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Figure 1: Embodied swarm robots allow a human to dynamically shape and disassemble their bodies to physically and adaptively 
interact with the local and remote environments. In the right fgure, the user on the right pushes a ball toward the other 
person’s hand with embodied swarm robots. The user can see the swarm robots projected on the table and control them in an 
embodied manner with the hand tracker attached to the table. 

ABSTRACT 
The human brain’s plasticity allows for the integration of artifcial 
body parts into the human body. Leveraging this, embodied systems 
realize intuitive interactions with the environment. We introduce a 
novel concept: embodied swarm robots. Swarm robots constitute 
a collective of robots working in harmony to achieve a common 
objective, in our case, serving as functional body parts. Embodied 
swarm robots can dynamically alter their shape, density, and the 
correspondences between body parts and individual robots. We 
contribute an investigation of the infuence on embodiment of 
swarm robot-specifc factors derived from these characteristics, 
focusing on a hand. Our paper is the frst to examine these factors 
through virtual reality (VR) and real-world robot studies to provide 
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essential design considerations and applications of embodied swarm 
robots. Through quantitative and qualitative analysis, we identifed 
a system confguration to achieve the embodiment of swarm robots. 
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1 INTRODUCTION 
The plasticity of the human brain allows it to recognize objects as 
body parts and manipulate them intuitively under certain condi-
tions. This cognitive ability has led to the development of embodied 
systems that enhance intuitive manipulation and immersion, such 
as teleoperated robotic arms or virtual avatars. These systems have 
proven invaluable; however, there remains untapped potential in 

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3613904.3642870
https://doi.org/10.1145/3613904.3642870
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613904.3642870&domain=pdf&date_stamp=2024-05-11


CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ichihashi, et al. 

fexibility, adaptability to diferent environments, and overall ro-
bustness. For example, it is difcult for conventional embodied 
systems to increase their levels of embodiment by dynamically 
changing their size to suit the individual, changing the shape to one 
suitable for a certain action, or for use on a tabletop or in an envi-
ronment with obstacles. To address these challenges, we introduce 
the concept of Embodied Swarm Robots. 

Swarm robots consist of many small robots of similar types, such 
as a school of fsh or a swarm of insects.Unlike conventional robotic 
arms, swarm robots are expected to cooperate and exert signifcant 
efects. This unique quality endows them with robustness, fexi-
bility, and scalability, enabling tasks such as navigation through 
narrow paths [56], pattern formation [1], self-assembly [45], and 
the collective transport of objects that are larger and more complex 
than themselves [33]. Thus, swarm robots have a wide range of 
applications such as environmental monitoring, space exploration, 
agriculture, emergency rescue, warehouses, industrial plants, en-
tertainment, surveillance, and maintenance [60]. 

Imagine a human body composed of swarms of robots, ofering 
unprecedented adaptability. By using swarm characteristics, indi-
viduals can dynamically shape and equip their bodies to perform 
specifc tasks and situations. For example, a human with a swarm 
body can efortlessly traverse through narrow paths accessible to 
the constituent robots of the swarm. Moreover, if some individual 
robots within a swarm are lost, the remaining individuals compen-
sate for the loss of functionality. Embodying swarm robots holds 
promise for combining intuitive and immersive interactions with 
adaptability. However, the realization of swarm robot body systems 
remains challenging because of our limited understanding of the 
conditions to support the sense of embodiment and subsequent 
system design considerations. 

Although previous studies explored the embodiment of robot 
arms and virtual avatars, the embodiment of swarm robots intro-
duces additional complexities. For example, the size, density, and 
position distribution of robots, as well as the algorithms assigning 
the robots to the positions, can infuence the levels of embodiment. 
Unlike robot arms, in which each moving link is constrained by 
joints, relative positions (i.e., position distributions) of swarm robots 
can change without geometrical constraints other than collisions, 
which gives them fexibility. Thus, when representing a hand in a 
particular posture, various position distributions are possible, such 
as placing robots at the joint positions of the hand or placing them 
such that they are equally distributed within the hand shape. In 
addition, the algorithm assigning robots to this position distribu-
tion infuences the embodiment. When moving a hand, the hand 
state (i.e., posture and position) changes dynamically. Therefore, the 
robots need to follow each hand state while constantly assigning 
themselves to the position distribution for the current hand posture. 
One possible assignment method is to statically assign a particular 
robot to a particular position on a hand, whereas another method is 
to dynamically update the assignments so that the total sum of the 
travel distances is minimized. Therefore, identifying an appropriate 
algorithm for position distribution generation and assignment to 
follow the dynamically changing body states, as well as the size 
and density of robots, is crucial for the successful embodiment of 
swarm robots. 

Similar to the many previous studies on embodiment introduced 
in section 2, this study investigated the embodiment of swarm 
robots by focusing on the hand, which is the part of the body where 
people most frequently interact with the environment. In addition, 
we focused on tabletop swarm robots because we intended to ex-
plore various everyday interactions that people have with their 
hands at a table. To evaluate the level of embodiment, we measured 
the sense of body ownership and agency [12]. The factors examined 
were robot size, density, position distribution generation algorithm, 
and assignment algorithm. VR and real-world robot experiments 
were conducted. In the VR experiment, all the aforementioned fac-
tors were explored using simulated swarm robots. This shows that 
swarm robots can be embodied and provides various insights into 
the embodiment of swarm robots with ideal swarm robot behavior. 
However, actual robots may behave diferently from those in VR 
environments. To check whether swarm robots can be embodied 
and if similar embodiment characteristics are obtained in the real 
world, a similar embodiment experiment was conducted with the 
physical swarm robots. Based on the results of the VR and real-
world experiments, we demonstrated the characteristics of swarm 
robot embodiment under ideal and actual robot behaviors, as well 
as design considerations for embodied swarm robot systems. By 
comparing these results, we discuss how the characteristics of a 
real-world system afect the embodiment of swarm robots, thereby 
providing useful information for the future design of new embodied 
swarm robot systems. Our contributions encompass: 

(1) Proposing a framework for the embodiment of swarm robots 
in the hand. 

(2) An algorithm to determine position distribution relatively 
from the hand skeleton and dynamically assign them to 
robots, as determined through a series of VR and physical 
experiments, enhanced the sense of body ownership, sense 
of agency, and overall usability compared with other condi-
tions. 

(3) Suggesting practical implementations and applications for 
embodied swarm robots that integrate these fndings. 

2 RELATED WORK 

2.1 Body Ownership and Agency 
The sense of embodiment is a fundamental product of the human 
mind. A key aspect of embodiment is the sense of body ownership. 
Body ownership is “the sense that I am the one who is undergoing an 
experience” [12]. Botvinick and Cohen [5] and others revealed that 
humans can perceive the sense of body ownership toward artif-
cial objects with synchronous visuotactile stimulation. In addition 
to synchronous visuotactile stimulation, synchronous visuomotor 
feedback also afects embodiment [57]. Synchronous visuomotor 
feedback sheds light on another key aspect of embodiment: the 
sense of agency. The sense of agency is “the sense that I am the 
one who is causing or generating an action” [12]. From the perspec-
tive of the sense of body ownership and agency, researchers have 
expanded their knowledge of various aspects of human embodi-
ment, such as its temporal [59, 62, 63, 72] and spatial [18, 22, 41, 53] 
characteristics, as well as the embodiment possibilities of artifcial 
bodies. 
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With advancements in VR technology, many scholars have ex-
plored the embodiment possibilities of various non-biological bod-
ies, including elongated [31], invisible [28], discontinued [50, 70], 
scrambled [27], re-associated [29, 30], shared [11, 13, 69], multi-
ple [44], and supernumerary [2, 20] body parts, as well as non-
corporeal objects [42], through synchronous visuomotor feedback 
using VR. These studies revealed that humans can embody not 
only their innate body parts with their original confgurations but 
also those augmented or modifed in certain ways as well as non-
corporeal objects. This knowledge can be applied in robotics to 
develop embodied robots that realize intuitive interactions, similar 
to human interactions with innate bodies. 

2.2 Robot Embodiment 
Robot embodiment has been studied for on-site and remote intu-
itive robot manipulations to interact with the environment physi-
cally. For example, Aymerich-Franch et al. examined whether non-
human–looking humanoid robot arms could be perceived as the 
user’s arms and reported that the levels of embodiment were simi-
lar between human- and non-human–looking arms [4]. Takada et 
al. showed that a single user could feel a sense of agency toward mul-
tiple robot arms while playing ping-pong with two opponents [68]. 
Most studies on virtual and robot embodiments have focused on 
body confguration similar to the human biological body. Recently, 
researchers have begun to explore the embodiment of Supernu-
merary Robotic Appendages (SRAs) or unconventional body parts, 
such as additional limbs [58, 71, 76], hands [24, 77], fngers [51, 61], 
joints [36], and tails [20]. The embodiment of an SRA or an uncon-
ventional body has the potential to augment human abilities and 
interactions with the environment, which are currently limited by 
the innate body confguration. For example, tentacle limbs ofer 
greater freedom than innate human limbs. Similarly, swarm robots 
have the potential to provide robustness, fexibility, and scalability 
to a human body that conventional humans do not possess. There-
fore, this study is the frst to investigate the embodiment of a swarm 
to realize embodied swarm robots. 

2.3 Swarm Robots in HCI 
Swarm robots operate such that many small robots of similar types 
cooperate with each other to exert signifcant efects. This unique 
property endows the devices with robustness, fexibility, and scala-
bility. In HCI, actuated objects were used as tangible user interfaces 
(TUIs) to allow users to interact with the digital world through 
physical tabletop objects [10, 48, 49, 52, 54, 65]. Zooids [34] ex-
panded these tangible interaction possibilities by introducing table-
top swarm robots and introduced the concept of Swarm User Inter-
faces (Swarm UIs). This design space has been further extended by 
developing new robots [8, 35], adding new action possibilities to 
robots [40, 45, 66, 67, 78, 79], building mixed reality system cooper-
ative with projected images [15, 16], and introducing interfaces that 
seamlessly connect the digital and physical worlds [19, 21, 38, 46]. 
Fundamental applications include sensing, visual feedback, haptic 
feedback, shape presentation, object representation, object actua-
tion, environmental adaptation, and collaborative actions. As such, 
the multi-agent nature of swarm robots has realized a fexible and 
scalable interface between the physical and digital worlds. 

This multi-agent nature makes user control of swarm robots 
challenging. Three main approaches have been adopted to control 
swarm robots: predefned, physical, and synchronized. Many previ-
ous works have used predefned control in which a certain action 
or state triggers a certain robot’s program. Kim et al. compared var-
ious human-control modalities and strategies for predefned swarm 
robot control and provided guidelines [25]. Another approach is 
to apply physical laws to robots so that users can expect and con-
trol their behavior [21, 38]. Synchronized control, where swarm 
robots act in sync with corresponding remote or virtual objects, 
is also widely used, particularly in the context of TUIs, VR, and 
physical telepresence. For example, HoloBots [19] move such that 
their positions match the positions of the corresponding robots or 
the user’s body part in the remote physical world. These methods 
enabled physical interactions with the digital or remote physical 
worlds. However, these swarm robots do not aim for embodiment or 
seek to represent human body parts. By embodying swarm robots, 
the robot user can interact with the environment more intuitively 
and precisely while maintaining the power of the swarm robots. In 
addition, the observer can understand the intentions of robot users 
more intuitively and precisely while feeling more humanness or 
afection toward the robots. In human-robot interactions, an early 
attempt to control swarms in an embodied manner using fngers 
has already been made [23]; however, the robots do not represent 
the hand well, and their embodiment and interaction opportunities 
have not been investigated. Inspired by these, this study explores 
the interaction opportunities of embodied swarm robots. 

3 FRAMEWORK FOR SWARM ROBOTS 
EMBODIMENT 

We frst introduce our framework to represent a hand with swarm 
robots in real-time. As our body moves dynamically, navigating 
a swarm of robots has dynamic destinations associated with each 
timestep rather than a single static goal. We refer to these dynamic 
destinations as subgoals that correspond to specifc timesteps. As-
suming that the hand skeleton coordinates are tracked at regular 
intervals, we defne the robot destination coordinates for each hand 
state as subgoal positions. If each robot moves to each subgoal posi-
tion instantly, we can focus on how to represent each hand state 
with subgoal positions. 

However, swarm robots often do not reach the subgoal posi-
tions before the subgoals are updated. Therefore, it is necessary 
to control swarm robots to follow the subgoal positions so that 
the robots’ movements represent the movement of the body part. 
Thus, to realize embodied motion with swarm robots, we require a 
new framework that simultaneously realizes both the proper hand 
representation and the smooth collective follow of swarm robots. 

Common steps to control swarm robots are getting a subgoal 
formation (a collection of subgoal positions), assigning the subgoal 
positions to the robots (assignment), and obtaining a path for each 
pair of robots and its subgoal position (path planning). Inspired 
by this, we took the following three steps to achieve embodied 
movements of swarm robots as shown in Figure 2: 

(1) generate a subgoal formation based on the current hand 
position and shape; 

(2) assign the generated subgoal positions to the robots; 
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Figure 2: Example of the (1) subgoal formation generation, (2) robot assignment, and (3) local path planning. 

(3) obtain local paths and move the robots accordingly to avoid 
collisions with each other and obstacles. 

3.1 Subgoal Formation Generation 
Step (1) sets the subgoal formation for the swarm robots. Ideally, 
these positions are where the robots are; hence, this step afects 
the visual representation of the hand as well as the usability and 
interaction opportunity. 

Because this step is similar to the virtual body representation, 
we took inspiration from that research. We explored abstract vir-
tual body representation approaches that are applicable to two-
dimensional representation because we applied them to tabletop 
swarm robots. Consequently, we identifed two main approaches: 
point- and silhouette-based [74]. The point-based approach repre-
sents the body with a number of points corresponding to certain 
points on the body, whereas the silhouette-based approach repre-
sents a body with a solid shape in a single color. In other words, the 
former focuses on specifc points, and the latter focuses on overall 
shapes. Based on these approaches, we designed two algorithms to 
obtain a set of subgoal positions from hand position, orientation, 
and shape, shown in Figure 3. 

3.1.1 Bone-Based Subgoal Formation Generation. Using the point-
based approach, a set of points on the hand is determined, and the 
subgoal positions are moved according to the relative positions 
and movements of those points. The set of points on the hand 
must be fxed with respect to the skeleton. Thus, the bones of the 
hand were used as references for the tracked points. Therefore, 
we refer to this as a bone-based algorithm. Because the swarm 
robots we examined only moved on the horizontal plane, the bone 
positions were projected on the horizontal plane before calculating 
the subgoal positions. For example, if the bone at the tip of the index 
fnger is set as the subgoal, the robot moves to the bone position of 

the hand projected onto a horizontal plane. The subgoal positions 
relative to the bones are predetermined (e.g., Figure 6 in our study). 

3.1.2 Silhouete-Based Subgoal Formation Generation. Using the 
silhouette-based approach, the subgoal formation should refect the 
overall shape of the hand. To achieve this, a sensed hand skin mesh 
was obtained, and its vertices were clustered based on the number 
of required subgoal positions using the k-means algorithm [43]. 
The subgoal positions were set to the vertex positions closest to 
the centroid of each cluster ensuring they remained within the 
hand outline. The centroid itself may be placed outside the hand’s 
outline, especially when clusters span multiple fngers, have gaps 
between fngers, or are around the proximal phalanges. We call this 
the silhouette-based algorithm. 

We decided to examine both bone- and silhouette-based algo-
rithms because they performed diferently during our preliminary 
testing with two-dimensional hand representations using swarm 
robots. The bone-based algorithm can ofer more predictable robot 
movements to the user than the silhouette-based algorithm because 
the subgoal positions are always fxed to certain locations of the 
hand. The silhouette-based algorithm constantly updates the sub-
goal positions on the hand. Therefore, it does not guarantee that 
the subgoal positions are on the parts the user expects. A potential 
advantage of the silhouette-based algorithm is its adaptability to 
various hand signs. For example, when the user closes their hand, 
in the bone-based algorithm, the distance between the bones when 
projected onto the horizontal plane becomes so small that the sub-
goal positions become close, and the robots may collide. However, 
in the silhouette-based algorithm, the subgoal positions are rarely 
too close to each other because clustering is conducted for that 
hand shape. 
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Figure 3: Bone- (top) and silhouette-based algorithms (bottom) to obtain subgoal formations. The bone-based algorithm obtains 
the subgoal formation based on the hand bone positions projected on the horizontal plane. The numbers in the fgure correspond 
to the bone IDs provided by the Quest 2 hand tracking. The silhouette-based algorithm classifes the vertices of the hand mesh 
projected on the horizontal plane into clusters (shown in diferent colors in the fgure) based on the number of robots. Then, 
the vertices closest to each cluster centroid become the subgoal positions. 

3.2 Subgoal Position Assignment 
Once the subgoal positions are obtained, they are assigned to the 
robots. Two assignment methods are considered: static and dynamic. 
The static method assigns a specifc subgoal position to the same 
robot. In dynamic assignment, the subgoal positions are constantly 
reassigned to realize smoother transitions from one hand shape to 
another. This problem is defned as an assignment with variable 
subgoal formation. This was attributed to the linear sum assignment 
problem [7]. This problem can be solved by using the Hungarian 
algorithm [32]. 

The bone-static algorithm will ofer more predictable robot move-
ments than the other algorithm because the same robots always 
follow the same parts of the hand owing to the fxed subgoal for-
mation and assignment. By contrast, the dynamic assignment can 
avoid potential collisions of the robots. For example, when the user 
turns the hand from facing upward to facing downward, dynamic 
assignment reassigns robots so that they do not have to fip their 
positions. 

When the subgoal positions are constantly generated, and the 
current subgoal positions cannot be mapped to the past ones (i.e., 
when the silhouette-based subgoal formation is used), the static 
assignment cannot be applied because the same subgoal position 
does not exist at the next instant. Therefore, the possible subgoal 
formation generation and assignment algorithms are: bone-static, 
bone-dynamic, and silhouette-dynamic. 

3.3 Robot Control with A Local Path Planner 
Once pairs of a robot and subgoal position are determined, path 
planning and following robot control are executed. To plan paths 
and move multiple robots to their assigned subgoal positions, the 
Reciprocal Velocity Obstacles (RVO) algorithm [73] was used. The 
RVO algorithm is an extension of the Velocity Obstacle concept, 

which ofers navigation among passively moving objects by treat-
ing them as obstacles in the velocity space. The RVO algorithm 
incorporates the assumption that other actively moving objects per-
form a similar collision avoidance behavior to the Velocity Obstacle 
and realized navigation among both passively and actively moving 
objects. More precisely, the RVO algorithm with nonholonomic 
constraints [64] was used as most of the swarm robots, including 
the tabletop swarm robots we use, are nonholonomic. 

4 EMBODIMENT EXPERIMENT IN VR 
We frst conducted a VR experiment to examine how various fac-
tors, including robot size, afect the levels of embodiment. Then, 
to validate our fndings in the real world, we conducted another 
embodiment experiment with fewer factors based on the VR results. 
This experiment aimed to determine when swarm robots give users 
a sense of body ownership and agency. Our experiment, designed 
based on prior embodiment studies, explored how specifc swarm 
robot parameters afect body ownership, agency, and task load. 
Participants interacted with virtual swarm robots, varying in size, 
density, and control algorithms. After each trial, they answered 
questionnaires evaluating the sense of body ownership, sense of 
agency, and cognitive load. 

4.1 Participants 
The experiment involved 10 participants (6 males, 4 females; aver-
age age: 24.20 ± 2.57 SD). Participants were sourced from a recruit-
ment post on social media. All participants were right-handed with 
normal or corrected vision and were unaware of the experiment’s 
purpose. Half of the participants had minimal VR experience, while 
the other half had extensive experience. Participants signed a con-
sent form regarding the experiment and were compensated with 
approximately $16 in Amazon gift cards. The ethics review board 
approved the experiment. 
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4.2 Apparatus and Setup 
The experiment program, implemented using Unity, simulates and 
visualizes swarm robots and runs on a Windows-based computer. A 
Meta Quest 2 HMD1 tracked participants’ hands and provided visual 
feedback based on the Unity visualization. Participants wore noise-
canceling headphones playing white noise to block external sounds. 
An iPad collected the post-trial questionnaire responses. In the VR, 
robots appeared on a table in front of the user as cylindrical bodies, 
a common form in HCI research [34]. The subgoal formations are 
located on the table surface, and they are not translated in the 
horizontal direction from the participant’s actual hand; i.e., there 
was no spatial discrepancy in the horizontal direction between the 
participant’s hand and the robot’s subgoal formation. 

4.3 Experiment Design 

(a)

(b) (c)

Figure 4: The VR setup for the reaching tasks (a). The purple 
area is the starting area, and the green object is the hand-
shaped reaching target. Participants were instructed to (b) 
reach the target with the specifed hand sign and (c) ft the 
swarm robots in the green area. 

We examined parameters (independent variables) specifc to 
swarm robots. The potential design parameters include robot’s 
latency, speed, acceleration, size, color, shape, density, and con-
trol algorithm. As it is not feasible to examine all the parameters, 
we focused on some of the parameters that are more unique for 
swarm robots: size, density, and control algorithm. We excluded 
latency from the examined parameters because the efect of de-
lay on embodiment is not unique to swarm robots and has been 
investigated in visual-motor synchronicity [62]. In a system with 
program-robot communication, we should consider the efect on 
embodiment owing to the sum of the delay caused by the robot’s 

1https://www.meta.com/quest/products/quest-2/ 

Rock Scissors Paper Reversed paper

Figure 5: Hand signs used in the VR embodiment experiment. 
Participants make the rock, scissors, and paper shapes with 
their right hands, palms down. For the reversed paper sign, 
the palm should face up. 

movement performance and the delay caused by this communica-
tion. The frst delay was excluded from this experiment by setting 
the robot’s wheel speed to 400 mm/s with which we did not see 
much latency in the pilot study. The second delay was excluded by 
removing the latency in the program-robot communication. 

We used a factorial design with three factors: 2 levels of the 
robot’s size, 3 levels of the density, and 3 levels of the control al-
gorithm. The independent variables examined were robot’s size 
(30 mm and 20 mm), density (sparse, medium, and dense), and sub-
goal position generation and assignment algorithm (bone-static, 
bone-dynamic, and silhouette-dynamic). All variables were within 
participants. 

The experiment was conducted in the virtual environment shown 
in Figure 4. Participants were tasked with guiding swarm robots to a 
target sheet while making specifc hand signs using their right hand. 
The targets were green hand-shaped sheets with variations shown 
in Figure 5. Participants were instructed to change their hand signs 
to the target shapes when reaching the targets. A variety of hand 
signs were provided so that participants could explore the pros and 
cons of the subgoal position generation and assignment algorithms 
in various situations. For example, the silhouette-based algorithm 
may have fewer collisions than the bone-based algorithm for the 
rock and scissors hand signs, but they may not make a big diference 
for the paper hand sign. In the preliminary testing, the static and 
dynamic subgoal assignment algorithms resulted in very diferent 
robot behaviors (i.e., the static assignment sometimes caused the 
robots to get stuck, while the dynamic assignment did not) when 
the hand was fipped over. Therefore, the reversed paper hand sign 
was also provided. 

Participants were instructed to move the swarm robots repre-
senting their right hand to the purple starting area at the beginning 
of each task by moving their right hand. Once all the robots have 
stayed in the starting area for two seconds, a green hand-shaped 
reaching target appeared either at the left-front or at the right-front 
of the starting area. Specifcally, the target appeared 300 mm to the 
rear and 173 mm to the side from the center of the starting area. 
The participants were instructed to reach for the object with the 
hand sign and to ft the robots in the target area as fast as possi-
ble. The target disappeared fve seconds after the task started. The 
participants then return their hands and robots to the starting area. 

https://www.meta.com/quest/products/quest-2/
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Table 1: Number of Robots for Each Size and Density Condi-
tion. 

Sparse Medium Dense 

20 mm 6 18 27 
30 mm 6 8 12 

Each trial consisted of eight tasks, i.e., 4 hand signs × 2 reaching 
positions. The order of the hand signs and positions was random-
ized. At the end of the eighth task, the participants were asked to 
take of the HMD with a text instruction. 

4.3.1 Robot’s Size. The robot’s size infuences the visual feedback 
of the swarm robots. Two robot size conditions were prepared: 20 
and 30 mm diameter. The bigger size was set to 30 mm using the 
size of Zooids [34], an open-source swarm robot often used in HCI 
research, as a reference. The smaller size was set to 20 mm because 
it is close to the average adult human fnger width [6]. 

30 mm

20 mm

Sparse Medium Dense

n = 6

Subgoal
positions

n = 8 n = 12

n = 6 n = 18 n = 27

Figure 6: The predetermined subgoal positions relative to the 
hand bones. The gray crosses are the subgoal positions. 

4.3.2 Robot’s Density. The robot’s density also afects the visual 
feedback of the swarm. As the density increases, the spatial reso-
lution of the visual representation increases. However, this may 
complicate the representation and make control difcult as the 
number of robots increases. Three density levels were considered: 
sparse, medium, and dense. 

We set the number of robots for each size and density condition 
based on preliminary testing. The results are summarized in Table 1. 
Through the preliminary testing of diferent densities, we concluded 
that at least six robots representing each fnger and palm were 
required to represent a hand, regardless of the robot’s size. Thus, 
we set the number of robots to six for the sparse condition for both 
the 20 mm and 30 mm robots. For the dense condition, the number 
of robots was set to twelve for 30 mm robots because that is the 
maximum number of 30 mm robots that ft in an average adult hand. 
To achieve the same density, the number of 20 mm robots was set 

to 27. In the medium condition, the number of 20 mm robots was 
set to 18, which was the average of the numbers in the sparse and 
dense conditions. For 30 mm robots, the number for the medium 
condition was set to eight to achieve the same density as the 20 mm 
robots in the medium condition. 

The subgoal positions relative to the hand bone need to be man-
ually determined. Thus, we designed the subgoal position distribu-
tions shown in Figure 6 through the following step. For the sparse 
condition, we allocated subgoal positions to all the fngertips and 
the palm. For the denser conditions, we increased the number of 
subgoal positions on the palm and distributed them around the 
palm. If there are more subgoal positions, they were allocated to 
the proximal interphalangeal joints, to the metacarpophalangeal 
joints, and then, to the palm and the wrist. 

4.3.3 Subgoal Formation Generation and Assignment Algorithm. As 
explained in subsection 3.1 and subsection 3.2, we examined three 
combinations of subgoal formation generation and assignment al-
gorithms: bone-static, bone-dynamic, and silhouette-dynamic. The 
subgoal formation generation algorithm afects not only the visual 
feedback of the swarm but also the maneuverability of the subgoal 
formation. Users using the bone-based algorithm can predict sub-
goal formation’s movements more precisely than those using the 
silhouette-based algorithm. This is because the silhouette-based 
algorithm continuously updates the correspondence between the 
hand and subgoal formation, and a certain hand movement does 
not necessarily result in the same subgoal formation’s movements. 

In addition, the assignment algorithm afects the robot’s move-
ments during hand shape transitions and hand movements. It may 
further infuence the user’s understanding of the correspondence 
between the hand and robot movements. 

4.4 Measurements 
We used a questionnaire to assess participants’ sense of body own-
ership and agency. The questions related to the sense of body own-
ership and agency in the virtual embodiment questionnaire [55] 
were modifed and used. The questionnaire consisted of eight items 
in two subsets of questions for the sense of body ownership and 
agency, as shown in Table 2. Each response was scored on a seven-
point Likert scale (1 = strongly disagree; 7 = strongly agree). The 
scores for the sense of body ownership and agency were calculated 
by taking the average of the corresponding four questions as sug-
gested by Roth et al. [55]. In addition, task load was measured using 
the NASA TLX questionnaire [14]. The pairwise comparisons of 
the factors were performed only after the frst trial. 

4.5 Procedure 
Practice trials were conducted before the experiment to reduce 
learning efects. Alcohol disinfection was performed on the experi-
mental apparatus and the hands of the experimenter and participant. 
Participants took a seat and were briefed on the experiment, proce-
dures, data handling, risks, and rights and were instructed to sign a 
consent form if they agreed. The participants put on the HMD, and 
if they had no problems with the ft, they did two practice trials 
(one with the 30 mm, sparse, and bone-dynamic settings and an-
other with the 30 mm, dense, and bone-dynamic). After the practice 
trials, the participants reviewed the questionnaires, and if they did 
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Table 2: Questionnaire used in the VR experiment. 

Subscale 

Body ownership 

Agency 

Questionnaire item 

It felt like the swarm robot was my body. 
It felt like some of the robots were my fngers. 
It felt like the swarm robots belonged to me. 
The swarm robot felt like a human hand. 

The movements of the swarm robot felt like they were my movements. 
I felt like I was controlling the movements of the swarm robot. 
I felt like I was causing the movements of the swarm robot. 
The movements of the swarm robot were in sync with my own movements. 

not understand the question, an explanation was provided by the 
experimenter. 

After the practice trials, the main experiment started. Partici-
pants wore the HMD while making the four hand signs in Figure 5 
a random order, making each hand sign twice, once toward the 
left side of the table and once toward the right side of the table. 
Then, they removed the HMD and answered the questionnaires 
on an iPad. The participants repeated the task of making the hand 
signs and questionnaire responses a total of 18 times. To control for 
learning efects, the order of the experimental conditions (robot size, 
density, and subgoal position generation and assignment algorithm) 
was randomized. To control the interference efect of arm fatigue, 
the participants were asked to ensure that they were not fatigued 
before each task. A fve-minute break was provided after the ninth 
task. After the 18th questionnaire response, the participants flled 
out a demographic questionnaire, and a semi-structured interview 
was conducted for approximately fve to ten minutes. The entire 
experiment lasted approximately 90 min. 

4.6 Results 
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Figure 7: Body ownership score obtained in the VR experi-
ment for each size, density, and subgoal formation generation 
and assignment algorithm. 

The body ownership score, agency score, and task load index 
were calculated for three factors: robot size, density, and subgoal 
formation generation and assignment algorithm. The results are 
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Figure 8: Agency score obtained in the VR experiment for 
each size, density, and subgoal formation generation and 
assignment algorithm. 
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Figure 9: Task load index obtained in the VR experiment 
for each size, density, and subgoal formation generation and 
assignment algorithm. 

shown in Figure 7, Figure 8, and Figure 9. As these were nonpara-
metric data, we performed an Aligned Rank Transform (ART) [75] 
followed by a three-factor two-way repeated-measure ANOVA with 
Holm correction for each subscale (i.e., body ownership, agency, 
and task load) to investigate the main efects and interactions. 
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4.6.1 Body Ownership. ANOVA revealed signifcant main efects 
of density (� (2, 153) = 4.00, � = .020, �2 = .05) and subgoal forma-� 
tion generation and assignment algorithm on the body ownership 
score (� (2, 153) = 15.28, � = .000, �2 = .17). There was a trend � 
toward an interaction between size and density, but no signifcant 
interaction was found between any of the factors. Therefore, using 
the Holm-corrected ART-C [9], contrast tests were performed on 
the size, density, and subgoal formation generation, and assign-
ment algorithm factors. The contrast test on the size factor revealed 
that there was no signifcant diference in body ownership score 
between 20 mm and 30 mm conditions. The sparse condition led 
to a signifcantly higher body ownership score than the dense con-
dition (� = .016, cohen’s � = 0.516). Finally, the bone-dynamic 
resulted in a signifcantly higher body ownership score than the 
other two (bone-dynamic and silhouette-dynamic: � = .000, co-
hen’s � = 1.002, bone-dynamic and bone-static: � = .033, cohen’s 
� = 0.393), and bone-static resulted in a signifcantly higher body 
ownership score than the silhouette-dynamic (� = .002, cohen’s 
� = 0.609). 

4.6.2 Agency. ANOVA revealed signifcant main efects of size 
(� (1, 153) = 5.92, � = .016, �2 = .04) and subgoal formation gener-� 
ation and assignment algorithm on the agency score (� (2, 153) = 
5.07, � = .007, �2 = .06). No signifcant interactions were observed � 
between any of the factors. Therefore, using the Holm-corrected 
ART-C, contrast tests were performed on size, density, and sub-
goal formation generation and assignment algorithm factors. The 
contrast test on the size factor showed that the 20 mm condition 
led to a signifcantly higher agency score than the 30 mm condi-
tion (� = .016, cohen’s � = 0.363). In addition, the bone-dynamic 
algorithm resulted in a signifcantly higher agency score than the 
silhouette-dynamic algorithm (� = .006, cohen’s � = 0.576). No sig-
nifcant diferences in agency score were observed for the density 
factor. 

4.6.3 Cognitive Load. The ANOVA revealed signifcant main ef-
fects of subgoal formation generation and assignment algorithm 
on cognitive load (� (2, 153) = 6.11, � = .002, �2 = .07). However, � 
a signifcant interaction between density and the algorithm was 
found (� (4, 153) = 3.03, � = .019, �2 = .07). Therefore, multiple� 
comparisons by ART-C (holm corrected) were performed. As a re-
sult, no signifcant diferences were found among all groups, but 
there was a trend toward diferences between silhouette-dynamic + 
sparse and bone-static + medium as well as bone-static + medium 
and bone-static + sparse. In addition, the diference in diferences 
test for the density–algorithm interaction showed signifcant dif-
ferences between the silhouette-dynamic - bone-static and dense – 
sparse (� = .039, cohen’s � = 1.278) as well as the silhouette-dynamic 
– bone-static and medium – sparse (� = .036, cohen’s � = 1.307). 

4.6.4 Semi-Structured Interview. During the interview at the end 
of the experiment, a few common items were reported. Nine par-
ticipants reported that the swarm robot felt like their hand at least 
once, and another participant reported that it felt like it was fol-
lowing their hand. This one participant noted that they often felt 
that the robot moved late relative to their hand, which led to the 
sensation that robots were following their hand. The other eight 
participants also noted that the swarm robots seemed slower under 

certain conditions and that increasing their speed would lead to a 
stronger embodiment. 

Seven participants noted the importance of fngertips in feel-
ing like the swarm robot as a hand. They reported that when the 
robot was positioned for each fngertip, they tended to recognize 
and move it as a hand. In addition, six stated that the hand-like 
appearance was lost when the robots collided or vibrated with each 
other, or when they moved, and when they did not ft well into the 
hand shape, coalesced around the palm, or were misaligned with 
the hand position. 

All participants also mentioned the impact of the size of the 
robot. Two stated that the larger robot felt more like a hand or that 
they felt in control, while fve stated that the smaller robots felt 
more like a hand or fngers. 

Nine participants mentioned the infuence of robot density. Eight 
stated that the lower density was more likely to cause the embodi-
ment or lead to a higher maneuverability, but three of these stated 
that the higher density was felt as a hand when the robot’s size was 
small, i.e., 20 mm. Another participant felt like swarm robots were 
the hand regardless of density. 

4.7 Discussion 
In a VR psychophysical experiment, we studied how swarm robot 
factors like size, density, and algorithm impact embodiment. We 
focused on the sense of body ownership, sense of agency, and task 
load in the experimental results. 

4.7.1 Embodiment Across Diferent Sizes of Swarm Robots. We frst 
compared the embodiment scores for each size condition with the 
neutral level (i.e., 4 point rating, which is a neutral response to the 
7-point Likert scale questionnaire) to evaluate the level of embodi-
ment. This neutral level was the null hypothesis of the tests. The 
body ownership scores were signifcantly higher than the neutral 
level for both 30 mm (� = .018, cohen’s � = 0.413) and 20 mm 
(� = .039, cohen’s � = 0.351), and the same was true for the agency 
scores (30 mm: � = .000, cohen’s � = 1.920; 20 mm: � = .000, co-
hen’s � = 2.172). The cohen’s � values for body ownership score 
indicate small to medium efect sizes, and those for agency score 
indicate large efect sizes. Thus, the questionnaire responses imply 
that the participants felt a higher level of embodiment for both 30 
mm and 20 mm robots than the neutral state in which participants 
neither deny or afrm whether they feel the robots as their body 
parts or as if they are in control of the robots. Although these alone 
do not robustly show that Swarm Body was embodied by the par-
ticipants for both conditions, they are consistent with the interview 
responses that many participants felt swarm robots like their hands 
at least once. Therefore, Swarm Body is likely to be embodied to 
some extent for both 30 mm and 20 mm robots with an appropriate 
algorithm and density. 

When comparing the size conditions, no signifcant diferences 
were found between the 20 mm and 30 mm conditions in the body 
ownership score and task load index, while the agency score was 
signifcantly higher for 20 mm than for 30 mm with a small to 
medium efect size (cohen’s � = 0.363). A possible explanation for 
this is that larger perceived movements of robots when moving 
fngers led to a higher sense of agency. The movement of a robot 
relative to its size is larger for a smaller robot. Thus, the movements 
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of the 20 mm robots could be perceived as larger than those of 
the 30 mm robots. The reported preferences for robot size also 
varied in the interviews. Therefore, the impact of robot size on the 
embodiment and the resulting cognitive load is likely to vary among 
individuals, yet smaller robots tend to provide a higher sense of 
agency. 

4.7.2 Sparse Swarm Robots Achieve A Higher Sense of Body Own-
ership. The body ownership score was signifcantly higher in the 
sparse than in the dense with a medium efect size (cohen’s � = 
0.516), suggesting that swarm robots with lower density is more 
likely to be felt as a hand. This is consistent with participants’ re-
ports that the lower density of the swarm robots felt more like 
hands. This may be due to the more frequent occurrence of colli-
sions and vibratory movements of robots, their deviations from the 
hand shape, and getting stuck around the palm in the higher density 
conditions, which reduced the sense of embodiment as described 
by the participants. Another possible reason is that the participant 
could tell which robots represent fngertips better in the sparse 
condition; i.e., it ofers a better understanding of fnger-robot cor-
respondence with a simpler representation. This might result in a 
higher sense of body ownership as discussed in subsubsection 4.7.3. 

The body ownership score for the sparse was also signifcantly 
higher than the neutral level (� = .004, cohen’s � = 0.639). The 
agency scores were signifcantly higher than the neutral level in all 
the conditions (dense: � = .000, cohen’s � = 1.676; medium: � = .000, 
cohen’s � = 1.918; sparse: � = .000, cohen’s � = 1.982), although 
there were no signifcant diferences between the conditions. As 
stated in subsubsection 4.7.1, these comparisons with the neutral 
level do not guarantee the embodiment of Swarm Body; instead, 
they support that the level of embodiment is high in the sparse. 

4.7.3 Bone-Dynamic Could Realize Higher Level of Embodiment. 
The sense of body ownership was found to be greatest for the bone-
dynamic, followed by the bone-static and silhouette-dynamic. Similar 
to the sense of body ownership, the sense of agency showed a 
tendency that the bone-dynamic results in the highest level followed 
by the bone-static, and a signifcant diference between the bone-
dynamic and silhouette-dynamic was found. Thus, it is suggested 
that the bone-dynamic algorithm results in the highest level of 
embodiment, while the silhouette-dynamic algorithm results in the 
lowest. 

The higher level of embodiment in bone-based algorithms would 
come from the robot’s ability to represent and respond to fngertip 
movements. In the interviews, participants reported that they were 
more likely to perceive the swarm robot as a hand when the robot 
responded to their fngertip movements. This suggests that the level 
of embodiment was improved when visual-motor synchronicity 
occurs even for local movements of the fngertips in addition to the 
whole hand movements. As the bone-based algorithm represents 
and responds to the participant’s fngertip movements, it could en-
hance the level of embodiment through visual-motor synchronicity 
of fngertips. 

In addition, similar to the dense condition, the lower level of 
embodiment in the static condition may be due to the collisions, 
and oscillatory movements between robots are more likely to occur 
with the static assignment. As such, the bone-dynamic is considered 

to lead to the highest level of embodiment as it allows for visual-
motor synchronization down to the fngertips while maintaining 
representation in various hand gestures and hand movements. 

5 EMBODIMENT EXPERIMENT WITH 
ROBOTS 

The VR experiment demonstrated that swarm robots could be em-
bodied, ofering insights into their ideal behavior. However, of 
course, there are diferences between the VR environment and the 
real environment, and the use of real robots may have an efect 
on the results of the experiment. Therefore, we designed a similar 
embodiment experiment with fewer factors while considering the 
VR experiment results to examine whether similar embodiment 
characteristics can be observed in real-world settings. 

5.1 Robot Implementation 
We developed custom-made swarm robots to conduct an embodi-
ment experiment in the real world. The robot design was inspired 
by Zooids [34], an open-source swarm robot platform, but the hard-
ware and software were newly designed. 
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Figure 10: Exploded view of our custom-made swarm robot. 

5.1.1 Hardware Design. The VR experiment results suggest that 
the embodiment of swarm robots occurs for both 20 mm and 30 mm 
robots and that they show similar embodiment characteristics. Also, 
owing to the limitations of currently available motor-based actua-
tors and a communication module, the robot size cannot be reduced 
to 20 mm. Therefore, we assumed that 30 mm robots could be used 
to conduct the embodiment experiment and designed our robot 
with that size. 

The hardware design is illustrated in Figure 10. The robot parts in-
clude a microcontroller unit (STM32G071KBU62 from STMicroelec-
tronics), motor drivers (DRV8837DSGR3 from Texas Instruments), 
RF module (RF2401F204 from NiceRF), motors with a 26:1 planetary 
gearbox (Pololu 23575), photodiode (PD15-22C/TR86 from Everlight 
Electronics), and a 40mAh Li-Po battery. 

2https://www.st.com/en/microcontrollers-microprocessors/stm32g071kb.html 
3https://www.ti.com/product/DRV8837/part-details/DRV8837DSGR 
4https://www.nicerf.com/item/nrf24l01-module-rf2401f20 
5https://www.pololu.com/product/2357 
6https://everlighteurope.com/ir-detectors/2374/PD1522CTR8.html 

https://www.st.com/en/microcontrollers-microprocessors/stm32g071kb.html
https://www.ti.com/product/DRV8837/part-details/DRV8837DSGR
https://www.nicerf.com/item/nrf24l01-module-rf2401f20
https://www.pololu.com/product/2357
https://everlighteurope.com/ir-detectors/2374/PD1522CTR8.html
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Figure 11: The robots communicate with the cradle through 
a 2.4 GHz ISM band wireless communication. The cradle 
communicates with the host PC with USB 2.0. 

5.1.2 Communication and Projector-based Tracking System. The 
communication between the robots and the host computer is de-
scribed in Figure 11. The methods are similar to the ones used for 
the Zooids. The robots and cradles are each equipped with an RF 
module and communicate through a 2.4GHz ISM band wireless com-
munication. A projection-based localization system used for the 
Zooids was used to track the robots. A high-speed projector (DLP 
LightCrafter 45007 from Texas Instruments) was used to project 
a sequence of gray-coded patterns onto the table; the two pho-
todiodes on the robot received the projected coded-pattern light, 
and the microcontroller of the robot decoded its pattern into posi-
tion information. Then, the robot calculated its orientation from 
the positions of two photodiodes and broadcasted its position and 
orientation information to the host computer. 

5.1.3 Simulation-Based Robot Control. The robots are controlled 
based on a simulation using the framework described in section 3. 
In particular, we employed the same simulation for the real-world 
experiment as was used in the VR experiment. Subgoal position 
generation and assignment are conducted based on tracked hand 
data, and the robot positions are given by an RVO simulation with 
nonholonomic constraints. Real robots are commanded to move to 
the current simulation robot positions every 100 ms. In this manner, 
the robots can obtain incremental subgoal positions along their 
paths. Then, the robot controls the rotation of the wheels according 
to the control law described in subsection A.1 to reach the subgoal 
position. 

5.2 Participants 
A total of 10 participants (4 males and 6 females; 28.89 ± 13.83 
(SD) years old) participated in the experiment. Participants were 
recruited through a social media post. All the participants were 
unaware of the purpose of the experiment, had normal or corrected 
vision, and were right-handed. The participants signed a consent 
form regarding the experiment and were compensated with ap-
proximately $16 on Amazon gift cards. The ethics review board 
approved this study. 

5.3 Apparatus and Setup 
Figure 12 displays the experimental setup, which is similar to the VR 
experiment. In this study, a hand tracker (Leap Motion Controller 
28 from Ultraleap) was used to track hands instead of Meta Quest 2 

7https://www.ti.com/tool/DLPLCR4500EVM 
8https://leap2.ultraleap.com/leap-motion-controller-2/ 

to create the system without an HMD. The hand tracker is located 
under the table, as shown in the Figure 12 (bottom). 

Hand tracker

Figure 12: The experiment setup of the real-world robot study. 
The participant is wearing noise-canceling headphones and 
is controlling the swarm robots on the table with their right 
hand under the table (top). The hand is tracked with the hand 
tracker located under the table (bottom). 

5.4 Experiment Design and Conditions 
This experiment was similar to the VR experiment. However, the ro-
bot size was fxed at 30 mm, followed by a 3 × 3 factorial design. The 
independent variables examined were density (sparse, medium, and 
dense) and subgoal position generation and assignment algorithm 
(bone-static, bone-dynamic, and silhouette-dynamic). All variables 
were within the subject. 

The task was similar to that in the VR experiment, which in-
volved reaching a target with a specifed hand shape. One diference 
was that in the VR experiment, the targets were positioned in the 
right and left fronts, but in the real-world experiment, the target 
position was limited to the front, and accordingly, the number of 
tasks per trial was halved to four (i.e., four hand signs). This is be-
cause the swarm robots’ battery capacity would not hold a charge 
until the end of the experiment, with eight tasks per trial. 

In addition, instead of the targets automatically (dis)appearing on 
the desk in the VR, the experimenter manually placed and removed 
the targets printed on paper on the desk. To avoid the potential 
slipping of the robots on the target paper, the task was changed 
from moving the swarm robots to ft in the target to moving the 
swarm robots to a specifed position in front of the target and 
making a specifc hand shape. 

https://www.ti.com/tool/DLPLCR4500EVM
https://leap2.ultraleap.com/leap-motion-controller-2/
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5.5 Measurements 
The same subjective measurements as those used in the VR experi-
ment (i.e., the modifed embodiment questionnaire and NASA TLX) 
were used to evaluate the sense of body ownership, sense of agency, 
and cognitive load. 

5.6 Procedure 
This procedure is similar to that used in the VR experiments. Prac-
tice trials were conducted before the experiment to reduce the learn-
ing efects. After signing the consent form, participants started the 
practice trials (one under sparse and bone-dynamic and another 
under dense and bone-dynamic). 

During the main experiment, the participants wore headphones 
with white noise and put their hands under the table to control 
the swarm robots. The participants were instructed to move the 
swarm robots representing their right hand under the table to the 
starting area at the beginning of each task. When all the robots 
returned to the starting area, the experimenter specifed a hand 
sign by posting handshapes on paper on the desk. The participants 
were instructed to move their swarm robot hand forward with a 
specifed hand sign. The hand sign sheet was removed after fve 
seconds, and the participants moved their hands back to the starting 
area. Participants repeated the reaching task and completed the 
questionnaire nine times. 

To control the interference efect of arm fatigue, the participants 
were asked to ensure that they were not fatigued prior to each task. 
A fve-minute break was provided after the ffth task. After the ninth 
questionnaire response, the participants answered a demographic 
questionnaire, and a semi-structured interview was conducted for 
approximately fve to ten minutes. The entire experiment took 
approximately one hour. 

5.7 Results 
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Figure 13: The body ownership and agency scores obtained in 
the robot experiment for each density and subgoal position 
generation and assignment algorithm. 

The body ownership score, agency score, and task load index 
were calculated for each combination of robot density and subgoal 
position generation and assignment algorithm. The hand tracker did 
not work properly and frequently lost track during the experiment 
of one of the participants, owing to the refection of its own infrared 
light at the bottom of the table. As this might have strongly afected 
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Figure 14: The NASA Task Load Index obtained in the robot 
experiment for each density and subgoal position generation 
and assignment algorithm. 

their data, we excluded them from the results and analysis. The 
results are shown in Figure 13 and Figure 14. Similar to the analysis 
of the VR experiment results, we performed an ART procedure 
followed by a three-factor, two-way repeated-measures ANOVA 
with holm correction for the body ownership score, agency score, 
and task load index. 

5.7.1 Body Ownership. ANOVA revealed a signifcant main efect 
of density (� (2, 64) = 3.31, � = .043, �2 = .09). No signifcant in-� 
teraction was found between the density and algorithm factors. 
Therefore, contrast tests were performed on the density and algo-
rithm factors using the holm-corrected ART-C. The contrast test 
on the algorithm factor showed no signifcant diferences in body 
ownership score between any of the conditions. The test on the den-
sity factor showed that the medium condition led to a signifcantly 
higher body ownership score than the sparse condition (� = .047, 
cohen’s � = 0.676). 

5.7.2 Agency. ANOVA revealed a signifcant main efect of density 
(� (2, 64) = 3.55, � = .034, �2 = .10) and a moderate main efect � 

of algorithm (� (2, 64) = 2.89, � = .063, �2 = .08). No signifcant � 
interaction was found between the density and algorithm factors. 
Therefore, contrast tests were performed on these factors using the 
holm-corrected ART-C. The contrast test on the algorithm factor 
showed no signifcant diferences in agency score between any 
of the conditions, but there was a trend that the bone-dynamic 
condition led to a higher agency score than the silhouette-dynamic 
condition (� = .068, cohen’s � = 0.635). The contrast test on the 
density factor also showed no signifcant diferences in agency score 
between any of the conditions, but there were trends that medium 
condition led to a higher agency score than the sparse condition 
(� = .052, cohen’s � = 0.665) and that the dense condition led to a 
higher agency score than the sparse condition (� = .072, cohen’s 
� = 0.583). 

5.7.3 Cognitive Load. ANOVA revealed no signifcant main ef-
fects of density and subgoal position generation and assignment 
algorithm. No signifcant interactions were observed. Therefore, 
contrast tests were performed on the density and algorithm fac-
tors using the holm-corrected ART-C. The contrast tests on these 
factors revealed no signifcant diference in the task load index 
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between sparse, medium and dense conditions, as well as between 
the bone-static, bone-dynamic, and silhouette-dynamic conditions. 

5.7.4 Semi-Structured Interview. A few common items were identi-
fed during the interview at the end of the experiment. Four partic-
ipants reported that the swarm robots felt like their hands in some 
trials, while the other fve participants, including the participant 
under the poor hand tracking condition, reported that the robots 
were following their hands rather than being their own hands. One 
of the fve participants noted that it was difcult to distinguish 
between the hand signs, making it feel like a mass following the 
hand. The other participant reported that the robots sometimes felt 
like their hand, but they were not fully convinced that it was their 
hand. Three participants mentioned that the control was intuitive 
when the robot was positioned for each fngertip. 

Eight participants mentioned the infuence of density on the 
embodiment. Six stated that the dense robots felt more like the 
hand or something they could control better; one preferred medium 
and sparse, and one preferred sparse. One of those who preferred 
the dense condition stated that the dense swarm presented a sense 
of oneness and coherence. Another participant reported that the 
swarm robots were embodied regardless of their density. 

5.8 Discussion 
To investigate the infuence of swarm robot-unique factors on em-
bodiment in real-world settings, we conducted a psychophysical ex-
periment with the real swarm robots we developed, analyzing three 
aspects: sense of body ownership, sense of agency, and cognitive 
load. The results were also compared with those of the VR embodi-
ment experiment in section 4, discussing the unique characteristics 
of the real-world system’s efect on swarm robot embodiment. 

5.8.1 Embodiment of Swarm Body with Bone-Dynamic Algorithm. 
No signifcant diference was found between any of the algorithm 
conditions. When compared with the neutral level (4 point rating 
in the 7-point Likert scale for body ownership and agency; 50 point 
rating in the 100-point NASA TLX for cognitive load), the bone-
dynamic condition resulted in signifcantly higher body ownership 
and agency scores, and a signifcantly lower cognitive load score 
than the neutral levels with large efect sizes (body ownership: 
� = .042, cohen’s � = 0.751; agency: � = .000, cohen’s � = 2.354; 
cognitive load: � = .000, cohen’s � = 1.722, where the neutral lev-
els were the null hypotheses). Thus, the questionnaire responses 
suggest that the participants felt a higher sense of embodiment 
for the bone-dynamic algorithm than the neutral state in which 
participants neither deny or afrm whether they feel the robots as 
their body parts or as if they are in control of the robots. This is con-
sistent with the VR study fnding that the bone-dynamic condition 
achieved a higher level of embodiment than neutral levels. This is 
also consistent with the interview responses from three participants 
that they could control swarm robots intuitively when the robots 
were positioned for each fngertip (i.e., bone-based algorithms). The 
interview responses further suggest that some of the participants 
felt swarm robots as they would their hands in some trials though 
we cannot tell which algorithm conditions they talk about. Overall, 
these questionnaire and interview results indicate that Swarm Body 

was possibly embodied in some trials, and if so, the embodiment 
probably occurred with the bone-dynamic algorithm. 

5.8.2 Shif in Preference toward Denser Swarm. When comparing 
the size conditions, the medium density condition resulted in a 
signifcantly higher body ownership score than the sparse condi-
tion. The medium and dense conditions tended to result in a higher 
agency score than the sparse condition. These results are consistent 
with the interview results that six out of eight participants who 
mentioned the infuence of density preferred denser conditions. 
However, these results seem to be inconsistent with the VR exper-
iment’s result that the sparse condition led to a higher sense of 
body ownership than the dense condition. There are three possi-
ble causes for this shift in preference for denser conditions in the 
real world: the increased importance of visual similarity, sense of 
accomplishment, and collisions. 

First, visual similarity may be more important than understand-
ing the correspondence between the body parts and robots in 
the embodiment in real-world settings. As discussed in subsub-
section 4.7.2 and subsubsection 4.7.3, sparse swarm robots with 
bone-based algorithms achieved a higher level of embodiment by 
ofering a better understanding of the fnger-robot correspondence 
through a simpler hand representation. However, as suggested 
in [3], the visual similarity of an object to a hand afects its level 
of embodiment. This efect might become more dominant in real-
world settings. This hypothesis was supported by the participants’ 
comments that the dense swarm had a greater sense of oneness 
and coherence and that the denser the robot, the more it felt like a 
hand shape. 

Second, the sense of agency may be infuenced by the expected 
amount of efort required to move the object to be embodied. Four 
participants reported a stronger feeling of controlling the robots 
and a stronger sense of accomplishment in the dense condition. 

Third, real-world systems have more collisions between robots, 
which might have reduced the level of embodiment in the sparse 
condition. As discussed in subsubsection 4.7.2, the lack of collisions 
likely contributed to the high level of embodiment in the sparse 
condition in the VR study. Real-world systems cause more collisions 
owing to the robot position errors between the simulation and the 
real world. As a result, our real-world system had collisions even 
in the sparse condition, which potentially decreased the level of 
embodiment. It is also important to note that some robots turned of 
when they were stuck during the real-world study. This is because 
our control program turns of a robot when the torque applied on 
its motors exceeds a certain threshold to protect the motors. When 
that happened, the experimenter quickly turned them on, but this 
could afect the study results. 

Thus, the participants’ preferences shifted toward denser swarm 
robots, and the levels of embodiment in the dense and medium 
conditions were relatively higher in the real-world study. And the 
shift was possibly caused by the increased importance of visual 
similarity, a sense of accomplishment, and collisions. This fnding 
is somewhat limited by the fact that the preference shift might 
come from increased collisions which is partly dependent on our 
implementation. However, as most real-world swarm robots have 
more collisions than their simulations, our fnding is valuable for 
designing real-world embodied swarm robots though the degree 
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of this shift may vary. In addition, several consistent trends were 
observed throughout the VR and real-world experiments. For exam-
ple, higher embodiment levels were reported when the robots were 
located at the fngertips, and a lower cognitive load was measured 
in the sparse condition. 

6 APPLICATIONS 
Swarm Body expands the design space of tangible and embodied 
interaction, ofering unique characteristics such as robustness, fex-
ibility, and scalability to the human body. The components can 
move without geometrical constraints other than collision with 
each other. Additionally, although the current implementation re-
quires a projector, the robot itself is not anchored to a specifc 
environment; thus, our system is versatile and can be used in a 
variety of locations, including ordinary desks. 

The main application of Swarm Body is physical telepresence, 
where embodied swarm robots facilitate physical interaction with 
remote people and environments, as shown in Figure 1 (right). The 
operator can control Swarm Body projected on their table as if 
manipulating their own hands. The other person can physically 
interact with the operator through Swarm Body. 

Our physical telepresence system is inspired by Physical Telep-
resence Workspace by Leithinger et al. [37], particularly in the 
physical representation of the user’s hand using hand sensing and 
spatially-aligned visual feedback. Our work extends their inter-
action capabilities through swarm robots characteristics, such as 
swarm splits, mergers, transfers, and obstacle avoidances. Below, 
we outline scenarios that showcase new interaction opportunities 
in physical telepresence enabled by the characteristics of swarm 
robots. 

6.1 Multipliable Body 
Swarm Body can split from a single swarm into multiple swarms, 
each representing diferent body parts, and then merge back into a 
single swarm. These splits and mergers allow the user to adjust the 
number of independent swarms and the number of robots consti-
tuting each swarm as shown in Figure 15. This enables the user to 
seamlessly switch between one- and two-handed telepresence in a 
single interface. For example, when organizing a desktop remotely, 
the user can employ both hands to efciently collect objects and 
then marge the robots to the dominant hand for precise organi-
zation. The user can duplicate one hand into two, enabling the 
performance of two similar tasks simultaneously through paral-
lel embodiment as in [68]. Additionally, unlike existing embodied 
robots that require one system for each user, Swarm Body supports 
multiple users manipulating the robots through a single interface. 
For example, while one remote user engages in an activity such as 
rolling a ball with a local person, another remote user can allocate 
half of the robots to form a new hand and participate. 

6.2 Form-Giving to Transformable Body 
The malleability of Swarm Body enables the transformation of the 
swarm into various body parts of diferent sizes and unconventional 
forms (e.g., a small hand, elongated fngers, and a tentacle-like limb) 
(Figure 16). This transformation provides enhanced interaction 
freedom while preserving embodiment features, such as intuitive 

Remote user

Swarm Body

SplitMerge

One-handed
operation

Two-handed
operation

Figure 15: The remote user initially uses all the robots with 
their right hand (left). Then, they split them into two to use 
both of their hands (right). 

swarm manipulation. For example, one can experience the afor-
dance of objects from a child’s perspective by interacting with 
them using Swarm Body, which simulates a smaller hand, as in [47]. 
Swarm Body can extend its fngers or transform them into tentacle 
shapes to reach and grasp objects at a distance or in narrow gaps. 
Similar to how pixels on a screen represent a range of embodied 
avatars, Swarm Body physically embodies diverse avatars through 
its ability to transform. 

Small hand

Scale: 0.8
Robot num: 6

Scale: 1.4
Robot num: 8

Scale: 2.0
Robot num: 12

Medium hand Large hand

Figure 16: Swarm Body represents hands at various scales, 
allowing the user to experience diferent afordances of the 
environment. 

6.3 Adaptability to the Environment 
Swarm Body adapts to its environment by avoiding obstacles, re-
sizing, or transforming itself as needed. As shown in Figure 17, our 
control method introduced in section 3 enables the swarm robots to 
not only mimic the body movements but also avoid obstacles. In a 
tabletop environment with obstacles, the user can interact with the 
environment without the need to intentionally avoid the obstacles. 
For example, when picking up a pen on the other side of a mug, 
the user can reach for it as if the mug did not exist. We believe that 
Swarm Body could develop into a system that seamlessly adapts 
to various settings, easing interactions even in cluttered spaces 
giving it the potential to eliminate physical barriers in interactions, 
enabling smoother engagements than what our own bodies can 
typically achieve. 

6.4 Emotional Haptic Notifcation 
Swarm Body allows the user to exert horizontal forces on remote 
objects or individuals in an embodied manner. This further expands 
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Obstacles

Figure 17: Swarm Body moves from left to right while passing 
through obstacles. 

the design space of physical telepresence with vertical actuation 
previously explored by Leithinger et al. [37]. Its embodiment aspect 
can also introduce intuitive and afective interactions, taking advan-
tage of swarm characteristics in swarm user interface (SUI). Swarm 
Body achieves haptic communication by touching people Figure 18. 
Specifcally, they can naturally get a person’s attention or express 
emotions to an intimate partner with various forces and touch. For 
example, by gently tapping a person’s arm engrossed in desk work, 
the robot can capture the person’s attention and initiate communi-
cation. Although previous studies have explored haptic feedback 
using swarm robots [26], our system enables haptic feedback with 
the embodiment of the user. Thus, Swarm Body has the potential 
to haptically mediate the emotions and intentions of the user to the 
notifed person. 

Figure 18: The Swarm Body user lightly taps the person with 
the fnger to casually draw the person’s attention. 

6.5 Gesture Presentation 
Another interaction modality of Swarm Body is vision. When em-
bodied as hands, swarm robots can communicate through gestures 
with a physical presence in remote environments, as illustrated 
in Figure 19. A remote individual can utilize physical gestures dur-
ing their online presentations to boost engagement. In a remote 
collaboration scenario, a remote user can point to specifc objects 
or convey simple reactions. For example, a remote craft instructor 
can point to the tools the students need to use at each step, direct 
their hand movements, and send a physical thumbs-up reaction 
upon task completion. 

7 LIMITATIONS AND FUTURE WORK 
Our study did not comprehensively investigate the embodiment 
characteristics of swarm robots and their applications. 

Figure 19: Swarm Body conveying the user’s gestures. The 
user pointed at the black pen (left), then is now pointing at 
the pink pen (right). 

7.1 More Extensive Investigation on Design 
Parameters 

Our investigation focused on a subset of the factor levels that should 
be examined to understand the embodiment of swarm robots on the 
hand. Therefore, further studies should explore other possible factor 
levels. For example, it is possible to investigate the embodiment 
characteristics of robots smaller than 20 mm in size or under even 
denser conditions than the ����� condition in the current work. 
Studies in VR on these conditions may show how much embodiment 
is possible in theory. The obtained level of embodiment for this 
theoretical condition will be a baseline when evaluating real-world 
systems. 

We did not examine some design parameters and complex con-
ditions to make the experiments feasible. Future research should 
explore various parameters including the robot’s latency, speed, 
acceleration, color, and shape. Additionally, dynamic changes of the 
parameters seem to be promising approaches. For example, applying 
the bone-based algorithm to the fngertips and a silhouette-based 
algorithm to the other parts of the hand could integrate the advan-
tages highlighted in our discussion. Also, robots in a swarm can 
have diferent sizes, shapes, densities, and functions and change 
them dynamically as Li et al. demonstrated [39]. Therefore, further 
investigation on the embodiment characteristics and applications 
of such swarm robots and algorithms is expected. 

7.2 Recognition as a Body Part by an External 
Observer 

While we revealed the embodiment characteristics of swarm robots 
for the operator, we did not investigate whether an external ob-
server could recognized the robots as someone’s body parts. In our 
preliminary testing, an observer was able to diferentiate hand signs, 
although they were aware that the robots were representing a hand 
in advance. Since visual feedback is the only information source 
for an observer, a silhouette-based subgoal generation algorithm, 
which reduced the embodiment level for the operator in our study, 
might enhance their recognition of the robots as a hand. Further 
study on how an external observer recognizes the swarm robots is 
expected. 

7.3 Beyond Tabletop Robots and Embodiment 
of the Hand 

Swarm robots moving in 3D space, such as swarm drones, should 
be explored. Although some of our methods and fndings will be 



CHI ’24, May 11–16, 2024, Honolulu, HI, USA Ichihashi, et al. 

applicable to them, swarm robots moving in a 3D space have unique 
design parameters (e.g., subgoal positions on the skin surface only 
vs. those on the entire volume, including the interior of the hand). 
This exploration also provides insight into how dimensional match-
ing of the user’s hand movements to the robot’s subgoal formation 
afects a level of embodiment. If 3D formations give a higher level 
of embodiment, then restricting the user’s hand movements to 
the 2D plane (i.e., avoiding supinations and pronations) may also 
improve the level of embodiment in our 2D system. In addition, 
their 3D formation and movements will open up a further interac-
tion design space. For example, embodied 3D swarm robots could 
pick up objects or enter space that is not accessible for wheeled 
swarm robots. Note that the projection-based robot localization 
method used in our study could be adapted to estimate the position 
and orientation of such swarm robots in 3D space [17]. These can 
be determined by solving the Perspective-n-Point problem, which 
involves considering the sensors mounted on the robots as points. 

The lack of investigation on body parts besides hands also limits 
this study. We focused on hands as they are the most commonly 
used body parts for interaction with the environment. Although we 
revealed the embodiment characteristics of swarm robots for the 
hand, it remains unclear if the same tendencies apply to other body 
parts. We believe that our fndings in the hand can be used to verify 
future studies on other body parts. Moreover, to expand the design 
space of Swarm Body, future research focusing on the efects of 
embodiment in body parts that difer from the user’s actual body 
size and shape could be highly benefcial. This would open up new 
capabilities and applications for Swarm Body, allowing the user to 
manipulate objects at micro or macro scales with larger or smaller 
hands or using diferent shapes such as tentacle-like limbs. 

7.4 Exploration of the Applications 
Although we have presented several application scenarios, their 
efectiveness has yet to be evaluated. In future work, we plan to 
showcase our applications through interactive demonstrations and 
videos, thereby collecting direct feedback from participants. We also 
expect that this feedback will allow us to discover new application 
possibilities of Swarm Body beyond our initial scope. 

7.5 Swarm Control Algorithm Dedicated for 
Embodied Behavior 

Lastly, collisions and misalignments between our robots might 
have afected the participants’ evaluation of embodiment. During 
the embodiment experiments in both VR and the real world, the 
experimenter sometimes observed collisions and misalignments 
of the robots. These undesirable behaviors potentially come from 
conditions, such as a large robot size or a high density, that make 
it difcult for swarm robots to avoid collisions while following a 
hand. As mentioned in subsubsection 5.8.2, our control program 
shuts down the robot in the case of excessive torque to protect the 
motors. This might afect the participants’ sense of embodiment, 
leading to a diferent result from the VR study, even though the 
experimenter turned them on immediately. In other words, the par-
ticipants’ preference toward the denser swarm robots might be the 
characteristics of our real-world implementation not our approach. 
However, our real-world experiment and the interview responses 

provided some consistent and generalizable insights, such as a 
higher level embodiment coming from fngertip representations 
and a lower cognitive load in sparse conditions. To address the 
collision issues, a specialized swarm control algorithm tailored for 
embodied behavior could potentially reduce collisions and enhance 
the embodied experience. Further psychophysical embodiment ex-
periments with a control algorithm with fewer collisions will help 
us understand whether the diferences in our VR and real-world 
study results are due to the approach or our implementation. It will 
also deepen our understanding on the embodiment characteristics 
we observed in both VR and real-world settings (i.e., a higher level 
of embodiment coming from fngertip representations and a lower 
cognitive load in sparse conditions). 

8 CONCLUSION 
We proposed a new embodied system concept, embodied swarm 
robots, a group of robots collectively acting as a human body part. 
We presented a framework for the embodiment of swarm robots, 
investigating their characteristics in both VR and real-world envi-
ronments. Our results ofer two key insights into the embodiment 
of swarm robots. 

(1) Swarm robots are likely to be embodied in VR and real-world 
scenarios using a suitable algorithm and density though 
there are some individual diferences. 

(2) The choice of swarm body control algorithm infuences the 
level of embodiment, impacting both the visual-motor syn-
chronicity of fngers and the frequency of robot collisions. 

Additionally, we explored applications of our system, demon-
strating how embodied swarm robots can enrich tangible and em-
bodied interactions between humans and the environment. 
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A APPENDIX 

A.1 Swarm Robot Control for Following 
Subgoal Position 

The robot receives the subgoal (target) position from the host com-
puter via RF communication and moves to follow it. It is desirable 
for the robot to follow a smooth path to the subgoal position. In con-
trolling wheeled robots, using a Bézier, spline, or cross-oid curve 
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left and right motors. 
�� = � − Δ� 

�� = � + Δ� 

� = ��� 

¤Δ� = �� � + �
�¤�, 

where ��, �� , � ¤ are constants that represent the control gain.
� 

Based on the above control law, 
−−− 
�0� 
→ 
� , the distance �� , and the 

angle �� are updated from the robot’s current position �� (��, �� )
to the subgoal position, and �� and �� are calculated and output. 
However, if this control law is followed, the point �� is theoreti-
cally unreachable and will never fully converge, since � = 0 and the 
velocity will converge to 0 as the robot approaches �� . Therefore, 
the robot is judged to have converged when it is within a certain 
distance � from �� , and the robot stops at that point. In addition, 
the minimum velocities ��,��� and ��,��� are set for �� and �� , re-
spectively. The maximum speed of motors ���� is determined by 
the maximum speed value of the slower of the two motors. This is 
based on the actual measured speeds of the left and right motors as 
an upper limit. This can be written in the formula as follows: 

if �� < ��,��� if �� < ��,��� as the path is common. This curve passes through the current 
 

��,��� ��,��� 

�� = ���� if �� > ���� ,�� = ���� if �� > ���� and subgoal positions to avoid sudden changes in angular velocity. , �� 
quentially calculates and follows these curves. On the other hand, ���� = 

�� 
if ��,��� ≥ ��,��� 

otherwise. otherwise.However, due to the limited computational resources of the robot’s 
microcontroller, it has been difcult to implement control that se- ( 

��,��� 
,

��,��� if ��,��� < ��,��� since the robot can get its absolute position information with the 
projection-based method, and the subgoal position is updated by 
the host computer every 100 ms, the distance between the current 
position and the subgoal position is considered to be close, and 
we thought that sudden changes in angular velocity would be rare 
even on a path connecting these two points by a straight line. Thus, 
we implemented a control model that follows the straight path. 

P0 (x0 , y0)
L0 

θ0 

PG (xG , yG)

t = 0

Robot

Ln

θn

δPG (xG , yG)
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t = n

Robot

Figure 20: Concept of robot control model for following goal 
position. 

The concept of the control model is shown in Figure 20. Let 
�0 (�0, �0) be the robot’s initial position at time � = 0 given the 
subgoal (target) position and �� (�� , �� ) the subgoal position. Next,

→
defne 

−−− 
as the vector connecting points �0 and �� , with � �0�� 

(� = �0 at � = 0) as the distance between them, and � (� = �0 at 
� = 0) as the angle between the robot’s direction of motion and the

−−−→ 
vector �0�� . (Counterclockwise is defned as positive.) In this case, 
the following law controls the velocities �� and �� of the robot’s 

where ��,��� and ��,��� are the maximum speed value of left and 
right motors. 

If a new subgoal position �� is given before convergence, �� is 
updated, and the subgoal following continues. Here, the dimension 
(unit) of the calculated �� and �� is [mm/s], but the dimension of 
the PWM duty of the voltage value, which is a control value that 
can be input to the motor, is [rpm]. Therefore, the calculated �� and 
�� are converted to the PWM duty value by the following formula: 

����� = � (�� ) 
����� = �(�� ), 

where ����� and ����� are the PWM values of left and right mo-
tors, and � (�) and �(�) are functions corresponding to the PWM 
value calculated by the robot’s calibration mode. We confrmed that 
this control rule can be used to control the robot to successfully 
reach the goal position even with a microcontroller with limited 
computational resources. 
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