
Data Physicalization with Haptic Variables: Exploring Resistance
and Friction

Sander Dullaert
Creative Technology, University of Twente

Twente, The Netherlands
s.a.dullaert@student.utwente.nl

Champika Ranasinghe
Data Management & Biometrics, Faculty of Electrical

Engineering, Mathematics & Computer Science,
University of Twente

Twente, The Netherlands
c.m.eparanasinghe@utwente.nl

Auriol Degbelo
Chair of Geoinformatics, TU Dresden

Dresden, Germany
auriol.degbelo@tu-dresden.de

Nacir Bouali
Data Management & Biometrics, Faculty of Electrical

Engineering, Mathematics & Computer Science,
University of Twente

Twente, The Netherlands
n.bouali@utwente.nl

Figure 1: Resistance and Friction to encode data: (a) we used electromagnetic field strength as material for realizing resistance
and, (b) motor speed combined with a rough surface to realize friction. Both the electromagnetic field strength and the speed of
the motor were varied to realize varying levels of resistance and friction.

ABSTRACT
Data Physicalizations have the potential to create interactive and
more engaging data experiences and to make data more accessible
to a broader range of users than those reached by visualizations
alone. Tapping into this potential necessitates an understanding
of the strengths/weaknesses of the different encoding variables
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available to designers, and when these variables can be employed to
convey data. This work provides a preliminary investigation of two
kinesthetic variables (resistance and friction) and their performance
during the answering of minima/maxima/cluster questions. We
evaluated both encoding modalities with users for their efficiency
and effectiveness in a lab-based study. While neither modality was
found to be significantly more efficient or accurate, most users
preferred reading data through resistance.
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1 INTRODUCTION
Data visualizations represent data using visual properties such as
color, shape, or patterns. They are mostly screen-based and can be
accessed and interacted with via desktop or mobile devices (e.g.,
[31, 32]). Data physicalizations, also called physical visualizations,
on the other hand, are physical representations of data that encode
data in geometric and material properties [24]. Unlike data visu-
alizations that focus mainly on the sense of human vision, data
physicalizations can present data to multiple human senses (touch,
smell, hearing, taste, vision) using various physical representa-
tion modalities [30], making it possible to create embodied data
experiences. Due to their physical nature, they can create novel,
non-screen-based interactions that can actively engage the human
body and the sensorimotor system, which involves tactile and kines-
thetic interaction with physical objects to interact with digital data.
Human cognitive processes such as perception, memory, learning,
and attention have a strong connection with the active involvement
of the sensorimotor system, bodily interaction with the environ-
ment, and tactile and kinesthetic aspects of body-object interaction
[3, 12, 26, 36]. Therefore, data physicalizations have the potential
to improve the perception and interpretation of data and overall
engagement and human-data experience by exploiting tactile and
kinesthetic aspects of physical media and using interactions that
involve bodily engagement, touch, and kinesthetics. Encoding data
in tactile and kinesthetic properties such as friction and resistance
have been proposed in previous research [13, 30]. Although there is
substantial work on exploring tactile properties (such as vibration
amplitude, vibration speed, or temperature) for data physicalization
[30], research on using kinesthetic properties is rare [22, 30]. There
are three kinesthetic properties identified in existing research: re-
sistance, friction, and kinesthetic location [30]. However, empirical
research on using these kinesthetic properties and their effective-
ness remains largely unexplored [22, 30]. When realized through
interactive technologies (such as sensors and actuators), kinesthetic
properties have a good potential to create kinesthetic interactions,
interactions that involve bodily movement (thus the active involve-
ment of the sensorimotor system) [9] providing cognitive and expe-
riential benefits mentioned above. In this research, we therefore aim
to explore the impact of two kinesthetic variables, resistance and
friction. We created a data physicalization that encodes two types of
data (ordinal and numerical) using resistance and friction, realized
using electromagnetic field strength and motor speed respectively.
The effectiveness and user experience of physically representing
data using these two kinesthetic variables were evaluated using a
user study with 18 participants. Our contributions are therefore: (a)
a data physicalization artifact that uses resistance and friction as

modalities to encode numerical data and that uses electromagnetic
field strength and motor movement as material for representing
data; (b) an empirical evaluation of the proposed modalities.

2 RELATEDWORK
2.1 Data Physicalization for Post-WIMP, Beyond

Desktop, Natural Interaction with Data
People used physical representations of data for many years (e.g.
knots in threads to represent numeric data (as early as in 3,000 BC),
Sumerian clay tokens [35], Ammaslik wooden maps[2, 7], Marshall
Islands stick charts [8])) [1, 22, 24]. However, data physicalization
emerged as a scientific discipline only very recently [24]. Various
modalities have been explored for encoding data physically. These
include, for example, light [19, 29], movement [5], temperature [38],
vibration [15], force [20] and sound [15]. These enable multisensory
data experiences. Theoretical frameworks are also emerging. For ex-
ample, several design spaces (e.g. [1, 16, 18, 30, 34]), classifications
of encoding variables for physically encoding data (e.g. [18, 30])
and interaction models (e.g., [23]) for designing data physicaliza-
tions emerged recently. Current research in data physicalizations
shows that they improve memorability, help better perception, and
increase engagement with data [24, 34].

Human perception and cognition are tightly coupled with ac-
tion, involvement of the human sensorimotor system, and physical
interaction with the real world (such as direct manipulation of
tangibles during interaction) [6, 17, 27, 28, 37]. Novel interaction
frameworks such as Reality-based Interaction (RBI) [21] provide
conceptual foundations for designing beyond the desktop, post-
WIMP (post-Windows, Icons, Menus, Pointer) and more natural
interfaces and interactions that can involve action, human sensori-
motor system and interaction with the physical world. RBI concepts
center around using naive physics, body awareness and skills, en-
vironment awareness and skills and social awareness and skills
in designing interactions [21]. With their physical and tangible
nature, and with the ability to move beyond traditional desktop and
mouse-based data visualizations, data physicalizations can facilitate
realizing reality-based interaction with data. Thus, via RBI concepts,
data physicalizations have the potential to improve the perception
of data and provide more engaging and embodied human-data
experiences.

2.2 Data Physicalization with Haptic
Kinesthetic Variables

Data physicalization with haptic modalities has the potential to
make data sensible for people with visual and auditory impair-
ments, allow eyes-free interaction with data, make more feelable,
embodied, and engaging data experiences, and allow the creation
of novel interaction techniques (e.g., to explore the use of various
human grasping gestures [4, 22] for interacting with data). Griffin
[13] decomposed haptic sensations into three categories: those de-
rived from touch (tactile), those derived from kinesthesia - bodily
movement or tension (kinesthetic), and those derived from visual
analogues (i.e., variables that can be perceived by both vision and
touch) [13, 30]. Ranasinghe and Degbelo [30] identified variables
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that can be used to physically encode data for these three haptic sen-
sation categories: tactile (vibration amplitude, vibration frequency,
pressure, and temperature; kinesthetic(resistance, friction, kines-
thetic location; visual analogues( tangible size, tangible elevation,
tangible shape, tangible texture/grain, tangible orientation, and
tangible location [30].

There exists some work on using tactile variables and visual
analogues variables for data physicalization: e.g., van Loenhout
et al. [38] compared the effectiveness and user experience of en-
coding data using temperature and vibration; Hogan et al. [15]
used vibration to encode data and compared its effectiveness to
visual and auditory representations. For a detailed list of work on
tactile and visual analogues variables, we would like to direct the
reader to [30]. On the one hand, compared to tactile and visual
analogues haptic variables, only a couple of work (e.g., [20]) exists
for the use of kinesthetic variables for data physicalization and
this area remains largely unexplored (c.f. Table 7 of [30]). On the
other hand, kinesthetic variables when realized through interactive
technologies, show a good potential in creating kinesthetic inter-
actions (interactions that can actively involve the human body in
the interaction) [9] thus have a potential to provide cognitive and
experiential benefits. Therefore, in this work, we aim to explore
two of the three kinesthetic variables: resistance and friction.

3 SYSTEM DESCRIPTION
Data: To explore the effectiveness and user experience of conveying
data using resistance and friction, we created a data physicaliza-
tion that uses a dataset with statistics for the 10 neighborhoods
of the municipality of Enschede in the Netherlands, as a use case.
The dataset was taken from Statistics Netherlands [10] published
by the Central Bureau for Statistics in the Netherlands (Centraal
Bureau voor de Statistiek(CBS)) [10]. For the physicalization, we
used the following data: number of crimes per year, income level
and percentage of rental houses (all at a neighborhood level).

Realizing Resistance and Friction: Resistance is a kinesthetic
haptic variable [13, 30]. When one attempts to move a metal away
from an electromagnet, she can feel a resistance proportional to the
strength of themagnetic field of the electromagnet. Electromagnetic
field strength can be systematically controlled (by programming an
Arduino) to vary the experienced level of resistance. We used this
property to realize and encode data using resistance (c.f. Figure 1a).

Friction is defined as the haptic feeling felt when the hand moves
across or through a surface [30] and is a kinesthetic haptic variable
[13, 30]. We used a 3D-printed wheel with a rough surface (rough
enough to feel the friction) that a user can touch by her finger (c.f.
Figure 1b). To vary the experienced level of friction, we attached
the wheel to a motor whose speed can be systematically varied
using an Arduino.

Data Physicalization: We used a laser-cut map of Enschede as
the base of our physicalization. The 10 neighborhoods of Enschede
are engraved on the map (Figure 2a). A user can select the desired
dataset (out of 3 datasets: income level, number of crimes, percent-
age of rental houses) using switches (on the top left of the panel in
Figure 2a). The data representation mode (resistance, friction) can
be selected using two switches (on the bottom left of the panel in
Figure 2a). Attached to each neighborhood are an electromagnet

(for experiencing resistance), a 3D printed wheel (for experiencing
friction), and a switch (to switch on the neighborhood) (c.f. Figure
2b). When switched on, a user can interact either with the elec-
tromagnet using the metal handle (Figure 2d), by moving it away
from the electromagnet or with the rotating wheel, by touching its
rough surface with a finger (Figure 2c). The electromagnetic field
strength or the speed of the motor are proportional to the data of
the selected neighborhood. The color of the dataset switches and
the neighborhood switches correspond to the familiarization phase
and the testing phase (c.f. Evaluation in Section 4), the blue one
was used for familiarization and the green ones were used for the
actual user evaluation.

Both the motor and the electromagnet work on the same princi-
ples of electromagnetism. Therefore, we used a Pulse Width Modu-
lation (PWM) signal which can be used to control both the speed of
themotor and themagnetic field of the electromagnet. To practically
achieve this, we used a motor driver (a 4-channel L293D motor dri-
ver). The motor and the magnet of a neighborhood was connected
to its motor driver. All motor drivers were connected to an Arduino
(Arduino Mega) allowing both the magnet and the motor to be
turned on/off and controlled based on a PWM signal. A PWM sig-
nal can range from 0 to 255, where the voltage drops from a 100%
at 255 to 0% at 0. For all datasets, the data was mapped to the range
of PWM values where 0 is mapped to the lowest PWM value felt by
the user and the highest value in the dataset to 255. Two different
mappings were used to linearly distribute the data over the range of
PWM values for both modalities. In initial tests of the motor, a value
of 60 was discovered to be the lowest value at which the motor
starts spinning. The mapping for the motor for a given data value is
therefore: (60+ ((𝑉𝑎𝑙𝑢𝑒/𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒) ∗195)). For the electromagnet,
a value of 100 was found to be necessary in order to produce a mag-
netic field strong enough to be observed by the user. The mapping
for a given data value is therefore:(100+((𝑉𝑎𝑙𝑢𝑒/𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒)∗155)).
Values were linearly distributed over the PWM signal ranges with
the exception of the income data, which is categorical. A catego-
rization was created based on the tasks for the experiment, which
would require a minimum value, a maximum value, and two values
in the same category. Because of the five neighborhoods repre-
sented by the installation, four categories were made. As the data
is static for this experiment, values were hard coded into arrays for
processing by the Arduino (3 datasets and separate mappings for
both modalities » six different arrays were encoded). The Arduino
takes the last dataset, modality, and neighborhood selected and
chooses the right value from the right array. This value is then sent
to the appropriate motor driver through the PWM pin, which the
driver translates into a signal that controls the magnet or the motor.

4 PRELIMINARY EVALUATION
Study Design. We conducted a lab-based user study with 18 partici-
pants (nine male and nine female) to evaluate the effectiveness of
conveying data using resistance and friction. During the user study
participants performed data exploration tasks by interacting with
the physicalization and answering questions related to the tasks.
We used three types of tasks: minima, maxima, and cluster (Table
1), organized in two task sets. Each participant interacted with both
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Figure 2: Users can explore data about 10 neighborhoods of the municipality of Enschede using themap based physical interface.
To read data, one of the two modalities can be used: resistance or friction. The metal handle is used to experience resistance
(moving the metal handle away from the magnet in the map interface). Friction can be experienced by touching the rotating
wheel using a finger.

Figure 3: A user interacting with the physicalization: to experience friction, the user can touch the spinning wheel (see also Fig.
1(b)) from her finger; to experience resistance, a user can bring the metal handle (see also Fig. 1(a)) towards the electromagnet
in the interface and try to take it away from the electromagnet. User feels the resistance when she tries to do this move.
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modalities and both task sets. The order of task sets and the modal-
ities were counterbalanced for different participants. Within each
task set, the participants went through the questions in one spe-
cific order: minimum, then maximum, then cluster. All participants
signed an informed consent form after a brief introduction to the
objectives of the study. The possibilities of mild physical discomfort
and mild fatigue were explicitly mentioned in the consent form.
The users then got the chance to familiarize themselves with the
two modalities and ask questions to the researcher five minutes
before the experiment. After the familiarization, the participants
answered questions about the datasets using each modality. At last,
the researcher inquired about the participants’ subjective experi-
ence: what they liked about both modalities, what they disliked,
and which of the two they liked best. The dataset used for the
familiarization (rental houses) is activated using the blue button
(Figure 2a). The datasets used for the evaluation (crime/income) are
activated via the green buttons instead (Figure 2a). The dependent
variables of the study were: efficiency (time-on-task, extracted from
the video recordings), effectiveness (accuracy of the answers), and
subjective preference (which of the two modalities the participants
reported to prefer and why). The independent variables were the
modalities (magnet (resistance) vs motor (friction)), the type of
question answered (minima, maxima, cluster) and the type of data
(ordinal vs numerical). We used the bootES package [25] for the
analysis (number of resamples, N = 5000). Confidence intervals
of the mean differences between the two conditions that do not
contain zero suggest statistical significance [33]. The institutional
Ethics Committee approved the experiment.

Efficiency. Across all tasks, the users were slightly faster in answer-
ing the questions using the magnet (resistance) as opposed to the
motor (friction). The trend is only reversed for answering cluster
questions on numerical data, where the participants were slightly
faster in the motor condition (Figure 4a). Nonetheless, there is no
strong evidence of an advantage of one condition over the other,
and both can be deemed comparable. The differences ‘time (Magnet)
- time (Motor)’ in task completion times were: Minima/Numerical:
-12 seconds (CI: [-39, 10]); Minima/Ordinal: -12 seconds (CI: [-26,
3]); Maxima/Numerical: -7 seconds (CI: [-19, 5]); Maxima/Ordinal:
-3 seconds (CI: [-12, 10]); Cluster/Numerical: 0.9 seconds (CI: [-11,
13]); and Cluster/Ordinal: 0.1 seconds (CI: [-14, 17]).

Effectiveness. The two conditions seem also comparable regarding
effectiveness. Still, there is evidence of motor (i.e. friction) being
slightly more effective for answering minima/cluster questions on
ordinal data (Figure 4b). The differences ‘accuracy (Magnet) - accu-
racy (Motor)’ between the two conditions were: Minima/Numerical:
11% (CI: [0%, 33%]); Minima/Ordinal: -33% (CI: [-78%, -11%]); Max-
ima/Numerical: -11% (CI: [-44%, 22%]); Maxima/Ordinal: -11% (CI:
[-56%, 33%]); Cluster/Numerical: 11% (CI: [-33%, 33%]); and Clus-
ter/Ordinal: -44% (CI: [-89%, -22%]).

Subjective Preference. 16/18 participants (i.e. 89%) indicated a pref-
erence for the magnet (resistance) as an interaction modality for
the tasks. Nearly all mentioned as a rationale for this choice that
the data differences were more noticeable with that modality. As
P5 phrased it: “I preferred the magnet as I feel you can feel the

difference better as the force on your hand is continuous”. Addi-
tional advantages of the use of the magnet included intuitiveness (“
I have a slight preference for the magnet because it felt intuitive and
easier to compare than pushing my finger against a spinning lid”,
P17); comfort (“less discomforting to my finger”, P16); and increased
confidence (“With the magnet, I was more sure about my answer”,
P6). The users also suggested a few improvements regarding the
use of magnets as a modality. These include familiarization time
(P9), the adjustment of the orientation (P7), and the removal of
background noise, which was perceived as a distraction (P9, P13).
In the participants’ own words: “I doubt the accuracy a bit, and
you need a bit of explanation before you really get it, but when I
understood it is really cool and it kept my attention. The thing I
noticed was that the noise, especially from the magnets could tell
me something as well, so that it draws more attention than the
magnets itself. This could be fixed with more accurate and higher
frequency drivers?” (P9). Or “Sound of motor was distracting and
paid attention to the sound instead of the force” (P13). And finally:
“Magnet would be [even] better if it did not have to be interacted
with [in an] exactly perpendicular [fashion]” (P7).

One mentioned advantage of the motor (friction) was the low
physical demand (“Touching the motors or using the magnet was
fun and not really physically demanding”, P14). Besides, two par-
ticipants perceived it as easier than the magnet: “Easier because of
the sound it makes” (P2); and “The motor gave a clearer view of
whether a variable was high or low. Also liked that you could use
your finger to ‘feel’ the data” (P12). The main drawback of the motor
is the fact that ‘stopping when touched’ seems counter-intuitive:
“The motor stops when touched so it is hard to estimate the speed.
Maybe a slower spinning motor would be more clear” (P10); “The
motor stops when touched so it is hard to estimate the speed” (P4).

5 DISCUSSION AND CONCLUSION
Takeaways: Based on the results (Sec. 4), we can summarize the
following key findings about the two modalities: (1) Across all
tasks, the Magnet could reach up to 70% in accuracy during data
reading, while the Motor could reach up to 100%. To put things
in perspective, previous work has indicated that temperature as
encoding modality could reach up to 50% accuracy while vibration
reached up to 100% on similar tasks [38]; (2) both modalities are
likely equally fast for the tasks at hand (minima/maxima/cluster
reading on ordinal/numerical data); (3) Motor has a slight advantage
with respect to effectiveness. Nonetheless, given that the majority
of participants seemed less confident with the motor modality, the
advantage observed may be due to lucky guesses in combination
with the relative simplicity of the questions to be answered. Hence, a
follow-up study is needed to confirm the existence of this advantage;
4) Magnet was preferred as an interaction modality by the majority
of the subjects in the experiment. These few lessons learned can be
used, for example, during subsequent studies using resistance and
friction to communicate data.

Implications: This work demonstrated the potential of using
friction and resistance as modalities for kinesthetic encoding of
data. We foresee several practical benefits that could shine and in-
spire future implementations of human-data experiences using data
physicalizations. Kinesthetics can create more physical, dynamic
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Table 1: Data Exploration Tasks

Task set 1 (numerical data)
Task Type Description
Minimum Which neighborhood has the lowest amount of crimes?
Maximum Which neighborhood has the highest amount of crimes?
Cluster Which neighborhood has a similar amount of crimes to neighborhood 03?
Task set 2 (ordinal data)
Task Type Description
Minimum Which neighborhood(s) are in the lowest income category?
Maximum Which neighborhood(s) are in the highest income category?
Cluster Which neighborhood(s) are in the same income category as neighborhood 00?

(a) Efficiency. (b) Effectiveness.

Figure 4: Evaluation results: a) Users could answer some questions in as fast as 17 seconds with the Magnet and the Motor; b)
The Magnet could reach up to 70% in accuracy during data reading, while the Motor could reach up to 100%.

and natural interactions with data that involve direct manipulation
and human body skills. This therefore, allows creating more playful,
immersive, embodied and engaging interactions with data, espe-
cially for special user groups such as children or visually-impaired
(currently there are only limited potential ways to create interac-
tion with data more engaging and feelable, for example for visually
impaired). They can be used in classrooms to create more embodied
learning experiences, for teaching geographically distributed data
(currently, both the HCI [11] and Cartography [14] communities
strive to make existing maps (and geographic data) more accessible
and engaging). We therefore think that these two modalities will
spark creativity that can guide designers in creating more engag-
ing and immersive experiences with data. We also think that this
system and our initial findings can provide an avenue for the CHI
community to discuss different modalities for data encoding toward

creating more embodied and engaging data experiences, as well as
accessibility and social inclusion of data physicalizations.

Future work: With the metal needing to be applied directly
perpendicular to the magnet, some users struggled to get used
to the interaction with magnets during the familiarization phase.
The core functioning of the electromagnet makes it challenging to
create a field that could be interacted with from different angles.
Potentially, multiple magnets could be combined to emulate this
effect. Another interesting factor to look into is whether a repulsive
force could be more effective than the attractive force used in the
project. Two magnets with unequal poles will have to be used to do
this. This could possibly solve the issue of needing to apply a metal
object perpendicularly and could lead to more enjoyable methods
of interaction.
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Exploring means for optimizing the interaction strategy for the
motor (friction) is also an interesting direction for future research.
With the main limiting factor being the strength of the motor, a
potential way to improve the user experience is calibration. We
have to find a balance between the strength of the motor and the dis-
comfort experienced, which would ideally be evaluated during the
specification stages of developing the concept. A higher torque mo-
tor operating at the same speed or slightly faster could potentially
be more accurate and efficient.

Finally, to increase the confidence in the observed (non-)effects,
subsequent studies should diversify the user base and include ad-
ditional evaluation criteria in assessing both modalities (e.g., per-
ceived task load, finger and wrist fatigue). Most importantly, while
single values for friction/resistance were used in this study, a more
systematic evaluation of the impact of different resistance/friction
values on the overall user experience (discomfort, fatigue) would
be useful to achieve a greater understanding of the modalities suit-
ability for the conveying of data. Furthermore, relevant research
communities can explore various ways of varying the electromag-
netic field and its strength so that they can be easily used to encode
data and to design interactions that are closer to human grasping
styles.

Another valuable area to explore further is the new interaction
types involving various object handle shapes and grasping styles [4].
Different object shapes can enable interactions that utilize natural
human grasping styles. Such interactions could provide a richer
user experience, much closer to natural human interactions, thus
better reality-based and embodied experiences.
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