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Figure 1: Top left: centered Gaze animation, bottom left: averted Gaze animation. Right: Virtual human agents used, including 
(from left to right) two female (F1, F2) and two male (M1, M2) agents. 

ABSTRACT 
For individuals with Social Anxiety (SA), interacting with others 
can be a challenging experience, a concern that extends into the 
virtual world. While technology has made significant strides in 

∗Contributed equally to this research. 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

CHI ’24, May 11–16, 2024, Honolulu, HI, USA 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0330-0/24/05 
https://doi.org/10.1145/3613904.3642359 

creating more realistic virtual human agents (VHA), the interplay 
of gaze and interpersonal distance when interacting with VHAs is 
often neglected. This paper investigates the effect of dynamic and 
static Gaze animations in VHAs on interpersonal distance and their 
relation to SA. A Bayesian analysis shows that static centered and 
dynamic centering gaze led participants to stand closer to VHAs 
than static averted and dynamic averting gaze, respectively. In the 
static gaze conditions, this pattern was found to be reversed in SA: 
participants with higher SA kept larger distances for static-centered 
gaze than for averted gaze VHAs. These findings update theory, 
elucidate how nuanced interactions with VHAs must be designed, 
and offer renewed guidelines for pleasant VHA interaction design. 
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1 INTRODUCTION 
Social interactions are essential for well-being [45]. During these 
interactions, information is sent and received (e.g., spoken words, 
gestures), including subtle social clues [84, 90], which offer insights 
into feelings, intentions, and emotions, playing a vital role in setting 
conversational tones, reflecting societal norms, and establishing 
personal boundaries [37]. 

Empathetic computing seeks to equip computing systems with 
capabilities to sense, process and react emphatically to verbal and 
nonverbal social clues, making interfaces intuitive, effective and 
meaningful[20]. By using virtual human-like agents (VHAs) that 
transmit social clues as embodied interfaces (i.e., that speak and 
use gestures), one can fundamentally build social human-computer 
interactions [6, 20, 71, 91]. Therefore, the design of empathetic 
computing systems like VHAs must consider personality traits that 
change the processing of social information. However, research 
is riddled by either focusing only on gaze or proxemics [11, 12], 
neglecting individual differences, or by just studying the direct 
effect of personal space or gaze [31, 32, 74]. 

For some, social clues have a profoundly different meaning, 
as is the case of people with Social Anxiety (SA) [60]. SA, char-
acterized by the intense fear of others’ evaluation, leads to the 
development of cognitive and behavioral biases causing individuals 
to avoid social interactions or endure them with severe unease 
[89]. Most importantly, affected individuals show an interpretation 
bias towards social clues, misinterpreting neutral stimuli as hostile 
[104]. These patterns stretch into digital domains, bringing both 
challenges and opportunities for VHA design [46, 55]: for instance, 
in Virtual-Reality (VR), individuals with SA tend to walk further 
around a VHA and stand further away from it [46, 55]. SA can also 
amplify social cues perception, making interactions feel more in-
tense and leading to compensatory behaviors such as establishing a 
larger Interpersonal Distance (IPD) or avoiding direct gaze [57, 89]. 

In VR one can interact with objects ranging from rudimentary 
3D models to complex VHAs [7, 91]. By emulating human attributes 
like gestures, speech, and gaze, VHAs act as interfaces, foster nat-
ural interactions with users [6, 20, 71] and create a distinct social 
context where people communicate and collaborate in shared spaces 
enhanced by nonverbal cues [50, 75, 106]. Nonverbal cues, partic-
ularly gaze direction [31, 33] and IPD [87, 101], are cornerstones 
of human communication that are engrained in Metaverse applica-
tions such as Social VR [107]. These are vital if VHAs are to inspire 

human-like interactions [33, 56]. Yet, these social cues are subjec-
tive and based on individual traits, such as SA [31, 100]. Therefore, 
the design of empathetic computing systems like VHAs must con-
sider how individual traits change the way social information is 
processed. 

Few exploratory but highly influential studies on Social VR have 
focused on gaze, proxemics and their intricate relationship, reveal-
ing diverse findings [11, 12]. One study has found gender-driven 
nuanced differences in clearance distance behind a VHA, for tracked 
gaze as compared to static gaze [12]. Other authors have found clear-
ance distance to be enlarged when comparing VHAs that have their 
eyes closed, with ones with open eyes [11]. However, more recent 
research argues that these methods might not capture the true 
essence of conversational IPD in virtual interactions [39, 43, 86]. 
This is further complicated by the inherent subjectivity of gaze and 
proxemics due to the influence of individual traits (e.g., [31, 100]) 
and mental health conditions like SA [46]. 

Existing research on the relationship between gaze and prox-
emics remains too inconsistent to inform design choices effectively 
and is riddled by either focusing only on gaze and proxemics [11, 12], 
neglecting individual differences and the study of the IPD or gaze 
in relation to SA [31, 32, 74]. The present study, thus, compares pre-
ferred IPD for different dynamic and static animations for centered 
and averted gaze in interactions with VHAs. It was found, contrary 
to Bailenson et al. [11, 12], that participants preferred shorter IPDs 
in situations of centered gaze, irrespective of dynamic or static 
displays, therefore underlining the role of direct social gaze as an 
affiliative signal. Considering SA, the pattern found by Bailenson 
et al. [11, 12] was reproduced: in increased SA, averted gaze led to 
smaller IPDs compared to centered gaze, while in decreased SA, 
the opposite was found. Thus, by considering participants’ subjec-
tive experiences, we could solve a controversy in the literature on 
gaze and proxemics. From here, we revised design recommenda-
tions for VHA’s nonverbal behavior to consider individual variation, 
intending to inform the design of more engaging Social VR applica-
tions for those with SA and the design of embodied conversational 
interfaces. 

2 RELATED WORK 

2.1 Understanding Social Anxiety 
SA is characterized by an intense fear of being evaluated by others 
[89] and ranges from experiencing elevated anxiety symptoms in 
certain situations (e.g., giving a speech), to clinical levels [57, 65]. 
SA manifests through behavioral, physical, and cognitive symptoms 
[23, 89]. Behaviorally, individuals might exhibit withdrawal and 
avoidance tendencies [66]. Physical symptoms include blushing and 
trembling or even excessive sweating in social situations [5, 24, 89]. 
On the cognitive side, SA can lead to biased recollections of social 
events [80] and the feeling of being observed when they are not 
[32]. 

Those affected by SA often encounter difficulties in forming and 
sustaining relationships [15] and experience elevated risk of bul-
lying [15]. Individuals with SA, thus, often dread scenarios where 
they are either directly interacting with others or under the per-
ception of being observed [89]. Such fears are not limited to the 
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moment and can amplify disproportionately, beginning days or 
weeks prior to the actual interaction [89]. 

In direct encounters, those with SA show distinct avoidance-
related patterns: direct eye contact avoidance [99] or consciously 
keeping larger IPDs in conversations [34, 55, 57, 74, 105]. Prior work 
shows evidence that socially anxious individuals tend towards an 
enhanced self-directed perception of subtle gaze clues [82], par-
ticularly for negative and neutral facial expressions [83], which 
then may ampilfy experienced social stress [95]. These avoidance 
behaviors highlight the necessity of understanding SA’s nonverbal 
patterns. 

2.2 The Dynamics of Proxemics and Gaze 
Proxemics, the study of personal space in human interactions, delin-
eates the surrounding area into different spaces [37, 102]: intimate 
space, for close relationships (0-45 cm); personal space, for friends 
(45-120 cm); social space, for interactions with unfamiliar people 
(120-365 cm); and beyond that, up to 762 cm, for addressing public 
space [37]. Note, however, that recent studies have found personal 
space to have a radius of about 1 m [39]. 

Personal space violations can create discomfort, often leading to 
defensive reactions [8, 38, 43, 58, 101]. However, personal space size 
is not static, being influenced by personal characteristics, such as 
gender [12, 37–39, 43, 44, 78, 103] and SA level [34, 55, 57, 74, 105]. 
There is a tendency for SA to increase IPD, which has neurological 
underpinnings: with increased SA, distance is perceived as closer, 
more salient, and as requiring more attentional resources [34, 74, 
105]. 

One important situational determinant of IPD is gaze [11, 37, 67], 
which plays a role in personal space perception and regulation in 
virtual environments [11]. Some studies have explored gaze influ-
ence on proxemics, but results are mixed. Some reveal an enlarged 
IPD in mutual gaze conditions [11, 12, 67], while others show no 
significant effect [86]. It is important to note that minimal distance 
paradigms to measure proxemic behavior in these studies have 
been shown to be inferior to approach paradigms, as pointed out 
both by empirical HCI work [43] and meta-analysis [38]. 

Theoretical factors can also explain the mixed results. Equilib-
rium Theory (ET) offers a framework to understand the relationship 
between gaze and proxemics [3, 9, 11]. This theory posits that non-
verbal cues help balance intimacy levels, by adopting avoidance and 
approach behaviors. Avoidance behaviors include gaze aversion, 
negative facial expressions, and increased IPD, whereas approach 
behaviors are marked by happy expressions, direct gaze, and re-
duced IPD [2, 102]. 

For VHA interactions we can posit different hypotheses based 
on different ET interpretations: one can argue that direct gaze in-
tensifies intimacy and arousal, leading to increased IPD to reach an 
intimacy equilibrium [11, 12]. In contrast, traditional psychological 
theories suggest direct gaze is an affiliative behavior, leading to 
smaller IPD [9]. Previous SA research has shown that direct gaze 
cues inflict arousal and avoidance patterns among individuals with 
SA [89, 99]; it is possible to pit these interpretations of ET against 
each other when considering SA to resolve the discrepancies within 
the literature. 

2.3 Social Virtual Interactions 
Social VR spaces, such as VRchat [28], have risen in popularity [22, 
59]. These are characterized by full body movement and gestures 
in real-time, support of vivid spatial and temporal experiences, and 
mediation of both verbal and non-verbal communication [62, 63, 70]. 
Research on Social VR effects is inconclusive: some argue that Social 
VR may increase the risk of harassment, while others argue that 
Social VR spaces produce more satisfying social experiences due 
to the increased sense of co-presence [16]. Personality traits, and 
mental health conditions manifest virtually, increasing the risk 
of a low-quality experience. In SA, the design of the user’s self-
representation [27] and agents’ social cues [21] can cause users 
to experience social stress in the game. With various hardware 
capabilities, this misunderstanding intensifies as users don’t know 
if the lack of social clues (e.g., gazing at them) is intentional by 
the user or a hardware issue. Given the important role of gaze and 
its interpretation on IPD in the physical world [82, 95] there is a 
need to better understand the relationship between SA, gaze, subtle 
social clues like facial expressions, and IPD in virtual environments. 

3 METHOD 
In this study, we contrast competing ET interpretations on the 
interplay of gaze and IPD in a VR context, considering SA. On 
one side, prior research provides evidence for the hypothesis that 
socially anxious individuals may tend to avoid looking into facial re-
gions, which is referred to as hypervigilance-avoidance-hypothesis 
[26, 69]. On the other side, researchers challenged this biased gaze 
behaviour and found that the biases may fade in real-life interac-
tions with others [81, 94]. Therefore, we explore the effects of gaze 
on IPD, in relation to SA. Bailenson et al. [11, 12] contend that 
direct gaze amplifies intimacy, leading individuals to augment their 
IPD from VHAs. Conversely, Argyle and Dean [9] posit that direct 
gaze acts as an affiliative cue, resulting in a decreased IPD. 

We aimed to replicate Bailenson et al. [11, 12] experiments in a 
realistic setting using a stop-distance task [86] (H1). Interactions 
are initiated with a VHA exhibiting either a centered (0º) or averted 
gaze (-15º or +15º from the centered direction). 

We hypothesized that socially anxious participants show a larger 
IPD when VHA’s gaze is centered (H1.1). Further, we hypothesize 
that socially anxious individuals keep a larger IPD even if gaze is 
averted (H1.2). Next, we assessed the influence of dynamic gaze 
shifts on IPD [53, 54]. Based on ET’s social signalling perspective 
[9], we hypothesized that a VHA averting its gaze dynamically 
(from 0º to +/-15º at 1 m) leads to an increased IPD compared to 
centering its gaze (from +/-15º to 0º at 1 m) (H2.1). Again, this effect 
is hypothesized to be magnified in participants with pronounced 
SA (H2.2). Conforming to prior research, we predict a positive cor-
relation between SA and preferred IPD (H3; [34, 55, 57, 74, 105]). All 
hypotheses and analyses were pre-registered.1 In alignment with 
Sicorello et al. [86], we adopted a Bayesian approach to quantify 
the likelihood of null differences. 

3.1 Study Design 
A stop-distance task was used in a within-participants design, where 
we measured IPD, our dependent variable, as the frontal distance 

1see https://aspredicted.org/52M_RRZ; Hypotheses are numbered differently. 
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(in cm) between participants and the VHA, logged by participants 
when approaching the VHA. We manipulated Gaze Dynamics as 
our independent variable in four conditions (dynamic averting gaze, 
dynamic centering gaze, static averted gaze, static centered gaze), 
creating seven gaze levels, given that in the first three levels gaze 
could be directed to left or right on a horizontal plane. Besides, we 
used four different VHAs (two male and two female), with seven 
gaze levels repeated three times for each VHA (3 repetitions x 7 gaze 
manipulations x 4 VHA), resulting in 84 trials for each participant. 
We decided on these conditions building on prior work, which 
emphasized that the gaze’s angle with neutral facial expression is 
key and found that interpretation of these angles is affected by SA, 
amplifying social stress when misinterpreted as staring [82]. 

We also measured SA using the Liebowitz Social Anxiety Scale 
(LSAS; [30, 57]). Since SA is a dimensional trait [52], and to avoid 
loss of power in the analyses due to binarising SA, we followed 
prior research [46, 100, 101, 103] assessing SA’s effect on proxemics 
continuously using bayesian linear mixed models. 

Furthermore, we explored participants’ gaze behavior when ap-
proaching the VHA by dividing our environment into two areas of 
interest (environment vs. VHA). This study was approved by the 
research ethics committee of Aalto University (D/718/03.04/2023). 
All data and data analyses can be found online 2 . 

3.2 Participants 
Seventy-nine participants underwent the study. Three were ex-
cluded from further analyses due to experiencing motion sickness 
during the VR immersion, indicated by a score ≥14 on the Fast 
Motion Sickness (FMS) Scale [49] (remaining sample: 𝑀 = 2.62, 𝑆𝐷 
= 3.30). Two participants were excluded as they did not have normal 
or corrected-to-normal vision. We also tested for minimal visual 
acuity (all > LogMar ≤ 1) 3[10], confirmed by the Landolt C Visual 
Acuity Test [10]. Another six participants were excluded, due to 
data issues. Three participants were removed due to poor question-
naire data (e.g., most left-side options in nearly all questions), two 
due to one missing value on the LSAS and one because of lost IPD 
data. 

TC:ignore 
The remaining sample comprises 68 participants (33 male, 34 

female, one did not disclose gender, 𝑀age = 26.15, 𝑆𝐷age = 6.31). The 
detailed demographics are reported in Table 1. Participants were 
recruited through flyers spread at Aalto University and the Helsinki 
region. Participants received a 20 EUR gift voucher as compensation 
for their participation. 

3.3 Liebowitz Social Anxiety Scale 
The Liebowitz Social Anxiety Scale (LSAS) is a questionnaire de-
signed to assess cognitive, behavioral, and somatic manifestations 
of social phobia and anxiety [30, 57]. It consists of 24 items, rated on 
a 4-point Likert scale, with each being answered twice: once rating 
how anxious or fearful you feel in the situation, ranging from 0 
(none) to 3 (severe), and then how often the situation is avoided, 
ranging from 0 (never) to 3 (usually). The LSAS score was obtained 
by summing up all item values. Effectively, the score could range 

2https://osf.io/k49yq/
3Deviates from pre-registration. 

from 0 to 144. LSAS has a high test-retest reliability of 𝑟 = 0.83 and 
an internal consistency reliability of Cronbach’s 𝛼 = .79 - .92 [13], 
which aligns with our empirical data 𝛼 = .93 [0.91, 0.95]. 

3.4 Apparatus 
We used the Meta Quest Pro Head-Mounted Display4 to render the 
VR environment , an iPad to present the post-experiment survey, 
and a computer for data recording. The VR environment was im-
plemented using Unity game engine 2021.3.16f1 [93], integrated 
with the Oculus XR Plugin [72], and the Ultimate XR Plugin [98]. 
Datalogging was integrated into the rendering pipeline for efficient 
performance data collection. While the rendering pipeline gener-
ated frames at a rate of 90 fps, data logging was limited to 35.9 Hz. 
The headset was calibrated by adjusting the interpupillary distance 
and calibrating the eye-tracking for each participant individually. 

3.5 Stimuli 
The virtual environment was designed to match the dimensions 
of the physical environment, to allow participants to walk up to 
the VHA in a natural manner without colliding with objects or 
walls in the real environment. To measure the sense of presence in 
the virtual environment, participants filled in the IGroup Presence 
Questionnaire (IPQ; [77]) after completing the experiment. The 
IPQ measures spatial presence, user involvement, and experienced 
realness of the virtual environment, using 7-point Likert scale items, 
ranging from 0 to 6. The IPQ showed participants felt relatively 
present in the virtual environment (𝑀 = 3.03, 𝑆𝐷 = 1.86). 

The VHAs were selected from the Microsoft Rocketbox Avatar 
library given its’ high-definition, fully rigged human-like avatars 
that are popular and well-used in AR/VR and HCI research [35, 61, 
103]. We selected four white adult VHAs (two females; and two 
males) previously used in proxemics research in HCI [43]. Voice 
responses for each were prerecorded and implemented using the 
Amazon Text-to-Speech Software: Amazon Polly [4]. 

All VHAs were set to have a neutral facial expression (see Fig-
ure 1), as validated by participants’ emotionality ratings of each 
VHA (depicted in Table 1). To control for potential effects of gaze 
direction [9, 11, 79, 103], VHA’s height was dynamically adjusted 
to participants’ height. At the beginning of every trial, participants 
were positioned in front of the VHA, facing it directly. 

3.6 Gaze Visualization 
For the static gaze condition, VHA’s gaze was set constant dur-
ing the participants’ approach, fixed at the starting position either 
centered (0º; VHA established mutual eye contact during partici-
pants’ approach) or averted (+15º/left or -15º/right, VHAs eye gaze 
was deviated from participants). In the dynamic gaze condition, 
VHA’s gaze shifted in response to the participants’ approach. In the 
dynamic averted condition, the VHA’s gaze was centered at the be-
ginning of the trial and gradually averted to the right (+15º) or left 
(-15º). In the dynamic centered condition, VHA’s gaze was averted 
at the beginning of the trial (+15º or -15º) and gradually centered 
(0º). The dynamic shift in gaze direction started when participants 
stood 2.5 m from the VHA, reaching its’ endpoint when participants 

4https://www.meta.com/quest/quest-pro/tech-specs/#tech-specs 
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Table 1: Demographic information, FMS, Age, Gender, Race, VR Experience, Co-presence, VHA Gender Perception, Emotionality, 
IPQ and LSAS data 

Variable Categories n % M SD 
FMS 68 2.62 3.30 
Age 68 26.15 6.31 
Gender Female 34 50.00 % 

Male 33 48.53 % 
Prefer not to say 1 1.47 % 

Race White 33 48.53 % 
Asian 23 33.82 % 
Hispanic 2 2.94 % 
Middle Eastern 4 5.88 % 
Self-Described 6 8.82 % 

Occupation Student 55 80.88 % 
Acedemic 4 5.88 % 
Technical Expert 1 1.47 % 
Designer 2 2.94 % 
Administrator/Manager 3 4.41 % 
Other 3 4.41 % 

VR Experience None 45 66.18 % 
Once a month 21 30.88 % 
Three times a month 1 1.47 % 
Three times a week 1 1.47 % 

Co-presence 68 2.53 1.30 
VHA Gender Perception (F1) Female 68 100 % 
VHA Gender Perception (F2) Female 66 97.06 % 

Male 1 1.47 % 
Non-Binary 1 1.47 % 

VHA Gender Perception (M1) Male 68 100 % 
VHA Gender Perception (M2) Male 67 98.53 % 

Female 1 1.47 % 
Emotionality (F1) 68 2.87 0.62 
Emotionality (F2) 68 3.10 0.72 
Emotionality (M1) 68 3.38 1.75 
Emotionality (M2) 68 3.25 0.68 
IPQ General Score 68 3.03 1.86 
IPQ Real Score 68 1.80 1.58 
IPQ INV Score 68 2.91 1.81 
IPQ SP Score 68 3.93 1.57 
LSAS Total Score 68 45.94 21.04 
LSAS Fearfulness Score 68 23.91 11.93 
LSAS Avoidance Score 68 22.03 11.40 

stood at 1 m (horizontal body movement did not change gaze). Hor-
izontal eye movement was modelled with an inverse Lerp Function 
using the following formula: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑉 𝐻𝐴 − 2.5 
1 − 2.5 

(1) 

Thus, VHA’s eyes changed linearly dependent on the IPD. Vertical 
gaze was not manipulated (e.g., see [31]) and kept constant at the 
participants’ eye level [100]. 

To validate gaze manipulation, participants were asked to report 
their subjective sense of feeling looked at on a visual analogue scale 
ranging from 0 ("I don’t feel looked at") to 1 ("I feel looked at."), in 
increments of 0.01. In the static gaze condition, participants felt 

more looked at when the VHA had a mutual gaze (0º; 𝑀 = 0.64, 
𝑆𝐷 = 0.31), compared to averted gaze (𝑀 = 0.18, 𝑆𝐷 = 0.24). In the 
dynamic gaze condition, participants felt more looked at when the 
gaze was centered (15º → 0 º; 𝑀 = 0.66, 𝑆𝐷 = 0.31), compared to 
when the gaze was being averted (0º → 15º; 𝑀 = 0.24, 𝑆𝐷 = 0.28). 
There was no effect of SA on the subjective feeling of feeling looked 
at (all 𝑝𝑏 > 19.67% ). 

3.7 Stop-Distance Task 
The social situation was standardized to minimize situational effects 
on IPD (e.g., [37, 100, 101]). Participants had to imagine a scenario 
in which they were in an unfamiliar location, asking a stranger for 
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Table 2: Model parameters for a Bayesian linear mixed model 
predicting the feeling of being looked at, from Gaze anima-
tions (static centered, static averted, dynamic centering, dy-
namic averting), LSAS Total representing the sum score of the 
LSAS questionnaire, and all interaction effects. We present 
the median of the parameter with the 95% HDI, representing 
the most likely parameter values, 𝑝𝑏 denoting the relative 
amount of samples depicting an opposite pattern of effect 
and the standardized parameter estimates ˜ 𝛿 with 95% HDI. * 
indicates that the parameter is distinguishable from zero. 

Parameter Median95% HDI 𝑝𝑏 

(Intercept; static centered)* 0.65 [0.52, 0.77] 0.00% 
dynamic averting* -0.45 [-0.60, -0.29] 0.00% 
dynamic centering 0.03 [-0.04, 0.09] 22.61% 
static averted* -0.52 [-0.68, -0.36] 0.00% 
LSAS Total 0.00 [0.00, 0.00] 40.10% 
dynamic averting × LSAS Total 0.00 [0.00, 0.00] 21.87% 
dynamic centering × LSAS Total 0.00 [0.00, 0.00] 44.87% 
static averted × LSAS Total 0.00 [0.00, 0.00] 19.67% 

directions. In the VR stop-distance task, participants approached 
the VHA until a comfortable IPD was reached and pressed the 
controller’s trigger button. Then, on the participants’ left hand, a 
slider on which they assessed their subjective feeling of feeling 
looked at appeared. After, the VHA instructed on whether to press 
a white or a black button and disappeared. Then, participants would 
take a step forward, making the buttons to be pressed appear on 
the wall. After pressing, participants turned around to initiate the 
next trial. No time constraints were imposed. 

3.8 Procedure 
According to the Declaration of Helsinki, participants gave writ-
ten informed consent before starting the study. Participants were 
informed about the possibility of experiencing motion sickness 
during the VR immersion, explaining control with the FMS Scale 
[49]. This was followed by 10 practice trials (using a centered-gaze-
female VHA), where participants could clarify doubts and adjust 
the headset volume to control for effects of sound on IPD [37]. Then, 
participants completed the stop-distance task. The post-experiment 
survey was completed on an iPad, provided to them digitally on 
Qualtrics5 [76]. The survey included the FMS Scale [49], general 
demographic information (i.e., age, gender, race, and occupation), 
previous VR experience, VHAs’ gender and emotionality ratings 
[102], the IGroup Presence Questionnaire (IPQ; [77]) measurement 
of experienced co-presence [14]; the LSAS [30, 57]) and the Tri-
archic Psychopathy Measure Screening (TriPM; [73] for separate 
replication purposes; not analyzed in this study). A summary of 
all descriptive statistics can be found in Table 1. Participants were 
debriefed after the experiment. Participation in the whole study 
took approximately 60 minutes. 

5https://www.qualtrics.com/ 

3.9 Bayesian Data analysis 
We used Bayesian parameter estimation (for benefits on the Bayesian 
approach in HCI, see [1, 36, 48, 96]) to quantify effects, using 
brms [17], a STAN-sampler wrapper [18] in R [92]. We computed 
4 Hamilton-Monte-Carlo chains, each with 40000 iterations and a 
20% warm-up. We use the metric 𝑝𝑏 for inference decisions. It is 
similar to the traditional p-value [42, 64, 85], which denotes the 
proportion of probability that the effect is negligible or reversed. 
A 𝑝𝑏 value less than or equal to 2.5% was deemed significant. We 
also calculated the 95% High-Density Interval (HDI) for all parame-
ters and conducted mean comparisons on standardized outcome 
variables. We utilized 𝛿𝑡 as an effect size estimate, comparable to 
Cohen’s d [40, 47]. 

4 RESULTS 

4.1 IPD Characteristics 
4.1.1 Priors and Model formulation. For multilevel-data and trial-
based modeling of IPD data, we applied normally-distributed priors 
(M = 0, SD = 30cm) on all population-level effects, with Cholesky 
priors on the unstructured (residual) correlation (𝜂 = 2). Two-way 
interactions in our model were followed up by posterior predictive 
plots. We used effect-coding on categorical variables (e.g., 1, -1) 
with two levels and set static centered gaze as intercept. Regression 
weights with regard to gaze condition estimate differences from 
static centered gaze. We estimated a varying intercept for every 
participant with varying slopes for VHA gender to account for the 
repeated measures structure of the data. All population-level effects 
on the outcomes (Gaze condition, VHA gender, and LSAS scores) 
were fully crossed in the model. 

We compared a simple model where we predicted IPD from Gaze 
condition, VHA gender and its interaction to models that used Gaze 
condition and LSAS scores and their interaction as predictors. Com-
paring the simple model (LOO = 41407.3) to models with total LSAS 
score (LOO = 41396.5), fear scale (LOO = 41393.3) or avoidance scale 
(LOO =41401.7) 6 , did not show any large discrepancies between the 
models. We thus chose to analyze the posterior of the total-score 
model (all model parameters can be found in appendix Table 4 and 
Table 5). This model explained 85.23% [84.92, 85.51] of the IPD data 
(for model parameters see Table 3). 

4.1.2 Posterior Distribution Analysis. Our model showed that par-
ticipants considered an aversion of gaze in the static conditions 
(static centered: 𝑀 = 102.94, 𝑆𝐷 = 26.94; static averted: 𝑀 = 104.29, 
𝑆𝐷 = 26.10) when making judgments on preferred IPD, ˜ 𝑏static averted= 
1.32 cm [0.41, 2.25], 𝑝𝑏 = 0.20%, 𝛿b = 0.04 [0.01, 0.08]. Our results 
are thus opposite to Bailenson et al. [11] and H1.1 (see also Figure 2 
and Figure 5). In line with H1.2, we found that the effect, although 
opposite, was enlarged in increased SA, ˜ 𝑏static averted × LSAS Total= 
-1.25 cm [-2.18, -0.34], 𝑝𝑏 = 0.41%, 𝛿b = -0.04 [-0.08, -0.01]. While 
for decreased SA, we found the pattern static centered IPD < static 
averted IPD, this was opposite for increased SA (static centered IPD 
> static averted IPD; see Figure 3 for the raw data and Figure 4 for 
model predictions). 

Next, we set out to consider our predictions with regard to H2. 
In line with H2.1, participants preferred a larger IPD for dynamic 
6We refit the model with 4 chains and 4000 iterations for loo-computation. 
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Table 3: Model parameters for a Bayesian linear mixed model predicting interpersonal distance (IPD) from Gaze animations 
(static centered, static averted, dynamic centering, dynamic averting), LSAS Total representing the sum score of the LSAS 
questionnaire and VHA gender, and all interaction effects. We present the median of the parameter with the 95% HDI, 
representing the most likely parameter values, 𝑝𝑏 denoting the relative amount of samples depicting an opposite pattern of 
effect and the standardized parameter estimates ˜ 𝛿 with 95% HDI. * indicates that the parameter is distinguishable from zero. 

Parameter Median 95% HDI 𝑝𝑏 𝛿 , 95% HDI 

(Intercept; static centered) 102.97 [96.50, 109.22] 0.00% (3.58, [3.02, 4.15]) 
dynamic averting* 1.06 [0.14, 1.97] 1.23% (0.04, [0.00, 0.07]) 
dynamic centering* -1.25 [-2.18, -0.35] 0.41% (-0.04, [-0.08, -0.01]) 
static averted* 1.32 [0.41, 2.25] 0.26% (0.05, [0.01, 0.08]) 
LSAS Total 1.27 [-5.26, 7.65] 34.85% (0.04, [-0.17, 0.27]) 
VHA gender* -1.55 [-2.30, -0.77] 0.00% (-0.05, [-0.08, -0.03]) 
dynamic averting × LSAS Total -0.69 [-1.61, 0.22] 7.05% (-0.02, [-0.06, 0.01]) 
dynamic centering × LSAS Total -0.43 [-1.35, 0.48] 17.64% (-0.01, [-0.05, 0.02]) 
static averted × LSAS Total* -1.25 [-2.18, -0.34] 0.41% (-0.04, [-0.08, -0.01]) 
dynamic averting × VHA gender 0.57 [-0.35, 1.49] 11.36% (0.02, [-0.01, 0.05]) 
dynamic centering × VHA gender 0.10 [-0.82, 1.02] 41.72% (0.00, [-0.03, 0.04]) 
static averted × VHA gender 0.26 [-0.66, 1.18] 29.00% (0.01, [-0.02, 0.04]) 
LSAS Total × VHA gender -0.21 [-0.98, 0.56] 29.56% (-0.01, [-0.03, 0.02]) 
dynamic averting × LSAS Total × VHA gender 0.24 [-0.68, 1.16] 30.75% (0.02, [-0.02, 0.04]) 
dynamic centering × LSAS Total × VHA gender -0.13 [-1.07, 0.77] 38.85% (0.00, [-0.04, 0.03]) 
static averted × LSAS Total × VHA gender 0.24 [-0.68, 1.17] 30.68% (0.01, [-0.02, 0.04]) 
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Figure 2: Interpersonal distance in cm as a function of Gaze 
animation averaged across trials and participants with error 
bars depicting +-1 standard error of the mean. 

averted gaze (𝑀 = 104.08, 𝑆𝐷 = 26.45) compared to dynamic cen-
tering gaze (𝑀 = 101.69, 𝑆𝐷 = 26.67), ˜ 𝑏diff = 2.31cm [1.56, 3.08], 𝑝𝑏 
= 0.00%. No evidence was found for H2.2 (see also Table 3), since 

there was no indication of an increased effect of SA on IPD in any 
dynamic condition, 𝑝𝑏 > 7.05%. 

Still, underlining dynamic centering gaze as an affiliative signal, 
we found that dynamic centering gaze produced slightly smaller 
IPDs as compared to static centered gaze (𝑀 = 102.94, 𝑆𝐷 = 26.94, 
˜ 𝑏dynamic centering = -1.25cm [-2.18, -0.35], 𝑝𝑏 = 0.41%, 𝛿b = -0.04 
[-0.08, -0.01]). Furthermore, we found an effect of VHA gender, 
˜ 𝑏VHA Gender = -1.55 cm [-2.30, -0.77], 𝑝𝑏 = 0.00%, 𝛿b= -0.05 [-0.08, 
-0.03]), resembling common effects in proxemics, IPD to female 
VHA’s was smaller (𝑀 = 102.07, 𝑆𝐷 = 26.31) as compared to male-
VHAs (𝑀 = 104.61, 𝑆𝐷 = 26.25). Lastly, female participants kept a 
larger IPD to both female and male avatars (F-F pairs: 𝑀 = 103.47, 
𝑆𝐷 = 25.03; F-M pairs: 𝑀 = 106.05, 𝑆𝐷 = 24.70), compared to male 
participants (M-F pairs: 𝑀 = 101.74, 𝑆𝐷 = 27.54; M-M pairs: 𝑀 = 
104.29, 𝑆𝐷 = 27.64). 

Contrary to Bailenson et al. [12], there was no indication that 
VHA gender is moderating the effect of gaze on IPD, 𝑝𝑏 > 11.36%. 
All other effects were centered at zero (see Table 3 and Figure 5 for 
a visual representation). 

4.2 Approach Behavior Exploration 
To analyze eye-tracking data, we defined one area of interest, a 
cylindric shape centered at the middle of the body (with a radius of 
body = 37.5 cm, head = 10 cm) around the VHA. We compared the 
number of samples in relative amount of samples in a given trial 
until participants logged their preferred IPD, where participants 
looked at the VHA as compared to the environment. 

Running a linear mixed model with Gaze, SA and their interac-
tion as a predictor (with a normal prior of 𝑀 = 0, 𝑆𝐷 = 10%), we find 
a contrasting pattern of VHA gaze and participant gaze. With static 
centered gaze at ˜ 𝑏static centered = 18.84 % [17.22, 20.41] , we see that 
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Figure 3: Left: Mean individual interpersonal distance in cm as a function of total LSAS score averaged across trials and 
participants, there was no correlation (H3), 𝑟= .02 [-.23, .27], 𝑝𝑏 = 43.16% with relatively high uncertainty; Right: Mean individual 
interpersonal distance in cm as a function of total LSAS score averaged across trials and participants for each Gaze animation. 

averted static gaze increased the percentage of looking at the VHA 
by about 2%, ˜ 𝑏static averted = 1.88% [1.40, 2.37], 𝑝𝑏 = 0%, 𝛿b = 0.22 
[0.16, 0.28], this also holds for the difference to dynamic centering, 
˜ 𝑏dynamic centering = -0.46% [-0.95, 0.02], 𝑝𝑏 = 3.08%, 𝛿b = -0.05 [-0.11, 
0.00], and dynamic averting, ˜ 𝑏dynamic averting = 1.54% [1.05, 2.03], 
𝑝𝑏 = 0%, 𝛿b = 0.18 [0.12, 0.24] (see also Figure 7). Comparing the 
other conditions directly by inspecting the posterior predictive dis-
tribution, we find all conditions to differ from each other, dynamic 
averting vs. dynamic centering, ˜ 𝑏diff = 2.00% [1.61, 2.40], 𝑝𝑏 = 0%, 
dynamic centering vs. static averted, ˜ 𝑏diff = -2.34% [-2.74, -1.95], 𝑝𝑏 
= 0%, but dynamic averting vs. static averted, ˜ 𝑏diff = -0.34% [-0.74, 
0.06], 𝑝𝑏 = 4.61%, and dynamic centering vs. static centered, ˜ 𝑏diff 
= -0.46% [-0.95, 0.02], 𝑝𝑏 = 3.08%. Therefore, participants looked 
the least at the VHA when it had a dynamic centering gaze and 
most at the VHA when the gaze was averted (see again Figure 7). 
We also found an effect of SA for centered static gaze. Each stan-
dard deviation in SA scores increased the relative time looking at 
the VHA for centered static gaze by about 2.7%, ˜ 𝑏LSAS total = 2.73% 
[1.13, 4.31], 𝑝𝑏 = 0.05%, 𝛿b = 0.32 [0.13, 0.50[0.12, 0.60]. There was 
no interaction effect of SA and Gaze condition, all 𝑝𝑏 > 3.49%. 

5 DISCUSSION 

5.1 Summary of the Results 
Our study illuminates the interplay between gaze, proxemics, and 
SA. We used Bayesian parameter estimation to account for the 

uncertainty in estimating the size of the effects. We found, con-
trary to Bailenson et al. [11, 12] and H1.1., that participants prefer 
shorter IPD to VHAs with a centered gaze as compared to averted 
or dynamically averting gaze. The difference between static averted 
and centered gaze was diminished in SA up to the point where 
participants with higher levels of SA preferred closer IPD when the 
gaze was averted compared to when it was centered. 

Aligning with H2.1., participants preferred larger IPD when 
the gaze was averted compared to when it was centered. Notably, 
dynamically centering the gaze produced the smallest IPD in our 
study, highlighting that dynamic gaze is less ambiguous and can 
enrich our interactions with VHAs. However, no support was found 
for H2.2. We did not find any indication that SA increased IPD (H3); 
however, our Bayesian approach to analyzing the data could show 
that we did not have enough data to be conclusive about the effect 
of SA on IPD. 

Conversely, by exploring participants’ gaze using eye-tracking, 
we found that VHA gaze centered/centering diminished the amount 
of time participants looked at the VHA and that SA increased the 
overall time spent looking at the VHAs. 

5.2 Explanation of Findings 
To reiterate, ET posits that individuals engage in a dynamic bal-
ance between intimacy and personal space [12, 51]. When con-
fronted with cues that increase perceived intimacy (e.g., direct gaze), 
IPD may be increased to maintain a comfortable equilibrium, thus 
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Figure 4: Predicted average IPD by our model as a function 
of Gaze condition and LSAS total score. 
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Figure 5: Posterior density plot comparing levels for Gaze 
condition with median and 95% HDI. The proportion of 
blue/green area indicates the proportion of posterior samples 
opposite to the median and thus is a visual representation of 
the posterior 𝑝 -value. It quantifies the proportion of probabil-
ity that the effect is zero or opposite given the data observed. 
The smaller the blue areas in comparison to the green areas 
are, the more reliable is the estimation of the effect. 

adopting compensation behaviors [51]. Argyle and Dean [9] have 
previously highlighted gaze’s significance as an affiliative signal, 

suggesting that it can serve as an invitation for closer interaction, 
opposite to what Bailenson et al. [12] proposed. 

In our study, for average SA levels, the pattern was evident: 
centered gaze was preferred over averted gaze, possibly indicating 
a feeling of comfort and affiliation, thus supporting Argyle and 
Dean [9] proposal. Regarding SA’s effect on IPD, no main effect 
was found, contrasting with previous findings [34, 46], however, 
more data is needed to estimate this effect. 

Despite this, a tendency was found within participants with 
increased SA: a centered gaze seemed to evoke heightened intimacy 
and arousal, leading to bigger IPD. When looking at the VHA, 
increased SA possibly led to higher arousal, caused by biased social 
cue interpretation. According to ET, individuals try to lower arousal 
promoted by the increase in perceived intimacy by increasing their 
IPD. Arguably, SA possibly moderates gaze-promoted intimacy: 
direct mutual gaze is not intrinsically positive or negative since 
it can either induce feelings of intimacy and signal attention in 
those with average levels of SA, or promote uncomfortable levels 
of arousal that lead to compensation behaviors in individuals with 
increased levels of SA. 

This latter interpretation aligns with Bailenson et al. [11, 12]. Es-
sentially, while Argyle and Dean [9] proposal holds in the broader 
context, the specific direction of the balance (approach or avoid-
ance) can vary based on, for example, personality traits. Therefore, 
designers of inclusive social VR experiences have to know their 
audience and design VHA interactions with ET in mind. 

5.3 Limitations and Future Research 
Our study, while shedding light on several nuances of VHA inter-
actions, is not one without limitations. 

First, we must acknowledge the influence of cultural backgrounds 
on the experience of SA characteristics [41]. For instance, what 
might be deemed as an intimate distance in one culture might be 
perceived as too distant in another [37, 86, 88]. Future research 
should delve deeper into the role of cultural background affecting 
the user’s behavior and perception in-virtuo. 

Secondly, physiological arousal, which could moderate the rela-
tionship between gaze, proxemics and SA, was not measured ( see 
e.g., [19, 58]). Future studies may simulate personal space violations 
for SA and enhance measurements with physiological sensing (e.g., 
skin-conductance response;[43]). 

Third, one could argue that the initial gaze and not the final gaze 
is critical for IPD and its interplay with SA. Be reminded that in 
the static conditions, gaze was either averted or centered, while 
in the dynamic centering condition, gaze was initially averted and 
then gradually centered and the opposite for the dynamic averting 
condition. IPD for static and dynamic conditions resemble each 
other regarding the end of the animation and not the beginning 
(averting/averted > centering/centered), mirrored in the ratings of 
gaze. Thus, the effect of gaze on IPD cannot be explained by initial 
gaze alone. Could this explain the differences in gaze conditions 
regarding SA, e.g., entertaining that with SA, one did not look at 
the avatars when approaching? This is also unlikely. We find an 
SA effect only for static conditions and not for dynamic conditions. 
Supporting this, we find no interaction between SA and Gaze con-
dition in our eye-tracking data. Nevertheless, future researchers 
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Figure 6: Posterior density plot for each parameter in the IPD regression model (Predicting IPD from Gaze condition, total LSAS 
score, VHA gender and all interactions), with median and 95% HDI. The proportion of blue/green area indicates the proportion 
of posterior samples opposite to the median and thus is a visual representation of the posterior 𝑝 -value. It quantifies the 
proportion of probability that the effect is zero or opposite given the data observed. The smaller the blue areas in comparison 
to the green areas are, the more reliable is the estimation of the effect. 

interested in dynamic gaze patterns should add conditions with 
fully averting gaze (i.e., looking away from the left to looking away 
on the right as one approaches.) 

5.4 Implications 
In line with van Berkel and Hornbæk [97], we will highlight theo-
retical and HCI-oriented implications for the design of social VR as 
well as the implications for social anxiety research: 

5.4.1 Implications for Human-Computer Interaction. Our research 
highlights the crucial relationship between gaze and proxemics 
and their interaction with SA, pointing to three key approaches for 
improving user experience: 

First, dynamic responsiveness is essential, where VHAs adjust 
their gaze and other behaviors in real-time, based on user actions 

or physiological data like eye-tracking to foster an engaging envi-
ronment. 

Second, designs should be context-aware, adapting to the unique 
dynamics of virtual settings. For example, in intimate conversations, 
VHAs might adjust their gaze and distance differently than they 
would in traditional face-to-face interactions, taking cues from ET. 

Third, introducing training modes could help users unfamiliar 
or uncomfortable with VHA behaviors to acclimate by adjusting 
settings to their comfort level. Additionally, designers should con-
sider implementing "gaze awareness" features, since a lack of gaze 
tracking could result in unintentional staring by VHAs affecting 
proxemics. 

5.4.2 Implications for Social Anxiety. As shown in earlier work, 
socially anxious individuals tend to prefer online communication, 
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Figure 7: Relative amount of eye-tracking samples (VHA/all) 
as a function of Gaze condition averaged across trials and 
participants with error bars depicting +-1 standard error of 
the mean. 

which allows them to hide themselves from the potential evalu-
ation by others. With the broader application of better tracking 
techniques for gaze and other subtle social clues, social VR may 
become a challenging environment for socially anxious individuals. 
Biases learned from the physical world may be transferred and even 
intensified through online replication, causing more social stress 
than relief. On the other side, if they try to hide their social clues in 
VR, others may feel discomfort engaging with the socially anxious 
individual, causing an increase in their SA. Therefore, designers 
of social VR and empathetic computing systems at large need to 
carefully consider their design choices and how to present social 
clues. Our results may help designers of assessment and digital 
interventions to find new ways to harness behavioral data in vir-
tual environments for the early detection of SA, which is a critical 
aspect for successful treatment [89]. 

5.5 Ethical concerns 
The prospect of detecting personality traits in users, especially 
within virtual environments, raises several ethical concerns. One 
primary concern is that of consent [25]. Users might not be aware 
that their interactions, behaviors, and responses can be indicative 
of their personality traits. Extracting such information without 
explicit consent infringes on individual privacy rights [25]. Miller 
et al. [68] could identify people from 5 minutes of motion-data with 
high accuracy. They propose that such data should be regarded as 
personal data. While we were interested in the correlation pattern of 
IPD and personality to improve the design of virtual environments, 
given that personality traits can be distinctly linked to stimuli and 
behavior in VR [100, 102, 103], we encourage research into privacy-
preserving techniques which can be adapted to users personality. 
However, if virtual environments are tailored to cater to identified 
personality traits, users might end up in echo chambers reinforcing 

existing beliefs and behaviors instead of deconstructing harmful 
behavior of users with SA [29, 57]. 

6 CONCLUSION 
The present experimental study in the domain of empathetic com-
puting solves inconsistencies in the literature concerning the in-
terplay of gaze and proxemics for VHAs by considering SA. We 
found that participants generally prefer shorter distances to VHAs 
displaying a static centered gaze or dynamically centering gaze as 
compared to an averted gaze. With an increase in SA, however, this 
pattern reverses, with participants with SA traits keeping larger 
distances when being looked at directly, indicating a nuanced inter-
play of gaze, proxemics and SA. In the metaverse, understanding 
the nuances of VHA interaction becomes pivotal for designing rich, 
inclusive, and comfortable virtual experiences. Our study into the 
interplay of gaze, proxemics, and SA provides new insights into 
their complexity. While foundational theories provide overarching 
frameworks, the intricacies of individual factors can significantly 
modify social interaction patterns. As our digital and real worlds 
continue to merge, researchers and designers must account for 
these subtleties, guaranteeing inclusive digital interactions. 
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A LSAS SUBSCALES 

A.1 LSAS Avoidance 

Table 4: Model parameters for a Bayesian linear mixed model predicting Interpersonal distance (IPD) from Gaze animations 
(static centered, static averted, dynamic centering, dynamic averting), LSAS Avoidance representing the sum score of the LSAS 
Avoidance subscale and VHA gender, an all interaction effects. We present the median of the parameter with the 95% HDI, 
representing the most likely parameter values, 𝑝𝑏 denoting the relative amount of samples depicting an opposite pattern of 
effect and the standardized parameter estimates ˜ 𝛿 with 95% HDI. * indicates that the parameter is distinguishable from zero. 

Parameter Median 95% HDI 𝑝𝑏 𝛿 , 95% HDI 

(Intercept; static-mutual) 102.97 [96.60, 109.44] 0.00% (3.58, [3.02, 4.15]) 
dynamic averting* 1.06 [0.14, 1.98] 1.26% (0.04, [0.00, 0.07]) 
dynamic centering* -1.25 [-2.17, -0.32] 0.43% (-0.04, [-0.08, -0.01]) 
static averted* 1.32 [0.40, 2.24] 0.26% (0.05, [0.01, 0.08]) 
LSAS Avoidance -0.29 [-6.55, 6.21] 46.42% (-0.01, [-0.23, 0.21]) 
VHA gender* -1.55 [-2.32, -0.78] 0.00% (-0.05, [-0.08, -0.03]) 
dynamic averting × LSAS Avoidance -0.71 [1.63, 0.20] 6.45% (-0.02, [-0.06, 0.01]) 
dynamic centering × LSAS Avoidance -0.46 [-1.37, 0.45] 16.34% (-0.02, [-0.05, 0.02]) 
static averted × LSAS Avoidance* -0.98 [-1.88, -0.05] 1.84% (-0.03, [-0.07, 0.00]) 
dynamic averting × VHA gender 0.57 [-0.36, 1.48] 11.17% (0.02, [-0.01, 0.05]) 
dynamic centering × VHA gender 0.10 [-0.81, 1.03] 41.67% (0.00, [-0.03, 0.03]) 
static averted × VHA gender 0.26 [-0.66, 1.18] 29.06% (0.01, [-0.02, 0.04]) 
LSAS Avoidance × VHA gender -0.28 [-1.03, 0.49] 24.01% (-0.01, [-0.04, 0.02]) 
dynamic averting × LSAS Avoidance × VHA gender 0.27 [-0.66, 1.17] 28.37% (0.01, [-0.02, 0.04]) 
dynamic centering × LSAS Avoidance × VHA gender -0.01 [-0.94, 0.90] 48.86% (0.00, [-0.03, 0.03]) 
static averted × LSAS Avoidance × VHA gender 0.23 [-0.70, 1.13] 31.38% (0.01, [-0.02, 0.04]) 

A.2 LSAS Fearfulness 

Table 5: Model parameters for a Bayesian linear mixed model predicting Interpersonal distance (IPD) from Gaze animations 
(static centered, static averted, dynamic centering, dynamic averting), LSAS Fearfulness representing the sum score of the LSAS 
Fearfulness subscale and VHA gender, an all interaction effects. We present the median of the parameter with the 95% HDI, 
representing the most likely parameter values, 𝑝𝑏 denoting the relative amount of samples depicting an opposite pattern of 
effect and the standardized parameter estimates ˜ 𝛿 with 95% HDI. * indicates that the parameter is distinguishable from zero. 

Parameter Median 95% HDI 𝑝𝑏 𝛿 , 95% HDI 

(Intercept; static-mutual) 102.92 [96.53, 109.26] 0.00% (3.58, [3.01, 4.15]) 
dynamic averting* 1.05 [0.12, 1.96] 1.31% (0.04, [0.00, 0.07]) 
dynamic centering* -1.26 [-2.18, -0.33] 0.38% (-0.04, [-0.08, -0.01]) 
static averted* 1.31 [0.39, 2.23] 0.28% (0.05, [0.01, 0.08]) 
LSAS Fearfulness 2.42 [-4.01, 8.87] 35.40% (0.08, [-0.13, 0.31]) 
VHA gender* -1.55 [-2.32, -0.78] 0.01% (-0.05, [-0.08, -0.03]) 
dynamic averting × LSAS Fearfulness -0.53 [-1.45, 0.39] 12.85% (-0.02, [-0.05, 0.01]) 
dynamic centering × LSAS Fearfulness -0.32 [-1.27, 0.58] 24.61% (-0.01, [-0.04, 0.02]) 
static averted × LSAS Fearfulness* -1.26 [-2.18, -0.33] 0.35% (-0.04, [-0.08, -0.01]) 
dynamic averting × VHA gender 0.57 [-0.35, 1.49] 11.36% (0.02, [-0.01, 0.05]) 
dynamic centering × VHA gender 0.10 [-0.81, 1.03] 41.63% (0.00, [-0.03, 0.04]) 
static averted × VHA gender 0.26 [-0.67, 1.18] 28.96% (0.01, [-0.02, 0.04]) 
LSAS Fearfulness × VHA gender -0.11 [-0.89, 0.66] 39.21% (0.00, [-0.03, 0.02]) 
dynamic averting × LSAS Fearfulness × VHA gender 0.16 [-0.79, 1.05] 36.66% (0.01, [-0.03, 0.04]) 
dynamic centering × LSAS Fearfulness × VHA gender -0.23 [-1.15, 0.70] 31.48% (-0.01, [-0.04, 0.02]) 
static averted × LSAS Fearfulness × VHA gender 0.20 [-0.73, 1.12] 33.66% (0.01, [-0.03, 0.04]) 
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