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Figure 1: EITPose is a wrist-worn device for real-time hand pose estimation (A) that uses Electrical Impedance Tomography
(EIT), to measure the impedance changes within the forearm. (B) shows a 2D reconstruction of this impedance map and (C)
shows the average measured impedance signals per electrode emitter pair (1 through 8) while the user performs the hand pose.

ABSTRACT
Real-time hand pose estimation has a wide range of applications
spanning gaming, robotics, and human-computer interaction. In
this paper, we introduce EITPose, a wrist-worn, continuous 3D
hand pose estimation approach that uses eight electrodes positioned
around the forearm to model its interior impedance distribution
during pose articulation. Unlike wrist-worn systems relying on
cameras, EITPose has a slim profile (12 mm thick sensing strap) and
is power-efficient (consuming only 0.3 W of power), making it an
excellent candidate for integration into consumer electronic devices.
In a user study involving 22 participants, EITPose achieves with
a within-session mean per joint positional error of 11.06 mm. Its

∗Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0330-0/24/05
https://doi.org/10.1145/3613904.3642663

camera-free design prioritizes user privacy, yet it maintains cross-
session and cross-user accuracy levels comparable to camera-based
wrist-worn systems, thus making EITPose a promising technology
for practical hand pose estimation.
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1 INTRODUCTION
Digitization of the hand has been a well-researched area for the last
half a century and has applications in mixed reality [15], robotics
[16], sports medicine [34], sign-language [19], spatial user inter-
faces [18], and more. Most successful and accurate implementations
of hand-pose tracking involve direct sensing methods, mainly in-
volving camera-based solutions. However, many of these direct
sensing methods suffer from environmental noise and occlusion
effects. Furthermore, camera-based methods raise privacy concerns,
capturing unintended user and environmental data. Due to these
issues, an accurate, privacy-sensitive, lightweight approach to digi-
tization of the human hand remains unsolved.

To this end, we present EITPose, a new and practical wrist-worn
device that uses Electrical Impedance Tomography (EIT) to contin-
uously estimate hand pose in a mobile, self-contained, low-power
and user-friendly form-factor (Figure 1). Tomography is a tech-
nique that produces detailed cross-sectional images of a medium’s
composition, using various forms of excitation such as electric-
ity, sound waves, or radiation [5]. EIT uses pair-wise impedance
measurements from surface electrodes surrounding the medium to
recover its internal impedance distribution, making it particularly
useful in medical contexts for imaging internal body functions in a
non-invasive and affordable manner [9, 43].

Previous research has explored the use of wearable and mobile
EIT form-factors for gesture classification [41, 42], activity detec-
tion [30], and rehabilitation [43]. However, utilizing a wrist-worn
EIT band to accurately determine hand poses presents certain chal-
lenges. For instance, poor electrode connectivity can lead to added
noise and impedance fluctuations due to factors such as the arm
hair and air gaps. Furthermore, the human body presents a varied
landscape for measurement, with individual differences in body
composition and skin type further complicating the process. To
ensure accurate hand pose estimation using EIT, it is crucial to
establish a strategy that maintains stable electrode-to-skin connec-
tivity and is robust to signal variations such as drift throughout an
individual’s session.

To this effect, EITPose extends upon EIT-Kit [44] (an open-source
EIT toolkit) and showcases the feasibility of EIT for accurate and
continuous hand pose estimation. It employs a device initialization
step for optimal connectivity and signal-to-noise ratio, and proposes
a novel waveform checker algorithm to ensure signal robustness
throughout a user’s session. Finally, EITPose implements additional
user-friendly features, like enhancements on wireless capabilities
and a band design that allows for easy adjustment across users and
consistent electrode-to-skin contact.

To evaluate the efficacy of EITPose, we run user studies across a
total of 22 participants to capture a diverse set of continuous hand
poses across 12 different terminal poses and its corresponding EIT
data. We conducted a series of evaluations across different scenarios.
First, we evaluate the accuracy if the user had to calibrate the
device for hand pose estimation every time they put on the device
(within session) and assess performance consistency throughout
that same session (even across long periods of use, spanning over
an hour). Next, we evaluate hand pose estimation accuracy with
a single calibration step (across sessions, with sessions collected a
week apart to allow for more varied physiological changes). This is

similar to how you might set up face ID on your iPhone when you
first get your phone. We then evaluate EITPose’s accuracy without
individual per-user calibration (across users). This would be similar
to an "out-of-the-box" experience where the device is already pre-
trained and calibrated based on other users. Using an ensemble of
trees machine learning model, EITPose had a mean per-joint hand
pose estimation error of 11.06 mm, 17.81 mm, and 18.91 mm for
within-session, cross-session and cross-user scenarios respectively.
Lastly, we also benchmark EITPose’s accuracy for hand gesture
recognition (cross-user: 67.3%) to compare with prior works (Tomo
[41], cross-user: 38.8%).

The contributions of this paper are multifold. Foremost, EITPose
demonstrates the feasibility of continuous hand pose estimation us-
ing electrical impedance tomography. The improvements to sensor
board, firmware, and band enables EITPose to achieve an accuracy
comparative to camera-based methods while maintaining a low-
power and privacy-preserving profile (Table 1). To enable future
research to build on our approach and contribute to this domain,
we will release our code, models, and the dataset upon publication.

2 RELATEDWORK
There is a plethora of literature on wearable hand sensing. Prior
works have primarily focused on hand gesture recognition, lever-
aging a diverse range of modalities such as infrared (IR) ranging
[24], electromyography (EMG) [26], inertial measure unit (IMU)
[37], acoustics [11, 12, 25], capacitive [2] and electrical impedance
tomography [41, 42, 44] sensing. Refer to [6, 13, 23] for a full sur-
vey. In contrast, methods that capture the whole 3D hand pose
offer a comprehensive and continuous sensing solution, which is
more challenging and the focus of our work. Towards this end,
researchers have made use of head-mounted cameras [1, 17, 27] or
have instrumented the user’s hand with gloves [8, 40] or MoCap
markers[31, 35]. More relevant to this work, are approaches that
instrument the wrist or forearm of the user, offering a practical,
mobile and consumer friendly form-factor akin to the placement of
smartwatch.

The predominant method for wrist-worn hand pose tracking
is direct optical sensing, making use of a single camera [38] or
an array[7, 10] of cameras. Commonly used optical sensors for
hand pose estimation include RGB cameras [3, 36, 38], IR cameras
[15, 29], and depth cameras [7, 32]. These camera-based systems
usually make a trade-off between high field-of-view for sensing
hands and practicality. Larger systems [3, 15] tend to be bulkier,
but provide a clearer image of the hand, while slimmer more usable
form-factors [36] suffer from occlusion artifacts. Moreover, the use
of cameras encounters privacy concerns as these high-resolution
sensors can inadvertently record unnecessary background details
and sensitive information of both users and nearby individuals.
To navigate these challenges, recent advances such as Discoband
[7] and FingerTrak [10] employ an array of low-resolution depth
sensors and thermal cameras respectively for hand pose tracking.
These low-resolution cameras restrict data capture to essential hand
shape details, substantially reducing privacy concerns. However,
these optical systems consume a considerable amount of power.
Furthermore, sensors must be positioned at a specific height above
the arm to avoid occlusion caused by the wrist bending. Moreover,
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Reference System Sensing Modality Privacy
Preserving

Low
Profile

Occlusion
Invariant

Sampling
Rate

Power
Consumption

Within Session
Error

Cross Session
Error

Cross User
Error

DiscoBand[7] Depth Camera ✓ ✓ ✗ 7.5Hz 3.6W 11.69mm 17.87mm 19.98mm
FingerTrak[10] Thermal Camera ✓ ✓ ✗ 16 Hz High 12mm ∼ 87mm
Back-Hand-Pose[36] RGB Camera ✗ ✗ ✗ ∼ High 8.81°* 9.77°* 9.72°*
Digits[15], Opisthenar[38] IR Camera ✗ ✗ ✗ ∼ High ∼ ∼ ∼
NeuroPose[21] EMG ✓ ✓ ✓ 40Hz Low 6.24°* ∼ ∼
EtherPose[14] RF ✓ ✗ ✓ 2.4Hz 4.5W 11.57mm ∼ ∼
EITPose EIT ✓ ✓ ✓ 10Hz 0.3W 11.06 mm 17.81mm 18.91mm
Table 1: An overview of existing wrist-worn continuous hand pose estimation methods. All evaluations are mean per-joint
positional error, apart from * which denotes mean per-joint angular error.

they are sensitive to environmental disruptions, including lighting
and temperature interference, which can adversely affect tracking
accuracy and reliability in outdoor settings.

In contrast, non-optical methods, although less extensively ex-
plored in hand pose tracking, emerge as a promising lightweight
alternative to address privacy, invasiveness and occlusion concerns.
These indirect sensing approaches measure features pertaining to
pose without imaging the shape of the hand itself. For this, one of
the most popular sensing modalities is Electromyography (EMG)
which analyzes muscle activities for interpreting hand joints move-
ments [20, 21]. Other approaches involve capacitive sensing [4]
that reconstruct hand poses through capacitive images, or IMU’s to
predict hand orientation to extend the field-of-interaction for VR
headsets [33]. However, these approaches faced limitations in terms
of tracking accuracy and restricted tracking capabilities, thus hin-
dering their practical implementations. In other recent works, Radio
Frequency (RF) has been explored for hand digitization [14, 22].
Etherpose utilizes dual antennas to track continuous hand pose
and nuanced micro-gestures by monitoring impedance changes
correlating to alterations in the user’s hand geometry. Despite a
limited sampling rate and its large size, this method demonstrates
advancements in non-optical hand pose tracking. While its accu-
racy is comparable to wrist-worn optical tracking methods when
trained and tested within the same session, unlike them, it fails to
generalize across sessions and different users.

Table 1 provides an overview of wrist-worn continuous hand
pose estimation techniques. EITPose offers the robustness of op-
tical tracking methods while maintaining the privacy and power
profile of indirect sensing methods. It showcases strong within-
session performance, generalizes across sessions (even after a week
from the initial training), and achieves cross-user accuracies com-
parable to optical tracking approaches with a tenth of their power
consumption.

3 IMPLEMENTATION
3.1 Sensing Principle
Electrical Impedance Tomography (EIT) is an imaging technique
that uses surface electrodes to inject alternating currents (AC) and
receive voltages to measure the impedance change of an object.
The simplest configuration is a 2-pole setup [41] where a pair of
electrodes injects an AC current at one electrode and reads the
output signal at the other. In our 8 electrode setup, this would mean
that we can measure the impedance across 28 different paths in the
forearm, allowing us to determine the internal structure of the arm

as well as the conductive properties of those internal structures.
In a more complicated 4-pole setup [42], two adjacent electrodes
inject the current source and the voltage is measured across two
other adjacent electrodes. In our 8 electrode setup, this would allow
us to measure the up to 40 different impedance paths through the
forearm.

Our system includes an EIT sensing board with a 4-pole setup
for measurements and an elastic wrist band made of eight stainless
steel electrodes to ensure consistent contact across users. We build
on EIT-kit’s [44] open-source board design which incorporates a
stable and robust current source to ensure the appropriate injection
current and measurement gain to maximize the EIT signal while
minimizing noise [44]. We extend this design for our application of
hand pose estimation by adding extra filters in both hardware and
software described below.

3.2 Sensing Board Design
Leveraging the foundational framework of the EIT-kit, the EITPose
sensing board and firmware has undergone several refined mod-
ifications detailed below, enhancing its precision for hand pose
estimation.

Device Initialization: Changes in underlying body factors, skin
condition variations (sweat, dry skin, dead skin), and daily physio-
logical fluctuations impair the utility of tomography techniques to
generalize across sessions and users. To mitigate their effects, we
perform an automated device initialization. Inspired by the auto-
calibration feature of EITKit, we optimize the injection current and
voltage measurement gain for each electrode pair to ensure con-
nectivity and achieve an optimal signal-to-noise ratio every time
the user wears the device.

Waveform Shape Checker: While a good device initialization
ensures optimal connectivity at the start, as the session continues
the signal can degrade and drift due to band movement and chang-
ing electrode-skin contact conditions during pose articulation. To
counteract this we design a waveform shape checker algorithm
wherein we calculate the mean absolute error between a measured
sample of data points (for each measurement electrode pair) and
an ideal sine wave that has been amplitude, phase and frequency
normalized to the reference captured signal. If the mean absolute
error is under our noise threshold, the signal passes the check and
is used for pose inference. Else, we discard it and collect another
sample of data points to compare against.

To ensure that the system doesn’t get stuck trying to find a
good sine wave in the scenario of bad contact, this waveform shape
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Figure 2: EITPose final wristband and sensing board. It includes a band with 8 stainless steel electrodes and the sensing PCB.
Each stainless steel electrode is 10mm x 10mm x 2mm in size and are attached together by an elastic strap for easy adjustment.
On the right is a picture of how the band is worn on a user.

checker only checks up to 10 times. If no signal passes the noise
threshold till then, it returns a null signal (all 0’s) signifying that the
electrode pair is to be weighted the least during inference. Hence,
it filters out noisy measurements during poor skin-to-electrode
contact and allows for more consistent frame rates, while balancing
optimal signal quality.

High-Pass Filter Implementation: EITPose augments the sens-
ing board with an additional high-pass filtering circuit to mitigate
the noise generated during MUX shifting, particularly noted during
measurements conducted at frequencies below 3.68kHz. This addi-
tion is instrumental in delivering cleaner signals and more reliable
data invariant to environmental noises.

Additional Features: We have upgraded the BLE (Bluetooth
Low Energy) module on the EIT-kit to an HM-18 module, enhancing
the board’s wireless capabilities and data transfer capacity. Utilizing
BLE 5.0 technology, it can now support a maximum frame rate of
28 FPS wirelessly in an 8-electrode setup. Additionally, we have
integrated a BNO085 Inertial Measurement Unit (IMU) on board,
which could be used for forearm orientation tracking in future
work and help our system distinguish between wrist orientation
and forearm orientation.

3.3 Band Design
Our wrist band was outfitted with an array of eight stainless elec-
trodes to facilitate precise hand tracking (Figure 2). These cylindri-
cal stainless-steel electrodes, featuring dimensions of 10mm x 10mm
x 2mm and a slightly convex surface area of 78 mm2 each, promise
enhanced skin connectivity and longevity. To ensure precise place-
ment and adaptability to varying forearm dimensions, the electrodes
are individually mounted onto 3D-printed PLA cubes, with each
cube measuring 12mm x 12mm x 8mm. These cubes are then con-
nected to an elastic strap. This design ensures better electrode-skin
contact and allows for flexible adjustment of electrode placements
for varying forearm dimensions, allowing for even distribution
around the forearm, facilitating accurate impedance measurements.
In addition, these electrodes are interconnected through wires for-
tified by cold welding techniques, and are designed to interface

with the pins on the MUX board of the customized EIT-kit sensing
board.

In terms of performance, the device operates optimally within a
sample rate range of 10 to 13 FPS for 8 electrodes, demonstrating sta-
ble signals at 10 FPS for the majority of participants. Furthermore,
the device exhibits amarked reduction in power consumption, utiliz-
ing only 0.3W—tenfold lower than previous hand tracking methods
like the DiscoBand and Etherpose — without compromising on the
compactness of the band’s design.

3.4 Data Processing and Machine Learning
Our input vector consists of a total of 48 signals. This includes 40
EIT signals (5 measurement pairs x 8 emitter electrode configura-
tions), plus 8 additional signals generated from the averaging the
RMS value for an electrode transmitter pair to each emitter pair.
We demean each signal utilizing a rolling window of 40 seconds
to eliminate signal shifting between different sessions and users,
caused by both differing device initialization parameters and mea-
surement changes due to differing impedance’s from physiological
differences between users. Note, that the window only looks at past
frames and makes use of no future data - in scenarios when the
data available is less than 40s, it makes use of the existing available
data in the window.

This demeaned input vector of 48 is the input to our machine
learning model, for which we employ SciPy’s ExtraTreesRegressor
(default parameters, 100 estimators). We chose this ensemble of
trees machine learning method due to its robustness to missing
data, invariance to scaling, and outliers. The output of our model is a
vector of size 63, representing 21 3D hand pose key points. Similarly,
for our gesture classifier we employ a SciPy’s ExtraTreesClassifier
(default parameters, 100 estimators) that takes the demeaned input
vector and outputs a gesture class.

4 DATA COLLECTION PROCEDURE
To evaluate the effectiveness of the EITPose system, we recruited
22 participants (11 male, 11 female, mean age of 26 years) across
two user study protocols: Within-session longitudinal study (3



EITPose: Wearable and Practical Electrical Impedance Tomography for Continuous Hand Pose Estimation CHI ’24, May 11–16, 2024, Honolulu, HI, USA

Figure 3: Top row: Reference images of the 12 terminal hand poses used in our study. Note, these were used as destination
poses and all intermediate pose states were continuously captured providing a diverse set. Middle row: visualizer depicting the
8 average measured impedance signals for each electrode emitter pair while the user performs the hand pose. Bottom row:
Predicted hand poses, visualized using a Mano hand mesh model.

participants) and Cross-session & Cross-user study (19 participants).
Each protocol differs in the number and spacing of data collection
sessions. The heights of the participants ranged from 1.52 to 1.86 m
(mean = 1.70 m), and forearm circumference varied from 20 to 31
cm (mean = 24.96 cm). The participants were compensated with 15
USD for their participation. The data collection apparatus consisted
of a GUSGU G910 camera positioned at a 45-degree at one end
to capture ground truth hand pose against a white background.
Akin to prior works like Etherpose and Discoband, we make use
of Google’s MediaPipe [39] sampling at 20 Hz (2560 by 1440 image
resolution) to estimate ground truth hand pose (21 3D hand key
points with the palm as the origin). We further scale the bone
lengths according to the MANO hand model [28] to estimate mesh
parameters and produce anatomically coherent hands (Figure 3).

For each session, participants were seated at a table and were
fitted with the band, arranging the first electrode near the middle
of their inner forearm and placing the remaining electrodes in a
clockwise pattern around it. We did not mark fixed positions for
the electrodes to introduce more variability into the data. We then
performed device initialization (Section 3.2) and adjusted the elastic
strap and aligned the position of the electrodes to ensure optimal
connectivity and comfort. Upon briefing the participants about the
study they were instructed to extend their arms and hands in front
of the camera alongside a computer monitor, which provided visual
instructions.

For data collection, we designed twelve common hand poses
drawn from prior works (Figure 3). Participants were prompted to
perform the poses as shown on the computer display. These acted
as terminal poses and participants were asked to naturally shift
between the different poses and even change wrist orientations
between them, allowing us to capture a diverse set of intermediate
pose states. When a new frame of data arrives from our prototype
(at 10 Hz), the most recent MediaPipe hand keypoints are recorded
along side the EIT data. A single round of data collection consisted
of a random ordering of the twelve hand poses. We collected eight
rounds of hand pose data in this fashion, which formed one trial of
data collection (lasting for roughly 10 mins for each participant).

4.1 Within-session Longitudinal Data
Collection

Most prior works [7, 14, 41] make use of data collected over back
to back sessions, with each session only lasting less than 10 mins.
This fails to account for the within-session variability typically
depicted in the real-world that consumer devices have to contend
with (e.g. VR gaming session lasting an hour). To this effect, we
recruited 3 participants to evaluate the within-session accuracy
of EITPose over continued periods of use (spanning about 1.75
hours for each participant). This data collection consisted of a
single session comprising of 4 trials. The session started with a
data collection trial, followed by a 20-minute gap. This process
continued with 3 more data collection trials, each separated by 20
minute gaps, resulting altogether in 4 trials and 3 20-minute gaps
between them. Note, there was a single device initialization at the
beginning of the session (before the first trial) and the device was
not taken off or re-initialized for the subsequent trials.

In the 20 mins gap between sessions, participants engaged in
activities of their own choosing with the band on, ensuring that the
data was streaming continuously during the whole time. No ground
truth data was collected during this time as the participants were
free to move around. The activities performed by the participants
ranged from doing homework on a laptop (including typing, using
a mouse), eating food, drinking water, talking to people in their
vicinity and using their phones. At the end of each gap, participants
returned to the apparatus to start the next data collection trial.

4.2 Cross-session & Cross-user Data Collection
Here we recruited 19 participants to evaluate the cross-user and
cross-session efficacy of EITPose. All participants completed a first
data collection session consisting of two back to back trials. The
participants were asked to return a week later for a second data
collection session. This week-long time window allowed for more
varied physiological changes (skin conditions such as dryness or
sweat, weight fluctuations, alterations in muscle and tissue, etc.)
to manifest in comparison to prior works [14, 41] which collect
cross-session data within the same hour. This helps us evaluate
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Figure 4: EITPose mean per-joint positional error (MPJPE) averaged over participants across time for a longitudinal session.
Filled Areas/Error bars indicate standard deviation.

the robustness of EITPose on a more varied and potentially noisier
cross-session data.

10 of the 19 participants returned for the second data collection
session. Session I consisted of two trials and Session II (collected
one week later) consisted of a single trial, resulting in a total of
three trials across the two sessions. Note, each session had a single
device initialization at the beginning, that is the device was not
taken off and re-initialized between the first two trials of Session I.
Across all 19 participants, we collected a total of 380 mins of data
(corresponding to approximately 210,000 data instances of hand
poses with corresponding EIT data).

To further investigate hand gesture recognition accuracy, an
expert annotator labelled the gestures across all trials corresponding
to certain poses and hand orientations. In total 17 hand gestures
were labeled corresponding to the 12 terminal poses (Figure 3): Fist,
Spiderman, Ok, Claw, Stretch, Point, Pinch, Close, Three point, Gun,
Six, Thumb up; and 5 additional poses: Relax, Up, Down, Left, Right
to aid in comparison with prior works [41]. These additional poses
were annotated from the start of the trial (Relax), and the different
wrist pitch (Up & Down) and yaw (Left & Right) orientations of
the Stretch hand pose. Each gesture corresponds to 10 EIT data
points per round, resulting in 1360 data points per trial (1 trial = 17
gestures × 10 data points × 8 rounds).

5 RESULTS
We designed our evaluation procedure in order to analyze and
isolate different factors that affect performance. First, we want to
investigate EITPose’s feasibility to detect continuous hand poses
throughout a continued longitudinal session across different hand
configurations and motions (Section 5.1). Further, we also want
to quantify its robustness for a single user across multiple worn
sessions (Section 5.2), and across multiple users (Section 5.3). This
helps us analyze the efficacy of our system to varied real-life con-
ditions, including changes in skin conditions, muscle tone, and

electrode placements and Body Mass Index (BMI). To evaluate pose
accuracy we compute metrics such as mean per-joint positional
error (MPJPE) between the predicted and ground truth 3D hand
pose. Table 1 provides an overview of our accuracy in comparison
to prior direct (optical) sensing and indirect (non-optical) sensing
methods. Lastly, we evaluate hand gesture recognition accuracy
(Section 5.4) to benchmark EITPose with prior works.

5.1 Within Session Performance
We conducted an investigation ofwithin session evaluation to assess
the performance of EITPose in scenarios where the user might train
or calibrate the sensor each time its worn. First, we evaluate its
performance over periods of continued use (spanning over an hour
and a half) making use of our Longitudinal data collected on 3
participants (Section 4.1) across 4 trials of a single session. For this,
we trained our hand pose regression model on Trial 1 (8 rounds,
12 terminal hand poses) and tested it on Trial 2, 3 and 4. Figure 4
shows the results averaged across all participants for each round
and trial. Over time, we do notice an increase in MPJPE, increasing
from 10.87 mm in Trial 2, to 11.45 mm for Trial 3 and subsequently
to 13.40 mm for Trial 4.

In addition to a longitudinal single session evaluation, we also
want to test the generalizability of EITPose’s within-session perfor-
mance over a wider participant pool and demographic. For this we
make use of our data collection over 19 participants (Section 4.2).
Here, we trained our pose regression model on one trial (8 rounds,
12 terminal hand poses) of session I and tested it on the other
holdout trial. This resulted in two train/test combinations from
the two trials within Session I. The averaged results across both
combinations across all 19 participants gives a MPJPE of 10.93 mm
(SD=4.69 mm). These results are broken down by hand joints in
Figure 5 (with the palm as the origin). We note that the error accu-
mulates along the hand pose kinematic chain - the average error
of the end-effectors (fingertips and thumb) is 16.82 mm. This is
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Figure 5: EITPose mean per-joint positional error (MPJPE) for hand pose estimation averaged across all participants. Error bars
indicate standard deviation.

expected as these joints exhibit higher ranges of motion and it’s
harder to indirectly sense the joints farther away from the point
of instrumentation. Further, the wrist exhibits a larger than mean
error of 16.36 mm which can be attributed to the diverse range of
pose orientations it has to contend with.

Across all 22 participants EITPose has a within-session MPJPE
of 11.06 mm. This is comparable to the performance of prior works
such as DiscoBand (depth camera based), FingerTrak (thermal cam-
era based) and EtherPose (RF based) which have a similar error
profiles of 11.69, 12.00 and 11.57 mm respectively.

5.2 Cross Session Performance
In addition to evaluating performance within a session, it is impor-
tant for a sensing system to maintain performance each time a user
wears the device, without requiring any retraining. Notably, it is
key to evaluate this not just after a training session, but some time
in the future to assess changes in placement, skin conditions and un-
derlying muscle tone among others. To assess this, we performed a
leave-one-session-out cross-validation evaluation, between session
I and session II data (captured a week apart) across the 10 partic-
ipants from our Cross-session data collection (Section 4.2). Here,
we initially trained the model on data from session I and tested it
on session II, and vice versa. The results from these evaluations
were averaged to derive the performance metrics for a single user.
This procedure was repeated for all users and results aggregated,
as illustrated in Figure 5. The average MPJPE of EITPose across
different sessions is 17.81 mm (SD=8.15). This is in line with prior
optical methods such as DiscoBand which have a cross-session
error of 17.87 mm.

5.3 Cross User Performance
In order to evaluate the "out-of-the-box" experience of EITPose,
we perform a cross-user performance evaluation across our 19 par-
ticipants from our Cross-user data collection (Section 4.2). This is
akin to a pre-configured model that is trained once with a corpus
of data but works as is, without needing any data from the target
user. To explore this aspect, we conducted a leave-one-user-out

cross-validation, wherein data from 18 participants were utilized
for training, and the 19th participant’s data was reserved for testing.
We then average the results across all users. For cross-user continu-
ous hand pose tracking, we found a MPJPE of 18.91 mm (SD=8.22),
broken down per joint in Figure 5. Akin to within-session error
profiles, the error increases as we move away from the palm, being
higher for the fingertips. The accuracy of EITPose is in line with Dis-
coBand which has an error of 19.98 mm but a power consumption
of 3.6 W while that of our system is 0.3 W.

5.4 Hand Gesture Recognition
In order to benchmark against prior hand gesture recognitionworks,
we also evaluate our systems accuracy along such lines. We make
use of our gesture annotated 19 participant data described in Sec-
tion 4.2 for evaluation. Across all 17 hand gestures, following a
leave-one-trial out cross-validation protocol, EITPose has a within-
session gesture recognition accuracy of 81.69% (SD = 8.18%). Em-
ploying a leave-one-user out cross-validation protocol, it has a
cross-user accuracy of 40.52% (SD = 11.39%) across all 17 gestures.

We also take a subset of our 17 gestures to match the 8-class
gesture set of Tomo [41], which employs EIT for hand gesture
classification. Figure 6 provides the confusion matrices of EITPose
for both within-session and cross-user evaluation protocols on
the 8-class Tomo hand gesture set. Across all 8 gestures, EITPose
has an accuracy of 93.8% and 67.3% for within-session and cross-
user evaluations, respectively. In comparison to wrist-based Tomo’s
96.6% (within-session) and 38.8% (cross-user), EITPose has a similar
within-session performance, but significantly outperforms Tomo
across users. As another comparison point, BeamBand [11] (a wrist-
worn band utilizing acoustic sensing), has a within-session accuracy
of 92.5% (vs 93.8% of EITPose) cross-user gesture accuracy of 51.7%
(vs 67.3% of EITPose) on the Tomo set.

6 OPEN SOURCE
To enable other researchers and practitioners to build upon our
work, we will make our processing pipeline, trained models, dataset
and annotations available at https://github.com/SPICExLAB/EITPose
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Figure 6: EITPose confusion matrices on Tomo[41] hand gesture set for Within-Session (left) and Cross-User (right) evaluation.

with the gracious permission of our participants. This will help fa-
cilitate replication and further exploration in the field.

7 LIMITATIONS & FUTUREWORK
While EITPose exhibits great potential as a generalizable hand pose
estimation technique, it is essential to underscore several significant
drawbacks, which, in turn, provide valuable insights into potential
areas for future research. First, there is still a significant drop in
accuracy going from within-session (11.06 mm) performance to
cross-session (17.81 mm) and cross-user (18.91 mm) performance.
This is common in optical wrist based sensing techniques as well.
We were, however, surprised to see that the error for our cross-user
evaluation only increased a little (by 6%) from our cross-session
evaluation. Thus in the future, going for a big data approach of
training a data-intensive global machine learning model and tuning
it per user might be a viable exploration to further improve accuracy.

We also note that our current sensing armband has limited spa-
tial resolution. EITPose makes use of 8 electrodes with a total of
40 sensor-pair values. EIT-kit [44] is capable of utilizing up to
64 electrodes which would substantially increase the number of
sensor-pairs to 3904 measurements and thus the spatial impedance
resolution. Works by Zhang et al. have shown a hand gesture recog-
nition accuracy improvement of 5.3% when going from a 8 to 32
electrode setup. However, this comes at a cost of sampling frame-
rate, decreasing it to 3Hz for a 32 electrode setup. In the future, this
trade-off should be evaluated, especially in this context of real-time
hand pose tracking.

Lastly, while our band has the advantage of being relatively
unaffected by environmental noises like light, heat, or occlusion
effects due to the nature of the sensing modality, the effects of other
factors like skin contact conditions and sweat may affect the EIT
signal. Furthermore, different electrode placements might result in
a completely different signal profile than one used during training.
In such scenarios, in the future, we would like to integrate the
orientation from our on-board IMU to better model how the EIT
signals shift with changes in band rotation and auto-calibrate based
on it.

8 CONCLUSION
Wehave presented EITPose, amobile and self-contained form-factor
arm band that enables continuous 3D hand pose estimation using
Electrical Impedance Tomography (EIT) to capture the interior
impedance geometry of a user’s arm. Our approach allows for a
minimally invasive (12 mm) and power-efficient (0.3 W) form factor,
showcasing the potential for integration into consumer electronic
form factors. In a user study across 22 participants, EITPose has a
within-sessionmean per joint error of 11.06 mm. Further, its camera-
less approach enables a privacy-sensitive sensing system but with
the cross-session and cross-user accuracy profiles of camera-based
wrist worn systems, thus providing the best of both worlds.
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