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Figure 1: Our co-design study comprises: a) modifed Big Paper with a structured storyboard that b) child-adult pairs use to 
frame and discuss their ideas and then c) present their teachable machines while a researcher summarizes their input. 

ABSTRACT 
Emphasizing problem formulation in AI literacy activities with chil-
dren is vital, yet we lack empirical studies on their structure and 
afordances. We propose that participatory design involving teach-
able machines facilitates problem formulation activities. To test this, 
we integrated problem reduction heuristics into storyboarding and 
invited a university-based intergenerational design team of 10 chil-
dren (ages 8-13) and 9 adults to co-design a teachable machine. We 
fnd that children draw from personal experiences when formulat-
ing AI problems; they assume voice and video capabilities, explore 
diverse machine learning approaches, and plan for error handling. 
Their ideas promote human involvement in AI, though some are 
drawn to more autonomous systems. Their designs prioritize values 
like capability, logic, helpfulness, responsibility, and obedience, and 
a preference for a comfortable life, family security, inner harmony, 
and excitement as end-states. We conclude by discussing how these 
results can inform the design of future participatory AI activities. 
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1 INTRODUCTION 
Many recognize that “the formulation of a problem is often more es-
sential than its solution” [36]. In artifcial intelligence (AI), problem 
formulation is a crucial step for developing technologies that maxi-
mize potential benefts and mitigate potential risks. Typically, prob-
lem formulation in this domain “involves determining the strate-
gic goals driving the interventions and translating those strategic 
goals into tractable machine learning problems” [10]. Several prac-
tical resources exist to aid developers in AI problem formulation 
(e.g., [6, 48]). However, recent research suggests that UX practi-
tioners, including designers and product managers, are seeking 
additional support during the early stages of ideation and problem 
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formulation in order to preempt AI product failures [109]. Given 
the rise of generative AI, problem formulation skills are being fore-
grounded as foundational, enduring, and adaptable competencies 
that “might prove to be as pivotal as learning programming lan-
guages was during the early days of computing” [4]. Thus, it is 
important that we center problem formulation in activities that aim 
to help children develop AI literacies [31, 35]. Yet, to date there are 
few empirical studies of what these activities look like and how 
they can be structured for meaningful engagement. 

In this paper, we explore the afordances of participatory 
design activities with teachable machines 1 for engaging chil-
dren in AI problem formulation. Specifcally, we hypothesize 
that teachable machines, where “the user is a willing participant 
in the adaptation process and actively provides feedback to the 
machine to guide its learning” [82], can play an essential role in 
facilitating such activities. We already see recommendations for 
incorporating teachable machines in formal educational activities 
that aim to spark curiosity and promote children’s understanding 
of how AI works (e.g., [96]). Yet, in these activities children tend to 
have little control over the problem formulation [34, 54, 100]; chil-
dren tinker with the input or output of predefned machine learning 
model (e.g., a classifer) in a predefned context (e.g., recognize ob-
jects [34, 99] or gestures [54]). These approaches are critical frst 
steps. However, we believe that by expanding the level of control 
and creativity children can exercise with teachable machines, activ-
ities can go beyond enabling children to uncover AI black boxes or 
change their perception of AI abilities [30]– their current promise. 

To illustrate our approach, we pair problem reduction heuris-
tics [72] with a structured “Big Paper” storyboarding activity [40]. 
Our modifed Big Paper is shown in Figure 1a. We then invite a 
university-based intergenerational design team of 10 children (aged 
8-13 years) and 9 adult partners to co-design their own teachable 
machines for a problem of their choice, as shown in Figure 1b. This 
storyboarding activity is situated within a larger efort to involve 
children in participatory machine learning activities that enable 
them to practice and build upon AI literacies. Our partnership with 
children involves frst focusing their attention on specifc aspects of 
the machine teaching process (e.g., similar to Dwivedi et al. [34] and 
Vartiainen et al. [100]), then gradually removing such scafolding so 
that they are equipped to tackle the broader landscape of problem 
formulation. Within the context of this study, we ask: 

RQ1: What are the key aspects characterizing children’s for-
mulated AI problems? 
RQ2: What are the most prevalent design metaphors for AI 
in children’s ideas? 
RQ3: Which personal values do children incorporate into 
their designs? 
Our study, exploratory in nature, provides empirical evidence 

on the afordances of participatory design activities with teachable 
machines for engaging children, as young as 8 years old, in AI prob-
lem formulation. We fnd that children’s formulated AI problems 
draw from their life experiences, addressing needs at home like 
security, automation, and familial support, as well as challenges at 
school such as math, safety, and social interactions. They envision 

1A term frst coined by Andreae and Andreae [8] in 1978 and resurfaced by Google 
Teachable Machine [69] in 2017. 

AI with voice capabilities and often expect constant video monitor-
ing. While some stick to supervised classifcation, others explore 
various machine learning approaches including learning by demon-
stration or unsupervised learning. Most anticipate errors and plan 
to address them through methods like adding more training data, 
retraining or, in some cases, imagining self-debugging capabilities. 

We also fnd that most of the children’s ideas encompass a re-
cent call on human-centered AI for a shift in the design metaphors 
around AI development to move away from “autonomous AI sys-
tems” towards systems that “center human capabilities and involve-
ment” [20]. Yet, the concept of intelligent agents and social robots 
who operate as teammates or with assured autonomy [90] remained 
enticing for a few of the children; this was especially the case for 
those who described their AI-infused technologies as something 
that they would not have to train. 

Last, we used the Rokeach Value Survey [85] as an analytical 
framework to examine the values refected in children’s designs. 
The Rokeach framework includes terminal values, which represent 
the ultimate end goals people strive for, while instrumental values 
refect the desirable modes of conduct that people exercise to reach 
those end goals. We found that instrumental values such as “capabil-
ity,” “logic,” “helpfulness,” and “responsibility,” were shared among 
all children as preferred modes of behavior for their machines. 
“Obedience” was also common. Less frequent were “self-control,” 
“courage,” and “cheerfulness.” Terminal values were also less present 
with “a comfortable life” being most prevalent followed by “family 
security,” “inner harmony,” and “an exciting life.” 

Our intertwined, two-fold aim of co-design with children illumi-
nates their conceptualization of, and interest in AI-infused systems 
and also promotes designers’ eforts to enhance future AI designs. 
Our work thus aims to make the following contributions: (1) a 
structured storyboarding activity for AI problem formulation; (2) 
empirical results on how children (as young as 8 years old) formu-
late AI problems; (3) new insights on prevalent AI design metaphors 
among children that engage with teachable machines; (4) empirical 
results on shared instrumental and terminal values refected in chil-
dren’s designs of AI-infused technology; and (5) novel analytical 
lenses in AI problem formulation based on Shneiderman’s design 
metaphors [90] and Rokeach’s value survey [85]. 

2 RELATED WORK 
In this section, we survey recent eforts in participatory AI and AI 
literacy learning. We explore how teachable machines are a means 
for children to practice AI literacies and to participate meaningfully 
in AI problem formulation.We close by discussing values’ frame-
works and their utility as an analytical tool for revealing values 
refected in children’s designs. 

2.1 Problem Formulation via Participatory 
Machine Learning 

There is an increasing literature in participatory machine learning 
that engages adults, those who typically have domain knowledge 
but may lack AI expertise, in the problem formulation stages e.g., [12, 
26, 83, 88]. Fewer studies focus on children. The modifed “Big Paper” 
in our work is informed by one of them, Woodward et al. [106], 
who used storyboarding with children across multiple sessions 
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and emphasized anticipating and responding to errors. A critical 
diference lie in the fact that children’s designs were constrained to 
a predefned problem space (a touchscreen handwriting game) and 
discussions around errors centered on existing technologies (voice 
assistants). While none of Woodward et al.’s [106] sessions included 
teachable machines, their fndings strengthen our belief in the 
unique opportunity for teachable machines to involve children in 
AI problem formulation. Specifcally, they found that children think 
of interactive systems in terms of “both user input and behavior 
and system output and behavior.” The input/output structure in 
teachable machines aligns well with this mental model. 

A second example comes from Vartiainen et al. [100]. Their study, 
which ran in parallel to ours, also engaged children in machine 
learning problem formulation via teachable machines. Similar to 
our work, children interacted in multiple sessions with a teach-
able machine (Google Teachable Machine [49]), then used a design 
template to imagine their own teachable applications. Small dif-
ferences between our studies lie in children’s ages (8-13 in ours 
vs. 12-13 years old in [100]) and group formation (child-adult pair 
in ours vs. teams of children in [100]). More critical diferences 
that highlight the complementary nature of these studies relate to 
design constraints and analysis approaches. For example, children’s 
designs in Vartiainen et al. [100] strictly conformed to a multi-class 
single-label classifcation problem with input being image, sound, 
or pose in a given form factor (a laptop) and interface (Google 
Teachable Machine); in our study there were no such constraints. 
In contrast to Vartiainen et al. [100], we use a design-metaphor and 
human-values lens to analyze children’s engagement in problem 
formulation. 

A more recent work from Druga et al. [29] strengthens our 
hypothesis and study design. They invited parent-child pairs to 
complete a series of activities along four sessions. Activities cor-
responded to the following AI literacies dimensions: multimodal 
situated practice, embodied situated practice, AI conceptual learn-
ing, critical framing of AI, and design future meaningful use. Simi-
lar to our study, activities for situated practice involved teachable 
machines. More so, they preceded activities corresponding to AI 
conceptual learning (e.g., “Draw What is Inside”) and design future 
meaningful use (e.g., “Design AI”) that best align with AI problem 
formulation. Even though these last activities were constrained in 
the context of smart assistants and the focus was on parents’ roles 
in helping their children develop AI literacies, the results indicate 
that they were engaging and efective. 

2.2 Engaging Children with AI via Teachable 
Machines 

Teachable machines are gaining traction in specifc contexts such as 
accessibility, and aging, where users have domain knowledge (e.g. 
access needs) but may lack expertise in AI. For instance, they enable 
users to personalize object [61, 93], sound [16, 60], speech [47]), 
and activity [65] recognition models built in their smartphones 
or smartwatches by fne-tuning them with their own data. On the 
other hand, systems like Wekinator [43] and Google’s Teachable Ma-
chine [69] are more open-ended and encourage anyone to explore 
and fne-tune a machine learning system to their own use-cases 
or creative applications like creating a musical instrument [43]. 

Upon analyzing use cases of Google’s Teachable Machine, Carney 
et al. found that it empowered educators and hobbyists, those who 
don’t have expertise in AI, by making it easier to get started with 
machine learning [19]. Thus, it is not a surprise to see researchers 
envisioning opportunities for teachable machines to increase chil-
dren’s familiarity and creativity with AI. One of the earliest studies 
was that of Dwivedi et al. [34], where children between the ages 
of 7-13 years old, used Google’s Teachable Machine [69] to explore 
machine learning concepts. Many studies followed (see [34] for a 
comprehensive analysis). Some of them e.g., Vartiainen et al. [99], 
involved even younger children, aged 3-9 years old. 

Learning activities with teachable machines are also recom-
mended by the K-12 guidelines for AI education [96]. Yet, we see few 
instances of teachable machines in repositories of formal learning 
activities designed for use in K-12 and undergraduate courses. For 
instance, our analysis of the Model AI Assignments repository2 [3], 
hosted by the Association for the Advancement of Artifcial Intelli-
gence, indicates that only 2 out of the 79 assignments incorporate 
teachable machines. This could be partially explained by the overall 
low number (9 out of 79) of assignments involving younger children 
or non computer science majors, where teachable machines could 
be most helpful. The rest require learners to read or edit code in 
e.g., Python or Java. Many are skewed toward undergraduate stu-
dents in computer science with a focus on concepts like metrics or 
path-fnding algorithms [2]. While these higher-level programming 
activities promote learning goals for computational thinking, they 
do not support much young, non-programmers’ (8-13 years old) 
eforts to explore AI problem formulation, the goal of our paper. 

The Introducing AI assignment [1], one of the two that included 
teachable machines, is the most similar to our work. After being 
introduced to computational thinking and AI literacy concepts like 
“algorithm” and “data,” children 6-9 years old construct their own 
imaginary AI device and investigate its weaknesses. Similar to our 
work, this activity empowers children to explore AI concepts and 
apply their knowledge to design their own applications. This ac-
tivity was implemented with several constraints imposed by the 
researchers: a set of predefned algorithms, sensors, and data. More-
over, children’s creations were not analyzed in terms of refected 
values or design metaphors. In contrast, we do not constrain the 
children’s ideas by system capabilities, instead we ask them to con-
sider a problem frst, identify the training data needed, and establish 
a test and error-correcting process. In addition, we gain deeper in-
sights into children’s ideas using Rokeach’s value survey [85] and 
Shneiderman’s design metaphors [90] as an analytical tool. 

2.3 Children’s Values in Design 
Technology is inherently value-laden [39, 58, 98, 101]. Computing 
research on values has largely focused on values of ethical im-
port [44, 77] such as privacy and security, as well as values of a de-
ontological or moral import [52]. While these studies are critical, re-
search on individual, material values remains sparse [42, 52, 76, 102]. 
Those that do focus on personal values largely emphasize the val-
ues of adults and researchers rather than children [63, 91, 98, 108], 

2The repository is populated annually for the past 12 years by a workshop that collects 
and structures various assignments to help instructors [79]. 
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let alone children who are from historically marginalized com-
munities. Skovbjerg et al. [91] recommend that Child-Computer 
Interaction (CCI) researchers acknowledge and discuss the embed-
ded values in systems. This is especially important for AI problem 
formulation. Some of the most important implications of a system 
can emerge during this early stage and raise profoundly difer-
ent ethical concerns, such as possible threats to fairness and civil 
rights [81]. Thus, it is critical to examine and explicitly foreground 
children’s personal values in the design of AI-infused technology, 
and technology more broadly [33, 37, 91, 94, 108]. This is increas-
ingly important as personal values play a signifcant role in the 
design process [91] and children’s value trajectories are changing 
with societal changes [108]. This may also help us attain a clearer 
understanding of what it means to align AI with human values and 
ways to go about this. 

Social psychologist Milton Rokeach defnes values as enduring 
beliefs and personal standards that guide and determine actions, 
attitudes, ideologies, judgments, justifcations, and presentations 
of self [85]. In his established value survey (RVS), Rokeach iden-
tifed 36 values: 18 instrumental values refecting preferred be-
haviors and 18 terminal values refecting preferred end-states of 
existence [37, 58, 85, 102]. Despite its rigorous validation and im-
portance in value research—having laid the foundation for other 
frameworks such as Hofstede’s Cultural Dimensions and Schwartz’s 
Value Survey (SVS)—the RVS has been seldom used in computing 
research: only in fve papers across 40 years [7, 53, 64, 78, 102] 
and once in CCI research [37]. He et al. [53] used the RVS as an 
analytical tool in broader human-centric computing literature an-
alyzing persuasive energy feedback technologies. Elsayed-Ali et 
al. [37] used the RVS in CCI literature to scafold children’s designs 
of novel technologies. Until now, however, the RVS has not been 
used as an analytical lens in CCI research; other value frameworks 
have. For example, one study examined human values in adopting 
ubiquitous technology to support attendance control service in a 
primary school using the SVS [57, 86]. Values including Benevo-
lence, Achievement, Power, Conformity, and Self-Direction were 
identifed as the values exhibited by children’s behaviors in adopt-
ing the service [57]. However, the SVS is more concerned with 
motivational goals [86] and Hofstede’s model is more concerned 
with cultural values within organizational settings [56], as opposed 
to Rokeach’s focus on individual values and guiding principles in 
life. In this study, we use the RVS as an analytical tool to examine 
the perceived values refected in children’s designs. We aim to un-
cover the values and interests children embed in their everyday 
AI systems, especially during the problem formulation phase. As 
values give expression to human needs [85], we must strive to un-
derstand the values children embed in the AI technologies they 
design to better meet their needs [37, 39, 91, 98]. 

3 METHODS 
This work is part of a larger series of co-design sessions in which we 
explored children’s conceptualizations of AI with machine teach-
ing (see Figure 2 for an overview). In our frst two sessions, we 
constrained the children’s interactions and exposure to teachable 
machines. Children tinkered with ML inputs in the frst session 
(using Google’s Teachable Machine [34]) and created personally 

meaningful outputs in the second. Specifcally, for the second ses-
sion, children visited a local museum exhibit where they trained 
their teachable machine within an augmented reality app, which 
would then display their own 3D artworks upon encountering spe-
cifc artifacts from the larger art installation. These experiences 
with similar machine learning models (3-way image classifers) 
sensitized children to specifc input/output aspects of the machine 
teaching process. Building from this grounding in machine learn-
ing models, we then invited children to imagine how they might 
incorporate teachable machines and machine teaching use cases 
into their every day lives. Our approach is aligned with established 
life-relevant learning approaches [23] that help children see the 
importance of scientifc and AI literacy practices such as problem 
formulation in daily life. 

3.1 Child and Adult Co-designers 
Our work is part of a multi-part project exploring machine teaching 
and AI literacy activities with children (see Figure 2). In this study, 
10 children aged 8-13 years old (4 girls, 6 boys) and 9 adult co-design 
partners (7 women, 2 men) participated. The frst two sessions (Fig-
ure 2) aforded all the children an opportunity to gain hands-on 
familiarity with specifc aspects of the machine teaching process; 
however, none of the children had coding experience beyond a 
handful of Hour of Code activities [24] at their schools. All person-
ally identifable data has been removed to protect the children’s 
anonymity. Children’s pseudonyms, gender, age, and race/ethnicity 
are shown in Table 1. Overall, the children’s demographics refect 
our efort to include more non-dominant youth (i.e., non-White, im-
migrant backgrounds [73]), historically underrepresented in STEM 
learning, as co-design partners in the design of new technologies. 
With regards to adult co-designers, two adults had a machine learn-
ing background (e.g., coursework and research experience) while 
others had backgrounds in human-computer interaction and edu-
cation. All adult co-designers have higher education qualifcations. 

3.2 Selection and Participation of Children 
This study’s child participants are part of a university-based partic-
ipatory design team. The children are recruited by word of mouth, 
from neighborhoods and municipalities local to the University of 
Maryland, based on family interest. Children are selected from a 
wait list, which is always open to new and prospective child mem-
bers, with a goal of balancing the children’s age ranges (typically 

Pseudonym Gender Age Race/Ethnicity 
Brian M 8 Black/African American 
Ed M 8 Asian/White biracial 
Luke M 8 Asian American 
Nancy F 8 White/Caucasian 
Ollie F 8 Asian American 
Adrian M 11 Asian/White biracial 
Alan M 11 Black/African American 
Denny F 11 Black/African American 
Penny F 11 Black/African American 
Kevin M 13 Black/African American 

Table 1: Pseudonym and demographics of the children. 
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Figure 2: Our work is part of multiple co-design sessions. In session 1, technology immersion [32], children engaged with 
Google’s Teachable Machines, trained the classifer by exerting control over the input (training examples of the objects to 
be recognized), and tested each other’s training eforts. In session 2, also a technology immersion, children engaged with a 
teachable augmented reality application in a museum. The application, developed by our team, enabled children to control 
both the input (training examples of objects in a museum exhibit) and the output (their own 3D designs that were triggered 
upon successful recognition of the object). In this study, we present results from session 3, that engaged children in AI problem 
formulation via a modifed “Big Paper” storyboarding activity. In session 3, children explored how they might formulate and 
approach a machine teaching problem of their own design, infuenced by their every day life experience. 

7-12 years old) and gender. In the case of the 13-year old for this 
particular study, the child started the academic year as a 12-year 
old and turned 13 during his year of co-designing with the team. 
The design team obtains parental consent and child assent at the 
start of each academic year, and all child participants are protected 
under university Institutional Review Board approval (#357390). 
We obtained signed parental consent and child assent, including 
audio/video recording consent. The adult researchers review partic-
ipatory design and study goals with parents and remind the child 
participants that they can stop participation at any time during the 
co-design sessions. All personally identifable data was removed to 
protect the children’s anonymity. 

3.3 Study Design & Rationale 
All co-design sessions across our study followed a Cooperative 
Inquiry-based [32] approach to understand children’s experiences 
with machine teaching and problem formulation, and each adhered 
to a similar 3-act structure [50]: 

Circle Time: A warm-up to establish context and guide discussion. 
Main Design Activity: The larger team forms smaller groups 

of child-adult co-designers (typically in adult-child pairs or 2-3 
children per adult) in a focused design activity that aims to uncover 
how children imagine emerging technologies or learn, perceive, 
appropriate, and evaluate existing designs. 

“Big Ideas” : Each group shares their design ideas in a whole 
group presentation to surface, summarize, and synthesize common 
themes and potential design requirements [41, 50]. 

Circle Time: Specifcally for the storyboarding session, all co-
designers (children and adults) answered the question, Imagine you 
are helping a friend learn to do something. As they are learning, how 
would you help them fx their mistakes? This prompt enabled the 
team to consider challenges and successes related to how people 
make mistakes and how we can help fx them. For example, Alan 
shared that he would “probably tell them what’s wrong and what’s 

right” and Penny said that she would “explain what they did wrong.” 
The team also discussed the potential for a variety of everyday 
applications of machine teaching by exploring examples from prior 
image recognition work [62]. 

Main Design Activity: The main co-design activity consisted 
primarily of a modifed “Big Paper” technique. We chose to employ 
storyboarding over other co-design techniques (such as prototyping, 
sketches only, or brainstorming with post-it notes) because our 
goal was to support children’s freedom to brainstorm in problem 
formulation, and storyboarding is a graphic visualization that can 
depict imagined user scenarios or sequences early in the design 
process [40, 51]. 

Typically, co-designers use large, blank sheets of paper for their 
“Big Paper” storyboarding. Often, however, more structured varia-
tions of storyboarding have been found to support younger chil-
dren’s ideation process and design volume [40]. For example, Comic-
boarding uses a “familiar construct, the comic” to to capture their 
ideas within comic strip panels, which has been found to increase 
the volume of children’s ideas during brainstorming [75]. 

Similarly, to scafold and surface the children’s ideas regarding 
potentially complex problem formulation, we structured the “Big 
Paper” technique to employ problem reduction heuristics [103] by 
including sections that listed key questions as explicit design con-
siderations (see Figure 1a). Specifcally, we included sections for (1) 
breaking down the machine learning process into functional units 
(e.g., inputs and outputs); (2) specifying the technology used; (3) 
imagining how it works in real life; (4) explaining how to train it; (5) 
anticipating how and when their machines might make a “mistake”; 
and, (6) ensuring their systems could recover from mistakes. 

Children constructed their storyboards in collaboration with 
adult co-designers; each child worked with an adult co-designer. In 
this study, both the children and adults took on the roles of design 
partners, meaning they were both equal stakeholders and active par-
ticipants throughout the design of the teachable machines [15, 110]. 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Utkarsh Dwivedi, Salma Elsayed-Ali, Elizabeth Bonsignore, and Hernisa Kacorri 

Additionally, there were multiple advantages to pairing children 
with adult co-designers. First, this pairing supported a more bal-
anced partnership through elaboration [15, 110], meaning children 
and adults worked collaboratively to generate and mix ideas to-
gether. Prior CCI research with children has found retrospectively 
that children appreciate and beneft from the complementary sup-
port roles that adults take on in co-design [110] to make space 
for and elaborate upon children’s ideas [74] and that the result-
ing design ideas may be more inclusive, open-ended, and nuanced 
than expected with complex topics such as privacy [67]. Second, 
adults provided children individualized attention and help with 
time management, structuring questions and childrens’ responses 
via storyboarding. Third, the adult-child pairing promoted chil-
dren’s critical refection. Adults encouraged children to engage 
in refection-in-action [87] by asking them probing questions like 
How would you test that it works? and How does it fx its mistakes?. 
Questions like Would violence or stealing be nice or good things to 
do?, aforded the group with opportunities to discuss and refect 
upon potential ethical shortcomings in the childrens’ designs. 

Big Ideas: During their “Big Ideas” presentation, (see Figure 1c), 
children elaborated upon their overarching idea and explained 
how to train, test, and tackle problems that they anticipated. One 
adult captured design ideas from each adult-child dyad on a white-
board for everyone to see [41, 51]. For most co-design approaches 
with children, particularly with the cooperative inquiry method, 
the smaller sub-groups assemble together again after the main co-
design activity to share and compare their respective creations 
(e.g., sketches, stories, or prototypes). This “Big Ideas” process can 
uncover emerging common themes, overlapping ideas, unique per-
spectives, help developers prioritize or rank requirements [41], and 
enable both children and adults to engage in critical dialogue about 
their designs [50]. For example, during “Big Ideas”, many teams 
discuss what is technically possible, what design metaphors might 
underlie a seemingly whimsical idea, or what might be feasible 
alternatives and design requirements [51]. 

3.4 Data Collection and Analysis 
We used multiple cameras to record the sessions and two researchers 
kept feld notes. Overall, our data consisted of 10 “Big Paper” story-
boards, more than 3.5 hours of video recordings, more than 1.5 hours 
of audio recordings and 3 sets of feld notes. Via a thematic analy-
sis [22] we aim to (RQ1) understand how children conceptualize, 
experience, and refect on their engagement with AI problem for-
mulation via teachable machines; (RQ2) uncover design metaphors 
for AI that are most prevalent in children’s ideas; and, (RQ3) exam-
ine and explicitly foreground children’s personal values in their AI 
designs. We selected verbatim quotes from children to support our 
fndings. Below, we outline our steps. 

Problem Formulation: Our structured storyboard was a sil-
houette of the design decisions that the children made, with a focus 
on the machine teaching process. The structured activity employs a 
series of decision strategies [103] to reduce complexity in the prob-
lem formulation phase such as factoring into subproblems (input 
and outputs); determining problem boundaries (device, use cases, 
training, testing); and examining changes (anticipating and fxing 

errors). One researcher used this lens initially to code problem for-
mulation themes in the data; then a second researcher, in discussion 
with the frst, iteratively refned the themes and sub-themes. 

Design Metaphors: Shneiderman’s [90] recent overview of 
emerging theories on human-centered AI highlights systems’ de-
sign approaches that “support human self-efcacy, promote creativ-
ity, clarify responsibility, and facilitate social participation” [97]. We 
situate our co-design eforts with children within this shift in per-
spective. Shneiderman describes how distinct design goals (science 
and innovation) “have value in thinking about design metaphors 
for future technologies” [90], with science goals favoring “more au-
tomation” and innovation goals favoring “greater human control.” 
To explore how children relate to their machines, we mapped chil-
dren’s ideas into Shneiderman’s four pairs of design metaphors: 
Intelligent Agents vs. Supertools, Teammates vs. Tele-bots, Assured 
Autonomy vs. Control Centers, and Social Robots vs. Active Appli-
ances [90]. Similar to our iterative approach to unpack how children 
approached problem formulation, one researcher initially coded 
the data for evidence across the spectrum of “more automation” 
in contrast with “human control” and then iteratively refned the 
themes in discussion with a second researcher. 

Human Values: We used the RVS [85] as an analytical frame-
work to examine the values refected in children’s designs. We 
developed an understanding of these values from past work by He 
et al. [53] who used the RVS to classify persuasive energy feedback 
technologies. Similarly, we sought to employ the RVS to analyze 
children’s values in AI problem formulation. Using Rokeach’s 36 
values (both instrumental and terminal) and their defnitions, two 
researchers found patterns in the data that supported a smaller 
subset of these values. They individually coded the data, discussed 
classifcations, resolved disagreements, and reached consensus. 

4 RESULTS 
To answer RQ1, we focus on the problem formulation aspect of chil-
dren’s designs, mainly how they describe purpose of their teachable 
machines, context, machine learning model, inputs and outputs, 
anticipated errors, and recovery from errors. For RQ2, we then inter-
pret children’s ideas from the point of view of AI design metaphors. 
Last, to answer RQ3, we examine the designs and explicitly fore-
ground the conversations for the human values they appeal to. 
We present the conversations between adults and children, inline 
quotes from children, and the corresponding storyboards (see Fig-
ure 3) to support our fndings. The block quotes specify child or 
adult, where children’s physical or non-verbal responses are within 
curly brackets and italicized, e.g., {she nods} or e.g., {points to the 
output section on the storyboard}. Any addition to complete missing 
words within the rest of the quote is denoted with square brackets 
(e.g., [the]). Apostrophes are used for inline quotes, which are also 
italicized. We highlight any part of a quote in bold. 

4.1 Children’s Problem Formulation 
Children designed the following storyboards, as presented and 
ordered in Figure 3, indicating the context that they would operate 
in as well as their input (for recognition) and output (for response). 
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Figure 3: Children’s storyboards: a) Brian’s smart-glasses based “Problem Machine” helps solve any math problem just by 
looking at it, b) Ed’s robot helps you with chores such as folding clothes, c) Luke’s “Robocalculator” can travel to you and solve 
math problems, d) Nancy’s portable food store makes food for you if you get the ingredients and tell it the recipe, e) Ollie’s 
smart light controller, “Light”, recognizes her and turns on a light when she wakes up, f) Adrian’s robot security guard, “Handy 
Helper,” keeps his younger brother in check and protects him from bullies, g) Alan’s wall-mounted emotion detection machine, 
“Mr. Crab,” responds to your emotions, h) Denny’s smart light controller, “Claude,” creates your ideal homework environment, i) 
Penny’s safety bracelet for cheerleaders alerts you if you are about to fall and blows up a mat to cushion any fall, and j) Kevin’s 
holographic smart home security system, “Holo,” alerts you of possible intruders and open windows/doors. 

a) Brian’s smart glasses-based Problem Machine is a cam-
era mounted on smart glasses that solves any math or cross-
word puzzle; “you whisper it onto the glasses and it tells you 
or pops up [the answer] on your glasses.” 

b) Ed’s robot that folds clothes helps Ed to do house chores 
like folding clothes that are on the foor based on the type 
of garment like shirts, pants, and socks. It is called “robot”. If 
it makes a mistake Ed will “make it refold everything.” 

c) Luke’s “Robocalculator” for solving math problems can 
move around, it will come to you if you name it and call for 
it. The Robocalculator can be snuck in your schoolbag and 
you can “tell it to whisper” answers to math problems. 

d) Nancy’s portable food store can ingest ingredients and 
recipes for so you can order it to make food with commands 
like “Make me spaghetti please.” 

e) Ollie’s smart light controller called “Light” can respond 
to claps close or open far away lights to help you avoid 
bumping into things at night. But, Ollie wanted “it to make 
it difcult for other people” to use it. It only works when she 
claps, which “Light” confrms by recognizing her face. 

f) Adrian’s robot security guard called “Handy Helper” is a 
personal security guard that can bellow abuses to those who 
bully Adrian and even disciple his younger brother if he’s 
being annoying. “Handy Helper” is constantly monitoring 

Adrian and “it can train itself by studying” Adrian. It also can 
help with math and homework. 

g) Alan’s wall-mounted emotion detector, “Mr. Crab,” can 
learn your emotions. It uses a camera and mic as inputs and 
can make video calls. If you are sad, it “calls [your] mom”. 

h) Denny’s smart light controller called “Claude” controls 
the lights either by recognizing your activities (e.g., lights 
ON when you do homework) or by responding to your voice 
commands (e.g., “homework time”). 

i) Penny’s safety bracelet alerts cheerleaders before they fall 
and infates a mattress to cushion their fall. It also keeps 
track of who is on the mat and “tells people to get of the mat 
so that the faller can fall on the mat.” 

j) Kevin’s home-security hologram called “Holo” is a full 
home-automation that responds to voice commands, acts 
upon alert sounds like fre alarms, and displays camera feeds 
of “who’s outside”. For example, it recognizes a specifc user’s 
voice and closes or opens doors and windows in the house. 

4.1.1 Defining Model, Inputs, and Outputs. In teachable machines, 
which fall within the broader machine teaching paradigm [112], 
problems are often formulated as supervised machine learning 
tasks; specifcally, multi-class single-label classifcation. Thus, the 
teaching signal (i.e., input) typically refers to a labeled dataset of 
examples that the teacher (e.g., a child) provides the learner (e.g., a 
classifer). Similar to Dwivedi et al. [34] and Vartiainen et al. [100], 
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the children in this study had previously been exposed to teachable 
machines that employed a single supervised classifcation model 
that mapped one type of input (e.g., images) to an output (e.g., 
GIFs or sounds). Yet, many of the children’s designs deviate from 
this machine learning example in their problem formulation. Even 
when children’s designs employed supervised classifcation, each 
of their designs often included multiple such models capturing 
diferent functionalities. For example, Penny’s machine is capable 
of both (i) early fall detection (via the sensor in the bracelet) and (ii) 
collision detection (via weight sensors in the mat detecting presence 
of others). 

Still, the concept of supervised learning appears even if the 
problem is not formulated as classifcation. Some children suggested 
that they would teach their teachable machines by “showing it” the 
correct way to do a task, a common AI problem called learning 
by demonstration [9]. Specifcally, these children’s designs match 
problems formulated as behavior cloning [46], where given limited 
data over a short time an agent can generate similar behavior. Ed’s 
robot would fold the clothes, and he would teach it how to fold a 
shirt or pants diferently from folding a sock. 

Adult: How do you train the machine to do all of this? 
Ed: By showing it. 
Adult: By showing it. So what do you need to show it? 
Ed: How to fold the clothes. 
Adult: Do you need to show it, would you show it like how 
to fold a shirt or would you show it how to fold a sock? What 
would you show it? 
Ed: How to fold all of them. 
The promise of teachable machines is that end-users can fne-

tune them by training them. However, children often assume exist-
ing capabilities in their machines without having to explicitly train 
them. This could be either because others trained them (pre-trained) 
or simply because they are “smart”; surprisingly, these assumptions 
don’t fall far away from recent discourse on foundation models even 
though the study was completed prior to the rise of ChatGPT [5] in 
the public discourse. All, except Penny and Ollie, assumed that their 
system comes equipped with built-in voice recognition, which may 
be related to their awareness of so-called intelligent agents [11] like 
“Siri” and “Alexa.” Specifcally, Kevin’s Holo could automatically 
detect people without Kevin’s instruction, Adrian’s security robot 
would “know” if he’s being bullied, Nancy’s portable food robot did 
not need a recipe just a command because it “would know how to 
make it”, and Brian’s problem machine could solve any math or 
crossword puzzle without explicit training from him (and this was 
before ChatGPT’s [5] rise in popularity.) 

We were also surprised to see a high variation among input types, 
with video being the most common. More importantly, children 
often envisioned a state of constant data collection/monitoring, 
providing a ripe opportunity for discussions around security and 
privacy in AI. For example, Adrian’s Handy Helper will always 
be monitoring Adrian and learning (unsupervised) from him and 
Kevin’s Holo will monitor his house with cameras, 

Adult: So it works with cameras in your house too? 
Kevin: Yeah. Cameras like in the kitchen and living room. 
Adult: So cameras throughout the house that it talks to. 
Kevin: Yeah. 

4.1.2 Conceptualizing Teaching Strategies. For the machine capa-
bilities that children decided to provide training examples, their 
teaching strategies diverged. Penny had a clear approach from the 
start. Each cheerleader would record their correct motion (“like 200 
or more”) by using a button on the bracelet, 

Adult: How do you train it to know the proper positions? 
Penny: You do the proper positions and like {Penny places 
her right hand on her left wrist as if she is touching a button on 
the safety bracelet} you tell it to train. 
Apart from correct motions, Penny suggested in her storyboard 

that “you could drop a dummy to train it for falls”, closely related 
to the synthetic data approach in machine learning often deployed 
when there are ethical concerns from using real data (e.g., [66]). 

The others vacillated on their machine’s specifc functions as 
well as what and how they needed to teach it. This is not a surprise, 
as problem formulation is often an iterative process. We observed 
that during this process, children would typically add to the teach-
ing signal to provide more context or discriminatory features. For 
example, Alan initially thought that Mr. Crab would recognize 
(“hunger”, “happy”, “fun”, “sad”, and “mad”) based on his voice and 
his training labels like “I am hungry”. Then, he added that physical 
signals like “jumping” could also be indicators: 

Alan: Yeah and just tell when you’re hungry by saying “I’m 
hungry!” You say it out loud ... And it would order you ... 
anything you want, or get you something from your fridge. 
At this point, he adds “saying positive words” to the storyboard 

and proceeds to explain how he would teach it, 
Alan: It can tell when you’re happy and having a good day 
or when you’re jumping and you’re excited or something like 
that...it recognizes by you saying positive words. You have to 
say it 6 times before it recognizes. 
While Penny and Ollie wanted a button or an app to label start 

and stop for recording the training moves or actions, other children 
used speech for labeling. For example, Alan prompted “I’m hungry 
now”, Denny wanted to say “Homework time!” and to start doing 
homework on the table, and Kevin wanted, “you go to each door and 
like tell it what door it is.” We suspect children’s labeling approaches 
are refective of their interactions with existing voice technologies. 

4.1.3 Anticipating Failure. All children presumed that there would 
be some pre-training done for their system which they could train 
upon with new data or scenarios (e.g., fne-tuning). Hence the most 
common error they foresaw would be the likely scenario of insuf-
fcient pre-training. For example, Alan anticipated that Mr. Crab 
would not be “properly trained”; thus, it would not be able to difer-
entiate between similar emotions like “happy” and “fun”, 

Adult: So what mistakes would it make? Do you think it will 
confuse sad with happy or? 
Alan: Probably happy and fun. They’re kind of the same. 
Adult: What else do you think would be challenging? 
Alan: Mad and sad. 
However, we observed that children anticipated errors in their 

designs that go beyond the components that they taught. For exam-
ple, when Penny discussed testing her safety bracelet with acrobatic 
moves, she anticipated that it might not alert at the right time, a 
latency challenge, in contrast to classifcation challenges such as 
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blowing up the mat too often (false positives) and not telling people 
to get of the mat (false negatives). 

Those who used voice to interact with their system (most of the 
children) brought up pairs of phrases with potential for confusion 
like “Ok cool” instead of “Ok Google” similar to existing listing of 
misrecognized wake words [25]. Indeed, one child, Kevin, explic-
itly demonstrated a wake word mistake by pulling out his phone 
and saying a wrong phrase. Kevin’s Holo, supporting personalized 
phrases and commands by the home owner, could not only misrec-
ognize some words but also mistake the identity of the person who 
uttered them, 

Kevin: Some mistakes that it can make is if it recognizes 
someone else’s voice, and to prevent that you would have to 
train it with your voice. And if you accidentally use a phrase 
like “Alarm” and let’s say your friend said “My alarm just 
randomly turned on” and after that it would start an alarm 
randomly calling 9-1-1. You don’t want that to happen! You 
would have to say like “Hey whatever the name is, do whatever.” 

4.1.4 Proposing Recovery. While children’s storyboards diverged 
among design ideas, teaching strategies and anticipated errors, they 
tend to converge when fxing errors: the majority (5) of those who 
opted to train their machines also opted to add more examples for 
any misrecognized scenario. For instance, in the case of a misrec-
ognized home owner, Kevin suggested adding more examples from 
that person’s voice much like the initial training that is done by 
existing systems (e.g., saying “Hey Google!” many times). 

Penny also said that she would add more examples but they 
would be “diferent” ones hinting at variation in training, 

Adult: So would you just keep training it [and] training it? 
Penny: No. Maybe we could add diferent things. 

Perhaps it is not surprising to see this as the most common 
strategy e.g., many children have used it with Google Teachable Ma-
chine [69]. Even adult non-experts opt for more data as a fx [107]. 

Out of all the children, only Denny and Luke would help their ma-
chines recover from errors by starting the training from scratch; in 
contrast, Brian expected his problem machine to make no mistakes 
at all as “it knows everything,” 

Adult: How would you check if the answer [to the math 
problem] was correct? 
Brian: You don’t need to check. There’s a built in calculator, 
just in case you need to check. 
Adult: You don’t think a calculator does not make a mistake? 
What if someone plugged in the wrong number? 
Brian: It’s got a built in calculator, just in case. It never makes 
a mistake, the glasses never make a mistake {for emphasis, 
Brian underlined “never” on his storyboard}. 

Like Brian, Luke and Adrian wanted their machines to solve 
math problems and never make mistakes. When we concluded 
this study in October 2022, we had yet to anticipate that Chat-
GPT would exhibit this behavior of “solving” math problems when 
released in November 2022. Children might be too impressed by 
ChatGPT, “never failing” to solve Grade 2-7 math problems, which 
could overshadow the limitations of this and other AI-infused tech-
nologies [21, 84, 104]. 

In this section, we illustrated how children can construct dif-
ferent scenarios where a machine learning system can fail. The 
following section discusses the design metaphors best describe chil-
dren’s AI-infused technologies and whether they retain oversight 
over their error-prone or never-failing machines. 

4.2 Design Metaphors Refected in Children’s 
Designs 

4.2.1 “Intelligent Agents” and “Supertools”. We consider the frst 
pair of Shneiderman’s design metaphors [90]: “Intelligent Agents” 
and “Supertools” (or “AI-infused Tools” [20]) and how they relate 
to children’s ideas. “Intelligent Agents” are capable of thinking and 
making decisions with little or no oversight while “Supertools” ofers 
a high degree of human control and automate the more repetitive 
aspects of a task. The two are often thought of in contrast as there 
is a trade-of between more automation and greater human con-
trol. Surprisingly, we did not see such contrast in many children’s 
designs; 7 of 10 children’s ideas had characteristics of “Supertools”. 
Only Adrian had aspects of “Intelligent Agents” in his idea, while 
Brian and Alan had characteristics of both “Intelligent Agents” and 
“Supertools”, particularly the automatic solving of all math problems 
and a human-level detection of emotions. 

During circle time, we showed children examples of people train-
ing a machine learning system to respond with a specifc action (e.g., 
a person hiding under bed covers to trigger an image detector to 
turn of a light). They asked insightful questions; for example, Brian 
asked “where does the camera feed go?” However, when discussing 
what their teachable machines “know” beforehand and what they 
are capable of, children’s responses refected a technology utopian 
perspective [28, 45]. Their system had some magic, or know it all 
before any training was needed. For example, Brian noted that his 
machine would know all the math answers and not need training. 
Instead, it would train and help the human (“it’s a computer! it al-
ready knows!”). Or, when Adrian, who’s idea only had the aspects 
of “Intelligent Agent” described how “Handy Helper” would be in-
dependent to take its own decisions in a particular scenario based 
on human-like emotion recognition and mind reading capabilities, 

Adrian: It can tell sort of ... tell what I am thinking so then I 
can do ... really cool stuf. If somebody bullies me on the street 
and I’m like, “I may be small BUT” then Security can read my 
mind and become un-invisible and be like “SURPRISE!”, slap. 
... 
Adult: And then it will help me respond to bullying. Only 
physically or? 
Adrian: Physically and also I can give it emotional damage 
such as “smackdown” or something. 
Adult: So verbal abuse. 
Adrian: Verbal abuse, [because] words hurt more than weap-
ons. 
Adult: So does it just reads “a bully’s” mind or other people 
you are talking to. 
Adrian: It can read any person’s mind. So if I meet anybody I 
can tell what they are thinking. 
As “Supertools”, children’s machines would control lights, call 

parents, infate mats, and open windows, all on their own, by mak-
ing appropriate inferences. All their machines (except Penny’s 
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bracelet) would also do these actions upon explicit user commands. 
The following quote from Kevin shows how he wanted “Holo” to 
automate opening doors and windows both on command and in 
response to a kitchen accident, 

Kevin: Let’s say you were cooking some eggs. And after that 
it just starts getting set on fre and smoke is going everywhere. 
And you want the window to be open. So all that bad smoke 
could go out. What you would do is that you would say “Open 
kitchen windows” or those carbon monoxide things would 
detect the smoke, like always, and it would start beeping and 
also it would open the window near it. Probably every window 
sometimes. 

Only Brian’s problem machine had characteristics of both “In-
telligent Agents” and “Supertools” because he had a superhuman 
expectation that it would never make any mistake on a math prob-
lem. Independently of how the “intelligence” came to be, Brian’s 
problem machine was there to help, a concept well aligned with the 
goals of Supertools to “amplify, augment, empower, and enhance 
humans” [90]. Like Brian’s idea, Vartiainen et al. [100] also noted 
that more than a few of the children’s ideas related to homework 
automation. They wanted a teachable machine that would “show 
mistakes or correct answers when taking a picture of homework.” 

4.2.2 “Teammates” or “Tele-bots”. When looking at children’s ideas 
under the lens of the “Teammates” and “Tele-bots” pair of design 
metaphors, we observed a shift towards the second goal. We found 
that only 1 child assumed human-human interactions in their de-
signs, where machines would be perceived as teammates, partners, 
or collaborators. For example, all children leveraging voice inter-
actions imagined them being one-sided commands rather than 
conversations, such as Denny’s smart light controller that would 
respond to her command “Homework time!” but only Adrian wanted 
his “Handy Helper” robot to tell him if the person talking to Adrian 
wants to be his friend. As he continues to describe how the robot 
can scan anyone’s mind he says, 

Adrian: It can read any person’s mind. So if I meet anybody I 
can tell what they are thinking. So if I am trying to make a 
friend. 
Adult: But what if? 
Adrian: So if they don’t want to be my friend then they just 
don’t want to be my friend because I have a super awesome 
robot that is currently reading their mind. 

“Handy Helper” ensures that Adrian’s younger brother does not 
annoy him. Much like a helping hand or a teammate, the “Handy 
Helper” warns him when “it sees me about to make a mistake it 
can tell me “Adrian don’t chase that dog around,” or like “Adrian 
don’t grab that pointy stick.” These are all responses or alerts to a 
situation. Even when Adrian asks his robot to refect on its mistakes 
and fx them, he does not imagine much of a conversation but just 
something it does automatically. 

As Tele-bots, children’s machines often provided “superhuman 
perceptual and motor support while allowing human–human team-
work to succeed” [90]. For example, Kevin’s Holo could signal “who 
is outside” his home and Penny’s bracelet would alert cheerleaders 
if they were about to fall to them and their teammates, 

Penny: For example you’re holding someone or someone is 
in the air and you can’t read it yourself you could tell it to read 
to you and it will tell you everything you are doing wrong, 
and it will also alert when someone is falling ... 

Another example is Ed’s robot, that is assumed to have motor 
actuators and grasping capabilities that let it fnd and grab the 
clothes lying around, perceive what kind of clothes are folded in 
what way and then fold the clothes. 

4.2.3 “Assured Autonomy” and “Control Centers”. When looking 
at children’s designs under the lens of the “Assured Autonomy” 
and “Control Centers” pair of design metaphors, we observe that 
children’s ideas aligned more closely to the second goal. While 
systems with “Assured Autonomy” act independently, many chil-
dren’s machines instead depend on and support human control 
and oversight (supervised autonomy) through “Control Centers” or 
Control Panels [90]. Only 2 of 10 children had aspects of “Assured 
Autonomy” and and the rest had aspects of “Control Centers.” Chil-
dren could predict the response of their machine learning system, 
maintain situation awareness, and take control of their machines at 
any time. For example, Kevin’s Holo supported supervisory control 
and situation awareness, 

Kevin: What it does is that if you wave your hand toward 
it, it pops up a hologram showing everything about your 
house. Over here, it would probably be like security cameras 
of the front door, even though there are more security cameras 
around the house, on the outside and the inside. It’s just show-
ing you the front door because that’s the main place. There 
would also be a picture of the house—like [the] holographic 
picture of your house that you could rotate around. 

In contrast, Adrian gave complete discretion to his robot, and 
Nancy expected her food machine to make any food without su-
pervision. Just put in the ingredients, and it does the rest. Adrian’s 
“Handy Helper” learn autonomously, “it can train itself by studying 
me and seeing if I make any mistakes, like continuously.” When 
the adult asked Adrian about the kind of mistakes his robot would 
make or how it could fx them, Adrian provided evidence of “As-
sured Autonomy” by highlighting an inherent issue with the concept 
of complete autonomy. 

Adrian: ... I want it have a mind of it own. Right. So do you 
know rainbow friends? 
Adult: No. 
Adrian: Okay. Rainbow friends is this roblox game. I guess 
you could just look it up. But, um, it’s like rainbow friends 
have minds of their own. I want my robot to have a mind of 
its own so I don’t have to be like “why do you learn to [do 
something]”. Because it might turn against me and I don’t like 
it. And I don’t like a 6 foot 4 like super robot shooting rocket 
launchers and stuf to hit me. 

In illustrating the tension between control and autonomy, Shnei-
derman provides the critical reason: that “operators [should] have 
a clear mental model of what will happen next,” i.e., predictable 
behavior. Adrian could use the storyboard’s structure, the questions 
on mistakes, and fxing errors to critique his idea and push back on 
any unpredictable behavior. 
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4.2.4 “Social Robots” or “Active Appliances”. When viewing chil-
dren’s designs under the lens of the “Social Robots” and “Active 
Appliances” pair of design metaphors, we fnd more evidence of the 
second design goal being prominent with some caveat. Children 
envisioned their machines as physical devices attached to a ceiling, 
placed somewhere as speakers, put on as glasses, worn as bracelets, 
or as holograms (i.e., of a house, not a humanoid), or humanoid 
like in Adrian’s case. Many could listen and respond to commands. 
Alan, Kevin, and Denny named their machines. However, even 
those with human-like names like “Claude” and “Mr. Crab” did not 
have human-like forms. While having a human-like name and being 
able to listen/speak is at some level anthropomorphism [71], these 
features are standard even in everyday devices and appliances that 
are not considered social robots (e.g. our smartphones). 

Emotion, often associated with Social Robots, is prevalent in 
children’s designs. For example, in Vartiainen et al. [100], one of the 
apps would detect your mood using facial expressions and “if you 
are feeling sad, the app will comfort you.” Woodward et al. [106] made 
a similar observation, that children wanted their intelligent user in-
terfaces to recognize their emotions and respond with appropriate 
emotion, stating that “this type of intelligence was a fundamental 
part of many of the children’s designs” [106]. We found that only two 
children, Alan and Adrian, have characteristics of social robots, par-
ticularly the ability to recognize emotions or read minds. However, 
Alan’s “Mr. Crab” or Adrian’s “Handy Helper” could only recognize 
emotions rather than express them. When Alan needed comfort, 
he wanted it to come from his mother, not “Mr. Crab”, 

Alan: . . . and you can add contacts to it 
Adult: Oh cool 
Alan: So then it can call my mom 

When presenting his idea to the larger group, he said that “Mr. 
Crab” would call his mom when he’s sad because, “when you’re 
sad, I just call my mom, basically. I just call her.” In contrast to 
Social Robots mentioned by Shneiderman, “Mr. Crab” plays the 
intermediary role and recognizes Alan’s emotional state and then 
automatically calls his mom rather than engaging Alan in a con-
versation or having synthetic fur for him to touch. 

The rest of the ideas, by 8 of 10 children, fall under “Active Ap-
pliances” with robotic characteristics like actuators in Ed’s clothes 
folding robot or treaded robots like Luke’s “Robo-calulator” would 
come to you when you called it. The most interesting characteristic 
that made children’s ideas an “Active Appliance” was how they 
would fx its mistakes. As Shneiderman points out, there is “much 
room for improvement in the frustrating designs [of Active Appli-
ances], which are often internally inconsistent, difcult to learn, 
and vary greatly across devices.” Much like our response to frustat-
ing appliances, when some people “hit the TV” or “just restart it” 
to fx it, Ollie would be annoyed if her “Light” didn’t work causing 
her to stay stuck in the dark on her bed, 

Adult: What will you do if it doesnt turn on? 
Ollie: Don’t worry even if it takes an hour to do, I’ll still fgure 
it out. I’ll be like here’s a pillow and keep on throwing things 
for an hour and sacrifce myself and go switch on the lights. 
And if it doesn’t work I’ll get so mad I’ll scream into my 
pillow. 
Adult: What do you think? What kinds of mistakes will it 

make? 
Ollie: Umm, probably not turning on the lights. That’s the 
only mistake it can do. And maybe I can just, I have a giant 
giant pillow that I’ll throw at this so this turns on. Or just a 
giant blanket. Like a double blanket. 

4.3 Values Refected in Children’s Designs 
When looking at the values represented in children’s designs, we 
group our observations following Rokeach’s framework [85], dis-
tinguishing between instrumental and terminal values. 

4.3.1 Instrumental Values in Children’s Designs. Rokeach describes 
instrumental values as preferred modes of behavior. For example, 
the value of “capability” entails competency and efciency. Of the 
18 instrumental values, the two coders agreed upon 10 instrumental 
values that were apparent in children’s designs, with the following 
4 values represented in all their designs: “capability,” “logic,” “help-
fulness,” and “responsibility.” We also found the following values 
apparent in children’s designs: “obedience" in 6 of the designs (in-
cluding all of the younger children’s designs); “cleanliness" in Kevin 
and Ed’s designs; “self-control" and “courage" in Adrian’s design; 
and “cheerfulness" in Luke’s design. Below, we provide examples 
of the 4 most frequent instrumental values in children’s designs. 

All of the children’s designs appealed to the value “capability,” 
making explicit reference to how their system might increase their 
efciency or competency, or instances where the system itself ex-
hibits efciency and competency. For example, Kevin’s Holo would 
help him close the windows and doors of his house when he is 
going to sleep or outdoors, thus helping him complete the task 
more efciently, 

Kevin: Let’s say you’re about to go to bed or go somewhere 
and you have no time to go around the house and close every 
single window because you live in a mansion. You could say 
“What is open?” Let’s say there was a window all the way 
upstairs you didn’t know about. What you would do is say 
“What is open?” and it would tell you every single door that 
is open and every single window that is open. 
All of the children’s designs refected the value “logic,” which 

Rokeach defnes as being consistent and rational. Children primarily 
touched on how they would program the logic of their classifers 
including the context, input, and outputs. For example, Penny would 
train her safety bracelet using diferent positions, 

Penny: I can train it by going to the settings. It has a setting 
where you can go to...train it that way. 
Adult: How many times did you [want] to train it to make 
sure the mat blew up if you were the one falling? 
Penny: 200 or more, I’ll train it 200 or more. 
All of the children’s designs appealed to the value “helpfulness,” 

which means working for the welfare of others. Children described 
how their teachable machines would assist them in accomplishing a 
specifc task, oftentimes explicitly using the word “help” to describe 
their machines. Adrian described his robot security guard as “a 
handy helper”. He’s a handy and he’s like a helper and he helps me 
with everything.” Similarly, Penny stated “My machine is a wearable 
sensor, like a bracelet, and it’s a bracelet for cheerleaders to help them 
stay safe.” 
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Rokeach’s value “responsibility” was refected in all of the chil-
dren’s designs and means dependability and reliability. Children 
trusted their machines would work reliably and provide the in-
tended outcomes. For example, Alan relied on his emotion detection 
machine to detect the correct emotion and respond to it accord-
ingly. Luke also relied on his Robocalculator to not make mistakes, 
“I would make this special disk and this has everything. So when some-
body ask[s] some question the disk will automatically go to its brain. 
And it’s always right and never wrong.” We see this value also in 
ability to recover from errors. For example, every night Adrians’ 
robot “will do his refection” and could learn from mistakes. 

Adrian: So I’ll explain to him patiently that it did wrong and 
it will be like “Oh okay.” And then we can, it can ask me to 
help it but if it doesn’t then it can fgure it out himself. Then 
it can debug it. 
Adult: It can debug itself? 
Adrian: Yes. But if it needs help from me then I can help him. 
The value “obedience,” was also refected in 6 of the children’s 

designs, and entails dutifulness and respect as well as user control 
over the AI-infused system. Adrian used the analogy of a dog to 
describe how his robot security guard obeys his orders: “when I 
call “Security” it will come towards me. It’s like dogs when you call 
its name it will come to you.” 

4.3.2 Terminal Values in Children’s Designs. Rokeach describes ter-
minal values as preferred end-states. For example, the value “family 
security” entails taking care of loved ones. Of the 18 terminal values, 
the two coders agreed upon 4 present in children’s designs. We 
classify children’s designs as appealing to the following terminal 
values: “family security,” “a comfortable life,” “inner harmony,” and 
“an exciting life.” While values relating to family and comfort are of 
highest priority to children [37], these values often go unacknowl-
edged in existing AI discourse and frameworks. We call explicit 
attention to these values in our analysis. Below are examples of the 
4 terminal values in children’s designs. 

The value “family security” was refected in 3 designs belonging 
to the older children. Alan’s machine called his mother when he 
felt sad; Penny’s protected her teammates; and Kevin’s safeguarded 
his home, 

Kevin: Let’s say someone was knocking on your door, right, 
and you said “Who is it?” to them but they didn’t hear you or 
you kept saying it and they’re trying to get in for some reason. 
You use the hologram so you could see who is outside using 
the cameras, and if there’s somebody there you could speak 
to them using a mic or you could see what they’re doing, or 
you could also contact 9-1-1. 
The value “a comfortable life” means a prosperous life and was 

refected in 7 designs. This value is represented in both Ollie and 
Denny’s smart light controllers intended to help them create a 
comfortable homework environment, 

Adult: For you, Claude turns of the lights. If Adult owned 
Claude, could Adult train Claude to turn on music when it’s 
homework time, or is Claude just a Denny thing that always 
turns of the lights? 
Denny: Adult could train him. 
Adult: Okay, so it could help anyone to make their homework 

environment no matter what, this is just your specifc one? 
{Denny nods} 
Alan’s teachable machine refected Rokeach’s value “inner har-

mony,” which means to have freedom from inner confict. Alan 
designed an emotion detection machine in order to identify and 
alleviate times when someone may be experiencing negative emo-
tions like sadness or anger, as well as detect and reward times when 
someone is happy or excited. 

Last, Penny’s safety bracelet appealed to Rokeach’s value, “an ex-
citing life,” alternatively defned as a stimulating, active life. Penny 
drew inspiration from her extracurricular activity cheerleading in-
volving difcult stunts and physical exertion. Penny describes how 
her teachable machine would detect cheerleader’s quick actions 
and body movements, 

Penny: It’s gonna also alert when someone is falling or like 
some quick action or movement. When someone’s falling it 
blows up the mat and tells people to get of the mat so that 
the faller can fall on the mat. 

5 DISCUSSION 
Our user study, exploratory in nature, shows both promising results 
and future research directions for teachable machines in problem 
formulation activities that aim to help children develop AI literacies. 
In this section, we frst refect on lessons learned: some ofer new 
insights, others strengthen prior empirical and anecdotal evidence. 
We also discuss implications for designing AI problem formulation 
activities and broader use of design metaphors and human values 
as analytical lenses in AI problem formulation. We then discuss 
limitations in our study that may afect both the applicability of 
our approach and the generalizability of our fndings. 

Key aspects characterizing children’s formulated AI problems (RQ1). 
We fnd that children draw from their life experiences when identi-
fying problems. In the home, their AI designs can provide security, 
control lights, automate cooking, fold clothes, discipline siblings, 
and call one’s mom for comfort. At school they solve math and 
puzzles, ensure safety in cheerleading, and bellow abuses to bullies. 
While the form factor of their designs varied, almost all assumed 
voice capabilities and many envisioned a state of constant video 
monitoring. Few restricted their designs to supervised classifca-
tion, the machine learning paradigm in the teachable machines 
they were exposed to. Some moved away from classifcation to 
other supervised machine learning approaches such as learning 
by demonstration or imagined that their machines would learn 
in an unsupervised fashion, by just following them around and 
observing them. Others presumed no learning at all; their machines 
are “smart” and they just “know”. The majority of those who chose 
to explicitly train their machines opted to provide labels via voice. 
Interesting concepts like synthetic data, discriminatory features, 
similarity, and fne-grained classifcation emerged in few of the 
designs. Most of the children anticipated errors. They were related 
to false positives, false negatives, grasping and object handling, 
force and torque control, and latency. Many of them would fx the 
errors by providing more training data, two opted to restart the 
training, and one imagined that the machine “can debug itself so 
there isn’t anything to worry about.” 
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Prevalent design metaphors for AI in children’s ideas (RQ2). We fnd 
that when children are frst asked to train a machine and then 
build their own to solve a problem of their choice, they mostly 
do not anthropomorphize their machines beyond naming them or 
giving them pronouns. Instead, children’s designs tend to align 
with proposed changes in design metaphors for AI [20, 90]; they 
moved away from intelligent agents, teammates, assured autonomy, 
and social robots. The most prevalent design metaphors refected 
in children’s ideas were supertools, tele-bots, control centers, and 
active appliances. Shneiderman suggests these same metaphors for 
designers to pursue, i.e., “successful designers avoid mimicking hu-
man models and pursue supertools, tele-bots, active appliances, and 
control centers that support human control over technology while 
ensuring high levels of automation.” Such an alignment concurs 
with what Shneiderman calls the “Innovation Goal” that “drives re-
searchers to develop widely used products and services by applying 
HCAI methods.” 

Personal values incorporated into children’s designs (RQ3). Ongoing 
discourse on human-centered AI routinely advocates for consider-
ing values such as reliability, safety, and trustworthiness in future 
AI technology. We found that children’s designs for teachable ma-
chines often refected similar values including “Responsibility,” “Ca-
pability,” and “Family Security.” Furthermore, many of the children’s 
designs refected the value “Obedience,” which draws analogy to 
Shneiderman’s [90] design metaphors that stress extending hu-
man abilities such as human control. However, we also found more 
nuance in terminal values related to security and safety. Current dis-
course around safety and security in AI tends to emphasize misuse, 
potential weaponization or ethically questionable goals e.g. hacking 
or gaming a system loophole to complete a task [17]. While the 
children’s designs mapping to the terminal goal of “family security” 
echoed these discussions, they also expanded the value space to 
consider comfort, familial connection and harmony, along with ex-
citement e.g. keeping acrobatic cheerleaders safe. These values for 
family and comfort were high priorities for children; yet nuances 
around comfort and harmony are often overlooked in existing AI 
design considerations, ethical debates, or frameworks. 

5.1 Implications 
5.1.1 Youth & AI Literacies. We provide empirical evidence on 
the afordances of participatory design activities with teachable 
machines for engaging children, as young as 8 years old, in AI 
problem formulation. We demonstrate that established co-design 
approaches [32, 40, 51] with problem reduction heuristics [72] in 
the context of teachable machines can promote children’s AI litera-
cies and support their eforts to formulate problems for AI-infused 
technologies with personal relevance in their daily lives. Despite 
their inexperience with machine learning, the children worked 
closely with adults to explore what was feasible and what was not, 
iteratively reformulating the problem space as they considered their 
machine’s specifc failure and recovery conditions. Their designs 
showcase their creativity not only in the personally meaningful 
problems they articulated, but also in how they tried to construct 
their training strategies. 

We situate our work in Long and Magerko’s [70] defnition of AI 
literacy and connect our study with several of their design consider-
ations, along with competency goals that our sessions fulfll. Since 
we based our sessions on teachable machines that don’t require 
coding and used pen and paper-based storyboarding, our sessions 
exemplify Long and Magerko’s design considerations for Low Bar-
rier to Entry. By structuring our storyboard and asking children 
questions that promote refection on their systems, we promote 
the design considerations on Critical Thinking. Finally, children 
were free to solve a problem of their choice. We found personally 
meaningful ideas like Penny’s safety bracelet for her cheerleader 
team, which refected their design consideration of Identity, Values, 
and Backgrounds. 

As AI and machine learning technology proliferate in children’s 
everyday lives, we gain more opportunities to equip them better to 
tackle overhyped claims about the infallibility of AI. To this end, our 
AI problem formulation activity fulfll many competency goals from 
Long and Magerko’s [70] work 5 that intersect with the learning 
goals laid out by Touretsky [96]. Empowering children to make a 
teachable machine ensures that they are not reduced to mere “users” 
of AI. Our work shows how children ground their ideas in the “data” 
used to train a machine. Hence, our approach to using teachable 
machines, similar to Dwivedi et al. [34] and Vartiainen et al. [100] 
followed by a structured storyboarding session can be benefcial 
in fulflling the competency goal of Learning from Data. We saw 
that the storyboard’s scafolded structure helped children refect on 
diferent aspects of their designs. In combination with recent work 
by Vartiainen et al. [100] and Hitron et al. [55], our storyboarding 
activity, which focuses on potential errors and options for error 
recovery, demonstrates how we can encourage children to refect 
critically on the utility and limits of AI in their everyday lives 
and fulfll the competency goal of AI’s Strengths and Weaknesses. 
Finally, the children design their machines and formulate the machine 
learning problems they want to solve by imagining their own AI and 
fulflling the competency goal to Imagine Future AI. 

5.1.2 Youth & AI Ethics. Gaining insight into children’s values 
has been a longstanding challenge in Child-Computer Interaction 
(CCI) [33, 37, 58, 59, 91, 94, 98], and attending to children’s val-
ues can promote critical computational action practices [95] and 
positive dispositions toward STEM. Our study demonstrates that 
when children and adults co-design together, they engage in and 
enjoy critical refection, playfully questioning the boundaries of 
privacy and AI ethics issues. For example, children asked their 
machines to cheat on math quizzes to help reduce math anxiety, 
to read others’ minds as a means for nurturing friendships and 
mitigating social anxiety, and to serve as powerful physical and 
verbal allies against bullying. These discussions indicate that story-
boarding approaches like ours may promote refexive conversations 
around the ethics of AI model development and deployment. Sim-
ilarly, Williams et al. [105] and Zhang et al. [111] showed that 
middle schoolers brought up ethics when designing their own AI 
systems that included image recognition and generation. Another 
recent example comes from Kusuma et al. [68] involving adults who 
explored ethical considerations in facial recognition for fnding rel-
atives in Civil War databases. Future researchers could extend the 
approaches from this prior work with a storyboarding session like 
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(a) Instrumental Values & Design Metaphors (b) Design Metaphors & Terminal Values 

Figure 4: These Sankey diagrams illustrate the relations between the design metaphors and human values in the children’s 
designs. Each fow line represent the strength of a link (or afnity) between the two e.g., “Active Appliances” are closer to 
Instrumental Values like “Helpfulness,” “Capability”, “Logic” and “Responsibilty”; and the Terminal Values of “A Comfortable 
Life” and “Family Security.” 

ours that includes prompts for participants to fx their systems’ 
ethical issues. We show that when grappling with technical AI 
issues related to personally meaningful topics, children can be cre-
atively involved and immersed in problem formulation and critical 
of potential ethical limits of AI. We hope that our choice of widely 
available resources and materials could encourage others to repli-
cate and expand on this work to facilitate refections on AI ethics 
and engage children from other developed or developing regions 
and across cultures. For instance, one could combine the idea of a 
pre-defned toolkit from Druga et al. [29] and our structured sto-
ryboarding activity to further ground the session within machine 
learning concepts. 

5.1.3 UX & AI Practitioners. There is an increasing need among 
practitioners for support during the early stages of ideation and 
problem formulation in order to preempt AI product failures [109] 
with relevat skills being foregrounded as foundational, enduring, 
and adaptable competencies [4]. We see how insights from this 
study could contribute to future research with this broader popula-
tion. For example, we observed that after engaging with a teachable 
machine, children would be critical of AI if asked to fnd out how 
their machines would fail, did little anthropomorphizing of their 
machines, and aligned more closely with Shneideman’s call for a 
shift in design metaphors for AI [20, 90] despite infuence by exist-
ing technologies and science fction. This observation strengthens 
fndings in prior work by Druga et al [30] of children’s increased 
awareness of the potential fallibility of AI systems, after they exper-
imented with teachable machines. However, the children’s shifts 
toward more nuanced, less techno-utopian views also lead us to 
refect whether activities with teachable machines, further enriched 
with our analytical lenses, could also be structured for meaning-
ful engagement of UX practitioners, who may not have machine 
learning expertise, in AI problem formulation. For instance, after 

interacting with teachable machines, UX practitioners could story-
board with other stakeholders imagined AI systems, map the ideas 
to Shneiderman’s design metaphors and Rokeach’s value frame-
work, refect, and iterate. Such activities would build upon prior 
value-sensitive design by Shilton [89] that established “practices 
that open new conversations about social values and encourage 
consensus around those values as design criteria” [89, p. 374]. 

Another example could be future research focusing on AI prac-
titioners. Machine learning researchers are taking AI-centric ap-
proaches to label human values, borrowing from deontological or 
moral values instead of material values [38, 80]. However, emerging 
work in value alignment of AI [52] (such that it benefts human 
society) suggests using material values to guide the “actions of 
AI agents that are preferable to other actions” because material 
values are realized through established human value frameworks 
like the Rokeach Value Survey [85]. We can understand this tension 
by highlighting the relationship between design metaphors and 
human values: the same tension exists between “Innovation Goals” 
and “Science Goals.” We intentionally use the word “lens” when 
describing problem formulation. By combining design metaphors, 
or value lenses, we gain diferent perspectives of the design space. 
We can see Figure 4 as a refection of this design space within chil-
dren’s ideas. When using design metaphors to guide the design 
robots [27], designers could use Rokeach Values to understand what 
human values it refects. For example, we see that children’s ideas 
with “Control Centers” and “Tele-bots” are related to human values 
of “Responsibility” and “Obedience.” And so if a robot is designed 
in contravention of this design space, say, as an “autonomous team-
mate” but one which fails to communicate that it is “obedient” to 
the human, we can expect such a system to fail because a user 
would not feel in control of the robot. Our work may inspire future 
research into how to weave human values into design metaphors 
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and how AI practitioners can leverage human value frameworks 
such as Rokeach’s in their optimization objectives. 

5.2 Limitations 
Our co-design study is exploratory and subjective in nature, thus it 
is not conclusive. It provides a rich set of observations and insights, 
generating hypotheses that need further investigation. For instance, 
to demonstrate the efectiveness of our storyboarding activity over 
other approaches with teachable machines, such as sketching, pro-
totyping, and brainstorming, a mixed-methods approach is needed. 
Similarly, demonstrating efectiveness on learning outcomes would 
require pre-post measurements. 

5.2.1 One-to-one child-adult ratio. First, while all participating 
children had experience training and testing a teachable machine, 
we had a one-to-one ratio of adult to children co-designers. Such a 
ratio may not be possible in other AI literacies spaces, such as in a 
formal classroom where it is likely that only one adult can facilitate. 
In addition, future studies should explore how problem formulation 
discussions unfold when there are more children than adults and 
in a formal learning context. 

5.2.2 Acknowledging child development diferences. Second, the 
children participating in this study’s problem formulation activ-
ity ranged in age from 8-13 years old, and we acknowledge child 
development diferences across this six-year time span. The small 
number of child partners (n=10), while representative of sample 
sizes in user studies in human-computer interaction [18], did not 
allow us to substantiate or unpack potential efects of child devel-
opment. However, as noted above, all the children had experience 
testing and training teachable machines (fgure 2, session 1), so they 
all had similarly grounded exposure to machine teaching concepts. 
In addition, all the older children (11-13) and only one 8-year old 
(Brian) took part in session 2 (the museum-based machine-teaching 
experience). Anecdotally, we also observed age-related patterns 
in the children’s creations: despite working more closely with the 
older children, 8-year old Brian’s fnal machine revealed similar 
values, design metaphors, and overall functionality as the other 
8-year old boys. 

5.2.3 Limited accessibility. Third, we constructed our printed sto-
ryboards and selected other session materials like videos that were 
included in presentation slides for this activity with children that 
we knew apriori would be sighted. While both the storyboard and 
the videos could be made accessible via a screen reader (e.g., convert 
the storyboard to an accessible slide and provide audio description 
for the videos), more work is needed to explore equally efective 
co-design sessions especially for mixed-abilities teams and groups. 

6 CONCLUSION 
Recent eforts in participatory machine learning [13, 14, 92] call for 
designers and researchers to carefully consider what we intend by 
“meaningful participation” and who we involve as partners in our 
design work. Our work responds to these calls by preparing children 
– those who may be the most afected by increasingly pervasive AI 
technologies – as partners in this process. The goal of this study was 
to expand the level of control and creativity children can exercise 
with teachable machines by engaging them in a specifc problem 

formulation exercise. To pursue this goal, we conducted a modifed 
storyboarding session with youth 8-13 years old. Our fndings and 
exploratory insights contribute to the design of learning activities 
that use teachable machines. Particularly, they could beneft from 
allowing children to formulate their machine learning problems, 
using children’s values to be usable and enjoyable, and showcasing 
their utility to support children’s goals. We call on future designers 
and researchers to conduct more studies that involve children as 
active agents in the design of everyday AI systems imbued with 
their values. 
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