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Figure 1: We systematically investigated the identifability of kinetic signatures in VR. A kinetic signature is a human’s 
spatiotemporal movement data that contains a high degree of individual uniqueness so that it is suitable for implicit user iden-
tifcation in VR. Particularly, we explored movement behavior’s static and dynamic components for its biometric uniqueness. 

ABSTRACT 
Behavioral Biometrics in Virtual Reality (VR) enable implicit user 
identifcation by leveraging the motion data of users’ heads and 
hands from their interactions in VR. This spatiotemporal data forms 
a Kinetic Signature, which is a user-dependent behavioral biometric 
trait. Although kinetic signatures have been widely used in recent 
research, the factors contributing to their degree of identifability 
remain mostly unexplored. Drawing from existing literature, this 
work systematically examines the infuence of static and dynamic 
components in human motion. We conducted a user study (N = 24) 
with two sessions to reidentify users across diferent VR sports 
and exercises after one week. We found that the identifability of a 
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kinetic signature depends on its inherent static and dynamic fac-
tors, with the best combination allowing for 90.91% identifcation 
accuracy after one week had passed. Therefore, this work lays a 
foundation for designing and refning movement-based identifca-
tion protocols in immersive environments. 
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1 INTRODUCTION 
Human behavior can show fundamental diferences between people. 
In fact, behavior inherently tends to have an exceptionally high 
degree of individuality, making it suitable for reliable behavioral 
biometric user identifcation, particularly in VR [26, 34, 44, 52]. 
Widely available of-the-shelf head-mounted displays (HMDs) can 
elicit this behavior through their sensors using only the motion 
data of the head and the controllers. This data is so individual that 
it forms user-specifc kinetic signatures, which are defned as traces 
of users’ individual spatiotemporal body behavior, making it suitable 
for behavioral biometric user identifcation. Similar to the idea of so-
called “signature moves,” kinetic signatures can tell who a person 
is. As the VR HMD captures this data anyway, it can be used for 
behavioral biometric identifcation at no additional cost, beneftting 
the user [23]. Thereby, the VR device can automatically recognize 
their users, removing the burden of current authentication methods, 
which are often cumbersome and time-consuming [5, 11, 12, 59]. 

Research has shown many examples of applied behavioral bio-
metric identifcation systems using kinetic signatures in VR [1, 24, 
26, 28, 32, 34, 35, 49, 52, 55]. Each previous study utilized its own 
kinetic signatures in VR, ranging from throwing virtual balls [1, 
24, 35–38] to grabbing, pointing, walking, and typing motions [52], 
to sports such as archery or bowling [26]. However, these works 
were not conducted systematically concerning the nature of kinetic 
signatures; instead, they focused on individual applications and 
interactions. Thus, a central piece of knowledge is missing: a con-
nection between all those individually employed kinetic signatures. 
For example, why does a bowling ball throw provide better identifa-
bility than an archery shot [26]? Why is walking more benefcial for 
behavioral biometric identifcation than pointing or grabbing [52]? 
So far, these questions remain unanswered, and transferability and 
generalizability of kinetic signatures are lacking. 

Other disciplines, such as kinesiology, sports science, and move-
ment science, provide dimensions for characterizing and classifying 
human movements and sports [17, 25, 39]. One popular classifca-
tion method categorizes sports based on static and dynamic dimen-
sions according to the required muscular activities [39, 40]. Static 
refers to the muscular activity required to hold joints in place, while 
dynamic refers to muscle activity altering the positions. The beneft 
of this classifcation is that domain experts have already categorized 
multiple sports along these dimensions. 

In our work, we applied this classifcation to behavioral bio-
metrics, providing the frst systematic investigation of a kinetic 
signature’s identifability. Through a user study with two sessions 
one week apart (N=24), we found that static and dynamic compo-
nents signifcantly infuence a signature’s identifability. We tested 
various combinations of static and dynamic movement components 
in VR, ranging from exercises to sports such as climbing and boxing. 
Essentially, we found that movements with fewer static components 
enhance identifability, followed by highly dynamic components. 
The best combination resulted in up to 90.91% identifcation accu-
racy at a median recall rate of 95.45%. Thus, our results can aid in 
the design of identifcation systems and conclude with a discussion 
on how to ideally employ kinetic signatures, allowing experts to 
further improve their user identifcation rates (cf., Figure 1). 

Contribution Statement. The contribution of our work is threefold. 
First, we contribute a systematic empirical investigation (N=24) that 
presents fndings on the efects of static and dynamic components 
within human motion and how they infuence a kinetic signature’s 
grade of behavioral biometric identifability across two study sessions. 
Second, we provide a discussion of how experts can design motions 
that lead to better identifcation, allowing implicit identifcation in VR. 
Finally, we publish our elicited dataset and apparatus to allow further 
experimentation by the scientifc community. 

2 FOUNDATIONS AND RELATED WORK 
Our work is situated at the crossroads of identifcation in VR 
through behavioral biometrics, particularly kinetic signatures, and 
the foundations of human movement. Additionally, we briefy cover 
the foundations of authentication and the implications on a sys-
tem’s usability, user experience, and user’s privacy. We also provide 
an brief overview of existing data sets in this feld. 

2.1 Present and Future Authentication in 
Virtual Reality 

Computers, and VR HMDs as such, regularly need to establish trust 
in their users’ identity. This is imperative to ensure that sensitive 
information is presented solely to the legitimate user, thus guar-
anteeing information security. However, it is equally essential to 
recognize the user’s identity to enable the personalization or indi-
vidualization of applications [7]. For instance, this allows an appli-
cation to adapt to the user by, e.g., loading their settings or user pro-
fle [6]. Stephenson et al. provide a comprehensive Systematization 
of Knowledge (SoK) of user authentication in Augmented Real-
ity (AR) and VR, evaluating the state-of-the-art of authentication 
mechanisms by systematizing research eforts and practical de-
ployments by comparing diferent forms of authentication in as 
well (e.g., knowledge-based, physical biometrics, and behavioral 
biometrics, among others) [63]. 

The best-known authentication process is knowledge-based, 
where the user presents a knowledge-component to a computer, 
such as a Personal Identifcation Number (PIN) or password. How-
ever, passwords have a plethora of shortcomings, such as over-
loading users by requiring them to store dozens of them in their 
minds [59], being guessable [10, 48], and being difcult to enter [11]. 
Additionally, bystanders of an immersed VR user can spy on their 
hand movements while they enter a password [12]. Thus, calls 
emerged to reshape authentication in the future [4, 5, 16]. Proposed 
alternatives are possession-based (e.g., security tokens) or prefer-
ably biometrics [5, 16]. Tokens can be impractical as they need to 
be carried around and can be lost, transferred, or stolen; biometrics, 
however, stay with the user at all times and cannot be changed, 
which is both an advantage and a disadvantage [22]. As HMDs are 
worn close to the body, they elicit lots of information on the user’s 
behavior through their sensors, such as their head and controller 
movements, allowing for identifcation of the user, as shown in 
many conducted research projects [1, 24, 26, 28, 32, 34, 35, 49, 52, 
55, 70]. These user’s movements form a kinetic signature, i.e., the 
way users move is specifc, individual, and suitable for identifcation. 
Research showed that such behavior can be hard to imitate [41] and 
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that humans also can perform such identifcation tasks (e.g., a per-
son being able to identify their friends by their gait) [13]. Cuttings 
et al. particularly showed that this is possible for people without 
any familiarity cues, i.e., a person recognizing another person based 
on their gait pattern without having access to another source of 
familiarity [13]. Researchers seeking identifcation for the purpose 
of authentication, on the other hand, generally utilize algorithms 
such as deep learning or machine learning [22, 64]; to the best 
of our knowledge, no exploration of kinetic signatures in VR was 
performed so far by employing human recognition for the identif-
cation task. 

2.2 Foundations of Authentication 
“Authentication” itself is an umbrella term, as it can be realized 
through either verifcation mode or identifcation mode [22]. In ver-
ifcation mode, users must provide (1) a claim of identity and (2) 
proof of their claim [22]. The identity claim must correspond to 
an identity stored in the computing system (e.g., by providing a 
username), and the proof acts as a legitimation (e.g., a password cor-
responding to the username). In behavioral biometrics, this proof 
is a sample of a user’s behavior, such as their head and hand move-
ments (a kinetic signature). However, from a user’s perspective, 
identifcation mode is more straightforward and more favorable 
than verifcation; here, the computer only requires the proof and 
automatically deducts the corresponding account from the proof, 
not requiring the user’s provided claim of identity [22] (e.g., a user 
is recognized only by their kinetic signature, not having to provide 
a username). If this behavioral sample can be elicited from users 
without requiring their explicit cooperation, the identifcation can 
happen without the users realizing it. This enables identifcation 
through an implicit interaction, which is highly favorable, as the 
burden associated with authentication is fully removed from the 
user, and users might not even realize that they undergo an authen-
tication process [23, 61, 62]. This benefts user experience as users 
do not have to deal with annoying authentication systems anymore, 
and at the same time, it increases the usability of the underlying 
actual system that users primarily seek to use. Of course, the as-
sumption applies that the implicit authentication system functions 
reliably. 

2.3 Foundations of Human Movement and 
Classifcation of Sports 

One way to view human movement stems from the goal of accom-
plishing activities, particularly sports. This is possible by activating 
various muscles inside the body with support from the skeletal and 
articular systems [3, 19]. 

Generally speaking, muscles in the human body can activate 
and thus exert a force on a joint; the joint moves and a movement 
is the result. Figures 2 and 3(a) provide an overview of the inter-
play between muscles and joints [9]. To move a joint, muscles can 
perform a concentric (cf., Figure 2(a)) or eccentric contraction (cf., 
Figure 2(b)) [8, 50]. The interplay of concentric and eccentric con-
tractions defnes isotonic movements. Muscles can also contract 
and generate forces but not move any joints [8]. This is an isometric 
contraction and occurs, e.g., while carrying heavy objects with an 

arm that is not fully extended, where muscles are strained through 
holding the arm in place (cf., Figure 3(a)) [8]. 

2.3.1 Classification of Sports. While these are the basic founda-
tions of human joint movements, activities, such as sports, are 
increasingly complex. One popular classifcation was created by 
Mitchell et al. [39, 40]. Their classifcation classifes sports by the 
degree of static and dynamic components in the exercises on two 
axes. Static components are related to isometric movements, and 
examples of highly static sports are, e.g., climbing, weight lifting, 
or windsurfng. Here, the muscles are heavily stressed without 
creating many joint movements. On the other hand, dynamic com-
ponents in sports are related to isotonic activities created by con-
centric and eccentric muscle contractions and associated with other 
classes of sports, e.g., badminton, tennis, or long-distance running. 
In their 3 × 3 classifcation, there also exist sports that are very 
static and dynamic at the same time (e.g., boxing, with a high de-
gree of isotonic and isometric activity) or only a little static and 
little dynamic in combination (e.g., bowling or billard with low 
degrees of both) [39, 40]. Additionally, an intermediate level exists 
per dimension. 

2.3.2 The Classification’s Static and Dynamic Dimensions. Mitchell 
et al. regard the axes “dynamic” and “static” as two independent 
dimensions that both have diferent efects on the human body 
during the exercise of sports [39, 40]. Both dimensions are con-
nected to a diferent cardiovascular response. Dynamic exercises 
that are performed with a large mass of muscles cause a marked 
increase in oxygen consumption and also a substantial increase in 
cardiac output, heart rate, and stroke volume, among other factors. 
In contrast, they also state that static exercise causes only a small 
increase in oxygen consumption, cardiac output, heart rate, and no 
change in stroke volume [39, 40]. 

Furthermore, they narrow that their proposed classifcation of 
sports “should not be regarded as a rigid classifcation, but rather a 
continuum in which some athletes in the same sport could possibly 
deserve placement in diferent categories”. For example, diferent 
players participating in a sport with diferent roles might be af-
fected diferently, e.g., a striker might experience a diferent efect 
of “static” and “dynamic” in soccer, compared to a goalkeeper. Given 
their defnition of the classifcation as a continuum, it could also 
be possible that slight diferences for each sport per class exist, as 
they might have diferent efects on specifc physiological efects. 
Mitchell et al. also state that an athlete’s physiological response 
to the sport could also be infuenced by factors such as emotional 
stress or the specifc training regimen; thus, the defning dimen-
sions of the classifcation can also be subject to infuence by further 
factors [39]. 

2.3.3 Application to Kinetic Signatures. In our work, we apply the 
classifcation of Mitchell et al. to activities performed in VR for the 
purpose of user identifcation and use their classifcation to classify 
the activities conducted in user studies of existing related work. 
Particularly, we focus on the present levels of “dynamic” (isotonic 
muscle contractions, cf., Figure 2) and “static” (isometric muscle 
contractions, cf., Figure 3(a)) movement components. To do so, we 
form abbreviations. “Static” can be expressed as Low Static (LS), 
Medium Static (MS), or High Static (HS). “Dynamic” can be either 
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(a) Concentric Contraction. (b) Eccentric Contraction. 

Figure 2: Figure of isotonic muscle contractions in the human body. (a) Concentric movements happen when the muscle length 
is reduced due to contraction. When the muscle elongates, its contraction is eccentric, shown in (b) [8, 9]. 

Low Dynamic (LD), Medium Dynamic (MD), or High Dynamic (HD). 
Therefore, a Low Static (LS) sport that is of High Dynamic (HD) 
nature such as tennis (cf., Figure 3(b) [39, 40]) is abbreviated as 
LSHD. In the following, Figure 4 also provides a comprehensive 
overview. 

2.4 Identifcation through Kinetic Signatures in 
Virtual Reality 

Researchers proposed many ways to authenticate users in VR. Ex-
amples range from 3D pattern entries [72], PIN entry on virtual 
objects [12, 32], using eye-tracking data [20, 29, 30, 34, 70], fnger-
tracking traces [27], or patterns in head-movement [31, 43, 68]. 
Yet, one popular cluster of approaches exists that is based on ki-
netic signatures and so-called “task-driven biometrics”, where the 
user’s head and controller movement patterns are exploited for 
identifcation [24]. 

2.4.1 Task-driven Biometrics in VR, their Classification, and Stability. 
Pfeufer et al. conducted an exploration of behavioral biometrics 
in VR, where they compared a pointing, grabbing, walking, and 
typing task in a user study (� = 19) with two sessions [52]. Given 
the previously introduced classifcation of Mitchell et al. and their 
defnition of “static” and “dynamic” through the required degree of 
isotonic and isometric muscle movements (cf., Figure 3(b)), their 
pointing and grabbing task can be classifed as Low Static (LS) and 
Low Dynamic (LD) (LSLD), and walking as Low Static (LS) and High 
Dynamic (HD) (LSHD) [39, 40]. Their typing task is hard to classify 
since it is executed within a very small area with the hands and 
fngers; thus, it does not mimic full-body kinetic signatures well, 
and typing itself is a strong biometric trait [56]. Related to grabbing, 
Olade et al. also conducted an experiment where users had to pick 
and place objects in VR [49]. They found an accuracy of up to 98.6%. 

A cluster of works exists on throwing virtual balls in VR. For 
example, Ajit et al., Kupin et al., and R. Miller et al. extensively 
studied the throwing-movement in VR [1, 24, 35–38]. Rack et al. 
also used their dataset to evaluate their distance-based machine 
learning algorithms [55]. Throwing in VR can be classifed as High 
Static (HS) and Low Dynamic (LD) (HSLD), as it is included as “feld 

events (throwing)” in the classifcation of Mitchell et al. (cf., Fig-
ure 3(b)) [39]. 

Liebers et al. employed kinetic signatures stemming from well-
known sports, such as bowling or archery, thus comparing two 
sports in addition to virtual modifcations of the body [26]. Accord-
ing to the original 3 × 3 classifcation of Mitchell et al., archery 
is classifed as Medium Static (MS) and Low Dynamic (LD) (MSLD) 
and bowling is classifed as a Low Static (LS) and Low Dynamic (LD) 
(LSLD) sport [39]. Throughout their user study (� = 16), they found 
accuracy ratings of 54% for archery (MSLD) and 59% for bowling 
(LSLD). 

Furthermore, Abdrabou et al. explored eleven contextual factors 
and activities that infuence kinetic signatures in reality, such as 
benefcial body parts, activities like walking, sitting (down) and 
tasks during sitting, and walking while carrying items using a 
motion-capture system in reality [2]. Their user study did not take 
place in VR. Their tasks can be classifed into three groups: (1) chat-
ting, sitting down, watching news, watching horror movies, playing 
games, and watching animated movies, all falling into LSLD since 
they were mostly executed while sitting. (2) Standing up and walk-
ing fall into LSHD, as standing up and walking requires isotonic 
movements of the legs (cf., Figure 3(b)). (3) Walking with glasses, 
walking with flled glasses, and walking with glasses on a plate fall 
into HSHD due to the required isometric contraction for carrying 
items in the arms, in addition to the isotonic movements of the 
legs during walking. They list accuracies between 6.74% to 13.88% 
for their frst group (LSLD), 28.82% to 40.75% for the second group 
(LSHD), and 53.01% to 59.21% for the third group (HSHD) in their 
Figure 5 [2]. 

As many behavioral biometric identifcation systems employ 
machine-learning algorithms, Schell et al. investigated diferent 
data encodings and model architectures for ideal user identifca-
tion [60]. Furthermore, R. Miller et al. showed that identifcation is 
possible across VR systems, but there is an indication that accuracy 
is reduced between systems [53]. 

Most previously presented works rely on distinct kinetic signa-
tures (e.g., one ball throw or one archery shot). However, recent 
works also focus on non-specifc movements, where users’ behavior 
allows for a high degree of freedom in their movements. Examples 
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High Static and Low Dynamic 
Sports, e.g., Bobsledding, Luge, 
Throwing field events, 
Gymnastics, Martial arts, Sailing, 
Sport climbing, Water skiing, 
Weight lifting, Windsurfing.

High Static and High Dynamic 
Sports, e.g., Boxing, Canoeing, 
Kayaking, Cycling, Decathlon, 
Rowing, Speed-skating, 
Triathlon.

Low Static and Low Dynamic 
Sports, e.g., Billards, Bowling, 
Cricket, Curling, Golf, Riflery.

Low Static and High Dynamic 
Sports, e.g., Badminton, Cross-
country skiing, Field hockey, 
Orienteering, Race walking, 
Squash, Long distance running, 
Soccer, Tennis.

Increasing Dynamic Movement (M.) Component
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(a) Isometric Contraction. (b) Simplifed Classifcation of Sports. 

Figure 3: Human muscles can also contract but keep the joints still, which is an isometric contraction shown in (a) [8, 9]. (b) Our 
simplifed 2 × 2 classifcation matrix of sports using dynamic and static movement components, based on the extrema of the 
3 × 3 classifcation proposed by Mitchell et al. [39, 40]. We selected the sports marked in bold for our experiment [39]. 

range from playing games like “Half-Life: Alyx” to “Beat Saber” in 
VR [28, 44, 55]. 

One important aspect of kinetic signatures is their stability over 
time, i.e., how passing time infuences the signature. Their identi-
fability often decreases the more time passes [28, 38]. Therefore, 
many studies employ multi-session designs, reinviting participants 
after some time passed to obtain a repeated measure of a user’s 
kinetic signature [2, 26–28, 52]. For example, M. R. Miller et al. con-
ducted a large-scale user study (� = 232) for identifcation in VR, 
also exploring identifability over time and Liebers et al. conducted 
a user study in the feld over eight weeks (� = 15) [28, 33]. 

2.4.2 Data Sets for Research on User Identification in VR. Addi-
tionally, researchers proposed multiple data sets for conducting 
evaluations in this area. One of the largest data sets in the area was 
contributed by Nair et al. (� > 50.000), including motion captures 
from the popular “Beat Saber” and “Tilt Brush” applications [45]. 
Furthermore, Rack et al. also made a data set available by having 
their participants play “Who is Alyx?” (� = 71) [54]. Also, Wen et 
al. presented a dataset ofering approximately 12-hour gameplay 
videos from ten real-world games in 10 diverse genres for motion 
sickness research (� = 25) [69]. R. Miller et al. also provide a dataset 
of VR motions across three VR systems with ten motions per ses-
sion and � = 41 participants, where the participants threw virtual 
balls [37, 38]. Liebers et al. also published their data sets on Kinetic 
Signatures using body normalizations with archery and bowling 
(� = 16), and also on using head-rotation data and eye-tracking in 
VR (� = 12) [26, 29]. 

Compared to the previous data sets, our data set ofers the ki-
netic signatures of � = 24 users that were manually annotated. 
Its kinetic samples are organized into two dimensions (static and 
dynamic components in human movements) and split by modality: 
the execution of a sports and self-exercise activity in VR. While 
we ofer data elicited from fewer participants compared to the pre-
vious data sets, we present a fully balanced data set across two 
sessions that is composed of eight systematically chosen activities 
that participants experienced using a Meta Quest 2 device. 

2.4.3 Implications on User’s Privacy. While identifcation methods 
can be benefcial to the user, they can also pose a threat to their 

privacy, e.g., if the identifcation is performed without the user’s 
consent or if it is not in their personal interest. For example, Tricomi 
et al. provide a framework for user profling in augmented and vir-
tual reality, stating that it becomes increasingly difcult to hide the 
personal identity when using a HMD [67]. Moore et al. show that 
encoding user tracking data in VR can be obfuscated by encoding 
positional data as velocity data to preserve the user’s privacy in 
VR [42]. Also, Garrido et al. provide a SoK on data privacy in VR, 
systematizing knowledge on the landscape of VR privacy threats 
and countermeasures by proposing a taxonomy of data attributes, 
protections, and adversaries [18]. Notably, Kinetic signatures also 
can be used to infer personal attributes of VR users [46]. Finally, 
Nair et al. provide a prototype for increasing user privacy in VR [47]. 
All in all, it is an ethical imperative that the identifcation of people 
using kinetic signatures should be conducted in conformation with 
their consent. 

2.5 Summary and Research Gap 
While kinetic signatures are already widely employed in identifca-
tion systems research, most previously presented works are case 
studies of mostly singular activities [1, 24, 32, 36]. Rarely, more 
than one activity is explored, and often it remains unclear why 
one activity performs better or worse than the other for identi-
fcation [2, 26, 52]. To the best of our knowledge, a systematic 
exploration of the kinetic signature’s identifability based on the ac-
tual human movement itself does not exist yet. Thereby, it remains 
unclear why a kinetic signature’s identifability for a grabbing or 
pointing task difers from another signature that was created from 
walking [52] or why throwing a bowling ball difers from launching 
an arrow in archery [26]. While other researchers already explored 
personal identifability over time [28, 33, 38], across diferent VR sys-
tems [53], the obfuscation of tracking data [42, 47], data encodings 
and machine learning architectures [60], or diferences between AR 
and VR [27, 67], we focus on the actual human movements (kinetic 
signatures) and their inherent varying degree of identifability. Our 
presented research aims to understand what contributes to the in-
herent identifability of a kinetic signature in VR by their execution 
characteristics founded in the human movement sciences. There-
fore, we created a simplifed version of the classifcation proposed 
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by Mitchell et al. that consists of their extrema, reducing their 3 × 3 
matrix into a 2 × 2 matrix (cf., Figure 3(b)). We use this simplifed 
matrix to systematically explore user identifcation through kinetic 
signatures in VR throughout our experiment [39]. 

3 EXPERIMENT 
To explore the dependency between the identifability of kinetic 
signatures and the dimensions within our simplifed classifcation 
of sports and movements (cf., Figure 3(b)) that is based on the work 
of Mitchell et al. [39, 40], we conducted a controlled lab experi-
ment. Based on the classifcation’s dimensions, our central research 
question was: 

RQ How do the Static and Dynamic movement components 
infuence a kinetic signature’s identifability? 

We furthermore wondered about the VR context that the ki-
netic signatures are elicited in. While the classifcation proposed 
by Mitchell et al. primarily aims at sports [39, 40], we wondered 
if the same principles of static and dynamic movements would be 
applicable to a more uniform context. For this purpose, we invited 
the head of university sports, a professional sports scientist at our 
institution, and refected in cooperation with her on how a more 
uniform context could be created in VR. Following this process, we 
opted to explore sports in VR, which is central to the classifcation 
of Mitchell et al. [39, 40]. Additionally, we decided to investigate our 
research question in a uniform VR context where our participants 
would perform self-exercises. 

3.1 Hypotheses 
During our interdisciplinary cooperation, we discussed how the 
classifcation dimensions in Figure 3(b) could impact the identi-
fability of kinetic signatures. We believe that more movements 
are generally desirable since this allows the HMD to elicit more 
user-specifc data, suitable for identifcation. Given the defnitions 
of isometric and isotonic movements and their usage in existing 
literature, we therefore posit the following hypotheses [8, 39, 50]: 

H1 Kinetic signatures with a High Dynamic (HD) component 
lead to a signifcantly higher identifability compared to kinetic 
signatures with a Low Dynamic (LD) component during: (a) self-
exercises, (b) sports. 
H2 Kinetic signatures with a High Static (HS) component 
lead to a signifcantly lower identifability compared to kinetic 
signatures with a Low Static (LS) component during: (a) self-
exercises, (b) sports. 

Hypothesis 1: Dynamic Kinetic Signatures. We informed our hy-
pothesis with the work of Pfeufer et al., who explored behavioral 
biometrics in VR by employing, among others, a pointing (Low 
Static (LS) and Low Dynamic (LD) – LSLD), grabbing (LSLD), and 
walking activity (LS and High Dynamic (HD) – LSHD) throughout 
a user study (� = 19, cf., Section 2.4.1) [52]. In their Table 1, they 
reported for the three tracked objects of an HMD (head, dominant 
hand, and non-dominant hand) and all present features an accu-
racy of 33.34% for pointing (LSLD), 27.03% for grabbing (LSLD), and 
39.31% for walking (LSHD) [52]. H1 is derived from their results, 
as highly dynamic walking performed better than low-dynamic 
pointing or grabbing. This applied to their groups Individual/All, 

Move+Stabilise/All, Distance/All, and Target/Distance/All (cf., their 
Table 1) [52]). Their results indicate that an increase in dynamic 
components benefts identifcation (H1). 

Hypothesis 2: Static Kinetic Signatures. We informed our hypoth-
esis with the work of Liebers et al., who compared two sports 
activities in VR, namely archery (Medium Static (MS) and Low Dy-
namic (LD) – MSLD, cf., Section 2.4.1) and bowling (LSLD) [26]. 
They obtained an accuracy of 54% for archery (MSLD) and 59% for 
bowling (LSLD), using their better Recurrent Neural Network (RNN) 
model (cf., their Table 2) [26]. The same order applies for their worse 
Multilayer Perceptron (MLP) model at respective accuracy values 
of 38% and 49% for archery and bowling [26]. Their results suggest 
that a decreased static component increases the identifcation rate 
(H2). 

3.2 Study Design 
We chose two independent variables to explore throughout our 
hypotheses and research question. The frst independent variable 
was Static Component with two levels: Low Static (LS) and High 
Static (HS). Additionally, we chose Dynamic Component with again 
two levels: Low Dynamic (LD) and High Dynamic (HD). The levels 
of the variables correspond to our simplifed classifcation in Fig-
ure 3(b), and 2 × 2 = 4 total combinations exist. As a dependent 
variable, we chose recall rate, which is a per-participant-defned 
performance metric that states how often a user is correctly iden-
tifed (TP) divided by the sum of correct identifcations (TP) and 

� � misclassifcation (FN): recall rate = We implemented every 
� �+� �

combination as an activity in our apparatus, both in a sport (SP) 
setting and in a self-exercise (EX) setting in VR. 

To refer to an individual activity, we concatenate the expressions 
to form an abbreviation. For example, LSLDSP refers to a low-static 
(LS), low-dynamic (LD) sports (SP), whereas HSHDEX refers to a 
high-static (HS), high-dynamic (HD) exercise (EX). Figure 4 provides 
a comprehensive overview by visualizing the activities, variables, 
and abbreviations. 

3.3 Apparatus 
Our apparatus used in the user study consists of an implemented 
multi-purpose logger and commercially available applications for 
VR. All VR applications are available on Steam1 and the total ac-
quisition cost for fve diferent games was approximately 90 USD. 
All applications used the SteamVR runtime environment2 and an 
OpenVR API3 to be compatible with our logger. 

3.3.1 Multi-purpose Logger. We implemented a logger that is ca-
pable of capturing the spatial data that is streamed from the HMD. 
It captures positional, rotational data (Quaternions), button presses, 
and trigger presses of an attached HMD and its controllers if the 
executed application supports SteamVR and OpenVR. It saves the 
data as tab-separated values (TSV) fles. The logger is based on the 

1Valve’s Steam is a digital distribution platform for software. https://steampowered. 
com, last retrieved on March 8, 2024.
2SteamVR on steampowered.com. https://store.steampowered.com/app/250820/ 
SteamVR, last retrieved March 8, 2024.
3OpenVR SDK on GitHub.com. https://github.com/ValveSoftware/openvr, last re-
trieved March 8, 2024. 

https://steampowered.com
https://steampowered.com
https://store.steampowered.com/app/250820/SteamVR
https://store.steampowered.com/app/250820/SteamVR
https://github.com/ValveSoftware/openvr
https://GitHub.com
https://steampowered.com
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Low Dynamic (LD) High Dynamic (HD) 

Low Static (LS)

High Static (HS)

Low Static (LS)

High Static (HS)
Sports (SP)

Exercise (EX)

OhShape (HSLDEX) OhShape (HSHDEX)

OhShape (LSLDEX) OhShape (LSHDEX)

Climbing (HSLDSP) Boxing (HSHDSP)

Bowling (LSLDSP) Tennis (LSHDSP)

Figure 4: Overview of our independent variables, all implemented combinations, and assigned abbreviations. Each cell in the 
middle refers to an implemented activity. Abbreviations, concatenated from the variables, act as identifers for each activity. 
The frst independent variable is Static Component, which can take a level of either Low Static (LS) or High Static (HS), and it is 
located to the very left. The second independent variable, Dynamic Component, can be realized through Low Dynamic (LD) 
or High Dynamic (HD) and resides at the top. At last, we investigate these variables either in the context of Exercise (EX) or 
Sport (SP), depicted at the right. 

“triad_openvr” API4 and receives HMD data in real time. Our logger 
is manually operated. It features a graphical user interface, and the 
operator can set markers through keyboard presses to tag specifc 
parts of the captured movement data in real time. The logger addi-
tionally draws a timestamp on the monitor, and we used a desktop 
recorder software to capture the contents of the monitor and of 
the rendered VR scene. Additionally, we placed a camera in the 
room where the study took place. All cameras had a synchronized 
timestamp in view so that any event was comprehensible afterward 

4Triad OpenVR Python Wrapper on Github.com https://github.com/TriadSemi/triad_ 
openvr, last retrieved on March 8, 2024. 

by inspecting the recordings. We release the source code of the 
logger5. 

3.3.2 Activities. The second part of our apparatus consists of the 
fve applications we acquired through Steam. We verifed that they 
implemented the necessary APIs for our logger. 

Exercises. For Exercise (EX), we chose the game OhShape6. OhShape 
is a rhythm game in which the player is confronted with approach-
ing walls and coins. The walls have cutouts in the form of a human 
doing diferent poses, and the coins need to be collected with the 

5The source code of our multi-purpose logger can be obtained from http://kinetic-
signatures.hcigroup.de.
6OhShape on steampowered.com. https://store.steampowered.com/app/1098100/ 
OhShape, last retrieved on March 8, 2024. 

https://github.com/TriadSemi/triad_openvr
https://github.com/TriadSemi/triad_openvr
http://kinetic-signatures.hcigroup.de
http://kinetic-signatures.hcigroup.de
https://store.steampowered.com/app/1098100/OhShape
https://store.steampowered.com/app/1098100/OhShape
https://Github.com


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Liebers et al. 

controllers. The player has to adjust their shape to ft through the 
cutouts and catch any approaching coin. The game features a level 
editor7 with which we designed four custom levels in the game by 
creating the walls and coins. Each exercise was three minutes long 
and contained diferent types of static and dynamic self-exercise 
movements. Participants could try each activity for one minute to 
familiarize themselves with it. We always recentered participants’ 
positions after placing them in the middle of the playspace. 

Since we invited the head of university sports at our institution 
to collaborate, we designed the levels according to her feedback 
in an iterative process, creating self-exercises (EX) from static and To determine our required sample size, we conducted an a priori 

 power analysis for a repeated-measures within-factors analysis of 
 variance (ANOVA), given � = .05, � = .95, and efect size � = .4. 
 Following our experimental study design, we set the number of 
 groups to eight and the number of measurements to two. G*Power 
 3.1.9.7 suggested a total sample size of 24 (� = 15.36, � = 4.50). 
 

dynamic movement components. For LSLDEX we created a mixture
of short squats to perform in addition to coins that are easy to
grab over time. In HSLDEX our level consisted of various T-poses
together with inclinations to the left and right direction of the
upper body. HSHDEX was an extension of the previous level, as it
combined T-poses and inclinations of the upper body to the left
and right direction with a butterfy movement of the arms. At last, 
for LSHDEX, our level required butterfy movements for the arms 
together with sidestep movements. The auxiliary material of this 
paper contains a Video Figure that shows a recording of our created 
levels and Figure 5 provides illustrations. 

Sports. To select the Sport (SP) games, we used the classifca-
tion of Mitchell et al. (cf., Figure 3(b)) and picked one game per 
cell [39, 40]. Each game was played for three minutes. Again, par-
ticipants could try each game for one minute to become familiar. 
For all games, we placed participants in the middle of the playspace 
and recentered their positions before they started playing. We im-
plemented LSLDSP by choosing “Premium Bowling”8, which aims 
to provide a realistic bowling experience in VR. We selected the 
local single-player mode and the tournament track map. Then, they 
started playing bowling. To enable the segmentation of the data 
stream into individual kinetic signatures, we logged when partic-
ipants commenced the throwing movements of the bowling ball 
and when it hit the pins. For HSLDSP, we selected climbing and 
used “Indoor Rock Climbing VR”9 as a simulator. Here, participants 
found themselves in a climbing gym and were asked to climb up a 
large wall. They could climb in any style they liked, and we logged 
when they frst touched the wall, then each grip on the wall, and if 
they fell or climbed down. 

Next, we selected boxing as the activity for HSHDSP. We chose 
“PowerBeatsVR”10 to be a suitable rhythm-based boxing game. Par-
ticipants stood in front of a portal and had to punch virtual rocks 
approaching them with their hands. The level was set to “Beast but 
no least” on “beginner” difculty. Here, we logged when the rocks 
to hit appeared in front of them and when virtual, laser-ray-like 
guidance lines appeared that participants would follow, imitating a 
static blocking move. At last, for LSHDSP our participants played 

7OhShapeEditor on Github.com. https://github.com/OddersLab/OhShapeEditor, last 
retrieved on March 8, 2024.
8Premium Bowling on steampowered.com. https://store.steampowered.com/app/ 
898580/Premium_Bowling, last retrieved on March 8, 2024.
9Indoor Rock Climbing VR on steampowered.com. https://store.steampowered.com/ 
app/767330/Indoor_Rock_Climbing_VR, last retrieved on March 8, 2024.
10PowerBeatsVR on steampowered.com. https://store.steampowered.com/app/810500/ 
PowerBeatsVR_VR_Fitness, last retrieved on March 8, 2024. 

“First Person Tennis”11. We set the game to the “training & forehand” 
mode and selected the handedness according to participants’ true 
handedness. They then found themselves on a tennis court, could 
move around, and had to hit a ball that a ball machine launched at 
them. We logged when the ball was launched and when participants 
hit the ball back with their virtual racket. Again, we provide a Video 
Figure in the auxiliary material of this paper that shows recordings 
within and outside VR of the games. Figure 5 provides screenshots. 

3.4 Power Analysis 

3.5 Participants 
We recruited 24 volunteers (7 female, 17 male) via University mail-
ing list and social media (mean age = 26.83, SD = 3.20, 21 were 
right-handed). We asked participants for their previous VR expe-
rience (“I used VR often before participating in this study.”) on a 
Likert item from 1 (completely disagree) to 7 (completely agree) 
that they then rated at an average of 3.56 (SD=2.30). Also, we asked 
them to refect on their previous VR usage (“I have lots of experi-
ence with VR.”) on a Likert item from 1 (never) to 7 (daily), and 
we obtained an average of 3.52 (SD=2.32). Hence, our participants 
were of similar age and had a strongly varying VR experience, with 
a majority being inexperienced. 

3.6 Procedure 
First, we welcomed participants and explained the procedure to 
them upon their arrival. Next, we ensured that all questions they 
had about the study’s progression were fully addressed. Then, we 
obtained participants’ written and informed consent. Furthermore, 
we assured participants that they could, at any point in time, revoke 
their consent to participate in the study without any detriments. 
We then provided them a short explanation of the VR system if they 
were unfamiliar and assisted them in putting on the HMD by help-
ing them adjust the straps and inter-pupillary distance. We then 
tested two blocks. The frst block consisted of the Exercise (EX) activ-
ities, and the second block was the Sport (SP) activities. Each block 
consisted of four conditions that implemented all combinations of 
our independent variables’ levels (cf., Figure 4). Within each block, 
we randomized the order of activities using a Latin Square. Upon 
starting the activity, participants could try every activity for one 
minute to familiarize themselves. Then, we tested each condition 
for a total of three minutes. In total, each session took approx. 60 
minutes per participant. The session was then repeated one week 
later using the same procedure, meaning that participants played 
the exact same levels in each condition for the same duration, again. 

3.6.1 Study Seting. We conducted our user study in a seminar 
room with a large play area of 8�×6�. The room was air-conditioned 

11First Person Tennis on steampowered.com. https://store.steampowered.com/app/ 
454140/First_Person_Tennis_The_Real_Tennis_Simulator, last retrieved on March 8, 
2024. 

https://github.com/OddersLab/OhShapeEditor
https://store.steampowered.com/app/898580/Premium_Bowling
https://store.steampowered.com/app/898580/Premium_Bowling
https://store.steampowered.com/app/767330/Indoor_Rock_Climbing_VR
https://store.steampowered.com/app/767330/Indoor_Rock_Climbing_VR
https://store.steampowered.com/app/810500/PowerBeatsVR_VR_Fitness
https://store.steampowered.com/app/810500/PowerBeatsVR_VR_Fitness
https://store.steampowered.com/app/454140/First_Person_Tennis_The_Real_Tennis_Simulator
https://store.steampowered.com/app/454140/First_Person_Tennis_The_Real_Tennis_Simulator
https://steampowered.com
https://Github.com
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(a) LSLDEX (b) HSLDEX (c) HSHDEX (d) LSHDEX 

(e) LSLDSP (f) HSLDSP (g) HSHDSP (h) LSHDSP 

Figure 5: Screenshots of our apparatus for Exercise (EX) in (a) to (d) and Sport (SP) in (e) to (h). Following Figures 3(b) and 4, 
LSLDSP was implemented through bowling in (e), HSLDSP with climbing in (f), HSHDSP with boxing in (g) and LSHDSP with 
tennis in (h). For Exercise (EX), all levels were implemented in “OhShape”, shown in (a) to (d). A Video Figure is available in the 
supplementary material, showcasing each activity within VR and in reality. 

to provide an equal temperature-wise experience for all participants. 
As an HMD, we chose the widely available “Meta Quest 2” that 
does not require a wired connection to a computer. We used a host 
computer with an Intel i7-9700 CPU, 16GB RAM, and a Nvidia 
RTX 2060 GPU to execute the SteamVR runtime and our multi-
purpose logger and streamed the applications to the HMD using 
Oculus Air Link and a WiFi connection. At all times during the 
study, two experimenters were available. One experimenter took 
care of the participants and externally observed their movements. 
Additionally, another experimenter took care of the host computer 
and operated the logger, being able to see the participants in reality 
and a rendering of the participants’ view in VR on the monitor 
simultaneously. 

3.6.2 Qestionnaires. After each activity in Sport (SP), we asked 
two Likert items, L1 and L2, on a scale from 1 (completely disagree) 
to 7 (completely agree). L1 presented the statement “I found the 
movement very exerting”. For L2, the statement was “I found the 
movement in its execution very natural”. Additionally, we asked 
the NASA-Task Load Index (TLX) questionnaire [57, 58] to under-
stand participants’ workload and to validate our apparatus using 
participants’ subjective feedback. 

3.7 Ethics 
Before conducting the study, we obtained the approval of our insti-
tution’s ethics committee. Furthermore, we obtained the informed 
consent of our participants, and we assured them that they could 
cancel their participation in the study at any time without any 
detriments. To further protect participants’ privacy, we created two 
sets of randomized IDs, where we assigned one ID to their data 

and the other ID to their metadata. After we fnished the study, we 
deleted the mapping so that no backtracking is possible; hence, we 
conducted a full pseudonymization of their data. Additionally, we 
would like to emphasize that the present work presents an implicit 
identifcation procedure. Insofar as the contents of this research 
are used for the implementation of such a system, it is necessary 
that established ethical guidelines are followed. For example, users 
should know how their data is used, that an implicit identifcation 
system processes their data, and what the intended purpose of 
the data processing is. Likewise, their informed consent should be 
obtained. 

4 ANALYSIS 
We created a deep-learning-based identifcation system similar to 
previous work that identifed our participants [29, 32]. We trained it 
exclusively with the data obtained from the frst session of our study 
and tested it with data from the second session, which took place 
one week later. Using these results, we then applied quantitative 
statistics to explore the efects of dynamic and static movement 
components using a factorial analysis. 

4.1 Data Set 
Our data set consists of the output of our logger that we elicited 
during the study, which was initially one continuous data stream. 
It consists of our participants’ positional and rotational coordinates 
obtained from the HMD, timestamps, activity markers, identifers 
of each activity, and participant identifers. During the elicitation 
process, we observed participants both in reality and within VR 
since we utilized Oculus Air Link, which also rendered the VR view 
on the host computer’s monitor. During this observation in the 
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study in the SP activities, we manually annotated participants’ data 
by placing numerical markers into the stream. We then split the 
data by the markers into individual samples containing exactly one 
kinetic signature. For the Sport (SP) activities, one kinetic sample 
corresponds to one bowling throw, a single climbing move, one 
boxing punch, or one hit in tennis in the exercises. For the Exercise 
(EX) activities, where the levels were deterministic and linear, we 
segmented the data into individual kinetic signatures by applying a 
timestamp-based splitting algorithm. Here, a kinetic sample is one 
consistent motion that participants performed at a time, e.g., one 
performed squat or one executed butterfy arm movement. 

Since certain metrics (e.g., accuracy) are sensitive to imbalanced 
data sets, we decided to keep our dataset strictly balanced per ac-
tivity. Therefore, we frst matched the number of samples between 
participants, meaning, that in each activity all participants con-
tributed the same number of samples and no participant is over-
or underrepresented. Next, we matched the number of samples 
that compose the training data set with the testing data set; there-
fore, every participant contributed the same number of samples 
per activity to the training and testing data set, so that both sets 
have the same cardinality per activity. Since the number of samples 
provided could vary during the elicitation in our user study, we 
downsampled participants’ contributed kinetic signature samples 
per activity. To do so, we removed samples that occurred later in 
the activity stream until a match between all participants’ contri-
butions was acquired by choosing the minimum number provided 
by any participant for each activity. By doing so, every partici-
pant contributed 87 kinetic signature samples (hereafter referred 
to as “samples”) for LSLDEX, 54 samples for HSLDEX, 98 samples 
for HSHDEX, and 98 samples for LSHDEX. Similarly, for Sport (SP), 
participants contributed 12 throws of a bowling ball (LSLDSP), 45 
climbing movements (HSLDSP), 247 boxing punches (HSHDSP), and 
33 tennis hits (LSHDSP) to our data set. These numbers apply to 
both the training and testing data set (e.g., there is 12 throws of a 
bowling ball in the training data set and in the testing data set for 
every participant). Per activity, the number of contributed samples 
per participant for the training and testing data sets is equal, and 
no participant is over- or underrepresented. 

In total, we elicited 14.1 GB of data from our user study. We 
publish our data set online to enable replication12. 

4.2 Data Split 
Since the user study encompassed two sessions, we split the data 
by session and activity to perform a hold-out validation. Hence, the 
data set was partitioned into eight parts for training, containing 
exclusively the data from the frst session, and eight other exclusive 
parts for testing, containing the data from the second session. We 
never mixed data across sessions. The data from the frst session 
was then used to train a deep-learning model per activity, which 
was then tested with the data from the second session to determine 
the evaluation metrics within said activity. We refrained from per-
forming a dedicated hyperparameter tuning; instead, we used the 
default parameters of the models that were established by previous 
literature [21, 32]. We chose a hold-out validation style to show 

12Our data set can be obtained from http://kinetic-signatures.hcigroup.de. 

that we can re-identify participants exclusively with their kinetic 
signatures from the second session after a one-week interval. 

4.3 Preprocessing 
We applied the same preprocessing to all of our data on the level of 
the kinetic signature samples, i.e., individually per executed move-
ment after we split the data by the markers. For each kinetic sample, 
we initially removed any information not originating from the con-
trollers or the HMD (i.e., we stripped timestamps, user identifers, 
and all other metadata). Since we sampled participants’ position 
and rotation, we remained with 21 columns of data, representing 
the positions (i.e., "pos.x", "pos.y", and "pos.z") per object and its 
rotation (i.e., “quat.x”, “quat.y”, “quat.z”, and “quat.w”). 

In the next step, we subtracted all position values per sample from 
the very frst value in the same column. Consequently, we obtained 
relative positions in relation to the beginning of each kinetic sample. 
This procedure stripped parts of the per-participant bias from the 
data, such as absolute diferences in body height denoted by "pos.y". 
Also, if a participant changed their initial position, for instance, 
by taking a step back, their initial position was always reset to 
zero. Although spatiotemporal human behavior always depends 
on body physiology, we were aware that this processing could not 
remove all components of a user’s physiology. However, previous 
studies showed that applying further transformations to normalize 
physiology led to higher identifcation rates [26]. With this in mind, 
we concluded our specifc feature transformation to emphasize the 
component of human behavior in each kinetic sample. Figure 6 
provides plots of a sample per activity from our participants after 
applying preprocessing that we also used for visual inspection. 

In the fnal step, we applied a min-max normalization to the 
data per kinetic sample since neural networks beneft from data 
being normalized into an interval of [0, 1] per column. We also 
applied padding and zero-based pre-padding to the mean length of 
the kinetic samples for each activity to unify their shape. Addition-
ally, since we did not restrict the sampling rate of our logger, we 
downsampled the data to 60 Hz, as we saw that our logger logged 
faster than the HMD could stream new data, leading to interpolated 
duplicates. Each model was trained on the sliced kinetic samples 
obtained from the frst session of the study. We then predicted the 
slices with the same parameters from the second session to elicit 
the evaluation metrics. 

4.4 Deep Learning Model Architectures, 
Training, and Selection 

We chose eleven diferent deep-learning model architectures for 
time-series classifcation from previous work to create an identif-
cation system. Since our elicited kinetic signatures are composed 
of spatiotemporal data, that is, human behavior sampled from an 
HMD over time, models for time-series classifcation are particu-
larly suitable to create an identifcation system. We selected these 
models since they are founded in the review on time-series classif-
cation by Fawaz et al., and we also utilized their implementation 
with default hyperparameters13 [21]. Some hyperparameters were 

13Implementation of Fawaz et al: “dl-4-tsc” on Github.com [21]. https://github.com/ 
hfawaz/dl-4-tsc/tree/master/classifers, last retrieved on March 8, 2024. Note: their 
CNN model can be parametrized by “same” and “valid” padding. We subsequently 

http://kinetic-signatures.hcigroup.de
https://github.com/hfawaz/dl-4-tsc/tree/master/classifiers
https://github.com/hfawaz/dl-4-tsc/tree/master/classifiers
https://Github.com
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Figure 6: Scatterplots of exemplary kinetic signatures elicited in our experiment from participants’ worn HMD, right and left 
controllers after applying the preprocessing. The preprocessing sets all position coordinates to zero at the beginning of each 
sample. Each scatterplot belongs to one activity. 

dynamically set by their implementation and we did not alter this 
behavior. The proposed model architectures of Fawaz et al. were 
previously applied in several projects on behavioral biometrics by 
diferent researchers [29, 32, 70]. Initially, we trained all models 
proposed by Fawaz et al. since we did not know which of the models 
would converge and how their performances would behave [21]. 
We trained all models per activity with the data from the frst ses-
sion after it was preprocessed, i.e., we split the dataset by activity 
to avoid mixing kinetic signatures between activities. Then, we 
tested the models with participants’ data from the second session, 
again per activity, so that kinetic signatures would not be mixed 
and determined the per-participant performance recall rates of the 
models. 

4.5 Quantitative Factorial Analysis 
We round our analysis of with a quantitative analysis of our models’ 
performance rates to determine the efect of our two independent 
variables on the identifcation rates. Here, we chose the “recall rate”, 
which is defned as the number of true positives divided by the sum 
of true positives and false negatives per participant (i.e., TP

TP 
+FN ). 

Thus, recall rate is the quotient of the true identity assignments 
divided by the sum of true and false identity assignments. It essen-
tially tells how well a person can be identifed by an identifcation 
system and was also used in previous work [27]. 

treated both settings as individual models, denoted as CNN (V) for “valid” padding 
and CNN (S) for “same” padding. 

To understand the infuences of our independent variables Static 
Component and Dynamic Component onto recall rate, we conducted 
two separate two-way repeated measures analysis of variance 
(RM-ANOVA). We chose to split our data set by modality for the 
analysis (Exercise (EX) vs. Sport (SP)) since it is not refected in our 
hypotheses to compare across modality, i.e., we did not seek to 
compare the recall rates obtained in Exercise (EX) against recall 
rates in Sport (SP). We proceeded this way, as we assumed that the 
change of modality has too many factors to be considered. Factors 
stem from the implementation, such as being within only a single 
application (OhShape) vs. being in multiple applications (the dif-
ferent sports games), as every application considerably changes 
the lightning, movement, visual efects, sound efects, and many 
more details. In addition, the human factor also played a major 
role. While our participants, on one hand, performed self-exercises, 
which is a very well-defned task, the contextual rules of the task 
fundamentally changed in Sport (SP), depending on the respective 
game. Due to the design of OhShape, their movements within this 
application were strongly guided, as the walls and coins required 
certain poses to be performed and thus told the participants how 
to behave. For the sports games, participants’ degrees of freedom 
were way higher than OhShape, as they could freely decide how 
they act in each sport. For example, we did not enforce which way 
participants climbed, in which direction they moved during tennis, 
or how they interacted with their racket. Thereby, we believe that 
the four diferent Exercise (EX) can hardly be compared to four 
diferent Sport (SP), where each Sport (SP) has its own set of rules 
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defning the task. All in all, both the contextual requirements of 
the task for the human to perform and the implementation stayed 
constant for the diferent activities in Exercise (EX) but difered per 
Sport (SP). Hence, we chose to split the analysis. 

5 RESULTS 
First, we selected models to be used within our analysis. The frst 
part of the analysis then explored Exercise (EX) and the second part 
explored Sport (SP). 

5.1 Model Selection 
To obtain our independent variable recall rate, we frst trained our 
selected models with the respective data. Here, we always trained 
all model architectures per activity and assessed their performance. 
The resulting accuracy ratings are listed in Table 1. We averaged 
their results per modality and found that Inception works best for 
Exercise (EX) at a mean accuracy of 71.74% and FCN worked best for 
SP at a mean accuracy of 74.93%. While there is little diference be-
tween these two model architectures within EX and SP respectively, 
the overall mean performance degrades between Exercise (EX) and 
Sport (SP), as SP performs approximately three to four percent bet-
ter than EX (cf., Table 1). We then obtained the respective recall 
rate from each activity’s models. Figure 10 in Appendix A shows 
each model’s confusion matrix, providing insights into its biometric 
identifcation performance and Figure 7 depicts a histogram of the 
obtained recall rates per modality. 

5.2 Kinetic Signature’s Identifability in 
Exercises 

To explore the infuence of the two independent variables, Static 
Component and Dynamic Component onto recall rate, we conducted 
a two-way factorial RM-ANOVA. Static Component and Dynamic 
Component had two respective levels, Low Static (LS) and High Static 
(HS) for the former, and Low Dynamic (LD) and High Dynamic (HD) 
for the latter. 

5.2.1 Assumptions. At frst, we checked the assumptions of RM-
ANOVA. We conducted Levene’s test for the homogeneity of vari-
ances across groups (homoscedasticity), which did not indicate that 
our groups have signifcant diferences in variance (F(3, 92) = .4196, 
p = .7394). The sphericity assumption was necessarily met due to 
the present levels of our design. At last, we checked if our data 
samples were normally distributed using the Shapiro-Wilk test, 
which indicated that they were not normally distributed (W = .9044, 
p < .0001). This was confrmed in a histogram as shown in Fig-
ure 7(a). Therefore, we applied the aligned rank transform (ART) 
procedure before running the RM-ANOVA [71]. 

5.2.2 Main Efects. In the analysis of Exercise (EX), we found a sta-
tistically signifcant main efect for Dynamic Component (F(1, 69) = 
4.8421, p = .0311, �2 = .0656). High Dynamic (HD) overall yields � 
a higher recall rate (Med = .86, IQR = .29) compared to Low Dy-
namic (LD) (Med = .72, IQR = .31), supporting H1(a). We did not 
fnd a signifcant main efect for Static Component (F(1, 69) = 1.9517, 
p = .1669), not supporting H2(a). Additionally, the interaction efect 

between Static Component and Dynamic Component was not signif-
icant (F(1, 69) = 1.9694, p = .1650). Figure 7(b) provides a boxplot of 
the signifcant main efect in Exercise (EX). 

5.3 Kinetic Signature’s Identifability in Sports 
We continued with the analysis of Static Component and Dynamic 
Component in Sport (SP), where we again conducted a RM-ANOVA 
analogously to the analysis of both variables in Exercise (EX). 

5.3.1 Assumptions. Again, we conducted Levene’s test for the ho-
mogeneity of variances across groups (homoscedasticity). As before, 
it did not indicate that our groups have signifcant diferences in 
variance (F(3, 92) = 1.5328, p = .2113). Sphericity, again, was neces-
sarily met. We then continued checking if our data would be normal 
distributed using a Shapiro-Wilk test, which again indicated that 
the recall rate values follow a non-normal distribution (W = .8788, 
p < .0001, cf., Figure 7(a)). Therefore, we once more applied the ART 
procedure [71]. 

5.3.2 Main Efects. In Sport (SP), we found two signifcant main 
efects, one for Static Component and one for Dynamic Component, 
respectively (cf., Figures 7(c) and 7(d)). We found a signifcant main 
efect for Static Component (F(1, 69) = 66.9425, p < .0001, �2 = .4924).� 
High Static (HS) (Med = .67, IQR = .40) lead to lower recall rate 
values than Low Static (LS) (Med = .92, IQR = .17), supporting H2(b). 
Furthermore, we found a signifcant main efect for Dynamic Com-
ponent, where High Dynamic (HD) (Med = .87, IQR = .21) lead to 
higher values than Low Dynamic (LD) (Med = .70, IQR = .43), F(1, 
69) = 24.4615, p < .0001, �2 = .2617, supporting H1(b). However, � 
the interaction between Static Component and Dynamic Component 
also had a signifcant efect (F(1, 69) = 13.0590, p = .0006, �2 = .1591).� 
Thus, it is important to explore the interaction between both. 

5.3.3 Interaction Efect between Static and Dynamic Component. 
We found that fve out of six possible pair-wise contrast tests were 
signifcant after p-value correction using Holm’s method for the 
interaction efect between Static Component and Dynamic Compo-
nent. First, HSHD (Med = .80, IQR = .24) yielded higher recall rates 
than HSLD (Med = .51, IQR = .29), t(69) = 4.1123, p = .0004, sup-
porting H1(b). Also, HSHD (Med = .80, IQR = .24) resulted in lower 
values than LSHD (Med = .95, IQR = .15), t(69) = -3.7998, p = .0009, 
supporting H2(b). HSHD (Med = .80, IQR = .24) was lower than 
LSLD (Med = .92, IQR = .19), t(69) = -2.7978, p = .0133, supporting 
H2(b), but opposing H1(b). On the other hand, HSLD (Med = .51, 
IQR = .29) was lower than LSHD (Med = .95, IQR = .15), t(69) = 
-7.9121, p < .0001, supporting H1(b) and H2(b). Furthermore, HSLD 
(Med = .51, IQR = .29) was lower than LSLD (Med = .92, IQR = .19), 
t(69) = -6.9100, p < .0001, supporting H2(b). At last, the comparison 
of LSHD (Med = .95, IQR = .15) with LSLD (Med = .92, IQR = .19) 
was not signifcant (t(69) = 1.0020, p = .3198), thus H1(b) remained 
unsupported for this contrast. 

To summarize this interaction efect, it becomes apparent that 
H1(b) and H2(b) were mostly supported, with two exceptions. 
First, as we could not fnd a signifcant diference between LSLD 
and LSHD (cf., fourth signifcance indicators from the top in Fig-
ure 8(a)), so H1(b) remained unsupported for this case. Second, 
HSHD in comparison with LSLD supported H2(b), as HS lead to 
lower identifability than LS, yet it opposed H1(b) in this contrast, 
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Table 1: Accuracy ratings in percent of all trained models per activity, sorted by the last column. ACCEX is the mean of the 
four trained models for Exercise (EX) per architecture and ACCSP for all Sport (SP) activities and its four trained models per 
architecture (cf., Figure 4). The best model for EX is Inception. For SP it is FCN. The highest reached mean accuracies per EX 
and SP are respectively marked with an asterisk (*). 

Model LSLDEX HSLDEX HSHDEX LSHDEX LSLDSP HSLDSP HSHDSP LSHDSP ACCEX ACCSP 

FCN 72.08 69.21 68.75 74.57 84.72 50.65 74.71 89.65 71.15 *74.93 
Inception 69.68 69.83 69.30 78.15 82.29 50.46 73.90 90.91 *71.74 74.39 
ResNet 69.64 67.82 67.35 73.21 81.25 45.65 73.97 89.77 69.51 72.66 
Encoder 46.17 49.23 61.78 65.86 80.56 34.44 56.48 73.48 55.76 61.24 
TWIESN 42.53 55.63 54.63 61.14 68.06 36.48 48.75 81.94 53.48 58.81 
MCDCNN 56.80 55.94 56.04 55.14 63.89 37.41 50.96 74.49 55.98 56.69 
MLP 46.17 48.07 51.79 49.15 63.19 27.87 50.46 77.02 48.79 54.64 
CNN (S) 32.33 38.89 42.18 54.63 70.14 24.35 44.96 66.04 42.01 51.37 
CNN (V) 32.38 32.72 41.96 48.94 59.72 24.07 41.28 67.30 39.00 48.09 
MCNN 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 
t-leNet 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 4.17 
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Figure 7: Histogram of the distribution of recall rate values split by modality in (a). Then, (b) shows the signifcant main efect 
within EX. For SP, (c) and (d) show the two signifcant main efects for Dynamic Component and Static Component, respectively. 
Annotated asterisks denote signifcance levels: **** = p < .0001, *** = p < .001, ** = p < .01, * = p < .05, ns = not signifcant. 

since HD led to lower values than LD. This is also depicted in Fig-
ure 8(a), where the comparison of the third and fourth boxplot 
(enumerated from left to right) turned out signifcant. Figure 8(b) 
provides an interaction plot. This can mean that H2(b) dominates 
H1(b) in this comparison, as both factors were altered. We saw in 
the main efects that �� 

2 was .4924 for Static Component related to 
H2(b) and .2617 for Dynamic Component’s main efect, related to 
H1(b). This indicates that H2(b) outweighs H1(b) in this pairwise 
contrast test, as it is impossible for both to remain supported in this 
specifc comparison. 

5.4 Questionnaires 
We conducted the raw NASA-Task Load Index (RTLX) questionnaire 
to obtain our participants’ feedback and validate our apparatus 
based on their responses. Besides the RTLX, we asked them two 
individual Likert Items, L1 and L2. 

5.4.1 NASA TLX. We asked participants for their task load after 
every activity, using the RTLX [57, 58]. We did so to understand 

whether we could fnd diferences in task load between our eight 
diferent activities, i.e., if the order of activities sorted by task-load 
in Exercise (EX) difers from the activities in Sport (SP). First, we 
calculated participants’ median scores for each activity in Exercise 
(EX) and Sport (SP). Next, we ranked the activities per modality. 

Exercises. We fnd the following ranking for the four diferent 
activities within Exercise (EX), in descending order: (1) HSHDEX 
(Med = 35.83, IQR = 28.33), (2) LSHDEX (Med = 31.25, IQR = 24.17), 
(3) HSLDEX (Med = 27.08, IQR = 14.38), and (4) LSLDEX (Med = 13.33, 
IQR = 11.25). 

Friedman’s test for ordinal data revealed a signifcant efect of 
group (�2(3) = 53.67, p = .0001, N = 24). The post-hoc pairwise 
comparisons using Wilcoxon signed-rank test showed that LSLDEX 
lead to signifcantly lower scores than HSLDEX (W = 3.5, Z = -4.1861, 
p = .0001, r = .6042). LSLDEX also lead to signifcantly smaller scores 
than HSHDEX (W = 0, Z = -4.2864, p = .0001, r = .6187). Next, LSLDEX 
also yielded signifcantly lower values than LSHDEX (W = 5, Z = -
4.1429, p = .0001, r = .5980). Furthermore, HSLDEX provided smaller 
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Figure 8: The boxplots in (a) show the contrasts for the interaction efect between Static Component and Dynamic Component 
in SP. Annotated asterisks denote signifcance levels: **** = p < .0001, *** = p < .001, ** = p < .01, * = p < .05, ns = not signifcant. 
The interaction plot in (b) shows the interaction efect between Static Component and Dynamic Component in Sport (SP). 

scores HSHDEX (W = 13, Z = -3.8023, p = .0001, r = .5489). HSLDEX 
also yielded smaller scores than LSHDEX (W = 53, Z = -2.5857, 
p = .0483, r = .3732). However, only for the scores in HSHDEX vs. 
LSHDEX, we could not fnd any signifcant diferences (W = 202.5, 
Z = 1.96210, p = .2960). The p-values of the pairwise comparisons 
were adjusted using Bonferroni’s method. 

Sports. We proceeded analogously for Sport (SP) and found the 
following ranking in descending order: (1) HSHDSP (Med = 38.75, 
IQR = 19.38), (2) LSHDSP (Med = 36.25, IQR = 20.625), (3) HSLDSP 
(Med = 23.33, IQR = 25.63), and (4) LSLDSP (Med = 21.25, IQR = 12.50). 

Again, we conducted a Friedman’s test and saw that there was 
a signifcant efect of group (�2(3) = 29.5277, p = .0001, N = 24). 
Next, we conducted pairwise comparisons using Wilcoxon’s signed-
rank test. LSLDSP lead to smaller TLX scores than HSLDSP, but 
the comparison was not signifcant (W = 108.5, Z = -1.1858, p = 1). 
LSLDSP resulted in signifcantly smaller values than HSHDSP (W = 2, 
Z = -4.1369, p < .0001, r = .5971). For LSLDSP we also found that its 
values were signifcantly smaller than LSHDSP (W = 29.5, Z = -3.4432, 
p = .0012, r = .4970). When comparing HSLDSP, we once more 
found signifcantly smaller values compared to HSHDSP (W = 37, 
Z = -3.2287, p = .0038, r = .4660). For HSLDSP vs. LSHDSP, we could 
not fnd signifcant diferences (W = 63, Z = -1.8249, p = .4136). 
Comparing HSHDSP with LSHDSP yielded signifcantly smaller val-
ues, again (W = 187.5, Z = 1.5065, p = .8155). The p-values of the 
pairwise comparisons were adjusted using Bonferroni’s method. 

Here, we fnd that our participants’ ranked the activities in Exer-
cise (EX) and Sport (SP) in the same order by task-load. We mostly 
found signifcant diferences, with only a few exceptions. As the 
overall ranking is identical for Exercise (EX) and Sport (SP), we as-
sumed, that participants mostly experienced identical relative task 
loads by the corresponding activities, supporting the validity of our 
apparatus through their subjective feedback. 

5.4.2 Individual Likert Items. At last, we also asked participants for 
their responses to two individual Likert items after every activity. 
“L1” presented the statement “I found the movement very exerting” 
on a scale from 1 (completely disagree) to 7 (completely agree). 

The second item, “L2”, requested their rating on the statement 
“I found the movement in its execution very natural”, on the same 
scale. Figure 9 provides a boxplot with participants’ results. Overall, 
participants’ responses did not fnd the activities exceptionally 
exerting, with only HSHDEX yielding the highest exertion levels 
at a median of three. Other than that, participants mostly rated 
their movements as natural, with LSLDSP (bowling) being the most 
natural. 

6 DISCUSSION 
In this section, we discuss the (1) overall identifability of kinetic 
signatures, (2) the infuences of static and dynamic movement com-
ponents, (3) the applicability of our hypotheses outside of VR, (4) the 
implicit nature of kinetic signatures and how they can ideally be 
employed in real-world applications, and (5) limitations of our in-
vestigation. 

6.1 Overall Identifability of Kinetic Signatures 
Overall, kinetic signatures are well-suited for re-identifcation by 
deep-learning-based identifcation systems, even after some time 
passes. In our experiment, we reinvited participants after one week 
for their second session and exclusively used the frst session for 
training, simulating identifcation with unseen data after one week. 
From Table 1, we can see that the identifcation accuracy per model 
varies per condition; however, the best results for LSHDEX were 
obtained by Inception, and for LSHDSP it was FCN at respective 
accuracy ratings of 78.15% and 90.91%. For the latter, the median 
recall rate was 95.45%. 

In identifcation systems, the base chance of a correct random 
guess is 1 ; thus, for our work, it is 1 = 4.167%. Previous works 

� 24 
that reinvited participants for a second session used N=16 partic-
ipants with a base chance of 6.25% reported up to 90% as their 
highest model’s accuracy when applying body normalizations [26], 
or 63.55% for N=19 [52] at a base chance of 5.26%. Thus, our best 
results exceed these values, given our decreased probability of a 
random guess and harder classifcation problem, as we had +26.32% 
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Figure 9: Participants’ responses to the two individual Likert items on a scale from 1 (completely disagree) to 7 (completely 
agree). L1 was “I found the movement very exerting” and L2 was “I found the movement very natural”. 

participants compared to Pfeufer et al. and +50% participants com-
pared to Liebers et al. [26, 52]. However, we must acknowledge that 
we also had activities in our experiment that yielded considerably 
lower accuracy ratings (e.g., HSLDSP: climbing at 50.65%). 

Concerning our apparatus, we saw from participants’ subjective 
feedback in the RTLX that they ranked our activities within Exercise 
(EX) identically to the activities Sport (SP), according to the required 
task-load per activity. Hence, we believe that our apparatus refected 
the various levels of Static Component and Dynamic Component 
within Exercise (EX) and Sport (SP) well. 

6.2 Infuences of Static and Dynamic Movement 
Components on a Kinetic Signature’s 
Identifability 

Static Components. Starting with hypothesis H2, stating that 
High Static (HS) yields lower identifability in kinetic signatures 
compared to Low Static (LS), we can acknowledge H2(b) for Sport 
(SP). There, we found a signifcant main efect supporting H2(b) and 
a signifcant interaction efect that consistently supported H2(b) 
across all contrast tests in the interaction efect. This also confrms 
the fndings of Liebers et al. [26], who also found signifcant dif-
ferences between LSLD and MSLD. However, for Exercise (EX), we 
found a trend in the data that this hypothesis might apply, but the 
diferences were not statistically signifcant (H2(a)). Thus, we can 
only accept H2(b), but cannot accept H2(a). 

Dynamic Components. For H1, stating that High Dynamic (HD) 
yields higher identifability compared to Low Dynamic (LD), the sit-
uation is more complex. First, H1(a) can be acknowledged through-
out Exercise (EX), as we found a signifcant main efect and no 
signifcant interaction efect. For Sport (SP), we found a signifcant 
main efect, supporting H1(b). Similarly, Pfeufer et al. found that 
HD performed better than LD [52]. 

Albeit, in the pair-wise contrast test, we did not fnd signifcant 
diferences between LSHDSP (sports: tennis) vs. LSLDSP (sports: 
bowling). The descriptive statistics reveal a trend in the correct 
direction, but the diferences were insignifcant (p = .3198). Both 
median values were very high (.92 and .95), as they belong to a scale 
of [0; 1], indicating that our system was highly capable of perform-
ing correct identifcations in both activities. Thereby, H1(b) remains 
unsupported for this specifc comparison but was supported in al-
most any other pairwise comparisons and, additionally, throughout 
the main efect in Sport (SP). The last contrast test revealed that 
HSHDSP (sports: boxing) lead to signifcantly lower identifability 

compared to LSLDSP (sports: bowling), opposing H1(b) for these 
two specifc activities in SP. 

However, it must be noted that H1(b) and H2(b) are mutually 
exclusive for this specifc contrast test. If LSLDSP (bowling) would 
have led to signifcantly lower identifability than HSHDSP (boxing), 
H1(b) would be supported but H2(b) would be opposed. Here, the 
opposite is the case, and we believe that moderation of the efects 
took place during their interaction, as both variables were altered 
in this comparison (LSLD vs. HSHD). Given both main efects in 
Sport (SP), we fnd that Static Component has an �� 

2 of .4924 and 

Dynamic Component has an �� 
2 of .2617. Thus, the efect denoted 

by �� 
2 of Static Component is almost twice the value of Dynamic 

Component, and it could be possible that the change from Low 
Static (LS) to High Static (HS) outweighed the change from High 
Dynamic (HD) to Low Dynamic (LD). Thus, we can accept H1(a). 
Additionally, we overall can accept H1(b), but it is moderated by 
H2(b). 

Conclusions. We accept H1, since we accepted both H1(a) and 
H1(b). Our results indicate that High Dynamic (HD) components 
lead to signifcantly higher identifability of kinetic signatures than 
Low Dynamic (LD) components. For H2, we could only accept H2(b) 
for Sport (SP). We found no signifcant evidence for H2(a), yet the 
data followed a supporting trend. Thus, we cannot universally 
accept H2, as we only have evidence within Sport (SP) that High 
Static (HS) leads to signifcantly lower identifability than Low Static 
(LS). Additionally, the interaction between Static Component and 
Dynamic Component shows that the former dominates the latter, 
meaning that Low Static (LS) increases the dentifability of kinetic 
signature more than High Dynamic (HD). 

6.3 Refecting on Literature Outside of VR 
Abdrabou et al. explored a variety of eleven tasks using a motion-
capture system in reality (i.e., not in VR, � = 22, cf., Section 2.4.1) [2]. 
They list accuracies between 6.74% to 13.88% for their LSLD ac-
tivities, 28.82% to 40.75% for the LSHD activities, and 53.01% to 
59.21% for HSHD activities in their Figure 5 [2]. Therefore, High Dy-
namic (HD) yielded higher ranked identifability in their experiment 
than Low Dynamic (LD), as indicated by H1. In their experiment, 
High Static (HS) is better than Low Static (LS), opposing H2. How-
ever, this opposition happens during the interaction of HS and HD 
in reality, which is fundamentally diferent from a setup in VR [14]. 
For example, their participants carried real loads, likely resulting in 
a higher degree of isometric muscle contractions. In contrast, our 
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participants did not experience any external weight in VR due to its 
inherent limitations [14]. Thus, the interaction of High Static (HS) 
and High Dynamic (HD) plays a role, in addition to the factor of 
reality vs. virtual reality, as it potentially infuences the isometric 
eforts required in HS. Therefore, H1 is confrmed by their results, 
but H2 is not, while the general applicability of our hypotheses to 
a setup in reality (not in VR) can be questioned. Exploring these 
efects might be a promising research opportunity. 

6.4 Implementing Implicit Identifcation using 
Kinetic Signatures 

We explored implicit identifcation through kinetic signatures and 
various activities. A popular misconception is that these activi-
ties are meant as drop-in replacements for common authentication 
methods, such as a password entry in VR being replaced with a 
throw of a bowling ball. This is not the intended use case. Instead, 
our fndings are meant to enable identifcation through implicit 
human-computer interaction, to identify users “through actions 
they would carry out anyway” [23, 61]. This means that the HMD 
can identify its user while they perform any suitable activity dur-
ing an arbitrary point in time of their usage of the device and 
keep the verifed information on its user’s identity until the in-
formation is required. This relieves users of the burden of today’s 
authentication methods [5, 59]. Additionally, the HMD can contin-
uously re-identify its user. This is beneftted by an implicit iden-
tifcation capable of happening silently and transparently in the 
background, using implicit interactions [61]. As a consequence, se-
curity can be increased by employing a continuous authentication 
system [65, 66]. 

To employ our fndings in a real-world system, it would be ideal 
to create an application where users at certain points perform highly 
dynamic movements with little static movements involved. Usually, 
users would perform these movements in response to the rendered 
virtuality; thereby, the VR application knows when such a context 
is applicable to the user. Once such a context is imposed, the ap-
plication can scan the user’s kinetic signatures. For this reason, 
triggers might be used, e.g., if an interaction of the user is required 
in response to the context before the actual context starts (e.g., if the 
context requires the user to dynamically throw an object, the begin-
ning can be deducted from the user pressing the controller’s gripper 
buttons). Then, the kinetic signatures can be obtained and used for 
identifcation through, for example, neural networks. Additionally, 
majority voting can be applied to multiple elicited kinetic signa-
tures, which usually enhances the identifcation accuracy. Here, 
identifcation does not happen per individual kinetic signature but 
per the majority voting when identifying multiple signatures, often 
leading to more stable results [29]. 

6.5 Limitations 
We acknowledge two limitations concerning our experiment. First, 
we cannot fully exclude any physiological factor in our behavioral 
biometrics research. Second, our investigation is limited by the lack 
of external forces and weight in VR. 

Physiological Factors. Human behavior always depends on hu-
man physiology to some degree, as physiology limits how a move-
ment can be executed. In our work, we did not apply any body 

normalization in VR; therefore, we rely on our preprocessing to 
remove most physiological factors [26]. For example, we efectively 
could remove body height as a primary bias, yet other factors, such 
as arm length, which correlate with body height, cannot be trivially 
removed. Therefore, we acknowledge that our behavioral data still 
refects participants’ physiology to a small extent. 

Additionally, we had three left-handed participants in our exper-
iment. This is representative of the population sample that we took, 
assuming that 10.6% of the general population are left-handed [51]. 
These three participants might have elicited behavior that is easier 
to identify compared to the right-handed participants’ behavior. We 
believe that this refects how identifcation systems work within 
the general population. 

Weight in VR. One central limitation of our work is also the role 
of weight in VR. While dynamic movements and the associated 
isotonic muscle contractions can be easily performed in VR, isomet-
ric contractions are limited, as most consumer-ready VR cannot 
provide or apply external weight or forces to their user. However, 
isometric contractions can be used in VR by using a body’s own 
weight (e.g., as in body-weight self-exercises). The application of 
external forces or external weights, however, is non-trivial although 
researchers provided case studies of such systems [14, 15] We did 
not employ such a solution, as they are not widely available. There-
fore, we must acknowledge the limitation that our High Static (HS) 
components are impacted by taking place in VR. We believe that 
the impact is larger for Sport (SP), as both HSLDSP (climbing) and 
HSHDSP (boxing) did not provide the feedback of weight to par-
ticipants. For Exercise (EX), we believe that the diference is less 
since participants performed self-exercises that were afected by 
their own body weight. However, given our participants’ subjec-
tive feedback using raw NASA-Task Load Index (RTLX), we did 
not fnd a diferent ranking given their overall workload between 
Exercise (EX) and Sport (SP). 

7 CONCLUSION 
In recent years, research showed that a wide range of distinct be-
haviors can uniquely identify users in VR. While this provides great 
starting points by showing that diferent types of movement and 
sports can be used for identifcation, it remained unclear what part 
of each behavior is responsible for the overall identifcation perfor-
mance. In this work, we systematically investigated how diferent 
types of kinetic signatures infuence user identifcation in VR. We 
based our work on an existing taxonomy that classifes sports in 
two dimensions, namely, static and dynamic [39]. We found that ki-
netic signatures with low static components are benefcial for user 
identifcation, followed by highly dynamic components, indicating 
that certain movement types elicit more individual behavior than 
others. Thus, this work contributes to a better understanding of 
what characterizes behavior to be particularly suited for user identi-
fcation. Therefore, our fndings help remove the burden of today’s 
prevalent authentication methods for users in next-generation iden-
tifcation systems using implicit interactions and kinetic signatures. 
Moreover, our fndings serve as a solid foundation for continued 
future systematic explorations of behavioral biometric systems. 
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Figure 10: Confusion Matrices per activity. As models, we selected Inception for Exercise (EX), as shown in (a) to (d). For Sport (SP) 
we selected FCN and its confusion matrices are shown in (e) to (h). Table 1 lists all accuracies. 
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