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ABSTRACT 
This paper investigates the use of through-skull sound conduction 
to authenticate smartglass users. We mount a surface transducer 
on the right mastoid process to play cue signals and capture skull-
transformed audio responses through contact microphones on var-
ious skull locations. We use the resultant bio-acoustic information 
as classification features. In an initial single-session study (N=25), 
we achieved mean Equal Error Rates (EERs) of 5.68% and 7.95% with 
microphones on the brow and left mastoid process. Combining the 
two signals substantially improves performance (to 2.35% EER). 
A subsequent multi-session study (N=30) demonstrates EERs are 
maintained over three recalls and, additionally, shows robustness to 
donning variations and background noise (achieving 2.72% EER). In 
a follow-up usability study over one week, participants report high 
levels of usability (as expressed by SUS scores) and that only modest 
workload is required to authenticate. Finally, a security analysis 
demonstrates the system’s robustness to spoofing and imitation 
attacks. 

CCS CONCEPTS 
• Security and privacy → Usability in security and privacy; 
Biometrics. 
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1 INTRODUCTION 
While the most widely deployed consumer offerings for smart-
glasses serve as interfaces to voice assistants [2], applications and 
devices that target other market segments [49] such as online collab-
oration [61], retail and shopping [51] and media consumption [6, 33] 
are rapidly developing. Similarly, enterprise use cases for smart-
glasses in domains such as health care [57, 58] and military oper-
ations [10, 46] are attracting considerable attention. These appli-
cations inherently rely on storing and accessing private data such 
as contacts, messages, financial credentials, photographs, videos, 
and patient records. Consequently, it is imperative to secure ac-
cess to smartglasses. However, adapting existing authentication 
techniques to smartglasses is challenging due to their unique form 
factor. For example, passwords require precise, discreet entry of 
complex codes, something that is hard to achieve on smartglasses’ 
small and prominently located input surfaces. Google Glass is a 
case in point: it incorporated a passcode based on entering a se-
quence of four taps and/or swipes on its small (74mm by 10mm) 
temple-mounted touchpad [67]. Users report that this type of code 
would be hard to enter, and express concerns about their codes 
being susceptible to observation attacks [60]. 

Biometrics, such as fingerprint and face or iris recognition, are a 
potential solution—users do not have to manually recall or enter 
passcodes, and they are robust to observation attacks. However, 
it is challenging to integrate traditional biometric channels into 
smartglasses as they typically require dedicated physical space for 
sensors. Additionally, they impose tight constraints on the situa-
tions in which signals can be captured—fingers, faces, or eyes must 
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be appropriately placed on or in front of sensors. In smartglasses, 
users may experience challenges in achieving such tasks. For ex-
ample, users may find it difficult to accurately place their finger on 
an out-of-sight fingerprint reader mounted on the arms of a pair of 
glasses. These problems mean it is difficult to design and deploy ef-
fective authentication sensors in smartglasses. For example, the iris 
scanners proposed for the Apple Vision Pro [6] suit a fully enclosed 
head mounted display rather than a more lightweight form-factor, 
such as that typically used for voice-assistant frames [2]. 

The use of acoustic signals for authentication offers an appeal-
ing solution to this problem by combining the merits of a bio-
metric approach without the requirement to integrate dedicated 
hardware—current smartglasses (and other wearables such as ear-
buds) are already typically equipped with advanced speakers (based 
on open-ear [2] and bone-conduction [19, 64] technologies) and 
sophisticated microphone arrays [2, 19, 64] sampling both in-air 
and in-body signals [59, 63]. To leverage such functionality, this 
paper builds on prior work highlighting the potential for develop-
ing implicit authentication systems for smartglasses based on the 
acoustic signals that pass through a user’s skull [55]. Our goals are 
to extend prior work in four key ways: by capturing audio responses 
from various signals on contact microphones mounted directly on 
a user’s skull (rather than from air-gapped in-air microphones); 
by exploring signals (alone and in combination) simultaneously 
recorded from microphones mounted on multiple (between two and 
four) skull sites; by conducting multi-session studies that measure 
usability data and explore the stability of the acoustic signals over 
time and; by performing a thorough security analysis characteriz-
ing the susceptibility of the system to physical imitation attacks 
(e.g., among anthropometrically similar participants), and signal 
replay attacks. 

We realize these objectives by conducting a series of studies 
using smartglass prototypes of increasing maturity and robustness. 
These studies address four key research questions: 

• Can audio signals transmitted directly through the skull 
serve as a reliable biometric measurement? 

• What are the optimal signals to transmit and skull locations 
from which to sample biometric audio signals? 

• Can authentication be comfortably achieved and reliable 
performance maintained over prolonged periods? 

• Is the authentication system robust in response to typical 
attack vectors? 

Major results include a robust demonstration of the viability of 
bio-acoustic signals transmitted through the skull to serve as a 
biometric (achieving best-in-class Equal Error Rates (EERs) of as 
low as 2.35%), and a recommendation to simultaneously sample 
audio responses from microphones on both the brow and mastoid 
process, prominent and readily accessible bony regions of the skull 
that promise high energy transfer intensity and consistent contact 
quality, in order to achieve this. In addition, longitudinal studies 
of multiple authentication sessions distributed both over a single 
day and spread more widely over a week, show modest drops in 
authentication performance: EERs increase to just 2.72% and 2.94%, 
respectively. Noise-condition experiments demonstrate the perfor-
mance can be maintained in the presence of background audio 
noise and vibration interference. In comparison, a state-of-the-art 

system that uses an in-air microphone to capture air-transmitted 
signals [55] is heavily affected by audio noise, recording an elevated 
EER of 65.61% in the same experiments. Further, our cue signal type 
analysis reveals that consistent authentication performance can 
be achieved with a “speech cue” (a synthetic voice), and its perfor-
mance is least affected by the training set size. We also demonstrate 
the feasibility of our system for integration into real world devices: 
on a low-resource Raspberry Pi, under-powered compared to cur-
rent smartglass platforms, our optimized implementation takes just 
30 seconds to train a full support vector machine (SVM) classifier. 
Finally, signal replay attacks showed 4 (out of 17) users could be 
spoofed. However, by adding specific attack training samples, we 
were able to build robust classifiers for all participants. In addition, 
imitation attacks performed using signals from physically similar 
individuals affected just one participant. Taken together, these re-
sults are the major contributions of this paper: detailed guidance 
for constructing practical bio-acoustic authentication systems for 
smartglasses, and a thorough report on their performance. 

2 RELATED WORK 

2.1 Biometric Authentication on SmartGlasses 
Biometric authentication, such as fingerprint and facial recognition, 
is widely used on mobile devices [43]. While these techniques are 
well-established, there are inherent challenges integrating these 
methods into smartglasses. Fingerprint readers, for example, would 
be placed out of direct sight of the user, which may reduce reli-
ability. A recent study of authentication methods [13] reported 
approximately half of the participants expressed concerns about 
using fingerprint readers placed out of sight on the back of a phone. 
Facial recognition approaches would likely face further challenges— 
cameras located on smartglasses would likely need extreme fields 
of view to capture the whole face. Alternative approaches based on 
capturing partial face images may be more promising. For example, 
Lim et al. [41] show that nose and cheek contour images, captured 
by a downward facing camera mounted on the nose bridge of a 
pair of glasses, can achieve 2% false rejection rate (FRR) and 4.97% 
false acceptance rate (FAR) in a three day study (N=20). However, 
camera based systems are inherently susceptible to variations in 
user appearance (e.g., wearing cosmetics, jewelry or a mask) and 
ambient light conditions (e.g., day vs night), which might affect 
performance. Finally, we note that while other biometric authen-
tication techniques, such as iris scanning, may be a more natural 
fit to the glasses form factor, deploying rear-facing infrared cam-
eras to capture the eyes may be expensive and require significant 
engineering efforts (e.g., Apple Vision Pro [6]). Literature suggests 
performance of this technology may also be less than ideal: Boutros 
et al. [9] explore the feasibility of verifying iris information through 
the use of two synchronized eye-facing infrared cameras, and re-
port 6.35% EER. In addition, iris scanning biometrics are reported 
to suffer from usability problems [13]. 

Reflecting these hardware challenges, there has been consider-
able research interest in developing behavior-based biometrics for 
head mounted wearables. One approach has been to require users 
make simple head gestures in response to, for example, a specific 
request (to shake “no” or nod “yes” to answer questions) [68] or 
the timing and rhythm in a musical sample [40]. These approaches 
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show promise: both report EERs (or half total error rates) of ap-
proximately 4.5%. However both also incur usability costs. The 
workload involved in answering questions posed on a near-eye 
display is unknown and the accuracy of classifying head gestures 
remains imperfect (an additional 4% error rate in [68]), while the 
time required for rhythmic motions to yield sufficient information 
to authenticate users is prolonged at approximately 10 seconds. 
Such effort may be too high for populations used to rapid authenti-
cation systems—entering a PIN or pattern, for example, takes less 
than two seconds [47]. An alternative approach combines touch 
behavioral biometrics with voice biometrics to improve smartglass 
authentication performance [50]: this approach achieves a promis-
ing result (2.86% FRR and 1.27% FAR) in five different usage sce-
narios involving Google Glass. Despite this strong performance, 
we note voice biometrics are known to be sensitive to background 
audio noise [39], and prior work has suggested numerous usability 
issues with the small touchpad available on Google Glass [60]. Such 
practical factors may ultimately impact performance but have not 
been studied in depth. 

2.2 Bio-Acoustic Authentication 
Bio-acoustics based authentication has been studied extensively in 
the context of head-mounted wearables. A major focus has been on 
authentication with user generated sounds, specifically, speech. Liu 
et al. [42], for example, study the feasibility of recording speech-
induced sounds through piezo-microphones in contact with a user’s 
head, neck, or chest, and learning acoustic response patterns to 
authenticate users. They achieve 96.1% balanced accuracy, or 3.9% 
half total error rate (HTER), in a two session lab study conducted 
over two weeks (N=29). Feng et al. [15] suggest a continuous au-
thentication system for voice assistants using a bone conduction 
microphone mounted on smartglasses, wireless earphones, or neck-
laces to continuously authenticate speakers. They achieve 3% FRR 
and 0.1% FAR. Gao et al. [17] explore the feasibility of using speech-
induced in-ear acoustic responses to authenticate users on ear-
phones, achieving 3.64% EER in a single-day lab study (N=23). This 
body of work highlights the uniqueness of self-produced sounds 
captured via bio-acoustic channels. However, despite their promis-
ing performance, these systems require a users’ explicit vocalization, 
which may make users reluctant to authenticate in public spaces. 

A smaller body of work has examined the potential for device-
produced bio-acoustic sound to serve as a biometric. This scenario 
has the advantage that users are not required to take any action in 
order to authenticate: the system can trigger a sound and record a 
response independently. An early example of this approach is Skull-
Conduct [55]. In this system, implemented on a stock Google Glass 
device, white noise is played through a bone conductance speaker 
behind the ear and transformed sounds are recorded on an in-air 
microphone in front of the brow. This system achieved 6.9% EER 
through a single session study (N=10). However, we note that as the 
microphone is air-gapped from the skull, the audio transmission 
paths in the system are unclear. More recent work tackles this limi-
tation. For example, Isobe and Murao [32] augment the nose pads of 
a pair of glasses with piezoelectric disks. They use one as a speaker 
and the other as a microphone and study the feasibility of using 
through-nose acoustic response to a chirp signal for smartglass 

authentication. They achieve 9% EER in a single-day study (N=11). 
More promising performance is reported using earphones. Gao et 
al. [18] examine the use of in-ear sound reflections to authenticate 
users on wireless earphones, achieving 94.52% balanced accuracy 
(equivalent to 5.48% HTER) in a single-day lab study (N=20). Wang 
et al. [65] also use in-ear sound reflections for user authentication 
but, unlike Gao et al. [18], they use reflections caused by ear canal 
deformation while speaking. They achieve 97.38% recall and 95.02% 
precision in an immediate recall session (N=24), and 95% accuracy 
in a subsequent session performed after 4 months (the participant 
return rate is unknown). Finally, Irwansyah et al. [31] examine 
through-skull sound for user authentication by transmitting an 
impulse from a bone conduction transducer located behind the ear, 
and capturing responses on an in-ear microphone: they report 2.6% 
EER (N=10). 

This paper extends this prior work. Specifically, we recognize 
the benefits of bio-acoustic solutions that rely on system-produced 
sound for authentication (and hence do not require explicit user 
action) and conduct an extensive evaluation of their potential for a 
smartglass form factor device. Specifically, we extend prior work 
on smartglasses by 1) using a bone conduction speaker and micro-
phones to explore signals transmitted directly through the skull 
(rather than over an air gap [55]), 2) examining the potential of 
multiple skull sites for capturing bio-acoustic responses, 3) exper-
imenting with different cue types, and 4) studying the effects of 
microphone contact variability and background noise on authen-
tication performance. These practical concerns are, by and large, 
omitted in prior work. We provide a more detailed description of 
the key differences between our work and prior research with re-
spect to the sensors used, required authentication actions, studied 
(experimental) conditions, and reported accuracy in Appendix A.1 
Table 2. 

3 DESIGN AND IMPLEMENTATION 
We describe the hardware implementation, overall data processing 
pipeline, and feature engineering details. 

3.1 Theory of Operation 
The human face is our most distinct and distinguishable feature. 
One factor that contributes to the uniqueness of each human face 
is variations in the underlying bone structures—human skulls dif-
fer substantially from one another. Some differences are readily 
observable. Large scale surveys in the US, for example, indicate 
male mean head circumference is 57.44 centimeters (SD=1.6) while 
for women it is 56.11 centimeters (SD=1.94) [22]. In addition, head 
shapes also differ considerably, both in terms of the simple ratio 
between length and breadth [37], and also through many other 
aspects of their form (e.g., in terms of the protrusion and angle 
of the brow and brow ridge) [71]. Other differences are harder to 
observe: the skull is composed of 22 separate bones [3], and size 
and thickness of each varies from individual to individual [4]. For 
example, the frontal, parietal and occipital bone of female skulls 
are reported to be, on average, between 4.2% and 12% thicker than 
those in male skulls [38]. 

These natural anatomical and physiological differences impact 
the bio-acoustic responses that can be captured from (or heard in) 
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Figure 1: Power spectrum of 7 subjects. 20 samples collected 
on the mastoid when the chirp cue (with a frequency range 
from 50 Hz to 6 KHz) was used. 

the skull. They are reported to exert wide ranging effects from 
influencing medical imaging procedures [35] to affecting musical 
preferences [62]. In a representative and detailed analysis of the 
spectral responses generated from skull conducted sounds captured 
from 30 individuals, Gordon et al. [23] concluded that transmitted 
energy levels differed substantially between each individual across 
a broad range of frequencies (25 Hz to 5 kHz). Figure 1 illustrates 
this point. It shows the power spectrum of twenty response sig-
nals collected from seven individuals during playback of a chirp 
sound (rising from 50 Hz to 6 kHz) on a bone conductance speaker 
placed on right mastoid process. Signals were recorded with a con-
tact microphone placed on the left mastoid process. Within subject 
power spectrum patterns were consistent while the patterns among 
the seven individuals were highly diverse. These two characteris-
tics indicate that through-skull acoustic responses can serve as an 
effective biometric for identifying smartglass users. 

3.2 Hardware Design and Implementation 
We created three different prototypes in this work in order to sup-
port different study objectives. Each shared common elements in 
terms of the hardware used, the sounds played, and the speaker 
and microphone locations targeted on the skull. We describe these 
common aspects here and the specifics of each prototype in the 
individual study sections. 

In terms of the hardware, we used the same microphones and 
speakers throughout. Specifically, we sensed responses with Knowles 
BU-21771 contact microphones, a device previously deployed in 
a range of closely related prior work studying through body au-
dio transmission [25, 53]. To boost signals to line levels, we used 
a modified version of the amplifier design proposed for this de-
vice by Zhang et al. [69]. Modifications including removal of post-
amplification filters (as these showed few improvements to signal 
quality in pilot tests) and tests with a variety of different gains 
(ultimately customized for each prototype). For actuation, we used 
a commercially available surface transducer1 also deployed in prior 
work on active in-body audio transmission [70]. We drove the 
speaker using a breakout for the TPA2012 class D audio amplifier2 

configured for 24 dB gain and powered by a 350mAh 3.7V li-ion 
battery, a typical specification for a wearable device. In terms of 
design, amplifiers were always located immediately adjacent to 
microphones or transducers in order to minimize the impact of RF 
noise. Additionally, sensors and speakers were always encased in 

1https://www.adafruit.com/product/1674
2https://www.adafruit.com/product/1552 

Figure 2: Speaker and microphone locations explored in the 
first study. 

3D printed in skin-safe Thermoplastic polyurethane (TPU), specif-
ically NinjaTek SemiFlex3 , in such a way that a thin film of TPU 
(0.35 millimeters) covered actuator/sensor surfaces. For audio cables 
running external to our prototypes we used 3.5 millimeter audio 
jack connectors and shielded cables. 

In terms of sounds, we used three cue signals in total; two were 
dropped in our final study. The sounds were (i) a chirp from 50 
Hz to 6 kHz, (ii) a mobile phone wake-up melody, and (iii) speech, 
in the form of a short spoken phrase. The melody is the start-up 
sound for a polyphonic Samsung feature phone. The speech was a 
computer-generated voice (Google’s WaveNet voice G) uttering the 
words “Welcome. Authenticating User.” Each individual cue sound 
was two seconds in duration and normalized, over its full length, 
to an amplitude of -15 dBFS. 

Finally, we considered a single speaker location and four differ-
ent microphone locations in this work. We retained only two of 
these microphone locations in our second and third studies. The 
speaker location was always the right mastoid process—the bony 
protrusion immediately behind the ear. We selected this location 
as it is a common location for the bone conduction speaker in 
numerous prior skull response studies [12, 14, 23, 44] and also in 
commercial smartglasses (e.g., Google Glass). Its proximity to the 
ear, and relative lack of interference/obstructions (e.g., hair) make 
it a suitable location for delivering audible in-skull sound. The 
four microphones location were: the left mastoid process; the left 
temporal squamous (the area immediately above and in front of 
the ear), the left temple and the brow (either offset to the left, or 
centrally located). We selected these sites as they are reasonably 
aligned with the physical structures of many commercial brands 
of smartglasses such as Google Glass, Bose Frames, Vuzix Blade, 
Microsoft HoloLens, Lenovo ThinkReality, and Apple Vision Pro. 
These speaker and microphone locations are illustrated in Figure 2. 

3.3 System Overview 
Enrollment. This initial activity involves collecting users’ own 
reference response signals, pre-processing collected signals, extract-
ing features, and training user-specific authentication classifiers. 
During enrollment, users are required to put on their smartglasses 
several times, and remain still while a cue signal (e.g., a system 
wake up tone) is played through a surface transducer mounted on 
the right mastoid (located just behind the ear). Microphones resting 
on the skull are used to measure bone conduction responses. These 
response signals are processed into the signal processing features 

3https://ninjatek.com/ 

https://3https://ninjatek.com
https://2https://www.adafruit.com/product/1552
https://1https://www.adafruit.com/product/1674
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described in Section 3.4. Multiple samples are collected each time 
the glasses are worn (hereafter referred to as a donning). When data 
collection is complete, a user-specific binary classifier is trained 
using the features extracted from those reference signals and a 
pre-deployed imposter/other-user train set. 
Authentication. After users don their glasses, a cue signal is au-
tomatically played through the transducer. Response signals are 
collected through the microphones, and processed into features. 
These features are submitted to the trained classifiers to generate 
authentication (probability) scores, which in turn, are compared 
against a pre-defined threshold value: users are successfully au-
thenticated if a score is higher than the threshold. 

3.4 Pre-processing and Feature Extraction 
We initially process data from each microphone separately. We 
first apply a bandpass filter between 300 Hz and 19 kHz to reflect 
the frequency response range of our surface transducer [1]. We 
used power spectral density (PSD) and Mel-frequency cepstral co-
efficients (MFCCs), both of which are popular features in speech 
recognition and sound processing, as our feature set. Based on 
the data collected through the first study, we experimented with a 
wide range of signal processing features, including PSD, MFCCs, 
short time Fourier transform (STFT), and correlation between two 
pairwise signals (e.g., coherence). The “MFCC and PSD concatena-
tion” feature set showed peak performance. Our PSD computation 
method involves calculating the periodogram of the entire signal us-
ing FFT, and smoothing that periodogram with 50 Hz windows [11]. 
We then sample PSD at every 100 Hz in the range from 300 Hz to 6 
kHz, resulting in a log-PSD feature vector containing 58 features. 
We selected PSD features up to 6 kHz based on examining energy 
transfer measurements which suggested that minimal energy was 
transferred through the skull above 6 kHz. This observation is in-
line with the prior findings [26]. As for MFCCs, we computed 13 
cepstral coefficients using a Hamming sliding window (window 
length of 25ms and overlap of 10ms). To compress the time-series 
data, we computed statistical features (mean, standard deviation, 
skewness, and kurtosis) to create an MFCC set consisting of 52 
features. We then concatenate PSD and MFCC features into a final 
one-dimensional vector of 110 features. 

3.5 Classification Algorithms 
We built our authentication classifiers using a binary support vec-
tor machine (SVM) with radial basis function kernel. Based on 
the first study data, we evaluated the performance of several algo-
rithms, including SVM, random forest, and XGBoost. SVM showed 
the best performance. While examining the effects of combining 
microphone locations, we observed that a feature concatenation 
technique achieves optimal performance on the first two prototypes 
but a weight-adjusted ensemble model shows superiority in the 
third prototype. We attribute this to different prototypes result-
ing in various microphone contact quality profiles. We report the 
optimal performance accordingly in each study. 

3.6 Threat Model 
We consider two possible threats: signal replay attacks, and imi-
tation attacks. Signal replay attacks would involve several steps. 

First, the attacker needs to compromise a victim’s response signal 
(authentication secret), either using a piece of malware installed on 
the victim’s glasses or using a separate recording device. Second, 
the attacker needs to inject this signal on their own head (e.g., by 
mounting a separate surface transducer) at the exact moment they 
seek to bypass authentication on the stolen glasses. We imagine this 
kind of replay attack is inherently challenging to perform: injected 
signals would be deformed through a new signal passage (different 
skull and skin arrangements), and likely result in a signal pattern 
unrecognizable by the authentication system. We conduct a sepa-
rate attack study to demonstrate the robustness against such signal 
replay attacks (see Section 7.1). A more feasible attack involves 
recruiting imitators, or individuals who are anthropometrically 
similar to the victim (e.g., with respect to head sizes, weight, and 
height), and simply asking them to don the stolen glasses and go 
through the authentication steps. If the signal transformations of 
the imitators closely match the victim’s signal transformations, the 
authentication system may be spoofed. In Section 7.2, we study the 
performance of such imitation attacks. 

4 STUDY 1: EXPLORING MICROPHONE 
LOCATIONS 

To answer the first two research questions (see Section 1), we con-
ducted a single-session lab study designed to experiment with vari-
ous cue signal compositions, and collect bone conduction signals 
from four different microphone locations. This section reports the 
study methods, comparative accuracy results, and our final recom-
mendations for selecting multiple microphone locations. 

4.1 Headband Prototype 
Figure 3 shows the headband prototype used in this study. It was 
equipped with a single bone conduction speaker (surface trans-
ducer) and four bone conduction contact microphones. To mount 
these devices we designed simple plastic clips that slid onto a GoPro 
headband [21]. This allowed us to locate the units firmly on the 
head (by selecting an appropriate band tightness) and to adjust 
the position of each device by simply sliding it along the band. 
The bone conduction speaker was mounted on the right mastoid 
process and, as shown in Figure 2, the microphones were located 
on the left side of the head at all four locations: the brow, temple, 
squamous, and mastoid. The brow microphone was located directly 
above left eye. In order to simultaneously record signals from all 
four microphones, we used a commercial audio interface: the Focus-
rite Scarlett 18i8 [16]. We configured this device to simultaneously 
record four continuous 44.1 kHz mono audio samples using Pro 
Tools [7], a commercial audio recording software package with all 
post-processing disabled. We powered the input amplifiers using 
an externally located 9V battery. We drove the speaker from a ded-
icated audio playback device (a Teensy 4.14 with its audio board 
expansion module5) configured to play back the full set of audio 
samples needed in each study session at the press of a physical 
button. This ensured that audio playback levels were consistent 
throughout the study. 

4https://www.pjrc.com/store/teensy41.html
5https://www.pjrc.com/store/teensy3_audio.html 

https://5https://www.pjrc.com/store/teensy3_audio.html
https://4https://www.pjrc.com/store/teensy41.html
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Figure 3: Headband prototype on a participant’s head (left), 
and connections to audio interface (right). Right shows four 
microphones (center of image) connected via an external 
power supply (9V battery) to a Focusrite Scarlett 18i8 audio 
interface (in red). This device connects via USB to a PC to 
deliver multi-channel audio signals. 

4.2 Procedure and Measures 
Each study participant wore the headband prototype five times. To 
ensure similarity between each donning, study moderators main-
tained the band tightness (i.e., length) across donnings and sought 
to minimize variations in the speaker and microphone locations. 
To record the consistency of these efforts, moderators took pictures 
of participants in every donning session while obscuring their face 
with a paper screen (see Figure 3). During each donning the three 
two-second cue signals (chirp, melody, and speech) were played on 
the bone conduction speaker mounted on the right mastoid 20 times 
and the resultant acoustic responses were captured from the four 
microphone locations. We left a 0.25 second gap between each cue 
and prefixed playback of each set of three cues with a 0.5-second 
14 kHz sinusoidal tone. This was included to facilitate accurate 
segmentation of the recorded sounds during analysis. As such, we 
logged 1,200 samples (5 donnings×3 cues×4 locations×20 samples) 
from each participant. After the data collection phase was complete, 
participants were asked to complete a short demographics ques-
tionnaire. The study took approximately one and a half hours to 
complete, and the participants were compensated with the equiva-
lent of 13 USD in local currency. The study protocols presented in 
this section and in all subsequent sections were approved by the 
university’s IRB. 

4.3 Demographics 
We recruited a total of 25 participants: 21 were male, and four were 
female (see Table 3 in Appendix A.2). The average age was 25.3 
years (SD=3.0). The difference between the smallest and largest head 
circumferences was 5.6 centimeters. All four female participants 
had shoulder length hair while 86% of male participants had short to 
medium length hair, and 14% had very short hair. We asked female 
participants to tie their hair back. 

4.4 Authentication Evaluation Setup 
As a preliminary feasibility check, we first evaluated the perfor-
mance of multi-class SVM classifiers (treating it as an user identi-
fication problem) using the MFCC/PSD concatenation feature set. 
User identification accuracy was between 93–98% when informa-
tion gathered through multiple microphones was used together; 
full details are explained in Appendix A.3.1. 

Next, we evaluated how the user authentication (binary classifi-
cation) performance differs between the four microphone locations 
and three cue signals. We divided the 25 participants into two 

Table 1: Authentication accuracy for each cue type by all 
possible combinations of one to four microphone locations 
expressed as mean EER and SD (in brackets) measured over 
100 random permutations. 

Location 
EER (%) 

Chirp Melody Speech 
Brow 7.03 (3.42) 5.68 (2.69) 6.87 (3.54) 
Mastoid 7.57 (4.18) 7.95 (3.29) 8.19 (3.66) 
Squamous 9.24 (3.83) 9.93 (4.37) 8.88 (3.50) 
Temple 10.50 (9.32) 9.69 (3.69) 8.94 (4.06) 
Brow/Mastoid 2.84 (1.97) 2.35 (1.45) 2.58 (1.75) 
Brow/Squamous 1.92 (1.53) 2.43 (1.37) 1.66 (1.06) 
Brow/Temple 4.53 (3.04) 2.27 (1.42) 4.39 (3.19) 
Mastoid/Squamous 4.01 (2.38) 4.90 (2.78) 3.81 (2.31) 
Mastoid/Temple 4.14 (3.08) 4.36 (2.67) 2.56 (1.91) 
Squamous/Temple 3.52 (2.68) 6.63 (3.65) 4.50 (3.80) 
Brow/Mastoid/Squamous 0.95 (0.93) 1.59 (1.17) 0.90 (1.01) 
Brow/Mastoid/Temple 1.14 (0.85) 1.37 (1.06) 0.95 (0.98) 
Brow/Squamous/Temple 2.08 (2.12) 2.15 (1.28) 2.33 (2.46) 
Mastoid/Squamous/Temple 1.85 (1.68) 4.21 (3.35) 1.37 (1.18) 
Brow/Mastoid/Squamous/Temple 0.83 (0.77) 1.44 (0.96) 0.64 (0.73) 

groups: 15 participants were used for imposter training and the re-
maining 10 participants were set as genuine users. For each genuine 
user, the imposter set was used to train a binary classifier and the 
other 9 genuine users served for unknown user (imposter) testing. 
We repeated the performance evaluation of trained classifiers over 
100 random permutations of 10 genuine users and 15 imposters. 
We report all results as the mean and standard deviation over 100 
permutations. 

For each genuine user, microphone location and cue type, we 
selected all samples from the first four donnings to create an 80 
sample genuine training set. Twenty samples from the last donning 
session were used for genuine user testing (to measure FRRs). To 
create a balanced train set, we randomly selected 5 samples from 
each of the 15 imposters to form a 75 sample imposter train set. For 
unknown user testing (measuring FARs), we used all samples from 
the remaining 9 users in the genuine user set, creating an imposter 
test set consisting of 900 samples. In addition, when combining 
the features from multiple microphones, we used a simple feature 
concatenation approach. Finally, we used equal error rate (EER) as 
an evaluation metric to measure a single (overall) error rate across 
all genuine users. It is defined as the error rate at which FAR and 
FRR are equal. 

4.5 Authentication Accuracy 
Table 1 shows the mean EER for each of the four microphones and 
three cue types computed over 100 permutations. Pairwise com-
parison results that show statistically significant differences (with 
respect to pairwise t-tests) are summarized in Table 4 (see Appen-
dix A.3.2). These results suggest that the brow and mastoid locations 
outperform the squamous and temple locations with meaningful 
differences (Bonferroni corrected t-tests 𝑝 < 0.05). 

To investigate the effects of combining multiple microphone 
locations on authentication accuracy, we experimented with all 
possible combinations. Table 1 presents the mean EER for two, 
three, and four microphone combinations, computed over 100 per-
mutations: in general, using more than one microphone has a posi-
tive impact on accuracy, implying that each location offers unique 
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Figure 4: ROC curves over 100 permutations with the average performance (red line) for the selected locations when the speech 
cue was used. 

bio-acoustic information about a user. The brow and mastoid com-
bination achieved significantly lower error rates (2.35–2.84% EERs) 
compared to when the brow was used alone. These results are 
shown in Figure 4. The brow, mastoid, and squamous combination 
showed further reduction in the error rates (0.90–1.59% EERs). We 
achieved the optimal performance by combining all four locations 
(0.64% EER) while using the speech cue. 

Next, we evaluated how the performance differs between the 
three cue signals. Table 5 (see Appendix A.3.3) summarizes com-
parisons that were statistically significant. Noticeably, on the brow 
alone, the melody cue demonstrated superiority over the chirp and 
speech cues. The speech cue demonstrated superiority over the 
other cues in the majority of cases using multiple microphones. 

4.6 Microphone Location Analysis 
The study results indicate that authentication accuracy varies sub-
stantially by microphone location. This section explores the factors 
that contribute to such variations. First, we examined energy trans-
fer intensity from each microphone. A transfer function measures 
how the cue signal 𝑠 transforms into the response signal 𝑥 . At each 
frequency 𝑓 , it is computed as 𝐻 (𝑓 ) = 𝑃𝑥𝑠 (𝑓 )/𝑃𝑠𝑠 (𝑓 ), where 𝑃𝑥 𝑠 
is the cross-PSD between 𝑥 and 𝑠 , and 𝑃𝑠𝑠 is the PSD computed 
on 𝑠 . Figure 5 compares the mean energy transfer intensity from 
each of the four different microphones. The brow, an unobstructed 
bony prominence, showed the highest energy transfer intensity: 
the largest area under the curve. The squamous, which can feature 
obstructions such as hair, showed the lowest intensity [48]. Exam-
ining the relationship between energy transfer intensity and EER 
via Pearson correlation showed a clear negative trend (Pearson’s 
𝑟 = −0.61, 𝑝 = 0.034): improved EERs are associated with higher 
intensity signals. 

Second, we examined the consistency of PSD data over each 
participant’s donning sessions using Wilks’ Lambda. Specifically, 
we computed Λ = |𝑊 |/|𝑇 |, where |𝑊 | and |𝑇 | are, respectively, 
the within-subject and the total variances. Small Wilks’ Lambda 
implies small within-subject variation (i.e., high consistency in 
signals within subject). The brow and mastoid locations show high 
consistency, with a notable drop in performance on the temple and, 
in particular, on the squamous (see Appendix A.3.4 Figure 14). We 
suggest that consistency may be difficult to achieve on these latter 
two locations due to the complexity of the shape of the skull and 
interference due to factors such as hair. 

Third, we inspected how using microphone combinations im-
proves performance. Sixteen participants showed good FRRs on 
all four microphones consistently over 100 permutations while the 

remaining nine participants showed poor authentication perfor-
mance on at least one microphone. Figure 6 shows the per-user FRR 
(averaged over 100 permutations) at each of the four locations for 
these nine participants: note, all achieved a low FRR (below 2%) on 
at least one location, implying that with an adequate strategy for 
combining microphones, all users would experience consistently 
low FRRs. Importantly, in the two participants who failed sessions 
for the brow, the mastoid microphone contributed reliable data: in 
consequence, the brow and mastoid concatenation results showed 
stable FRRs. Similarly, in all cases in which the mastoid signals failed, 
the brow microphone showed good performance, also leading to 
stable, low FRRs on concatenated features. A candidate explanation 
for these trends is that, in some participants, misplacement of one 
microphone led to a reduction in the reliability of the responses 
it captured. However, such misplacements did not propagate to 
the other microphone, meaning that the poor quality signal from 
one did impact the reliable signals captured from the other. Thus, 
the two microphones complemented each other in all failed cases 
to stabilize error rates. Taken together, these observations empha-
size the importance of designing a system that supports multiple 
microphones: even if one microphone is poorly positioned, the 
other microphone may be in good contact, and provide sufficient 
information for the authentication to succeed. 

Based on these analyses, we recommend using microphones 
on the brow and mastoid process for bio-acoustic authentication. 
These two locations are relatively unobstructed, lead to high signal 
amplitudes, show consistent performance over time and are rela-
tively independent of one another—variability or poor signal quality 
occurring on one of these locations can often be compensated for 
by stable and high quality signals captured on the other. 

5 STUDY 2: MULTI-RECALL SESSION 
PERFORMANCE 

To answer our third research question, we constructed a more 
stable frame-based prototype (based on the Study 1 findings), and 
conducted a multi-session recall study with 30 new participants. 
This study was designed to investigate extended recall performance 
over a single day, and the interfering effects of background noise on 
recall performance. We also collected response signals through an 
in-air microphone, and used this data to compare the performance 
against the SkullConduct system [55]. 

5.1 Glass Frame Prototype 
The new prototype developed for this study took the form of a pair 
of glasses that, following recommendations from the first study, 
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located microphones on the brow and left mastoid and maintained 
the speaker on the right mastoid. The prototype was built on a 
commercially available open-source glasses frame (part of the open-
source Pupil core eye tracking system [34]). This frame is robust, 
flexible and designed to mount stably and firmly on the heads of a 
very wide range of users. To adapt this frame for our purposes we 
designed and fabricated mounts for the speaker and microphones. 
Mastoid mounts clipped to the arms of the frame and featured 
an angled strut that extended downwards and inwards from the 
tip of the arms. The mastoid speaker and microphone modules, 
which were functionally identical to those used in the first study, 
were located on these struts. We fixed a location for these units 
through pilot studies with a range of representative local partici-
pants: although head size naturally varies, we selected a location 
which achieves good contact with the mastoid for a broad range of 
typical participants. The brow microphone simply clipped to the 
center of the front arc of the frame: directly in the center of the 
brow. Locating the microphone centrally ensured better contact 
with the brow for all participants, as the left brow regions (used 
in the first study) exhibited a range of curvatures that rendered 
reliable placement impossible. The brow microphone made contact 
with the brow simply by ensuring the frame was tightly pulled back 
on the head. This prototype is shown in Figure 7, including close 
up depictions of the microphone and speaker placements on the 
head of a typical participant. In addition to these components, we 
added an in-air microphone to the system. Specifically, we placed a 
RODE Lavalier GO microphone [36] in a clip on the right hinge of 
the glass frame, pointed down towards the wearer’s mouth. This 
is a typical location for an in-air microphone in a pair of smart-
glasses, as it affords capture of the wearer’s speech. We included 
this microphone to support comparison of the performance of bone-
conductance microphones with the in-air microphone studied in 
SkullConduct [55]. 

Figure 7: Smartglasses prototype. Left shows the unworn as-
sembled prototype, while center-left, center-right and right 
show fit, respectively, for the mastoid speaker, mastoid mi-
crophone, and brow microphone. In each of these panels the 
location of the speaker or microphone is highlighted with a 
red ellipse. 

To operate this prototype, we selected the Teensy audio system, 
used for playback in the first study, to also record all sounds. This 
simplified executing the study, as moderators had fewer devices 
to manage. Given the prolonged structure planned for this study, 
we expected this simpler platform to reduce protocol errors and 
increase reliability. In addition, the Teensy platform can supply 
power to input amplifiers, simplifying the physical set up. It is 
also able to accurately synchronize simultaneous recording and 
playback of 44.1 kHz 16 bit audio, removing the need for a cue 
segmentation step during analysis. To enable recordings from the 
three microphones simultaneously, we configured the Teensy with 
two audio expansion boards. To ensure reliable signal recording, all 
samples used in the study were played and recorded individually, 
with all data read from and stored in RAM. This made sure that 
latencies (e.g., due to read/write delays) were minimal. After each 
sample had been played, and the responses recorded, the data was 
immediately transmitted to a host PC for analysis. The three two-
second audio samples used as cues during this study (chirp, melody 
and speech, as in the first study) were stored on an SD card and 
loaded into RAM as needed to support the study protocol. 

5.2 User Study Methodology 
In this study, we recruited participants to be either genuine users or 
imposters. Genuine user participants completed four separate study 
sessions: an initial enrollment session followed by three separate 
recall sessions, each a minimum of 30 minutes apart. These recall 
sessions emulate users who might don and re-don their glasses fairly 
frequently—to clean them, to rub their eyes, or to complete various 
personal hygiene routines. The study took place in a normal office 
environment with 30–40 dB noise. The enrollment sessions involved 
participants putting on and taking off the glasses frames six times. In 
each donning, we played 20 examples of the three cue sounds (chirp, 
melody, and speech) used in the first study. In each of the three 
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recall sessions, participants experienced 20 of each of the three cue 
sounds in normal conditions (akin to those during enrollment) and 
a subsequent 20 of each cue while a distractor sound clip was played 
in the air as a background noise. We used a different distractor in 
each recall session: music, speech and finally ambient noise. Each 
distractor was adjusted to be between 50 and 60 dB in volume. In 
total, we collected data from 3 microphones by 20 examples by 3 
audio cues by 12 sessions (6 during enrollment and 3 by 2 during 
recall) for a total of 2,160 audio clips per genuine user participant. 
Imposter participants engaged in a reduced data collection process. 
They visited only once and completed two donning sessions. This 
resulted in 3 microphones by 20 examples by 3 audio cues by 2 
sessions or 360 samples per imposter. In all sessions we asked 
participants to put on and take off the glasses by themselves to 
capture natural donning behaviors and variations. Genuine users 
were compensated with the equivalent of 26 USD in local currency 
and imposters with 13 USD. 

5.3 Demographics 
We recruited 30 participants in total (see Appendix A.2 Table 3). 23 
were male and seven were female. Half were considered genuine 
users and half imposters. The genuine user evaluation set consisted 
of 11 male and four female participants—their average age was 
23.3 years (SD=2.3). We did not observe any statistically significant 
difference between the genuine users and imposters with respect 
to their physiological characteristics such as age, height, weight, 
and head circumference (two-sample t-tests 𝑝 = 0.571, 0.873, 0.696, 
and 0.569, respectively). 

5.4 Evaluation Setup 
We trained per-user binary classifiers based on the concatenated 
MFCC/PSD feature set by selecting genuine samples from the five 
enrollment donnings. The samples from the remaining sessions 
were used to measure FRRs. A fixed imposter train set was selected 
from the 15 imposters: we selected three samples from each of the 
two sessions to generate a set of 90 samples. FRRs were measured 
based on the immediate recall (sixth donning session), followed by 
three prolonged recalls performed under normal conditions, and 
three additional recalls performed in the presence of audio noise. 
To create an imposter test set for a given genuine user, we selected 
all samples from the other 14 users in the genuine user set, creating 
a test set consisting of 3,360 samples per cue signal. 

5.5 Authentication Accuracy 
Figure 8 shows the ROC curves by microphone locations and cue 
sounds for all genuine users. The brow and mastoid combination 
reported EERs of between 2.72–4.22% across all recall sessions. It is 
worth highlighting several aspects of these results. First, compared 
to the first study, immediate recall rates are notably improved to 
between 0.03% and 2.61% from a single microphone. We attribute 
this to the increased stability of microphone placement enabled by 
our glasses format prototype. Second, recall rates from subsequent 
sessions are somewhat elevated compared to immediate recall, with 
data from a single microphone achieving between 3.44% and 9.82% 
EERs. However, we note that concatenating EERs from both mi-
crophones results in EERs of between 2.69–4.56%. This validates 

our prior claim about the importance of capturing signals through 
multiple channels to stabilize performance. 

5.6 Robustness to Audio Noise 
To investigate the effect of a noisy environment, we compared the 
performance between the regular recall sessions and those featur-
ing background noise. The error rates are presented in Figure 8. 
Background noise led to minor changes in EERs when both mi-
crophones were used: 4.56% vs. 4.42%, 2.69% vs. 3.24%, and 3.17% 
vs. 2.81% for the chirp, melody, and speech cue types, respectively. 
Bonferroni corrected pairwise t-tests did not find any statistically 
significant differences in the mean FRR and FAR values between 
the regular and noisy recall sessions (all 𝑝 values range between 
0.21 and 0.87). This result is expected: the surface transducers in 
our prototype are minimally responsive to air-transmitted sounds. 

5.7 Cue Type Usability 
During the post-study survey, we asked the participants to rank 
the three cue types in the order of preference from one to three, 
one being the “most preferred” and three being the “least preferred” 
option. Out of the 30 participants, 16 participants chose the wake-
up melody as their top preference; 13 participants chose the speech 
sample, and just one participant preferred the chirp sample. The av-
erage preference ranks for the chirp, wake-up melody, and speech 
sample were 2.63, 1.70, 1.67, respectively. The chirp, a highly artifi-
cial sound, was clearly disliked. 

5.8 Performance of In-Air Microphones 
In this section, we investigate the effects of collecting response sig-
nals through a standard in-air microphone on recall performance. 
To find an optimal feature set for classifying in-air microphone sam-
ples, we first experimented with MFCC delta and MFCC delta-delta 
features used in prior work [55]. However, our MFCC/PSD concate-
nation features, alone, outperformed all other feature combinations, 
and demonstrated top performance on the last enrollment session 
samples. Hence, we performed all subsequent comparative analyses 
based on our MFCC/PSD concatenation feature set. To validate 
the correctness of our SkullConduct implementation, we applied 
the one-class based evaluation method employed in [55] on the 
15 genuine users, achieving 4.40%, 9.24%, and 4.34% EERs on the 
immediate recall data for the chirp, wake-up melody, and speech 
cues, respectively. These results are comparable to the 6.9% EER 
reported in the original article [55]. Figure 15 (see Appendix A.4) 
shows the recall performance for the in-air microphone: all three 
graphs demonstrate significant elevations in the EERs compared 
to those reported for SkullID in the normal sessions (9.54–14.20%). 
Additionally, we observed substantially higher EERs (58–66%) when 
background noise was played. Figure 9 explains this. It depicts the 
high variances that appear in PSDs computed on the air-transmitted 
signals when background noise is present. We conclude standard 
in-air microphones are impractical for reliable bio-acoustic authen-
tication: they are simply too susceptible to background audio noise. 

5.9 System Optimization 
This study used a substantial amount of data for enrollment: 100 
repetitions of each of three samples over five smartglass donnings. 
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Figure 8: ROC curves by microphone location and cue type. “Immediate recall” represents the performance at the sixth donning 
in enrollment session, “Normal recall” the performance over three normal sessions, and “Noisy recall” the performance over 
three noisy recall sessions. “Overall” represents the performance over all seven recall sessions. 

0 1 2 3 4 5 6

-6
0

-4
0

-2
0

0
20

Frequency (kHz)

P
ow

er
 s

pe
ct

ru
m

 (
dB

)

Air

0 1 2 3 4 5 6

-6
0

-4
0

-2
0

0
20

Frequency (kHz)

Brow

0 1 2 3 4 5 6

-6
0

-4
0

-2
0

0
20

Frequency (kHz)

S 1
S 2
S 3
S 4
S 5
S 6
S 7
S 8
S 9
S 10
S 11
S 12

Mastoid

Figure 9: The average power spectrum for one subject across all twelve (both enrollment and recall) donning sessions based on 
the speech cue. Sessions 7, 9, 11 represent normal recall sessions, and sessions 8, 10, 12 represent noisy recall sessions. 

Such prolonged effort represents a major burden to users. Accord-
ingly, we examined our data to make recommendations about how 
to optimize enrollment procedures. We first investigated the effects 
of reducing the number of training donning sessions and samples 
per donning session. Data showing the resultant performance vari-
ations are in Figure 10. This figure indicates that recall performance 
tends to stabilize after between three and five donnings; erring 
on the side of caution, we recommend maintaining five donning 
sessions to capture signals representing natural variations in device 
fit during enrollment. Additionally, we note melody and speech 
cues are relatively unaffected by the number of samples captured 
per donning: performance with five samples is close to that attained 
with 20. Accordingly, we recommend that capturing five samples 

per donning is appropriate during enrollment. Finally, training on 
three audio samples is unnecessary. Based on its good performance 
with low enrollment repetitions, its consistently low error rates 
throughout and its high popularity with users, we recommend use 
of our speech cue alone. 

5.10 Overheads 
To analyze the model training and authentication time overheads, 
we measured the MFCC and PSD feature extraction time and the 
SVM training and prediction time using the Python sklearn li-
braries on both a Raspberry Pi 3 Model B (1.2GHz CPU, 1GB 
RAM) [52] and a Linux desktop equipped with an Intel i7-9700 
Processor (3.00GHz CPU, 16GB RAM). We logged this data for all 
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Figure 10: EERs with respect to varying number of enroll-
ment donnings (left) and number of samples per donning 
(right). 

15 genuine users assuming 25 genuine samples and 30 imposter 
samples are used to train each classifier. On average, it took 620.40 
(SD=202.57) and 19.10 (SD=4.33) milliseconds to extract both MFCC 
and PSD feature sets from a single two-second mono audio clip, and 
32.26 (SD=5.32) and 3.15 (SD=0.36) milliseconds to train a classifier 
with the speech cue on the Raspberry Pi and the PC, respectively. 
Assuming imposter feature vectors will be pre-loaded on the target 
device, we therefore calculate the full SVM binary classifier training 
time as the time required to extract features from 50 two-second 
audio clips (25 genuine user recordings from each microphone) 
plus the SVM classifier training time. Real-time execution of this 
full model training pipeline will therefore take approximately 30 
seconds on the Raspberry Pi and 0.5 seconds on the PC. The size 
of the extracted features from a single two-second audio mono 
sample was 1.00 KB, and final model size was 12.87 KB (SD=2.75). 
The authentication time (including extracting features from two 
audio clips and classification time) was 1.2 (SD=0.2) seconds and 
38.3 (SD=4.3) milliseconds for the Raspberry Pi and PC, respectively. 
Our evaluation demonstrates that training a lightweight SVM clas-
sifier is feasible even on a low-resource device like the Raspberry 
Pi. Modern smartglasses are substantially more powerful than this 
Pi—Google Glass Enterprise Edition 2, for example, features a Qual-
comm Snapdragon XR1, 3GB RAM and 32GB storage [20], and 
Apple Vision Pro will be equipped an M2 chip (3.49GHz CPU and 
24GB RAM) [6]. Thus, we believe training and running our classi-
fiers directly on smartglasses is feasible; the performance we report 
on the Raspberry Pi is both already sufficient to achieve a good 
user experience in terms of supporting rapid authentication and, 
additionally, greatly slower than that which would be achieved on 
current smartglass platforms. 

6 STUDY 3: MULTI-DAY PERFORMANCE AND 
USABILITY 

To measure the multi-day recall performance and perceived usabil-
ity of the enrollment and authentication process, we conducted a 
one-week study based on a more robust single-unit frame. We used 
the speech cue signal and optimized enrollment settings described 
in Section 5.9 to finalize the system configuration. 

6.1 Single-Unit Frame Prototype 
To support this study, we iterated on the smartglass prototype. 
Specifically, we used the same speaker and microphone modules 
and maintained the brow and mastoid locations, but developed a 
single frame, 3D printed in Nylon 12, to house these components. In 
addition, we miniaturized the audio PCBs and integrated a battery 
and charger for the speaker and integrated these into the frame. 

Figure 11: Final prototype showing mastoid and brow speaker 
and microphone positions (left and right). Center image 
shows frame—the battery and charger for the speaker inte-
grated into the right arm and the microprocessor and audio 
boards integrated into the left. 

The resulting prototype is substantially more robust than prior iter-
ations and can be connected to a PC by a single USB cable, greatly 
simplifying study execution. These changes make the prototype 
suitable for a longer, multi-day study. This final prototype can be 
seen in Figure 11. 

6.2 User Study Methodology 
We again recruited both genuine user and imposter participants. 
Genuine users first followed the enrollment procedures recom-
mended in Section 5.9: five donning sessions each involving five 
repetitions of the speech cue. After enrollment, genuine users partic-
ipated in an immediate recall session involving two cue repetitions. 
They then attended two additional multi-day recall sessions sepa-
rated by a minimum of 24 hours, spread over up to one week. Each 
session involved two separate donnings: participants experienced 
a single cue playback in the initial donning; they then experienced 
two cue repetitions in the subsequent donning, the first playback 
taking place in normal conditions, and the second taking place in 
the presence of a vibration stimulus (generated by an off-the-shelf 
massage device attached to their chair). This was intended to assess 
the impact of vibratory noise, such as might occur while riding 
public transport. After system enrollment and the initial donning in 
the second and third recall sessions, participants completed subjec-
tive measures: the system usability scale (SUS) [8], the unweighted 
NASA Task Load Index (TLX) [27], and the the Borg-10 perceived 
exertion scale [66]. This was intended to capture their experiences 
after both enrollment and also exposure to just a single recall cue 
presentation. Imposter participants completed a single enrollment 
session. Genuine users were compensated with the equivalent of 
23 USD in local currency and imposters with 8 USD. 

6.3 Demographics 
We recruited 27 new participants—17 genuine users and 10 imposters— 
aged between 18 and 28. Fourteen were female and thirteen were 
male (see Appendix A.2 Table 3 for full details). The genuine user 
group consisted of eight male and nine female participants. There 
was no statistically significant difference between the genuine user 
group and the imposter group with respect to their age, height, 
weight, and head circumference (all two-sample t-tests 𝑝 ≥ 0.104). 

6.4 Authentication Accuracy 
For each genuine user, we trained a classifier on all enrollment 
samples (25 in total) and five samples from each imposter (50 in 
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total). We assessed FRRs using the two samples from the first imme-
diate recall, and all three samples from each of the two multi-day 
recalls (eight samples in total). To measures FARs, we created an 
imposter test set for each genuine user by selecting all samples from 
all other genuine users (528 samples in total). Mean EER measured 
using samples from all three recall tests (including both normal and 
vibration conditions) was 2.94%—a figure that is on par with those 
recorded in our second study. However, because finding an optimal 
EER threshold in a real-world deployment setting is, in practice, 
infeasible [30], we primarily report the third study results based on 
the HTER (or mean of the FAR and FRR) at a fixed 0.5 probability 
threshold. This was 3.10% (5.15% FRR and 1.04% FAR). Indeed, we 
recorded 7 authentication failures from 136 total attempts across 
all 17 users, a positive result that strongly suggests that SkullID 
deployed with the optimized enrollment settings we propose is 
capable of reliably authenticating users over the course of several 
days. In addition, to measure the effects of being exposed to vibra-
tion interference during recall, we compared the FRR between the 
normal and vibration conditions, and found no change between 
the two conditions: SkullID appears to be robust against vibration 
interference. 

6.5 Usability Results 
The mean Borg CR10 score during enrollment was 2.7 (SD=2.1)— 
indicating low to moderate exertion was experienced over the five 
donnings. The mean Borg CR10 score for the shorter authentica-
tion sessions dropped to 1.9 (SD=2.2). This indicates participants 
felt low exertion during recall, and suggests that their perceptions 
of the authentication experience may be improving as they gain 
experience with it. Raw data for TLX and SUS questionnaires are 
shown in Appendix A.5 Table 6. To summarize, mean SUS scores 
for enrollment and authentication were 76.2 (SD=12.7) and 81.1 
(SD=11.5), respectively. These figures are associated with “good” 
levels of usability [8]. Drilling down into these aggregates, we note 
the scores for the “easy to use” and “quick to learn” questions were 
particularly high (both 4.35 from 5 for enrollment, and 4.79 and 
4.85 for recall). This suggests SkullID was particularly effective in 
terms of these qualities. Similarly, the unweighted overall work-
load scores from the NASA TLX were 3.7 (SD=2.1) and 2.3 (SD=2.6) 
for enrollment and authentication sessions, respectively. To pro-
vide a general context for these results, we refer to Grier [24]’s 
analysis of 200 studies deploying TLX in a wide range of tasks; 
scores in the ranges reported here (2.3 to 3.7) were recorded in 
the 10% of tasks with the lowest workload levels encountered in 
Grier’s survey. To more specifically contextualize these results in 
authentication tasks, we refer to overall unweighted TLX scores for 
entering PINs on smartwatches: approximately 6/20 [47]. The fact 
our enrollment processes yield lower workload scores than a famil-
iar PIN authentication task is compelling evidence that participants 
did not experience undue workload while operating SkullID. That 
said, one aspect of the TLX data is worth pulling out: while still 
relatively low, ratings for effort expended show a modest spike in 
authentication (5.73) and, particularly, enrollment (7.59) tasks. We 
suggest this is due to the work involved in donning (and in the case 
of enrollment, repeatedly donning) our tethered and snugly fitting 
glasses frame. Improving this aspect of user experience may require 

further iteration on our prototypes (e.g., by creating a wireless ver-
sion or developing models with different sizes to support improved 
fit) or further reducing the data collection requirements during 
enrollment. Regardless, taken together, these results indicate that 
the usability of SkullID is good: authenticating daily will require 
only modest effort and represent a small burden to users. 

7 SECURITY ANALYSIS 
To measure the robustness of SkullID against replay attacks de-
scribed in Section 3.6, we conducted a separate attack study by 
recruiting ten new attackers, and using the third study genuine user 
samples as compromised (replay attack) response signals. Further, 
to explore the impact of imitation attacks, we applied a clustering 
technique to identify six separate groups with similar physiological 
characteristics, and performed an attack using all other users within 
the same cluster as attack samples. 

7.1 Robustness to Replay Attacks 
We recruited 10 new participants as attackers: 5 males and 5 females 
(see Table 3 in Appendix A.2 for full details). For each attacker, we 
provided a set of 68 genuine samples: one sample from each of 
the two microphone locations and two recall sessions (the second 
and third regular recall sessions) for all 17 genuine users. These 
signals were played on a standalone speaker unit (one of speaker 
modules extracted from the glass prototype) firmly pressed by the 
attacker participant against their skull in three different locations: 
adjacent to the mastoid speaker, the brow microphone and the 
mastoid microphone. Thus, each attacker recorded a pair of brow 
and mastoid microphone responses to 204 signals (68 samples by 3 
speaker locations) while each genuine user (victim) was exposed 
to 120 replay attack responses (each composed of a pair of brow 
and mastoid recordings). The results led to 0.44% FAR across all 
attack attempts (at an unbiased 0.5 threshold) and a total of four 
compromised users: participants 1, 8, and 10 were each spoofed 
once whereas participant 5 was spoofed six times. 

A closer investigation of the attack signals of the four spoofed 
victims revealed substantially weaker energy transfer rates on the 
microphone that was located further from the attacker’s speaker 
unit. Figure 12 shows those attenuated attack signals, and the re-
sultant PSD patterns. We note these are highly distinct from the 
original genuine and imposter samples. As our binary classifiers 
were trained using a small number of standard genuine and im-
poster samples (recorded normally through the frame), such novel 
PSD patterns (unknown to the classifiers) could be classified in a 
random manner, and result in authentication failures. To mitigate 
this sampling limitation, we experimented with a training method 
that entails adding attack samples to the train set. We first recruited 
two additional attackers and two new genuine/victim users fol-
lowing the same data collection protocol—this procedure ensured 
there is no overlap between the new imposter train samples added 
(those collected through the two new attackers) and the original 
attack samples used for testing. We then selected 10 random sam-
ples from each of the new attackers, included those samples in the 
final imposter train set, and measured attack success rates again. 
The new results were promising: no participants were spoofed (0% 
FAR). This improvement demonstrates the effectiveness of using 
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attack-specific training samples. It leads to more robust classifiers 
with an improved awareness of replayed signals. 

7.2 Robustness to Imitation Attacks 
A second practical attack scenario would involve recruiting attack-
ers who are physiologically similar to a victim (e.g., with respect 
to head circumferences), and simply asking them to put on the 
stolen glasses and authenticate as normal. To study the robustness 
of SkullID to such imitation attempts, we used the genuine user 
data collected from the third study, and applied a clustering tech-
nique to group participants based on similarities in physiological 
characteristics. After excluding two participants (13 and 16) who 
opted not provide their physiological information, we applied the k-
means clustering algorithm to the remaining 15 participants based 
on weight, height, and head circumference information. We found 
six separate clusters, one of which featured a single individual (par-
ticipant 8) and was culled. For each participant in the remaining 
five clusters, we measured FARs (representing the attack success 
rates) using all other users within the same cluster. The attack 
results are shown in Table 7 and indicate the attack was largely 
unsuccessful: the majority of participants recorded zero FARs, while 
participant 7 recorded a FAR of 1.52%. These results suggest SkullID 
is robust against imitation efforts that involve recruiting subjects 
with similar physiological characteristics. 

8 DISCUSSION 
This paper investigated the feasibility of measuring through-skull 
bone conduction to authenticate smartglass users. With contact 
microphones mounted on the brow and mastoid, we achieve EERs 
of 5.68% and 7.95% in a lab study conducted on 25 participants. 
Concatenating the two response signals led to substantial improve-
ment in the EERs (2.35%), a figure that improves considerably over 
closely related prior work (e.g., 5.48% [18], or see Table 2 for a 
full comparison). In addition, through a multi-recall session study 
(N=30), we demonstrated that the proposed two-channel system 
is robust to microphone contact variability and background audio 
noise (2.72% EER), issues that have seen scant attention in prior 
work on bio-acoustic authentication on smartglasses [31, 32]. We 
also demonstrate that a prior solution [55] that uses air-transmitted 
audio signals reported significant elevations in the error rates in 
the presence of background noise (65.61% EERs). A more extensive 
study conducted over a week (N=27) reported consistent multi-day 
recall performance (2.94% EER), and robustness to vibration inter-
ference. Our system is also feasible for real world deployment: an 
SVM-based implementation took only 30 seconds to train a full 
classifier on a low-power Raspberry Pi. In addition, we designed 
and validated a lightweight SVM solution that requires just 25 en-
rollment training samples from a user. Furthermore, participants 
experienced low exertion and workload levels during enrollment 
and recall, and reported high SUS scores. Finally, our security anal-
ysis demonstrated low success rates for various forms of imitation 
and signal replay attacks. We highlight key takeaways, future di-
rections and limitations of our work in the sections below. 

8.1 In-air versus Bone Conduction Microphones 
Our second study revealed that in-air microphones suffer from two 
major performance limitations (Section 5.8). First, they showed a 
substantial drop in accuracy drop during longitudinal recall. Second, 
they were highly susceptible to background noise. Taken together, 
these issues make in-air microphones impractical for real world au-
thentication. Contact microphones, in comparison, were more reli-
able over time and largely immune to background noise: this makes 
them more suitable for supporting bio-acoustic authentication. Inte-
gration of such devices into next generation smartglass products is 
also likely—reflecting the fact that skull conducted sound, in general, 
includes user speech but excludes externally originating sounds, sev-
eral bone conduction sensors (a.k.a. voice accelerometers or voice 
pickup bone sensors) have recently been introduced in the market 
(e.g., Sonion VPU [59] and Vesper VA1200 [63]) and integrated into 
the current crop of high-end earbuds (e.g., Apple AirPods Pro [5], 
Samsung Galaxy Buds Pro [54], and Huawei FreeBuds Pro [29]). 
While the general use of such sensors is to work in tandem with 
in-air microphones to improve voice recognition, other applications 
have also been pursued. In particular, the Huawei FreeBuds Pro 
uses their integrated bone conduction sensor to authenticate users’ 
speech [28]. As voice assistants are a major use-case for smart-
glasses, we expect such sensors will also appear in next generation 
smartglass products. Given these trends, a good direction for future 
work is exploring how to improve bio-acoustic authentication by 
combining signals from in-air and bone conduction microphones. 

8.2 Microphone Location Recommendations 
While our results indicate bone conducted audio supports reliable 
authentication, they also suggest that not all sensing locations are 
created equal. In the single-session study (see Table 4) the brow 
and mastoid were the best two performing microphone locations. 
This is, at least in part, due to the relatively large size of the un-
derlying bone structures and the lack of obstructions (e.g., hair) on 
their surfaces. However, our analysis also cautions against relying 
on any single microphone location. In our studies, variability in 
microphone fit clearly impacted performance. Having multiple mi-
crophones helped to mitigate this problem, as variability in fit was 
relatively independent—when one microphone exhibited unreliable 
or uncharacteristic data due to misalignment, another could still 
be well-seated and return typical signals. We expect to see similar 
effects in real smartglass systems, as users are unlikely to don their 
glasses in exactly the same way each time (e.g., due to variations in 
hair style or use of accessories such as hair bands, ear jewelry or 
face masks). Accordingly, we recommend that smartglass systems 
that seek to incorporate bio-acoustic authentication target use of 
at least two well separated sensors. We specifically recommend the 
mastoid and brow as candidate locations as this pair achieved good 
performance (2.35–2.84% EERs) in our single session study. Our 
subsequent multi-session studies provide a strong validation of this 
multi-channel recommendation: demonstrating 2.72% and 2.94% 
EERs, respectively. We conclude that multiple sensor points can 
help reduce the impact of device placement variability on authenti-
cation system performance, and strongly recommend that any real 
world smartglass implementations pursue this strategy. 
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Figure 12: The two graphs in the first column represent power spectrum of the two samples collected on the brow microphone of 
subjects 5 and 16. The graphs in the second and third columns represent the power spectrum of the replayed signals collected on 
the attackers’ brow and mastoid process, respectively (the original victim signals were injected through the surface transducer 
mounted on the attackers’ brow). Subject 16 was never spoofed whereas subject 5 was spoofed six times. 

8.3 Limitations 
There are a number of limitations to our work. While our sample 
sizes (N=25 for study 1, N=30 for study 2, and N=27 for study 3) 
exceed those in much prior work in this area [32, 55], more sub-
stantial studies would increase confidence in the results we report. 
In addition to recruiting larger participant groups, it would also be 
beneficial to engage them for prolonged periods. While we are the 
first group to study bio-acoustic authentication for smartglasses 
is a sustained multi-recall session, longer term studies, spanning 
months, would also us to examine gradual changes due to factors 
like hair growth [48] or fluctuations in weight and body composi-
tion. Such extended studies are a clear next step for this work. In 
addition, we note that our participant sample is Asian (covering 
multiple countries). The performance of our system on other ethnic 
groups thus remains unknown and increasing the diversity of our 
participant pool is an imperative for future studies. 

Beyond these relatively generic concerns, there are also more 
specific issues. While we showed the robustness of SkullID to sur-
rounding in-air audio noise (e.g., music, news broadcast, and public 
cafe noise) and vibration noise, we did not explore other physical 
disturbances or more realistic use-contexts. To enable us to do so, 
future work should develop more portable and readily deployable 
versions of our system. This would first require engineering efforts 
to miniaturize components by, for example, integrating recently 
developed VPUs [59, 63] in place of contact microphones, or by 
using existing bone conductance headphone platforms (e.g., [56]). 
In addition, it would be valuable to integrate SkullID with existing 
HMDs, such as Meta’s Quest devices [45] to verify its feasibility on 
consumer products. While our work has demonstrated the effec-
tiveness of SkullID when mounted on the head with fabric bands, 

a common approach in consumer HMDs, actually integrating it 
with such products to formally test its performance would be a key 
next step for this work. With such improvements in place, it would 
then be useful to evaluate SkullID’s performance in contexts such 
as walking or riding both private vehicles (representing relatively 
stable travel conditions) and also in more noisy settings such as on 
public transit (e.g., buses and subways). Such studies will provide 
important data to enhance our understanding of the susceptibil-
ity of bone-conduction authentication systems to noise. Finally, 
our replay attack analysis revealed that our binary classifiers can 
fail when presented with unknown signals, such as those replayed 
through a separate speaker unit. Nevertheless, we were able to 
effectively mitigate replay attacks by adding a few attack samples 
in the final train set, and improving the classifiers’ awareness of the 
replayed signal characteristics. Future research should investigate 
how such adaptive training methods could be applied to mitigate 
other forms of signal replay or manipulation attacks, and optimize 
overall system accuracy. 

9 CONCLUSION 
We presented SkullID, a system that authenticates users by the 
unique characteristics of audio transmitted through their skulls. 
We demonstrate it is deployable, effective, immune to noise, reliable 
over time and resistant to attack. We highlight how signal selection 
and sensor placement impact performance. Taken together the re-
sults in this paper represent a robust demonstration of the feasibility 
of using bone conducted audio to authenticate smartglass users and 
provide precise, relevant and actionable recommendations for how 
such systems should be designed in the future. 
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A APPENDIX 

A.1 Comparing SkullID to Prior Work on 
Smartglass Authentication 

Table 2 summarizes the key differences between the proposed sys-
tem and prior work on bio-acoustic authentication with respect 
to the device form factors, sensors used, required authentication 
actions, studied (experimental) conditions, and reported accuracy. 

A.2 User Study Demographics 
Table 3 shows the demographics of the 25 participants recruited 
in the first single-session study with a headband prototype, 30 
participants in the second single-day multi-session study with a 
glasses frame prototype, 27 participants in the third multi-day study 
with a single frame prototype, and ten replay attackers in study 3. 

A.3 First Study Results 
A.3.1 User Identification Results. As the first step towards inves-
tigating the feasibility of using through-skull bone conduction 
information to identify individuals, we trained multi-class SVM 
classifiers using the samples collected from the first four donnings, 
and evaluated their performance using samples from the last don-
ning. We used the MFCC/PSD concatenation feature set for this 
analysis. The user identification accuracy ranged from between 
71–89% (across all four locations and three cue signals) when a 
single microphone was used. We observed significant elevations in 
the accuracy when two or more microphones were used together, 
e.g., demonstrating 93–98% accuracy after concatenating the brow 
and mastoid features. Figure 13 summarizes these results. 

A.3.2 Performance by Microphone Location. To see whether there 
are statistical differences in authentication accuracy between the 
four microphone locations, we performed pairwise paired t-tests 
between locations. We present all location pairs whose authenti-
cation accuracy is statistically significantly different (Bonferroni 
corrected 𝑝 < 0.05) in Table 4. 
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Table 2: A comparison of bio-acoustic authentication methods. Note that ✓denotes “studied” condition, and × denotes conditions 
“not considered” in the user study. 

Biometric Form factor Required sensors Required actions 

Accuracy Experimental conditions 

Single-session Multi-session 
Multiple 
sensor 
locations 

Sensor 
location 
variability 

Multiple 
cue 
sounds 

Ambient 
noise 

Security 
analysis 

SkullID Skull structure Smartglasses 
Bone conduction transducer 
and two bone conduction mi-
crophones 

None 2.35% EER 2.94% EER ✓ ✓ ✓ ✓ ✓ 

Schneegass et al. [55] 
(SkullConduct) Skull structure Smartglasses Bone conduction transducer 

and in-air microphone 
None 6.94% EER × × × × × × 

Isobe and Murao [32] Nose structure Smartglasses Piezoelectric speaker and mi-
crophone 

None 9% EER × × × × × × 

Irwansyah et al. [31] Skull structure Headset 
Bone conduction transducer 
and inward-facing micro-
phone 

None 2.6% EER × × × × × × 

Feng et al. [15] 
Voice and vocal 
resonance 

Smartglasses, 
earphones, 
and necklace 

Accelerometer and in-air mi-
crophone Voice commands 3% FRR, 0.1% FAR × ✓ × N/A × ✓ 

Liu et al. [42] Vocal resonance 
Smartglasses, 
earphones, 
and necklace 

Piezo contact microphone Speaking × 3.9% HTER ✓ × N/A × ✓ 

Gao et al. [18] Ear canal struc-
ture 

Earphones Speaker and inward-facing mi-
crophone 

None 5.48% HTER × × ✓ ✓ ✓ ✓ 

Wang et al. [65] Ear canal defor-
mation 

Earphones Speaker and inward-facing mi-
crophone 

Voice commands 97.38% recall and 
95.02% precision 

95% accuracy × × N/A ✓ ✓ 

Gao et al. [17] 

Throat-to-ear 
body structure 
and body asym-
metry 

Earphones 

Two outward-facing and 
inward-facing microphones Speaking 3.64% EER × × × N/A × ✓ 

Table 3: Demographics of study participants. 

Variable Value 
Study 1 (N=25) Study 2 (N=30) Study 3 (N=27) Study 4 (N=10) 

Single-session 
Single-day multi-recall session Multi-day recall session Replay attack 
Genuine users Imposters Genuine users Imposters Attackers 

Gender Female 4 (16%) 4 (27%) 3 (20%) 9 (53%) 5 (50%) 5 (50%) 
Male 21 (84%) 11 (73%) 12 (80%) 8 (47%) 5 (50%) 5 (50%) 

Age 

Not respond 0 (0%) 1 (7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
18-20 1 (4%) 2 (13%) 5 (33%) 5 (29%) 2 (20%) 5 (50%) 
21-30 23 (92%) 12 (80%) 9 (60%) 12 (71%) 8 (80%) 5 (50%) 
31-40 1 (4%) 0 (0%) 1 (7%) 0 (0%) 0 (0%) 0 (0%) 

Weight (kg) 

Not respond 0 (0%) 1 (7%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 
[45, 50) 0 (0%) 0 (0%) 0 (0%) 3 (18%) 0 (0%) 1 (10%) 
[50, 55) 0 (0%) 2 (13%) 1 (7%) 4 (23%) 3 (30%) 2 (20%) 
[55, 60) 3 (12%) 1 (7%) 2 (13%) 3 (18%) 1 (10%) 3 (30%) 
[60, 65) 4 (16%) 2 (13%) 2 (13%) 4 (23%) 1 (10%) 1 (10%) 
[65, 70) 5 (20%) 4 (26%) 4 (26%) 2 (12%) 0 (0%) 1 (10%) 
[70, 75) 7 (28%) 3 (20%) 3 (20%) 0 (0%) 4 (40%) 1 (10%) 
[75, 80) 4 (16%) 1 (7%) 1 (7%) 1 (6%) 0 (0%) 0 (0%) 
[80, 90) 2 (8%) 1 (7%) 2 (13%) 0 (0%) 1 (10%) 1 (10%) 

Height (cm) 

Not respond 0 (0%) 1 (7%) 0 (0%) 2 (12%) 0 (0%) 0 (0%) 
[150, 160) 2 (8%) 0 (0%) 0 (0%) 3 (18%) 2 (20%) 2 (20%) 
[160, 170) 6 (24%) 3 (20%) 4 (27%) 6 (35%) 3 (30%) 4 (40%) 
[170, 180) 15 (60%) 9 (60%) 8 (53%) 5 (29%) 5 (50%) 3 (30%) 
[180, 190) 2 (8%) 2 (13%) 3 (20%) 1 (6%) 0 (0%) 1 (10%) 

Head circumference (cm) 

[54, 55) 0 (0%) 0 (0%) 1 (7%) 1 (6%) 0 (0%) 1 (10%) 
[55, 56) 0 (0%) 2 (13%) 0 (0%) 2 (12%) 0 (0%) 0 (0%) 
[56, 57) 3 (12%) 3 (20%) 2 (13%) 2 (12%) 2 (20%) 3 (30%) 
[57, 58) 4 (16%) 1 (7%) 2 (13%) 4 (23%) 1 (10%) 1 (10%) 
[58, 59) 11 (44%) 5 (33%) 3 (20%) 3 (18%) 0 (0%) 1 (10%) 
[59, 60) 4 (16%) 3 (20%) 6 (40%) 3 (18%) 4 (40%) 1 (10%) 
[60, 61) 2 (8%) 1 (7%) 1 (7%) 2 (12%) 2 (20%) 1 (10%) 
[61, 62) 1 (4%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 (20%) 

A.3.3 Performance by Cue Type. To explore whether there are dif-
ferences in authentication accuracy between the three cue types 
(chirp, wake-up melody, and speech), we performed pairwise paired 
t-tests between cue signals at different location combinations. Ta-
ble 5 shows the cue signal pairs and the location combinations 
whose authentication accuracy is statistically significantly different 
(Bonferroni corrected 𝑝 < 0.05). 

A.3.4 Signal Consistency. Figure 14 shows the Wilks’ Lambda sta-
tistics for each microphone with the chirp cue. Small Wilks’ Lambda 
implies small within-subject variation, i.e., high signal pattern con-
sistency. This figures indicates the brow and mastoid locations show 
high consistency, with a notable drop in performance on the temple 
and, in particular, on the squamous. 
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Figure 13: Mean user identification accuracy measured across all 25 participants, separately presented for each cue signal. 

Table 4: Statistical significance of pairwise difference in au-
thentication accuracy between microphone locations. In-
cluded location pairs were all those where mean EERs were 
statistically significantly different. Microphone locations in-
dicated by initial letter: B(row), M(astoid), S(quamous), 

Cue 
Location Mean EER Cohen’s Bonferroni 
Pair Difference (%) 𝑑 Corrected 𝑝 

Chirp 

B vs S -2.22 -4.89 0.0001 
B vs T -3.44 -7.86 0.0000 
M vs S -1.67 -3.66 0.0073 
M vs T -2.89 -5.41 0.0000 

Melody 

B vs M -2.27 -5.68 0.0000 
B vs S -4.25 -8.79 0.0000 
B vs T -4.01 -9.29 0.0000 
M vs S -1.99 -4.53 0.0003 
M vs T -1.74 -4.82 0.0001 

Speech 
B vs S -2.02 -4.96 0.0001 
B vs T -2.07 -4.63 0.0002 
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Figure 14: Wilks’ Lambda statistics for the four microphone 
locations when a chirp from 50 Hz to 6 kHz was used. 

A.4 In-air Microphone Performance 
Figure 15 shows the recall performance for the in-air microphones: 
all three graphs demonstrate significant elevations in the EERs 
compared to those reported for SkullID both in the normal sessions 
(9.54–14.20%) and sessions recorded with audio noise (58–66%). 

Table 5: Statistical significance of pairwise difference in au-
thentication accuracy between cue signals. Selected cue pairs 
were those where average EERs were statistically signifi-
cantly different. Microphone locations indicated by initial 
letter: B(row), M(astoid), S(quamous), T(emple). 

Cue pair Location(s) Mean EER Cohen’s Bonferroni 
Difference (%) 𝑑 Corrected 𝑝 

Chirp vs 
Melody 

B 1.35 4.31 0.0017 
B/T 2.27 8.83 0.0000 
M/S -0.90 -4.29 0.0018 
S/T -3.11 -13.95 0.0000 
B/M/S -0.64 -5.12 0.0001 
M/S/T -2.36 -9.88 0.0000 
B/M/S/T -0.61 -9.17 0.0000 

Chirp vs 
Speech 

M -0.62 -3.47 0.0345 
T 1.53 4.26 0.0021 
M/T 1.59 6.23 0.0000 
S/T -0.98 -4.84 0.0002 
M/S/T 0.48 3.97 0.0062 
B/M/S/T 0.18 3.39 0.0450 

Melody vs 
Speech 

B -1.19 -4.26 0.0021 
B/S 0.77 8.45 0.0000 
B/T -2.12 -8.38 0.0000 
M/S 1.09 5.44 0.0000 
M/T 1.80 10.42 0.0000 
S/T 2.13 13.09 0.0000 
B/M/S 0.68 7.76 0.0000 
B/M/T 0.42 5.21 0.0000 
M/S/T 2.84 10.05 0.0000 
B/M/S/T 0.80 11.71 0.0000 

A.5 SUS and NASA TLX Results 
Mean scores for all individual questions in the SUS and NASA TLX 
questionnaires are summarized in Table 6. 

A.6 Imitation Attack Results 
Table 7 shows the imitation attack results. Participants were grouped 
based on weight, height, and head size using the k-mean clustering 
algorithm (𝑘 = 6). 
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Figure 15: EERs measured on the in-air microphone signals. 

Table 6: Scores for individual SUS (5-point Likert scale from “Strongly Disagree” (1) to “Strongly Agree” (5), starred items are 
inverted to calculate overall score) and NASA TLX (0-20 scale) questions. Mean and SD (in brackets) are presented. 

Questionnaire Question 
Response 

Enrollment Authentication 

SUS 

I think that I would like to use this system frequently. 3.47 (0.80) 4.00 (0.71) 
* I found the system unnecessarily complex. 1.65 (0.79) 1.36 (0.60) 
I thought the system was easy to use. 4.35 (0.61) 4.58 (0.56) 
* I think that I would need the support of a technical person to be able to use this system. 1.59 (0.71) 1.61 (0.66) 
I found the various functions in this system were well integrated. 3.82 (0.64) 3.82 (0.73) 
* I thought there was too much inconsistency in this system. 2.06 (1.03) 2.03 (0.88) 
I would imagine that most people would learn to use this system very quickly. 4.35 (0.70) 4.79 (0.42) 
* I found the system very cumbersome to use. 2.29 (1.21) 2.09 (0.95) 
I felt very confident using the system. 3.29 (1.05) 3.73 (0.84) 
* I needed to learn a lot of things before I could get going with this system. 1.24 (0.44) 1.39 (0.66) 

TLX 

Mental Demand 2.35 (4.06) 1.88 (3.77) 
Physical Demand 3.06 (3.85) 1.00 (1.50) 
Temporal Demand 1.24 (1.71) 0.36 (0.74) 
Performance Achieved 4.94 (6.74) 2.94 (5.86) 
Effort Expended 7.59 (7.63) 5.73 (8.01) 
Frustration Experienced 3.06 (4.04) 2.06 (4.37) 

Table 7: “Clustering attack” FARs (threshold 0.5) show the imitation attack success rates based on the brow/mastoid classifiers. 
Subjects that belong to the same “C” were used as the attack set. 

Cluster Participant 
Physical characteristic 

FAR (%)Gender Height Weight Head front/side length 
(cm) (kg) (cm) 

C1 

Subject1 Female 161 50–55 15.9/16.9 0 
Subject3 Female 163 50–55 15.5/17.9 0 
Subject11 Female 158 45–50 15.8/18.4 0 
Subject15 Female 159 45–50 15.9/17.7 0 

C2 
Subject2 Male 184 65–70 16.9/19.2 0 
Subject10 Male 178 75–80 16.8/19.6 0 

C3 
Subject4 Male 168 60–65 16.1/19.5 0 
Subject7 Male 173 55–60 16.3/19.5 1.52 
Subject17 Male 165 55–60 16.1/19.1 0 

C4 
Subject5 Female 168 60–65 16.3/18.4 0 
Subject9 Male 170 65–70 16.5/18.6 0 

C5 
Subject6 Female 168 50–55 15.4/18.9 0 
Subject12 Male 174 60–65 15.6/18.8 0 
Subject14 Female 170 55–60 15.7/18.8 0 
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