challenging. Modern photo management tools
like Google Photos allow the user to search for relevant images
based on metadata constraints (e.g., presence of a specific person;
the date the photo was taken) or visual similarity to another image
or natural language query.

While existing interfaces work reasonably well for simple search
tasks, they fall short in structured image retrieval tasks: that is,
tasks that require semantic reasoning about the structure of objects
in an image. Such structured image retrieval tasks are important
both for professional photographers as well as regular users who
increasingly have access to large amounts of visual data on their
smartphones and the cloud. For example, event photographers often
have a shot list describing certain images that they must deliver
to a client, such as those where the bride and groom are walking
down the aisle or images containing only the bride and her mother
[1, 50]. However, such structured image search tasks also come up
in everyday life for regular users. For example, someone who is
writing a travel blog might want to retrieve those images in which
they are standing in front of the Eiffel Tower, or someone mourning
the loss of a pet might want to find all images in which their cat is
sitting on their lap.

As illustrated by these examples, such structured image search
tasks require reasoning about contents of the image as well as re-
lationships between them. However, such tasks are not easy to
specify using existing image search interfaces. For example, while
they provide support for finding images that contain a specific per-
son, they do not facilitate searching for images where that person is
performing a certain action or has a certain property. In fact, a key
characteristic of structured image search tasks is that they require
the contents of the image to satisfy certain logical constraints and
combinations thereof.

In this paper, we propose a new user interaction model that facil-
itates structured image search. In general, these structured image
retrieval tasks pose two challenges: First, how can a user effectively
communicate their intent to the image search tool? Second, how
can the search tool plan and execute the search logic underlying
the user’s intent?
• User specification challenge: For some image search tasks, it
is difficult for users to convey their intent with a single modality.
In particular, an example image alone is often too ambiguous to
convey complex search logic. On the other hand, natural language
(NL) alone also has shortcomings. For instance, even ostensibly
simple relational attributes like “next to” or “on top of” can have
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multiple possible interpretations that are difficult to disambiguate
without a visual example.

• System development challenge: Existing text or object-based
image search tools are powered by vision-languagemodels [6, 37].
Despite their object understanding capabilities, they have limited
capability in reasoning about complex search logic involving
multiple constraints and semantic relationships between differ-
ent objects. Hence, even if the user is able to perfectly convey
their intent, there are no existing techniques that can be used to
execute complex image retrieval queries.
We propose to address the above challenges of structured im-

age retrieval through a novel program synthesis-powered multi-
modal image search tool, PhotoScout. With PhotoScout, users
can communicate their intent using a combination of natural lan-
guage, positive and negative example images, and interactive object
tagging. Through PhotoScout’s multi-modal specification inter-
face, the user can start with an efficient NL description of the task,
then iteratively refine the search results by responding to queries
posed through this interface. Under the hood, PhotoScout’s back-
end synthesizer generates a programmatic query expressed in a
domain-specific language (DSL) for image retrieval. If the user’s
NL description is ambiguous, the generated program will be incom-
plete, allowing PhotoScout to ask clarifying questions to the user
in a goal-directed way. Once all ambiguities are resolved through
user interaction and PhotoScout generates a complete program,
the resulting query is executed on all uploaded images and search
results are displayed to the user. At that point, the user can inspect
the search results and further refine them if needed.

To assess the efficacy of PhotoScout compared to alternatives,
we have conducted a user study involving 25 participants. We find
that, compared with a baseline image search tool (leveraging a state-
of-the-art vision model), users see a 34% increase in the F1 score of
their search results when using PhotoScout. Further, in post-study
interviews, users report that they are better able to convey their
intent via PhotoScout’s multi-modal specification interface and
have more trust that PhotoScout’s results are correct.

To summarize, this paper makes the following contributions:
(1) We present a new multi-modal image search interface tar-

geted towards structured image retrieval tasks that allows
users to effectively communicate their intent in an interac-
tive fashion.

(2) We describe a neuro-symbolic image query language that
allows expressing the types of logical queries that underlie
structured image retrieval tasks.

(3) We present a program synthesis technique that leverages
all the different modalities of input that users can provide
through our proposed interface.

2 RELATEDWORK

2.1 Image Retrieval

PhotoScout performs content-based image retrieval (CBIR), a
technology pivotal in organizing digital image archives by visual
content [42]. Datta et al. [18] characterize CBIR tools from two per-
spectives: the user’s and the system’s. The user perspective depends
on input query modalities, while the system perspective hinges on
query processing methods and presentation of search results [18].

From the user perspective, PhotoScout is an interactive, multi-
modal CBIR system that allows users to find relevant images from a
large personal collection. In particular, PhotoScout ismulti-modal
in that the user provides a combination of natural language and
example images, and it is interactive in that the user can refine the
query results by providing feedback through the PhotoScout in-
terface. From the system perspective, many prior CBIR tools search
for target images using metadata (e.g., where or when an image
was taken) [2–4] or based on features extracted through machine
learning techniques (e.g., lighting conditions and position of an
object) [48]. In contrast, the backend underlying PhotoScout is
based on neuro-symbolic program synthesis — that is, it leverages
the user’s examples and natural language query to synthesize a
logical search query utilizing pre-trained neural networks for object
detection and classification. In the remainder of this section, we
focus on prior work that is closely related to PhotoScout and refer
the interested reader to existing surveys [18, 19, 30, 42] for a more
comprehensive overview of CBIR.

Expressing User Intent in CBIR. A key challenge in image retrieval
is the intention gap: the difficulty users face in articulating their
task through queries [42]. Prior work aims to address this concern
through different modalities of input [13, 21, 28, 47, 53] and multiple
rounds of user interaction [15, 29, 31, 55]. One line of work similar to
PhotoScout is composed image retrieval [9, 32, 51], which utilizes
visual and textual modalities to jointly specify the user’s intent. In
this line of work, an example image illustrates the concepts that
the user is looking for, while the text query specifies what should
be different (e.g. “same dress but blue instead of red”). In contrast
to such interfaces, PhotoScout uses natural language to directly
convey the user’s intent rather than specifying what should be
different from a given image. In particular, users of PhotoScout
utilize positive and negative images to clarify ambiguities in the
natural language query rather than providing them as a starting
point for visual similarity search.

Relevance Feedback-Based Search Paradigms. Relevance feedback
(RF) is a paradigm for interactively refining search results based
on user feedback [57]. In many systems, users provide relevance
feedback in the form of positive and negative images where positive
examples correspond to those that are relevant to the user’s query
while negative examples are not [17, 27, 33, 35, 39, 45, 46]. Photo-
Scout is similar to these approaches in that the user can refine the
initial query results by providing positive and negative examples.
However, in contrast to many RF systems where examples are used
to re-rank the search results (e.g. [27, 35, 39]), PhotoScout uses
positive and negative examples to extract hard semantic constraints
that the query results should or should not satisfy.

Semantic Concepts for Images. Another significant hurdle in im-
age retrieval is the semantic gap, which refers to the challenge of
describing high-level semantic concepts using low-level visual fea-
tures [42]. Past research has explored deep learning techniques
based on Convolutional Neural Networks (CNNs), including archi-
tectures like SqueezeNet [25], VGG [40], and ResNet [23], to address
this problem. PhotoScout builds on recent advances in this field
and leverages pre-trained neural networks for object detection and
classification. Prior work targets a variety of applications, including
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geolocation [8, 52], medical diagnosis [7, 16, 36, 56], and interior
decorating [11]. However, in contrast to most neural CBIR systems,
PhotoScout learns new semantic concepts by composing existing
neural networks via symbolic operators.

2.2 Neuro-symbolic Programming for Images

As mentioned earlier, PhotoScout performs image retrieval by
synthesizing neuro-symbolic queries that combine pre-trained neu-
ral networks with symbolic operators. Specifically, PhotoScout
first synthesizes a query that is consistent with the user-provided
input and then retrieves the desired images by executing the query
on the user’s dataset. Hence, PhotoScout is related to a line of
recent work on neuro-symbolic programming for images [10, 20,
24, 26, 34, 38, 44, 54].

General Visual-Reasoning Tasks. Several recent works such as [22,
43] have proposed using neuro-symbolic programming to auto-
mate image-related reasoning tasks, such as visual question an-
swering (VQA), image editing, and object tagging. In particular,
VisProg [22] proposes a neuro-symbolic DSL targeting images and
uses in-context learning to synthesize programs in this DSL based
on natural language. ViperGPT [43] proposes a custom Python
API for visual reasoning tasks and synthesizes Python programs
using this API, also based natural language queries. The back-end
of PhotoScout synthesizes neuro-symbolic programs; however, it
uses a combination of natural language queries and positive and
negative examples. In particular, PhotoScout generates a so-called
program sketch by leveraging the natural language description and
refines this sketch into a full query by utilizing the user-provided
examples.

Specific Applications. While VisProg [22] and ViperGPT [43]
propose general neuro-symbolic programming frameworks that
can be adapted to several visual reasoning tasks, prior research has
also developed more robust application-specific methods that use
neuro-symbolic programming [10, 20, 24, 26, 34, 38, 44, 54]. Similar
to our work, these efforts typically combine symbolic operators for
higher-level reasoning with neural modules for perception, with the
goal of learning new concepts in a few-shot manner. For example,
Huang et al. [24] generate programmatic referring expressions that
identify specific objects in an image in terms of their attributes
and relationships to other objects. This work focuses on locating a
single object, whereas our DSL expresses image search tasks that
involve multiple objects. In addition, their focus is on a synthetic
dataset with geometric shapes, while our focus is on more realistic
images with faces, text, and arbitrary objects.

In the domain of image manipulation, ImageEye [10] allows
users to automate batch image editing tasks using neuro-symbolic
programming. In particular, ImageEye captures demonstrations
of a user editing an image and then synthesizes neuro-symbolic
programs that are consistent with the demonstration. In contrast to
PhotoScout, ImageEye does not utilize natural language; instead,
it requires the user to demonstrate the task by applying actions to
selected parts of an image.

Another related work in this space is RAPID [49], which is a
system for automated image labeling. The idea behind RAPID is
to express new visual concepts (e.g., chef ) as logical combinations

of existing concepts and then learn these concept definitions from
positive and negative examples. For instance, RAPID may learn
that an image should be labeled “chef” if there is food or a bowl
in the image. In contrast to PhotoScout, RAPID does not utilize
natural language descriptions, and thus lacks the inductive bias for
efficient image search. Additionally, RAPID uses a different learning
approach based on first-order inductive logic learning.

3 USAGE SCENARIO

This section illustrates the interface and features of PhotoScout
through a use case inspired by real-world scenarios described in
online blogs [1]. In this example, a photographer, John, is preparing
a wedding photo album and needs to locate specific images among
hundreds of photos he took during the wedding. As part of this
process, John needs to find photos in which the bride, Alice, and
the groom, Bob, are next to each other and where Alice is holding
flowers. For example, the first three images in Figure 1 meet John’s
requirements but the last one does not. John finds this task chal-
lenging to perform using existing similarity-based search tools, as
there are a lot of other images containing Alice, Bob, and flowers,
but many of these images do not match his logical constraints —
for example, there is another person between Alice and Bob or
Alice is not holding flowers. We now illustrate how John can use
PhotoScout to perform this task and avoid significant manual
labor.

Figure 2 shows the general interface of PhotoScout, which
contains three main components: (1) a task specification panel
(Figure 2– 1 to 4 ) that allows the user to communicate their intent
using a combination of natural language queries and image labels,
(2) a search result panel (Figure 2– 5 ) that shows the results from
the current search query, and (3) a saved images panel (Figure 2– 6 )
for saving and exporting the desired images. Using this interface,
John can complete his task by performing the following steps:

(1) Load images. John first loads all the images to PhotoScout
and then sees the interface shown in Figure 2.

(2) Write natural language query. The user interface exposes
a search box where the user can type a natural language
query (Figure 2– 1 ) and a panel displaying thumbnails for
all uploaded photos (Figure 2– 3 ). In a typical use case, the
user starts by entering a natural language query, such as
“Alice next to Bob holding flowers”, and clicks the “Search”
button.

(3) Tag objects. In this example, PhotoScout does not yet know
who Alice and Bob are, so, in the search results panel (Fig-
ure 2– 5 ), PhotoScout displays a message communicating
this missing information. John resolves this ambiguity by
selecting an image and tagging Alice and Bob’s face in the
labeling panel (Figure 2– 4 ). Figure 3 provides a more de-
tailed view of the labeling panel. When John selects a photo,
PhotoScout shows the full-size photo in the center of the
labeling panel. The photo is annotated with object detection
and classification results to help the user understand what
the underlying computer vision tools “see” in that image. For
example, when the user hovers over a part of the photo, Pho-
toScout displays detected objects as a square box, as shown
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Figure 1: Left: Three images that matches John’s intent: the bride and groom are next to each other, with the bride holding

flowers. Right: an image that is incorrect image because the bride is not holding flowers.

①

⑥ 

②
④

③

⑤

Natural Language Query Input

Uploaded Photos Preview

Example Labeling Panel

Search Results Preview

Add to the Export Photos

Message to Users about Results

Exported Photos Preview

Labeled Examples

Figure 2: The PhotoScout interface has six main panels: (1) The user enters a natural language query describing the images to

be searched. (2) The example images panel highlights all the positive and negative images that the user has already labeled.

Positive examples are wrapped in a green box and negative examples are wrapped in a red box. (3) The album preview panel

displays all the photos in the album to be searched from. (4) Once the user selects a photo to label, the example labeling panel

displays the image and the example labeling buttons. (5) The search results panel shows all the images that PhotoScout finds

that match both the natural language description and the labeled examples, along with a natural language explanation. (6) The

photo export panel shows all the images selected by the user as the final search results.

in Figure 3. Additionally, the interface displays a natural lan-
guage description of the classification results for that object.
For example, Alice’s face in Figure 3 is further categorized
as smiling and between 31 to 41 years old. In this scenario,
John clicks on the face of the bride and labels the face as
Alice (see 3d Figure 3). At this point, PhotoScout learns
to associate this face with Alice, ensuring that she can be
referenced in future search queries without additional user
interaction. John uses the same panel to similarly detect the
groom’s face and label it as Bob.

(4) Select positive examples.After tagging these faces, John clicks
“Search” to see the updated results. This time, PhotoScout
is not sure about the concept of “holding flowers” and asks
John to illustrate this concept by providing examples. John
labels the first image in Figure 1 as a positive example using
the labeling panel (Figure 2– 4 ) and clicks “Search” again.

(5) Select negative examples. This time, instead of asking for
clarification, PhotoScout shows all relevant images in the
result panel (Figure 2– 5 ), along with an natural language
explanation of how it generated these results. After looking
at the explanation and inspecting the results, John notices
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3ᴄ. Object Detection Explanation

3ᴀ. Photo Viewing

3ʙ. Positive/Negative Labeling

3ᴅ. Face/Object Tagging

Figure 3: The example labeling panel consists

of 4 elements. (a) A view of the photo to be la-

beled. When a user hovers over it, each object

identified by the detector is highlighted with

a square box, with the detailed description of

the detected object shown in (c). (b) asks the

user to label the photo either as a positive or

negative example. (d) is a tagging interface so

the user can give semantic meanings to the

detected face or object. In this particular ex-

ample, the user is tagging the bride with the

name “Alice” so that they can refer to the bride

in the query.

that the results contain all relevant photos but also some
extra ones, specifically those where there are flowers, but
Alice is not holding them (e.g., the last photo in Figure 1,
where Bob’s boutonnière is visible). To further refine the
search results, John labels this photo as a negative example
and does another round of search. This time, PhotoScout
returns all photos of Alice next to Bob with Alice holding
flowers. As a final step, John clicks on the “+” sign located
at the top of the search results section (Figure 2– 5 ) and all
the added photos are displayed in Figure 2– 6 .

(6) Manually add/remove images. Upon inspection, John finds
that there is one photo in the results in which Alice’s flowers
are sitting in front of her on a table, but she is not holding
them. To exclude that photo from the search results, John
selects the photo from Figure 2– 6 and clicks the “-” button
on the top left of Figure 2– 4 to remove this image from
the export results. Once John is happy about the results, he
clicks the “»” button in Figure 2– 6 to export the results to
a user-defined directory.

In summary, John is able to find all the photos he wants to
retrieve by first providing a natural language query and then itera-
tively refining this query by tagging objects and labeling photos as
positive or negative examples. In this process, he benefits from the
following design decisions behind PhotoScout:

• Multimodal Inputs. PhotoScout grants John the versatility to
articulate his search criteria both using natural language prompts
and positive and negative examples. On one hand, solely relying
on natural language introduces several potential ambiguities: For
example, who are Alice and Bob, and who should be holding the
flowers? On the other hand, solely relying on examples would be
quite cumbersome, as John would need to provide several more
examples to convey his intent. In contrast, the combination of
natural language and image annotations allows John to succinctly
and efficiently convey his intent.

• Semantic search. In our example, John’s search query is quite
specific: First, Alice and Bob must be next to each other, and,
second, Alice should be holding flowers. Such search queries are
out of scope for existing image retrieval systems, as they cannot
reason about relationships between objects within an image. In
contrast, our approach performs search by first synthesizing a
neuro-symbolic program and then executing that program on all
images. This synthesis-based approach allows PhotoScout to
perform structured image search tasks where the goal is to find
images that conform to non-trivial logical constraints.

• Feedback-guided refinement. Rather than presuming John
to deliver flawless instructions from the outset, PhotoScout
employs an interactive feedback mechanism. As illustrated in
our example, PhotoScout recognizes ambiguous elements in
John’s description and proactively seeks clarification via natural
language prompts.

• Fast synthesis procedure. To ensure that John does not have
to wait a long time when interacting with the tool, PhotoScout
adopts an efficient synthesis approach to find useful programs.
Each synthesis run takes between 0.36 and 4.8 seconds, making
it feasible to use PhotoScout in an interactive fashion.

4 SYSTEM ARCHITECTURE AND

IMPLEMENTATION

In this section, we discuss the design and implementation of Photo-
Scout. As mentioned earlier, PhotoScout performs image search
by first synthesizing a program in a neuro-symbolic domain-specific
language (DSL) and then applying that program to all images in a
collection. In this section, we first provide an overview of the image
search DSL and then explain the internal workflow of PhotoScout
in more detail.

4.1 Image Search DSL

PhotoScout’s DSL, shown in Figure 5, is designed to express a
wide array of image search tasks. At a high level, a program in this
DSL is similar to a first-order logic formula, and evaluates to either
true or false given an input image.

The primitives in this DSL are predicates of the form 𝑟 (𝑡1, . . . , 𝑡𝑛)
where 𝑟 is an n-ary relation and each 𝑡𝑖 is a term (constant or vari-
able). The PhotoScout DSL contains many built-in predicates
such as the binary relations HasEmotion(𝑡, 𝑐) and HasType(𝑡, 𝑐), as
well as ternary relations such as HasRelation(𝑡1, 𝑡2, 𝑐). Note that
the semantics of the predicates are determined using neural mod-
els; hence, we refer to this DSL as neuro-symbolic. For example,
HasType(𝑜,Car) is determined by using an object classification
model to check whether 𝑜 is classified as a car. Similarly, the truth
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Figure 4: An example image.

𝐸 := 𝑟 (𝑡1, . . . , 𝑡𝑛)
| 𝐸 → 𝐸 | 𝐸 ∧ 𝐸 | 𝐸 ∨ 𝐸 | ¬𝐸 | ∃𝑥 .𝐸 | ∀𝑥 .𝐸

𝑟 := HasType | HasEmotion
| HasRelation | HasProperty

𝑡 := 𝑥 | 𝑐

Figure 5: Image Search DSL. All predicates are binary except

for HasRelation (ternary).

value of HasRelation(𝑜1, 𝑜2,Above) can be determined by using an
object classification model that identifies bounding boxes around
objects 𝑜1, 𝑜2 and then using the resulting coordinates to check
whether 𝑜1 is above 𝑜2. As standard in first-order logic, predicates
can be combined using boolean connectives. Additionally, our DSL
allows quantification over variables to test whether an image con-
tains some object with a given property (requiring existential quan-
tification) or whether all objects have a certain property (requiring
universal quantification).

In our implementation, the truth value of atomic predicates is
determined using the Amazon Rekognition library [5]. The pre-
trained neural nets supported by this library can detect and locate a
wide array of objects in image. In particular, this library can be used
to identify bounding boxes for different objects in the image, and
to determine their types (e.g., cat, car, person etc). Rekognition can
also detect properties of human faces (e.g. whether a face is smiling
or has open eyes) and identify the same face across multiple images.
Overall, it is this combination of logical operators and neural models
that allows PhotoScout to express a rich class of structured image
search tasks.

Example 4.1. Consider the following program:

∀𝑥 .(HasType(𝑥, Face) → (HasProperty(𝑥, Smiling) ∧ ∃𝑦.
(HasType(𝑦, Flower) ∧ HasRelation(𝑥,𝑦,Above))))

In this program, the universal quantifier ∀𝑥 indicates that every
object 𝑥 identified in the image must obey the subsequent condition.
In particular, if 𝑥 is identified to be a human face, then 𝑥 must be
smiling, and there must exist an object 𝑦 in the image such that
𝑦 is identified to be a flower, where 𝑥 is above 𝑦. Put simply, this
program can be used to find images where every person is smiling
and holding flowers, as in Figure 4. Note that the concept of “𝑥 holds
𝑦” is approximated by checking a spatial relationship between 𝑥

and 𝑦.

4.2 PhotoScout Synthesizer

In this section, we describe PhotoScout’s underlying synthesis
engine, which is depicted schematically in Figure 6. Given the

initial natural language query, PhotoScout starts by generating
a program sketch containing holes (i.e., unknowns denoted as □).
Intuitively, PhotoScout cannot directly generate a program from
the natural language query because some of the concepts used in the
NL description have to be grounded. For example, given a query like
“Alice is holding flowers,” the synthesizer has no idea what Alice
corresponds to or how the concept of “holding” can be implemented
in our DSL. To instantiate the program sketch into a complete
program, PhotoScout interacts with the user by asking them to tag
objects or provide examples (Step 2 in Figure 6). In the third step, the
synthesizer fills the holes in the sketch by performing enumerative
search over the space of sketch completions and discarding those
programs that do not satisfy the examples. In the final step, the
synthesized program is applied to all uploaded images and displayed
to the user. If the search results are unsatisfactory, the user can
refine the query by providing more positive and negative examples.
We now explain each of the steps in this process in more detail.

Step 1: Generate program sketches. Motivated by the success of
few-shot prompting in similar domains [12, 14, 58], PhotoScout
obtains program sketches by prompting GPT-3.5 Turbo.1 The key
idea is to provide GPT with examples of representative natural lan-
guage and program pairs and then ask it to generate a program for
the user’s NL query. Figure 7 shows an example of such a prompt
where we provide the LLM with a manually curated set of repre-
sentative (query, program) pairs as well as the natural language
query of interest.. PhotoScout asks GPT to generate 20 answers
to this prompt in order to increase the likelihood that one of the
results match the user’s intention. For each result returned by GPT,
PhotoScout attempts to parse the string into a program in our
DSL. If, during parsing, PhotoScout encounters a predicate or
constant that it does not recognize, it replaces that construct with
a hole □. If parsing fails for a different reason, that program sketch
is discarded.

Example 4.2. Given the text query “Alice is holding flowers”,
GPT may generate the program

∃𝑥 .∃𝑦. (HasType(𝑥, Alice) ∧ HasType(𝑦, Flowers) ∧ HasRelation(𝑥,𝑦, Holding))
(1)

However, since Alice is not an object category recognized by the
object detector andHolding is not a predicate in the DSL’s grammar,
these constructs will be replaced with holes. Thus, the following
program sketch will be produced:

∃𝑥 .∃𝑦. (HasType(𝑥,□1) ∧ HasType(𝑦, Flowers) ∧ HasRelation(𝑥,𝑦,□2))
(2)

Step 2: Query the user. If the program generated in Step 1 contains
holes, PhotoScout prompts the user to provide additional infor-
mation by (1) tagging objects that are not recognized by the object
detector and (2) adding example images that clarify the meaning
of unknown predicates. Tags and examples images both allow the
user to clarify the meaning of their natural language query, but
in complementary ways. Tags allow grounding unknown terms
like people’s names in the user’s NL query, whereas positive and

1While a different LLM could be used for the purpose of sketch generation, we use
GPT in our implementation because we found it to more effective than alternative
models that we tried.
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Figure 7: GPT prompt for generating program sketches from a user’s text query.

negative examples allow the synthesizer to learn logical constraints
and concepts (e.g., the concept of “holding”) in a data efficient way.

Example 4.3. Given the program sketch

∃𝑥 .∃𝑦.(HasType(𝑥,□1) ∧ HasType(𝑦, Flowers) ∧ HasRelation(𝑥,𝑦,□2))
(3)

where □1 and □2 were derived from Alice andHolding, respectively,
PhotoScout will display the following message to the user: “I
don’t know the terms ‘Alice’ and ‘Holding’. Can you
provide a few positive and negative examples and/or
tags to show me what you mean?” The user can easily ground
the name “Alice” by using the PhotoScout interface to add a tag.
However, the concept of “holding” is harder to explain through a
tagging, as it corresponds to a binary relationship between two
objects. In this case, the user can help PhotoScout learn this
concept by providing a few positive examples where Alice is holding
the flower and a few negative examples of those where there is a
flower in the picture but Alice is not holding them.

Step 3: Sketch completion. While object tagging helps resolve
many sources of ambiguity in the natural language, PhotoScout
needs to perform enumerative search over possible sketch com-
pletions to find a program that is consistent with all positive and
negative examples. Given a program sketch 𝑃 and a a set of positive
and negative examples E+ ∪E− , PhotoScout enumerates possible
completions of 𝑃 by instantiating each hole with a constant and
then evaluating the resulting query 𝑄 on each example in E+ and
E− . If 𝑄 evaluates to true (resp. false) for all examples in E+ (resp.
E− ), then𝑄 is retained as a viable completion of the sketch. Among
all programs that are consistent with the examples, PhotoScout
chooses the simplest program, where simplicity is defined in terms
of the number of nodes in the program’s abstract syntax tree. Note
that enumerative search is tractable in this context because each
sketch contains no more than a few holes.

Example 4.4. Consider the following partial program:

∃𝑥 .∃𝑦. (HasType(𝑥, facen) ∧ HasType(𝑦, Flowers) ∧ HasRelation(𝑥,𝑦,□))
(4)
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Suppose that the user has added the first three images in Figure
1 as positive examples and the last one as negative. Consider the
completion 𝑃 ′ of this partial program where □ has been filled with
NextTo. For each positive example image I+, 𝑃 ′ (I+) is true, as
Alice is adjacent to flowers in each of these images. However, for
the negative example image I+, 𝑃 ′ (I−) is also true. Thus, 𝑃 ′ is
not a valid completion of the program. However, the completion
𝑃 ′′ where □ has been filled with Above is a valid completion, as
Alice’s face is below flowers in every positive example, but not in
the negative example.

Note that this step is useful even if none of the program sketches
contain holes, as example images will filter out complete programs
that do not match the user’s intent.

Step 4: Display search results. The last step in the process is to
execute the synthesized program 𝑃 on all input images and dis-
play those images 𝐼 for which 𝑃 (𝐼 ) yields true. Since the number
of search results may be quite large, PhotoScout also generates
a natural language explanation of what the program does. Such
explanations are intended to help users quickly uncover unintended
behaviors without having to look through a large set of images and
inspecting each one. PhotoScout generates these NL descriptions
through few-shot prompting of an LLM: In particular, given a few
examples of programs and their corresponding NL description, Pho-
toScout prompts GPT to produce an natural language description
of the programmatic query.

Example 4.5. Suppose that 𝑃 is the program

∃𝑥 .∃𝑦.HasType(𝑥, Alice) ∧ HasType(𝑦, Flowers) ∧ HasRelation(𝑥,𝑦, Above) .
(5)

ThenGPTmay generate the following natural language explanation:
“I have found all images that contain Alice and flowers
and where Alice’s face is directly above the flowers.”

Even after PhotoScout generates a correct program, it may
not produce exactly the desired output for two main reasons: First,
some concepts such as “holding” may not be perfectly expressible in
our DSL. For instance, in our running example, we approximate the
concept of holding through a coarse spatial relationship between
objects (e.g., if face 𝑥 is directly above object 𝑦, then 𝑥 is holding
𝑦). Second, even when all concepts are perfectly expressible, the
program may not produce the desired output due to inaccuracies
in the underlying neural model. For instance, if the face recogni-
tion model does not correctly classify Alice’s face, then a photo
containing Alice may not appear in the search results even though
it should. PhotoScout deals with this problem by allowing users
to manually add or remove images through the Saved Images panel
of the user interface.

4.3 Design Considerations

We conclude this section by summarizing and justifying some of
the design considerations underlying PhotoScout.

User Interface. The design principles of PhotoScout’s user in-
terface reflect the requirements of structured image search tasks. As
seen in the usage scenario, a structured search task may be simple
and intuitive to describe in natural language, but contain ambigui-
ties that are easier to resolve through visual examples. Hence, our

interface allows the user to interactively refine the search results.
In a typical workflow, the user begins their search by writing a
natural language query, which may contain unknown terms and
concepts that need to be grounded. To help the user understand
which terms need to be grounded via user interaction, PhotoScout
generates natural language explanations of what it does not under-
stand. The user then can then interact with PhotoScout to teach
it new concepts. In particular, constants such as people’s names
are natural to teach via object tagging, whereas new predicates
(e.g., “holding”) can be demonstrated using positive and negative
examples. Furthermore, the user can provide these examples in a
piecemeal fashion by providing one example at a time, re-running
the synthesizer, and inspecting the search results.

System Implementation. Recall that PhotoScout’s system repre-
sents search tasks as programs in a DSL. Utilizing DSLs for visual
tasks is an approach established in prior work [10, 22, 41, 43]. In
the context of structured image retrieval, we believe that such a
DSL-based approach is a particularly good fit, as the user wishes to
find images that satisfy certain logical constraints.

We note that any DSL imposes a tradeoff between expressiveness
and reliability: the more expressive the DSL, the larger the space of
tasks it can represent, leading to a harder synthesis problem. On the
other hand, if the DSL is too restrictive, it may not be able to express
image search queries that arise in practice. Our DSL maintains a
balance between these two properties, capturing a wide array of
structured image search tasks while keeping a compact structure
similar to first-order logic that facilitates synthesis.

PhotoScout generates image search queries by using an LLM
to “translate” the user’s NL description to a program sketch in
the DSL. This approach allows the synthesizer to extract as much
information as possible from a coarse search query expressed in
natural language. However, because the user’s description may
be ambiguous or contain new concepts that are not captured via
pre-trained neural models, PhotoScout grounds new concepts via
user interaction, which takes two forms: Object tagging allows the
user to conveniently ground names, whereas positive and nega-
tive examples allow grounding unknown relations and resolving
ambiguities.

5 USER STUDY

To understand how people interact with PhotoScout and gain
deeper insight about the strengths and limitations of the proposed
interface, we conducted a within-subjects evaluation centered on
the following questions:

• RQ1. Does PhotoScout improve user efficiency and accuracy
compared to a baseline image search tool?

• RQ2. Do users find PhotoScout easier to use than a baseline
tool?

• RQ3. Are users more confident about the accuracy of the search
results compared to the baseline tool?

• RQ4. Does the proposed multi-modal interface help users express
their intent?

• RQ5. What strategies do people adopt when interacting with
PhotoScout?
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In the remainder of this section, we first describe the baseline
tool and our user study procedure. Afterwards, we present both
quantitative and qualitative analyses of the user study results.

5.1 Baseline Tool: ClipWrapper
As a basis of comparison, we implemented a graphical user interface
around OpenAI’s CLIP model, which is a state-of-the-art neural
network for learning visual concepts from natural language super-
vision. Given a dataset D of images and a query (in the form of
text or image), the CLIP model assigns a score to each image in D
that reflects its similarity to the given query.

Our baseline tool, henceforth called ClipWrapper, is a wrapper
around this CLIP model. Specifically, ClipWrapper implements a
graphical user interface that allows users to input a query on a set
of uploaded images. The query can either be a text description of
the search task or a photograph that exemplifies the target search
results. ClipWrapper simply queries the CLIP model and returns
all images in the dataset whose score exceeds some threshold. The
ClipWrapper interface allows users to further refine the search
results by manually adding or removing images to and from the
result returned by the CLIP model.

ClipWrapper allows users to search for images that are similar
to either a query image or an open-ended text query. ClipWrap-
per does not utilize any hard constraints and may return images
that do not precisely match a user’s query. A central question of
this user study is: does ClipWrapper suffice for performing struc-
tured image retrieval tasks, or is a tool specially designed for such
tasks necessary? Further, we explore the specific features of Clip-
Wrapper that make structured image search difficult, compared
with PhotoScout. ClipWrapper’s interface mirrors PhotoScout
as closely as possible so as to reduce the number of confounding
factors in our comparison.

5.2 User Study Procedure

We recruited a total of 25 participants for our user study. Among
these participants, 23 are in the 18-24 age bracket, and the remaining
two are between 25 and 35 years old. In terms of gender, 14 (resp.
9) of the participants self identify as female (resp. male) and 2 self-
identify as “other". Our only criteria for selecting participants was
that they have prior experience using a computer and that they do
not have impaired vision. The entire user study took place over the
course of three weeks.

During the user study, each participant was asked to first com-
plete a training session and then perform four image search tasks,
two using PhotoScout and two using ClipWrapper. The order of
tasks, as well as which tool to use for a given task, was randomly
selected. The training session involved completing a tutorial about
both tools and performing two practice tasks, one with Photo-
Scout and one with ClipWrapper. The users had access to the
tutorial throughout the user study and were explicitly told that they
could reference it whenever they wished to do so. The participants
were given a total of 5 minutes to complete the practice tasks and
each of the four image search tasks. Participants were told that
they could end a task whenever they were satisfied with the results;
however, participants opted to use all the time available to them in
most cases.

In the course of the study, participants were asked to talk about
their search strategies while completing each task. To aid subse-
quent analysis, we collected both audio and screen recordings
throughout the process. Upon completion of the four tasks, the
participants were asked to reflect on their experience and answer
some interview questions. The total session, including the tutorial
and interview, took less than 90 minutes for each participant.

5.3 Tasks

Given a dataset of images, the goal of each task in the user study
was to identify a subset of the images matching a certain criteria.
Specifically, the tasks involved the following three sets of images:

• Transportation: A set of 70 images of bicycles, cars, and people,
mostly taken on public roads.

• Festival: A set of 420 images from a music festival, comprised of
images of performances, venues, and attendees.

• Wedding: A set of 352 images from a wedding, including staged
photos of the wedding party and candid photos of the ceremony
and reception.

Each task targeted one of these datasets. Since PhotoScout is
intended for use on personal images, we collected these datasets
from image galleries shared on Flickr. As such, the datasets vary in
size. Participants were provided with task descriptions, along with
a description of the corresponding dataset. The task descriptions
were as follows:

(0) Find all images that contain a car and a bicycle.
(1) Find all images that contain a guitar and a microphone.
(2) Find all images that contain no people. An image contains

a person if you can see any discernible part of someone’s
body.

(3) Find all images where the bride is to the left of the groom.
An image contains a person if their face is visible.

(4) Find all images that contain the bride but not the groom. An
image contains a person if their face is visible.

Task 0 was the practice task and involved the transportation dataset.
Tasks 1 and 2 used the festival dataset, and the last two tasks in-
volved the wedding dataset. Note that tasks 3 and 4 involve search-
ing for particular faces in an image. For these tasks, the participant
was given example images with the bride and groom’s faces.

6 USER STUDY RESULTS

6.1 Quantitative Results

Search Result Accuracy. One of the key metrics for evaluating
the efficacy of each tool is accuracy of search results. That is, within
the 5 minute time limit, how close were the saved results to the
ground truth? To answer this question, Table 1 reports the F1 score
of the search results when participants use PhotoScout and Clip-
Wrapper. We report two different accuracy results, namely before
and after post-processing. To understand what we mean by this,
recall that people first interact with the underlying tool (ML model
or synthesizer) to get an initial set of results, and then manually
add/remove images to refine the search results before finally saving
them. The columns labeled before post-processing show the F1 score
for the search result automatically generated by the tool before
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Figure 8: The ClipWrapper interface has five main panels: (1) The user enters a natural language query describing the images to

be searched. (2) The album preview panel displays all photos in the target album. (3) The photo view panel displays an image

and allows users to search for similar images. (4) The search results panel shows all images that ClipWrapper finds that match

the user’s query. (5) The photo export panel shows all images selected by the user as the final search result.

manual intervention.2 As we can see, the initial search results for
PhotoScout are significantly better (0.45 vs 0.76 in terms of aver-
age F1 score). Furthermore, using the Wilcoxon rank sum test, we
find that these results are statically significant, with a 𝑝-value of
less than 0.02, for all tasks.

The columns labeled after post-processing show the results af-
ter the users have manually refined the search results within the
5 minute time limit. Overall, the F1 scores for PhotoScout are
higher compared to those of ClipWrapper, and overall difference
in F1 score is statistically significant (𝑝-value of < 3.1e−7 for the
Wilcoxon rank sum test). However, if we run the same test for each
individual benchmark, we find that the result is statistically signifi-
cant for only the Guitar and Microphone task and the No People
task. For the Bride and Not Groom task, there was one participant
who mistook a wedding guest for the bride and completed the task
by searching for images containing that guest. When this outlier is
removed from the dataset, the result for the Bride and Not Groom
task is significant as well. A discussion of why the Bride Left of
Groom task does not have a significant result is included in Section
6.3.

Search Efficiency. The average time per search query (i.e. the
time the system takes to perform a search for a given query) for
PhotoScout and ClipWrapper is presented in Table 1. For Clip-
Wrapper, search time is consistent across all tasks and queries. For
PhotoScout, search time varies depending on what inputs the user
provides. For instance, if the user provides an example image with
a lot of different objects, then sketch completion will take longer,
as there are more ways that the sketch could be filled in. While
PhotoScout, on average, takes longer than ClipWrapper, both
tools are efficient enough for interactive online use.

Manual effort. Another important metric for evaluating the effi-
cacy of a tool is the amount of manual effort. That is, how many
objects did the user tag, and how many images did the user have
2For PhotoScout, this refers to the result after the user is done running the synthesizer.

to manually add or remove before they were satisfied with the
results or reached the 5 minute time limit? The use of tagging was
extremely consistent. Participants only used tags when completing
the two tasks using the wedding dataset, as these tasks involved
reasoning about specific faces whose names were not known by
the object detector. Participants completed these tasks with Pho-
toScout 24 times. In 23 of these instances, the participant used
tagging to assign names to the bride and groom (i.e. the subjects of
the task). For instance, P14 tagged the bride and groom as “Emily”
and “John,” respectively, and wrote the query “Emily is to the left of
John.”

The results for other metrics of manual effort are presented in
Table 1. In particular, for PhotoScout, we report two different
numbers: (a) the total number of examples provided when using
the synthesizer, and (b) the number of added/removed images to
refine search results. We can take the sum of (a) and (b) to be the
proxy for manual effort. The difference in manual effort between
PhotoScout and ClipWrapper is statistically significant for all
tasks, with a 𝑝-value of less than 0.02. Note that, for all tasks, and
the Bride Left of Groom task in particular, ClipWrapper users
manually added and removed a significant number of images in
proportion to the size of the ground truth dataset. Participants
using ClipWrapper often resorted to extra manual efforts to add
and remove images from their initial search results to achieve a
higher accuracy; however, this required a greater cognitive load to
complete their task: e.g., P14 mentioned “it felt like I had to basically
look through every image.”

Result for RQ1: On average, across all tasks, participants
achieved higher accuracy with PhotoScout than with Clip-
Wrapper while expending less manual effort.

Task Questionnaire. For the last part of our quantitative study, we
analyze the results of the questionnaire that each participant was
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asked to complete after finishing a task. Specifically, participants
were asked the following questions upon completion of each task:
(1) On a scale of 1-5, with 5 being very easy and 1 being not easy

at all, how easy was it to complete the task using this tool?
(2) On a scale of 1-5, with 5 being very confident and 1 being not

at all confident, how confident are you that your results are
correct? “Correct” means that all of your saved images match
the task, and none of the unsaved images match the task.

Figure 9 summarizes the results of this questionnaire. Across all
tasks, participants gave an average score of 4.0 for PhotoScout and
2.7 for ClipWrapper on question 1, and an average score of 3.8 for
PhotoScout and 2.6 for ClipWrapper on question 2. For question
1, the difference in scores between PhotoScout and ClipWrapper
was statistically significant for all tasks, with a 𝑝-values less than
0.03. For question 2, the difference in scores was significant for the
Guitar and Microphone task and the No People task.

We also asked participants for qualitative input on each question.
When answering question 1 (ease of use), some participants noted
that PhotoScout “has a steeper learning curve” than ClipWrapper
due to its more sophisticated search features, but that “once you
have done the setup, the results it gives are pretty accurate” (P1).
Further, when answering question 2 (confidence in results), some
participants noted that they had confidence in their results with
ClipWrapper because of themanual effort they had expended going
through the images themselves. Despite these aspects working in
ClipWrapper’s favor, the scores for each question are consistently
higher for PhotoScout than for ClipWrapper.

Result for RQ2: Across all tasks, participants gave Photo-
Scout an average rating of 4.0 out of 5 for ease of use, com-
pared with an average rating of 2.7 out of 5 for ClipWrapper.
The difference in scores was statistically significant for all
tasks.

Result for RQ3: Across all tasks, participants rated their
confidence in PhotoScout’s as 3.8 out of 5, compared with an
average rating of 2.6 out of 5 for ClipWrapper. The difference
in scores was statistically significant for two of the four tasks.

6.2 Qualitative Results

We conducted a semi-structured interview about the participants’
experiences using PhotoScout and ClipWrapper. We asked par-
ticipants about their search strategies and results using both tools.
In addition, we instructed participants to think aloud while complet-
ing each task, kept notes on comments that participants made. One
of the authors coded participants’ responses to each question and
comments on each task, and two authors reviewed and discussed
the results collaboratively. This analysis addresses RQ4 and RQ5.
We report the following key findings:

KF1: PhotoScout’s synthesis-based search procedure makes struc-
tured image search easier and more efficient. 16 of the 25 partici-
pants reported that they thought their results using PhotoScout

were more accurate than their results using ClipWrapper. Out
of the other 9 participants, only one said that their results with
ClipWrapper were more accurate; the other 8 were unsure. Par-
ticipants expressed confidence in their results with PhotoScout:
“[PhotoScout] was actually really good at getting what I asked. I
think [PhotoScout] was pretty trustworthy overall” (P21). Similarly,
they expressed a lack of trust in ClipWrapper: “I don’t know, I just
didn’t have that much faith in [ClipWrapper]” (P5).

In particular, participants observed that PhotoScout was better
than ClipWrapper at finding images that were consistent with
logical and positional elements of their queries. When completing
the No People task with ClipWrapper, P9 noted, “I put no people
in the search bar, and it gave me a bunch of images with people.”
Many participants who used ClipWrapper for this task developed
a strategy of finding one image without people, and searching for
similar images. This strategy allowed them to find certain types
of images without people (e.g. closeup images of signage at the
festival), but caused them to miss other types of images that were
not visually similar (e.g. photos of venues before performances had
taken place). By contrast, participants who used PhotoScout could
efficiently write a text query, add a few example images, and see
a set of accurate search results matching the logical intention of
their query.

Similarly, when completing the Bride Left of Groom task, P18
said “[ClipWrapper] doesn’t seem to know its lefts and rights that
well.” Participants using ClipWrapper were able to find images
containing the bride and groomwithout much difficulty, but finding
images where the bride and groom were oriented correctly could
only be accomplished through manually filtering. Meanwhile, par-
ticipants using PhotoScout could use a text query and example
images to specify that they only wanted photos were the bride is
to the left of the groom, and saw results that reflected this intent.
P12 stated, “I noticed that [PhotoScout] is more functional when it
comes to relational statements”.

Interestingly, most participants did not make use of the natural
language explanations of the search results in PhotoScout. Only
2 out of 25 participants reported that they found the explanations
useful, and many participants did not notice the explanations, even
though the tutorial pointed out this feature. While we cannot deter-
mine exactly why participants did not make use of NL explanations,
we can conclude that this feature had little to do with participants’
confidence in PhotoScout’s search results. Future work could ex-
plore alternative methods of explaining search results to the user.
One such method allows users to visualize why a particular image
appeared, or did not appear, in the search results. This visualization
could include annotations and/or text that highlight the parts of an
image that match or do not match the query. Several participants
noted the potential utility of this feature when reviewing their
search results.

KF2: Example images convey information that text alone cannot.
22 out of 25 participants indicated that example images provided
additional information that they could not convey in text. P7 said
“[Examples] can describe what you’re looking for better than text.... A
picture is worth a thousand words.” P15 noted, “I like that I was able
to provide example images, because it helped me clarify [my intent].”
Participants noticed that example images and text queries worked
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Table 1: A quantitative comparison of PhotoScout (abbr. P) and ClipWrapper (abbr. C). # Ground Truth lists the number of

images in the ground truth dataset of each task. # Assigned lists the number of participants who were assigned with each tool

for each task. Avg. F1 Score Before and Avg. F1 Score After list, respectively, the average F1 score of the search results before

and after performing post-processing (i.e. manually adding and removing images from the search results) with each task and

tool. Manual Effort lists the average number of images post-processed (i.e. added and removed from search results) for each

task, and, in the case of PhotoScout, the number of images selected as examples.

Task
Description

# Ground
Truth

# Assigned Avg. F1 Score
Before

Avg. F1 Score
After

Avg. Time
Per Query (s)

Manual Effort -
PhotoScout

Manual Effort -
ClipWrapper

P C P C P C P C Avg.
# Examples

Avg. # Post-
processed

Avg. # Post-
processed

Guitar and
Microphone 63 10 14 0.82 0.58 0.84 0.63 1.79 0.09 3.7 6.1 28.2

No
People 24 13 12 0.78 0.29 0.77 0.66 2.08 0.08 5.1 4.2 21.4

Bride Left
of Groom 42 13 12 0.77 0.47 0.78 0.66 2.07 0.08 5.0 4.2 38.4

Bride and
Not Groom 40 11 13 0.67 0.43 0.68 0.54 2.30 0.08 4.9 5.8 21.7

Overall - 49 49 0.76 0.45 0.82 0.61 2.11 0.08 4.8 5.0 27.6

*
*

* *

(a) User-reported ease of use.

*
*

(b) User-reported confidence in results.

Figure 9: Results of post-task questionnaire, with standard deviation. Tasks with a statistically significant difference in scores

are denoted with an asterisk.

synergistically: “I gave more specific text queries in [PhotoScout],
because I could back them up with examples” (P25). By contrast,
some participants noted that ClipWrapper required more general
text queries: “I tried to give [ClipWrapper] as little ambiguity as
possible” (P4).

During the study, example images clarified ambiguous or erro-
neous text queries. For instance, when completing the Guitar and
Microphone task with PhotoScout, many participants made the
text query “guitar and microphone.” Based on this text alone, it
is unclear whether the user wants all images containing a guitar
and a microphone, or all images containing a guitar and all images
containing a microphone. A negative example image containing
just one of these objects quickly resolves this ambiguity. In another
instance, when completing the No People task with PhotoScout,
P14 made the text query “music festival containing no people.” The

term “music festival” in this query was unnecessary (as all images
in the dataset were from a music festival) and could have added
noise to the search results. However, because the participant had
already added a set of example images for the task, PhotoScout
figured out that this part of the query was extraneous, and output
images containing no people.

KF3: Selecting example images is an intuitive process. Every partic-
ipant utilized example images when completing tasks with Photo-
Scout, and selecting positive and negative example images was an
easy process for most tasks. Usually, the participant quickly found
positive and negative example images by scanning through the full
image dataset. In some instances, participants made an initial text
query, and then selected example images from the smaller set of
preliminary search results.
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During the tutorial, we explained what positive and negative
examples were, but did not offer any insight into what makes a
good or bad example image. Even so, during the study 11 out of
the 25 participants noted that they intentionally selected diverse
example images. For instance, P10 noted, “for negative examples, I
chose things that could be confusing.” Similarly, P7 said, “I tried to
find edge cases with one image that was totally different,” and that
especially for negative examples “I tried to find sort of tricky cases
where an image was almost correct.”

This strategy likely helps to produce correct results in Photo-
Scout, as the example images will filter out synthesized programs
that are almost correct but are missing one key component. Even
though participants were not given any information about the un-
derlying search procedure, they independently found an effective
strategy for selecting example images. This behavior suggests that
example images are an intuitive addition to text-based image search.

6.3 Description of Failure Cases

Limitations of object detector. Because PhotoScout performs
image retrieval by executing neuro-symbolic queries, its perfor-
mance is dependent upon the accuracy of the underlying neural
models for object detection. If an image contains a particular object
present in the user’s query, but PhotoScout does not detect that
object (e.g. because it is partially obscured), then that image will
not appear in the search results.

This issue is more apparent if the object detector does not work
well on the images that the user selects as positive and negative
examples. In particular, because PhotoScout synthesizes a pro-
gram that matches all positive examples and rejects all negative
ones, PhotoScout may fail to synthesize any programs if the ob-
ject detector misclassifies relevant objects in the example images.
Indeed, this limitation of PhotoScout proved problematic in the
Bride Left of Groom task. Several participants selected an example
image of the bride and groom dancing, where only the back of the
bride’s head is visible. While participants could easily infer that this
person was the bride, PhotoScout did not classify her correctly.
Hence, PhotoScout could not generate a program that matched
both the user’s text query and this example image, and the user
was prompted to adjust their query. A common response was for
participants to then add more example images in an attempt to
correct this error. However, they would continue to get poor results
as long as they had any example images where relevant objects
were misclassified by the object detector.

As a result, participants sometimes felt more frustrated when
using PhotoScout than when using ClipWrapper: 8 out of 25
participants noted instances where PhotoScout should have de-
tected an object but did not. In some cases, this caused participants
to lose trust in PhotoScout. During the Bride Left of Groom task,
P5 noted, “it decreases my confidence to know that [PhotoScout]
misclassified the face I was looking for.” When completing the Guitar
and Microphone task, P8 said, “it’s annoying when [PhotoScout]
doesn’t recognize a microphone in an image.”

Limitations of LLM. It is also the case that PhotoScout’s frame-
work may fail to output results when GPT is unable to produce a
program sketch from the user’s text query. If the user provides a
query that is very dissimilar from any of the example text queries in

the prompt provided to GPT, then the output programs may fail to
parse. This was the case when P22 made the text query “solo images
of anna” during the Bride and Not Groom task (where they had
already tagged the bride as “anna”). If this happens, the user will
see no search results and will be prompted to adjust their query.

Inspiration for future work. An interesting direction for future
work is to explore interaction models that balance the structure of
PhotoScout with the flexibility of ClipWrapper. ClipWrapper
will also fail to detect objects, and often misinterprets text queries.
However, ClipWrapper is designed for similarity-based search
queries, and does not extract any hard constraints from queries. As
such, users will almost always get some results from any query they
provide to ClipWrapper. Even if those results are inaccurate, users
may feel more encouraged to continue trying other queries or to
edit their results manually. One user suggested that PhotoScout
could allow users to edit image labels in cases where the object
detector is incorrect. Several other users reported that they would
like a fusion of the two tools, wherein they could explore the dataset
with open-ended text or image queries in a separate panel, without
having to adjust the text query and example images that would
determine the hard constraints of their task.

Another line of future work could involve expanding the DSL to
support tasks involving more fine-grained relationships between
objects. In our current synthesis procedure, logical constraints in-
volving multiple objects are approximated by predicates such as
HasRelation(𝑥 , 𝑦, Above). This predicate can accurately describe a
concept like “Bob is playing guitar,” unless there are photos where
Bob is above a guitar, but he is not playing it. Predicates that con-
sider additional information, such as the distance between objects
and the relative sizes of objects, or that involve more than two
objects, could increase the expressivity of our DSL.

7 CONCLUSION

We have presented PhotoScout, a new multi-modal synthesis-
based interface for automating image search tasks. With Photo-
Scout, users provide natural language descriptions of their search
tasks, then interactively select example images and tag objects to
refine their search. Our approach uses an LLM to synthesize pro-
gram sketches in a neuro-symbolic DSL and then grounds those
sketches using a PBE approach. We have evaluated our proposed
approach by conducting a user study with 25 participants, wherein
users completed image search tasks with PhotoScout and a deep
learning-based image search tool. We found that participants per-
formed tasks more accurately and with less manual work using
PhotoScout.
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