
AI-Enhanced API Design: A New Paradigm in Usability and
Efficiency

Mak Ahmad∗
shahmad@ucdavis.edu

UC Davis
Davis, CA, USA

Andrew Macvean
Google

Seattle, USA
amacvean@google.com

David Karger
MIT

Cambridge, MA, USA
karger@mit.edu

Kwan-Liu Ma
UC Davis

Davis, CA, USA
klma@ucdavis.edu

ABSTRACT
This study uses mixed methods to evaluate API design methods,
focusing on design and consumption phases. Our goal was to under-
stand the impact of API governance approaches on productivity and
usability. A controlled developer experiment (n=34) demonstrated
a 10% increased requirement fulfillment using API Improvement
Proposals (AIPs) and linter versus no protocols. Meanwhile, 73%
of 33 surveyed API consumers preferred AIP-aligned designs for
enhanced usability and comprehensibility. Complementing this, a
custom large language model called the API Architect received av-
erage expert ratings of just 5/10 for specification quality, revealing
gaps versus manual design. The quantitative performance metrics
combined with qualitative user feedback provide evidence from
multiple angles that strategically integrating industry best prac-
tices with maturing AI capabilities can meaningfully improve API
design outcomes. This research offers empirical insights from de-
veloper and consumer perspectives to advance scholarly discourse
and industry practice regarding optimal API design workflows.

CCS CONCEPTS
• Software and its engineering→ Software development tech-
niques; • Human-centered computing → Interactive systems
and tools; • Computing methodologies → Artificial intelligence.

KEYWORDS
API Design, API Usability, Design Reviews, LLM

ACM Reference Format:
Mak Ahmad, Andrew Macvean, David Karger, and Kwan-Liu Ma. 2024.
AI-Enhanced API Design: A New Paradigm in Usability and Efficiency. In
Extended Abstracts of the CHI Conference on Human Factors in Computing
Systems (CHI EA ’24), May 11–16, 2024, Honolulu, HI, USA. ACM, New York,
NY, USA, 6 pages. https://doi.org/10.1145/3613905.3650803

∗Corresponding Author

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0331-7/24/05
https://doi.org/10.1145/3613905.3650803

1 INTRODUCTION
Application Programming Interfaces (APIs) are essential for in-
teractions between various systems [15]. Their complex nature
[11] has driven the adoption of governance protocols like API Im-
provement Proposals (AIPs). AIPs comprise a set of guidelines and
best practices for API design at our organization. They codify rec-
ommendations on areas like API structure, naming conventions,
resource modeling, and security. The API linter is an automated
static analysis tool that checks API specifications for adherence
to the AIP standards, as well as common anti-patterns. It flags is-
sues like inconsistent capitalization of names, missing or incorrect
HTTP verbs for routes, and potential security misconfigurations.
The linter errors provide actionable feedback for developers to re-
fine their APIs. These protocols aim to strike a balance between
flexibility, security, and usability [9]. Despite their widespread im-
plementation, the effectiveness of such standardization methods
remains largely unquantified.

The development of effective APIs is challenging [12], necessi-
tating rigorous documentation and strategic version management
[11]. Meeting the needs of both providers and consumers is cru-
cial, with usability as a key yet often overlooked factor [21]. Given
the complexity involved in building usable APIs, many organiza-
tion have established governance groups and set design standards
[8][18][17][9]. As formalization of API standards becomes more
prevalent [10], its critical to truly understand their impact.

This paper conducts a thorough evaluation of API Governance
procedures, examining the process of API development and usage
with and without the implementation of AIPs and an API Linter. A
novel aspect of this research is the utilization of a custom large lan-
guage model (LLM), named the API Architect, enhancing the depth
of our evaluation. To benchmark its capabilities, we had industry
experts with over 20 years of experience review the Architect’s
outputs based on criteria like overall quality and completeness.
This expert assessment provided a revealing look at the current
state of AI in replicating human API design expertise. While the Ar-
chitect demonstrated promising velocity, producing specifications
in minutes, the reviewers identified substantive gaps in technical
proficiency and best practice compliance compared to manual ap-
proaches. By illuminating the strengths and weaknesses of this
emergent generative design tool, we aim to guide future develop-
ment and integration of AI capabilities in the API lifecycle.

https://orcid.org/0000-0001-8697-2035
https://orcid.org/0009-0003-8215-8513
https://orcid.org/0000-0002-0024-5847
https://orcid.org/0000-0001-8086-0366
https://doi.org/10.1145/3613905.3650803
https://doi.org/10.1145/3613905.3650803
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613905.3650803&domain=pdf&date_stamp=2024-05-11

CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Mak Ahmad, Andrew Macvean, David Karger, and Kwan-Liu Ma

2 RELATEDWORK
The landscape of API governance and usability has seen signifi-
cant advancements and challenges, with a growing emphasis on
standardized protocols and tools to enhance API design and de-
velopment efficiency. A multifaceted API Governance process at
Google, involving API Improvement Proposals (AIPs), API Linter,
and API Readability programs, has been instrumental in improving
API quality through consistency in design rules and processes [2].
This approach reflects an industry-wide trend towards formalized
governance to balance the often conflicting needs of API flexibility,
security, and usability.

More generally, organizations have explored various techniques
for enhancing API Design, such as the Reviews described by Farooq
et al [4] and Macvean et al. [9]. These reviews complement tradi-
tional API usability tests by focusing on the design rationale and
conceptual flaws in APIs, thereby addressing usability issues at an
earlier stage in the development process. Unlike API usability tests
that yield in-depth feedback from real user interactions, API peer
reviews involve a review of the public surface of the API by end-
user developers, which offers different insights. Techniques like
heuristic evaluations, lab studies, and structural metrics have been
employed to quantify API usability, providing a comprehensive
understanding of the challenges and best practices in API design
[8]. Research by Myers [13] and Piccioni [14] provides key per-
spectives into API usability by aligning designs with developer
cognition. They demonstrate the value of minimizing cognitive
load and bolstering intuitive interactions.

Challenges in API usability, as highlighted by Scaffidi [18] and
[16], include inadequate documentation, insufficient orthogonal-
ity, and mismatches between API abstractions and application re-
quirements. These challenges emphasize the need for meticulous
documentation and thoughtful versioning strategies in API design.
Research has also focused on the evolution of APIs, with studies
by Church et al. [3] and Agarwal and Chun [1] examining version
resilience and deprecation timeframes, respectively. The works of
Grill, Scheller, and Rama offer vital insights into API usability and
governance. Grill et al. emphasize the importance of structured
API governance in software development, highlighting its role in
enhancing product quality and mitigating risks in fast-paced de-
velopment environments [6]. Scheller focuses on improving the
developer experience through intuitive API design, enhancing pro-
ductivity and satisfaction [19]. Collectively, their research provides
a multifaceted view on optimizing the API lifecycle for developers
and end-users alike. However, the efficacy of such standardization
techniques has not been comprehensively quantified. This research
aims to shed light by exploring API design outcomes with and
without AIPs. Additionally, we highlight the benefits and poten-
tial drawbacks of integrating advanced AI capabilities in this field.
Specifically, we investigate the following questions:

• RQ1: How do the implementation of API Improvement Pro-
posals (AIPs) and the utilization of tools like the API Linter
and AI-based API designers influence the overall efficiency
and quality of API production? This question seeks to under-
stand the extent to which these tools and protocols impact
the speed, accuracy, and satisfaction in the API development
process.

• RQ2: In what ways does the adoption of AIPs and AI-based
tools affect the user experience of both API producers and
consumers? This includes examining the measurable impacts
on development velocity, requirement fulfillment, and the
overall user experience in interacting with APIs.

3 METHODOLOGY
The methodology involved analyzing API production and consump-
tion among developers and evaluating AI-generated specifications.
For the first study, engineers were tasked with designing APIs under
varying conditions with and without AIPs and linter. To supplement
human expert evaluation, an AI assistant termed the API Architect
was developed using a custom GPT-4 on OpenAI. The GPT-4 model
ingested labeled data covering all AIP specifications to allow it
to generate API designs informed by industry best practices. Af-
ter fine-tuning, the API Architect could receive API requirements
just like a human designer, and respond by generating full API
specifications along with additional analysis. We then had 6 indus-
try experts with over 20 years of API design experience evaluate
the Architect’s outputs based on criteria including overall quality,
evolvability, completeness and AIP adherence. This two-pronged
approach enabled a comprehensive empirical examination of both
human and AI-based API design processes and outcomes.

Our research methodology comprised three core evaluation com-
ponents. First a controlled developer experiment comparing API
design processes and outcomes across groups. Second, a qualita-
tive interviews assessing API consumer preferences through side-
by-side specification comparisons. Lastly, an expert review of AI-
generated API specs using structured ratings on scales from 0 to
10. The controlled experiment and consumer interviews involved
direct comparisons between options. However, for expert assess-
ment of the AI system, numerical ratings enabled a more nuanced
evaluation of multiple facets like completeness and evolvability.
This multifaceted approach enabled comprehensive benchmark-
ing of both human and AI-based API design capabilities from the
perspectives of producers, consumers, and experts.

3.1 API Production Experience
A survey was sent to 4,000 software engineers at a Google API
interest group. The group is a mailing list consisting of members
interested in any aspect of APIs (e.g., API Usability, API Security,
Designing APIs and Frameworks). In the email, we requested re-
sponses from only those with at least 1 year of experience designing
API specs. In total, we received 234 responses to the survey. Among
the 234, 100 agreed to be part of this study, where they were tasked
to design APIs based on sample product specifications that we pro-
vided. The goal of the product was to build a Social Network App
for kids to share ideas and information with their friends. Require-
ments included things such as “Parent creates an account and child
account” or “Feed displays relevant posts based on child’s followers
and interactions (likes and comments). Participants were asked
to spend 2 hours recording their screen while designing the API.
After completing the design, they were also required to submit a
survey to reflect on the experience. For their time, participants were
rewarded $80. We balanced the 100 participants into 3 groups using
the Gower distance [5]:

AI-Enhanced API Design: A New Paradigm in Usability and Efficiency CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

• Group I: Must use AIPs and the API Linter
• Group II: Must use AIPs but not the API Linter
• Group III: Not allowed to use AIPs nor the API Linter but
can use any other resources

The Gower Distance To create balanced experimental groups, we
leveraged advanced statistical techniques including Gower Distance
[5] for measuring dissimilarities and Partitioning Around Medoids
(PAM) [20] for clustering. This allowed us to split the 100 partici-
pants into 3 groups with minimal differences in key attributes like
experience level. We further employed propensity score matching,
assessing distribution of categorical variables and numerical means,
to mitigate selection bias. This rigorous approach enabled com-
parable groups, enhancing experimental validity. Out of the 100
participants, we received responses from 34, which we divided into
three groups: 11 in Group I, 11 in Group II, and 12 in Group III.

3.2 API Consumption Experience
We recruited 33 professionals with an average of 12 years of soft-
ware engineering experience through LinkedIn and API discussion
channels. Approximately 71% were familiar with AIPs, and 56% had
prior experience using AIPs for API design. The API specifications
evaluated in the interviews were randomly selected from those de-
veloped by engineers in the API production phase of our study. Each
30-minute video interview consisted of both open-ended questions
and a structured survey. After gauging participants’ AIP familiarity
and design criteria, we administered surveys with 5 side-by-side
API specification comparisons randomly drawn from the 3 pipeline
groups.

To enable comprehensive comparisons, we manually matched
elements across the groups’ API specs. For example, when com-
paring "create account" flows, we systematically paired the Group
1 design against relevant sections in Group 2 and Group 3. This
matching process ensured an unbiased evaluation of all specifi-
cations. The process included 4 steps. Survey Creation: Three
distinct surveys were developed, each with five questions to enable
random pairwise comparisons between API specifications across
the groups. API Documentation Generation: Using buf.build, we
generated detailed API documentation for each specification, form-
ing the basis of our analysis and comparison. For further details,
if needed, see the screenshot/figure 1 included in the Appendix.
Code Snippet Creation: Alongside the documentation, we pro-
duced code snippets illustrating the APIs’ functionality, providing
a practical context for survey comparisons. For further details,
if needed, see the screenshot/figure 2 included in the Appendix.
Pairwise Analysis: During our surveys, participants undertook
informed pairwise comparisons of API specifications across three
distinct buckets. This approach ensured a thorough comparison,
with each API element from one bucket being systematically paired
against corresponding elements from the other two buckets. For
instance, in scenarios like "create an account", "send a post", and
"retrieve a list of posts with paging", participants selected their
preferred API version from two choices presented in each sce-
nario. This structured approach allowed us to draw meaningful
conclusions regarding the strengths and weaknesses of the APIs,
ultimately contributing to a more comprehensive understanding of
their respective documentation and usability.

The API Architect evaluated the API designs from the three
pipeline groups using several criteria. These included a Usability
score, a quantitative assessment of the API specification’s usability
on a scale from 0 to 100; an Evolvability score, measuring the ease
of modifying or expanding the API specification in the future, also
on a 0 to 100 scale; and an AIP adherence score, quantifying the
extent to which the specification follows AIP conventions, again
rated between 0 and 100.

4 RESULTS
4.1 API Production Experience
Comparing the perception of engineers with the actual design
assessment, 94% of the engineers believed they completedmore than
32% of the requirements specification in the 2-hour period. However,
the analysis shows just about 58% of the engineers actually did so.
44% believed we could have allotted more than 2 hours period for
the API design.

A majority of engineers (65%) reported that the API design pro-
cess felt easy. Of this group, 29% used both AIPs and linter, 38%
used just AIPs, and 33% used neither protocols. For the 35% of
engineers who found API design difficult, first-time AIP users in
particular noted challenges toggling between documentation and
coding environments.

Despite these learning curves, for those leveraging AIPs, 91%
agreed that AIPs were helpful for design. Furthermore, among those
also using the linter tool, 75% found it beneficial when combined
with AIPs. While adapting to new protocols poses initial difficulties,
especially for novice users, a significant majority of engineers found
value in AIPs for enhancing API design. Integrating linter alongside
AIPs provided additional gains in perceived productivity.

To evaluate completion rate and errors, each API design response
was manually checked against the 29 product requirements. Each
requirement was scored as either 1 (satisfied) or 0 (unsatisfied). The
percentage of requirements satisfied determined the completion
rate for each response. Additionally, the number of errors flagged
by the API Linter was recorded where applicable. The analysis
revealed the following completion rates and error counts across
groups:

• Group I (API Linter and AIPs): Average completion rate of
71.11%. Average of 13.9 linter errors.

• Group II (AIPs but No API Linter): Average completion rate
of 62.22%. Average of 19.2 linter errors.

• Group III (No API Linter and No AIPs): Average completion
rate of 62.92%. Average of 21.5 linter errors.

To investigate the practical significance of the observed differ-
ences in completion rates among the three groups, we computed
Cohen’s d, a widely used measure of effect size. In addition to
calculating effect sizes, we examined the precision and certainty
of our estimates using confidence intervals and standard errors.
The effect size analysis revealed moderate effect sizes of 0.4 and
0.6 respectively when Group I is compared with Groups II and III,
while the comparison between Groups II and III revealed a small
effect size. Standard errors are relatively small. However, the wide
confidence intervals indicate that our estimates are associated with
considerable uncertainty due to the small sample size.

CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Mak Ahmad, Andrew Macvean, David Karger, and Kwan-Liu Ma

This results of the API production experience provided insights
into the impacts of governance protocols. Despite initial learning
curves, especially for new AIP users, a significant majority found
AIPs valuable for enhancing design. The controlled experiment also
quantified productivity gains, with the group leveraging both AIPs
and linter achieving a 10 percentage point higher completion rate
compared to the other groups.

4.2 API Consumption Experience
Our interviews revealed that most participants (56%) had less than
7 years of experience in the industry, and a significant portion (44%)
had more than 7 years of experience, suggesting a diverse range
of experience levels among API consumers. There were two main
groups of API consumers, based on their evaluation criteria. The
first group (33%) prioritized technical proficiency and dexterity, and
they valued APIs that were readable and easy to use. The second
group (30%) prioritized broader business goals and adaptability,
and valued APIs that were agile and end-user-acceptable. Only 4%
of API consumers prioritized security-related aspects. The survey
found that 73% of the total participants preferred API designs that
incorporated AIPs, and 76% of that percentage preferred designs
that included the use of both AIPs and API Linter which contributed
to the improved structure, standardization, and documentation
of the APIs. However, 38% expressed a preference for alternative
designs without AIPs or linter, citing completeness as a concern.

When comparing Group I and Group III API specifications, out of
120 pairwise matchups, Group I was preferred 73 times compared
to 47 times for Group III. A two-proportion z-test showed this
distribution has a z-score of 3.156 and a p-value of 0.008, indicating
a statistically significant preference for the Group I designs at the
p < 0.05 level. However, the comparison between Group II and
Group III did not reveal a significant difference in preferences. Out
of 150 matchups between these groups, Group II was preferred 79
times versus 71 times for Group III. The z-test resulted in a z-score
of 1.05 and a p-value of 0.147, meaning no substantial preference
difference between Group II and III. Users exhibited a definitive
preference for Group I APIs over Group III, but Group II vs. Group
III did not show a statistically significant distinction. This suggests
integration of both AIPs and linter notably enhances API usability
over no protocols, while AIPs alone do not confer a similarly sizable
advantage.

On average, the API Architect scored the Group I specifications
highest across all criteria (usability = 74.4, evolvability = 69.6, AIP
adherence = 73.6). This aligns with the 73% rate of human experts
preferring Group I designs, demonstrating strong agreement be-
tween human evaluator preferences and the Architect assessments.
To test if Architect-measured differences between pipelines were
statistically significant, two-proportion z-tests were conducted.
Comparing Group I and Group III AIP adherence scores (where
𝑝1 = mean Group 1 score = 73.6, 𝑝2 = mean Group 3 score = 72.8)
yielded 𝑝 = 0.04818 < 0.05.

The respondents with less than 7 years preferred APIs that were
"readable" and "easy to use." These considerations underscored their
emphasis on technical proficiency and dexterity, as they expressed
their preference for APIs that are not only functional but also com-
prehensible. Specifically, phrases such as "Readability: I want to

understand what it’s doing if I read the code in order" encapsulated
their criteria for assessing API quality. Conversely, respondents
with more than 7 years of experience leaned toward facets such
as "end-user acceptability" and "agility" when scrutinizing APIs.
These preferences reflected their wealth of leadership and product-
oriented experience, demonstrating a nuanced perspective that
prioritizes broader business goals and adaptability. Phrases like
"Does the API deliver business value?" and "Does it achieve a goal?
How easy does it solve the problem?" captured the essence of their
evaluative framework.

4.3 API Architect Evaluation
To benchmark the human-generated API designs, the AI-based API
Architect developed specifications for the same product require-
ments within 3 minutes. Six industry experts with an average of
20 years of API design experience evaluated the Architect’s APIs
based on overall quality, evolvability, completeness, and AIP adher-
ence. The average overall quality score was 5 out of 10, highlighting
some deficiencies compared to human-level design proficiency. The
evolvability scored highest at 7 out of 10, as the Architect’s system-
atic approach enables future extensibility. However, completeness
was rated lower at 5.8 out of 10, indicating key functionality gaps
in the generated designs. Finally, AIP adherence received a 4.5 out
of 10 score, reflecting deviations from best practice conventions.

Qualitative feedback emphasized issues like the API Architect’s
divergence from resource-oriented principles and lack of HTTP
bindings. As one expert noted, "It doesn’t seem resource-oriented
at all...no definition of User or Post, just duplicate fields in different
requests/responses." Another stated the designs don’t follow "the
most common AIPs (Pagination, field names on resources, etc)."
Several responses highlighted missing functionality, with one com-
menting "It doesn’t look like the parental controls are there at all."
These example quotes align with the quantitative analysis pointing
to limited completeness and AIP compliance.

5 DISCUSSION
5.1 API Production Experience
The analysis of API production experience provides valuable in-
sights into RQ1 on how AIPs and tools like the API Linter influence
development velocity and requirement fulfillment. The comple-
tion rate data reveals that Group I, leveraging both AIPs and linter,
achieved the highest rate of 71.11%, surpassing Groups II and III by
nearly 10%. This aligns with RQ1 by quantitatively showing how
comprehensive integration of structured protocols boosts produc-
tivity.

Furthermore, the effect size analysis indicates a moderate effect
when contrasting Group I to Groups II and III, demonstrating the
notable influence of the AIPs and linter tandem on productivity.
Given the substantial Cohen’s d values, these tools tangibly im-
prove engineers’ capacity to build functional, production-ready
APIs within constrained timeframes. While the confidence inter-
vals are wide owing to small sample sizes, the consistently higher
completion rates and API quality (lower error counts) underscore
the benefits of AIP adoption. However, the perceived difficulty
variance across groups highlights an avenue for refinement. The
additional rigor imposed by strictly adhering to AIPs and resolving

AI-Enhanced API Design: A New Paradigm in Usability and Efficiency CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA

linter errors was seen as challenging, especially by first-time users.
This indicates that more work is required towards tightening the
integration within existing developer workflows. As API design
practices evolve across organizations, maintaining an emphasis on
minimizing disruption and flattening learning curves will be key.
Nonetheless, our findings strongly validate that leveraging AIPs
and linter collectively enhances the API development experience
along critical factors of velocity and requirement fulfillment. In this
context, the importance of effective API governance systems, as
discussed comprehensively by Krintz et al. [7], becomes evident,
emphasizing the critical role of APIs in digital IT infrastructure and
the need for structured management and governance systems.

5.2 API Architect
Participants typically invested 2-3 hours to design APIs, while
the API Architect leveraged GPT-4 to generate specifications in
just minutes. However, expert assessment revealed the Architect’s
outputs were rated average 5 out of 10 overall, highlighting defi-
ciencies compared to manual approaches. While the API Architect
demonstrated promising velocity, its technical proficiency and best
practice compliance requires substantial improvement to match
human designers. This tempers notions of AI achieving compa-
rable API design quality and prompts further evaluation of how
to best integrate AI assistance without compromising end results.
The time savings warrant exploration of AI acceleration of rote
tasks, provided the overall workflow incorporates sufficient human
oversight.

The expert assessment of the API Architect provides valuable
insights into the current capabilities of AI for API design. While the
Architect demonstrated promising velocity by drafting specifica-
tions in minutes, the modest scores it received highlight meaningful
gaps compared to human expertise. With average ratings between
4.5 and 7 out of 10 on overall quality, completeness, and AIP adher-
ence, the results reveal clear room for improvement. The greatest
strength lies in the Architect’s systematic approach, reflected in the
higher evolvability score. However, reviewers cited critical weak-
nesses in resource modeling, protocol compliance, and missing
functionality. This tempers RQ1 by indicating substantial room for
improving technical proficiency of generative AI tools. However,
the Architect shows potential for accelerating rote specification
generation to augment designers through expert fine-tuning.

5.3 API Consumption Experience
The API consumption research analyses provide compelling in-
sights into RQ2 regarding the impact of AIPs and linter on the user
experience. Across all participants, including those possessing prior
AIP proficiency, the study revealed a resounding 73% preference
towards Group I designs harnessing AIPs and linter in tandem. This
directly addresses the core research question regarding measurable
improvements in efficiency and user satisfaction.

The statistically significant edge of Group I over Group III vali-
dates that Purposeful API design standards substantively enhance
comprehension and utility for consumers. Moreover, the alignment
between human evaluator preferences and API Architect scoring

demonstrates the objectively higher quality of Group I specifica-
tions. Notably, while familiarity with AIPs contributes to an in-
formed perspective, it does not universally translate to favorability,
as 38% of participants opted for alternatives lacking AIPs or linter.
Additionally, differentiation emerged across experience levels, with
less seasoned engineers prioritizing readable and usable designs,
while more seasoned ones focused on business value and problem-
solving efficacy. This bifurcation spotlights the need for versatility
in API design thinking, catering to multifaceted consumer view-
points.

The consumption analysis provides unambiguous quantitative
and qualitative proof that integrating AIPs and linter into API de-
sign workflows yields superior outcomes for end users. The areas
warranting further attention involve enhancing intuitive integra-
tion for producers and accommodating the diversity of consumer
preferences. Overall, the research strongly confirms that adher-
ence to API development best practices translates to substantially
improved experience for API consumers.

6 LIMITATIONS AND FUTURE DIRECTIONS
While this research provides compelling insights, some limitations
warrant acknowledgement. The production experience study’s
small sample size constrains generalizability of the performance
gains measured. Additionally, the limited API consumption inter-
view sample merits expanded investigation. The API Architect eval-
uation also faced constraints, including a small expert reviewer pool
and reliance solely on specifications rather than implementations.
More objective rubrics could improve precision given variance in
scores. Nonetheless, the quantitative and qualitative techniques
established convincing evidence of gains from standardized API
design. The limitations present clear pathways for enhancing the
research’s rigor and real-world value through three primary di-
rections. First, larger participant samples in both the production
and consumption studies, coupled with longitudinal tracking of
API iterations, can strengthen insights. Second, iterative expert
refinement of AI tools like the Architect through cycles of feedback
is a promising direction. Finally, end-to-end studies monitoring
the Architect from design through deployment could reveal new
insights. As API governance matures, purposefully benchmarking
human creativity against structured protocols and generative AI
will shape the next evolution of API design innovation. While con-
tinuous enhancement is warranted, this research affirms integrating
industry best practices with maturing AI can significantly enhance
API development outcomes.

7 CONCLUSION
This study offers strong evidence for enhancing API development
with standardized protocols and AI. Results show productivity gains
and a 10% higher completion rate using AIPs and linters. Addition-
ally, 73% of API consumers favored AIP and linter-developed spec-
ifications, highlighting their benefits. Although AI tools like the
API Architect need refinement for full automation, their potential
in routine tasks is evident. The research suggests a collaborative
approach, integrating human creativity, structured protocols, and
AI, advancing API design and benefiting creators and consumers
alike.

CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Mak Ahmad, Andrew Macvean, David Karger, and Kwan-Liu Ma

ACKNOWLEDGMENTS
Thank you Richard Frankel, JJ Geewax, Alfred Fuller, Mike Kistler,
Dan Hudlow, Yusuke Tsutsumi, Joaquin Carretero and the many
Google engineers for your assistance in this research.

REFERENCES
[1] Vartika Agarwal and Wesley Chun. [n. d.]. Saying goodbye to oauth 1.0

(2LO). https://developers.googleblog.com/2016/04/saying-goodbye-to-oauth-
10-2lo.html

[2] Anonymous. [n. d.].
[3] Luke Church, Emma Söderberg, Gilad Bracha, and Steven Tanimoto. 2016. Live-

ness becomes Entelechy-a scheme for L6. In The second international conference
on live coding.

[4] Umer Farooq, Leon Welicki, and Dieter Zirkler. 2010. API usability peer reviews:
a method for evaluating the usability of application programming interfaces. In
Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
2327–2336.

[5] John C Gower. 1971. A general coefficient of similarity and some of its properties.
Biometrics (1971), 857–871.

[6] Thomas Grill, Ondrej Polacek, and Manfred Tscheligi. 2012. Methods towards
API usability: A structural analysis of usability problem categories. In Human-
Centered Software Engineering: 4th International Conference, HCSE 2012, Toulouse,
France, October 29-31, 2012. Proceedings 4. Springer, 164–180.

[7] Chandra Krintz, Hiranya Jayathilaka, Stratos Dimopoulos, Alexander Pucher,
Rich Wolski, and Tevfik Bultan. 2013. Developing systems for API governance.
figshare (2013), 790746.

[8] Andrew Macvean, Luke Church, John Daughtry, and Craig Citro. 2016. API
Usability at Scale.. In PPIG. 26.

[9] Andrew Macvean, Martin Maly, and John Daughtry. 2016. API De-
sign Reviews at Scale. In CHI EA ’16 Proceedings of the 2016 CHI Con-
ference Extended Abstracts on Human Factors in Computing Systems. 849–
858. http://dl.acm.org/ft_gateway.cfm?id=2851602&ftid=1716532&dwn=1&
CFID=783074184&CFTOKEN=67606185

[10] Lauren Murphy, Tosin Alliyu, Andrew Macvean, Mary Beth Kery, and Brad A
Myers. 2017. Preliminary analysis of REST API style guidelines. Ann Arbor 1001
(2017), 48109.

[11] Lauren Murphy, Mary Beth Kery, Oluwatosin Alliyu, Andrew Macvean, and
Brad A. Myers. 2018. API Designers in the Field: Design Practices and Challenges
for Creating Usable APIs. In 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC). 249–258. https://doi.org/10.1109/VLHCC.
2018.8506523

[12] Lauren Murphy, Mary Beth Kery, Oluwatosin Alliyu, Andrew Macvean, and
Brad A Myers. 2018. API designers in the field: Design practices and challenges
for creating usable APIs. In 2018 ieee symposium on visual languages and human-
centric computing (vl/hcc). IEEE, 249–258.

[13] Myers and Stylos. 2016. Improving API usability. 59 (May 2016). https://doi.org/
10.1145/2896587

[14] Marco Piccioni, Carlo A. Furia, and Bertrand Meyer. 2013. An Empirical Study of
API Usability. In 2013 ACM / IEEE International Symposium on Empirical Software
Engineering and Measurement. 5–14. https://doi.org/10.1109/ESEM.2013.14

[15] Yuanbo Qiu. 2016. The openness of Open Application Programming Interfaces.
Taylor & Francis (2016), 1720 – 1722. http://doi.acm.org/10.1145/1721695.1721705

[16] Girish Maskeri Rama and Avinash Kak. 2015. Some structural measures of API
usability. Software: Practice and Experience 45, 1 (2015), 75–110.

[17] Martin P Robillard and Robert DeLine. 2011. A field study of API learning
obstacles. Empirical Software Engineering 16, 6 (2011), 703–732.

[18] Christopher Scaffidi. 2006. Why are APIs difficult to learn and use? XRDS:
Crossroads, The ACM Magazine for Students 12, 4 (2006), 4–4.

[19] Thomas Scheller and Eva Kühn. 2015. Automated measurement of API usability:
The API concepts framework. Information and Software Technology 61 (2015),
145–162.

[20] Mark Van der Laan, Katherine Pollard, and Jennifer Bryan. 2003. A new partition-
ing around medoids algorithm. Journal of Statistical Computation and Simulation
73, 8 (2003), 575–584.

[21] Minhaz F. Zibran, Farjana Z. Eishita, and Chanchal K. Roy. 2011. Useful, But
Usable? Factors Affecting the Usability of APIs. In 2011 18th Working Conference
on Reverse Engineering. 151–155. https://doi.org/10.1109/WCRE.2011.26

A RELEVANT SCREENSHOTS

Figure 1: API documentation automatically generated using
buf.

Figure 2: API code snippet manually created based on the
API specification.

https://developers.googleblog.com/2016/04/saying-goodbye-to-oauth-10-2lo.html
https://developers.googleblog.com/2016/04/saying-goodbye-to-oauth-10-2lo.html
http://dl.acm.org/ft_gateway.cfm?id=2851602&ftid=1716532&dwn=1&CFID=783074184&CFTOKEN=67606185
http://dl.acm.org/ft_gateway.cfm?id=2851602&ftid=1716532&dwn=1&CFID=783074184&CFTOKEN=67606185
https://doi.org/10.1109/VLHCC.2018.8506523
https://doi.org/10.1109/VLHCC.2018.8506523
https://doi.org/10.1145/2896587
https://doi.org/10.1145/2896587
https://doi.org/10.1109/ESEM.2013.14
http://doi.acm.org/10.1145/1721695.1721705
https://doi.org/10.1109/WCRE.2011.26

	Abstract
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 API Production Experience
	3.2 API Consumption Experience

	4 Results
	4.1 API Production Experience
	4.2 API Consumption Experience
	4.3 API Architect Evaluation

	5 Discussion
	5.1 API Production Experience
	5.2 API Architect
	5.3 API Consumption Experience

	6 Limitations and Future Directions
	7 Conclusion
	Acknowledgments
	References
	A Relevant Screenshots

