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Figure 1: The overview of the offline experiment for functionality and usability verification. We conducted an experiment to
collect EEG data when viewing SSVEP stimuli and analyzed it in two ways: target frequency and stimuli activation status classi-
fication. We also used a survey regarding visual comfort. The result indicates that VR-SSVEPeripheral was more comfortable
than the previous stimuli (Central) and functional for augmenting synchronized brain signals for SSVEP detection.

ABSTRACT
Recent VR HMDs embed various bio-sensors (e.g., EEG, eye-tracker)
to expand the interaction space. Steady-state visual evoked potential
(SSVEP) is one of the most utilized methods in BCI, and recent stud-
ies are attempting to design novel VR interactions with it. However,
most of them suffer from usability issues, as SSVEP uses flickering
stimuli to detect target brain signals that could cause eye fatigue.
Also, conventional SSVEP stimuli are not tailored to VR, taking the
same form as in a 2D environment. Thus, we propose VR-friendly
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SSVEP stimuli that utilize the peripheral, instead of the central,
vision area in HMD. We conducted an offline experiment to verify
our design (n=20). The results indicated that VR-SSVEPeripheral
was more comfortable than the conventional one (Central) and
functional for augmenting synchronized brain signals for SSVEP
detection. This study provides a foundation for designing a VR-
suitable SSVEP system and guidelines for utilizing it.

CCS CONCEPTS
•Human-centered computing→User studies; Virtual reality;
• Hardware→ Emerging interfaces.

KEYWORDS
Virtual Reality, Brain-Computer Interface, Steady State Visually
Evoked Potentials (SSVEP), Electroencephalography (EEG), Usabil-
ity, Immersion

https://doi.org/10.1145/3613905.3651084
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613905.3651084&domain=pdf&date_stamp=2024-05-11


CHI EA ’24, May 11–16, 2024, Honolulu, HI, USA Kim, et al.

ACM Reference Format:
Jinwook Kim, Taesu Kim, and Jeongmi Lee. 2024. VR-SSVEPeripheral: De-
signing Virtual Reality Friendly SSVEP Stimuli using Peripheral Vision
Area for Immersive and Comfortable Experience. In Extended Abstracts of
the CHI Conference on Human Factors in Computing Systems (CHI EA ’24),
May 11–16, 2024, Honolulu, HI, USA. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3613905.3651084

1 INTRODUCTION
Recent virtual reality head-mounted displays (VR HMDs) are trying
to embed EEG to receive brain signals for evaluating user status in
VR or developing novel Brain-Computer Interface (BCI) based VR
interactions [5, 17, 36]. Among these approaches, Steady-State Vi-
sual Evoked Potential (SSVEP) is the most widely used BCI method
in a 2D environment for manipulating interfaces such as button se-
lection and text typing [2, 11, 29, 38]. SSVEP is a method of detecting
specific brain wave patterns in the occipital lobe when a user gazes
at a visual stimulus that blinks at a certain frequency [6, 13, 40].
Brain signals are acquired with the EEG device and segmented into
specific time windows (250 to 1000ms). From the segmented data,
the features are extracted using functions such as Short-time Fourier
Transform analysis and Power Spectral Density (PSD) [8, 48]. These
features are used to conduct Canonical Correlation Analysis (CCA)
or more advanced algorithms, such as Convolutional or Recurrent
Neural Network (CNN/RNN), to classify or detect which frequency
the user is currently viewing [2, 13, 28]. These advanced machine
learning algorithms have significantly improved brain signal detec-
tion speed and accuracy [15, 25, 28].

In contrast to the progress of technical development, the ap-
proach from a usability perspective is still insufficient [34, 42].
Moreover, these BCI methods are applied to VR interaction sys-
tems without being tailored to the VR HMD environment [7, 23].
Existing BCI systems mainly use a method of augmenting brain
signals with flickering stimuli such as SSVEP and P3 Speller, and the
current form that is used in a 2D environment is currently applied
as is to content in VR [7, 21, 42]. Novel VR interactions based on
BCI can provide users with new experiences, but flickering stimuli
could interfere with content immersion and cause eye fatigue in
long-term use. Thus, different approaches are needed from both
technical and usability perspectives to improve its usability for VR
usage [32].

In this paper, we propose SSVEP stimuli designed for the periph-
eral vision area. This approach addresses a limitation of VR—the
restricted field of view—within the context of VR head-mounted
displays (HMDs) [30, 46]. Through our design, we aim to maintain
the technical performances while minimizing the visual discomfort
of SSVEP stimuli. We conducted an offline experiment to verify the
technical feasibility and evaluate the usability of our SSVEP stimuli
design. The result showed that VR-SSVEPeripheral was functional
and more comfortable than the previous stimuli for augmenting
synchronized brain signals for SSVEP detection. Based on the result,
we propose that our research makes the following contributions:

• We utilized the peripheral vision area to design VR-friendly
SSVEP stimuli and verified the technical feasibility and visual
comfort improvement through the offline experiment.

• This paper is the first to design comfortable SSVEP stim-
uli for VR. Previous studies have evaluated the stimuli size

or contrast [42], but none have attempted to design novel
stimuli forms.

• Based on the result, we revealed relative strengths and weak-
nesses by comparing it with the traditional SSVEP stimuli
(Central) and propose design guidelines for using SSVEP for
VR interaction using both central and peripheral methods.
Thus, this study contributes to BCI for VR and expands the
interaction space.

2 RELATEDWORK
BCI has been mainly used for typing, wheelchair, and robot re-
mote commands to assist people with limited mobility or medical
purposes [1, 53]. This was due to the high cost of EEG, the inconve-
nience of wearing the device, and low Signal-to-Noise Ratio issues.
However, in recent years, EEG devices have become a more com-
fortable form to measure brain signals with dry electrode [9, 24],
and many methods have been developed to find meaningful signals
even when there is a lot of noise [3, 15, 50]. With this improvement,
many attempts have been made to utilize BCI for daily life such as
games or Internet of Things (IoT) other than specialized purposes.
For instance, various commercial EEG products such as Nextmind
and Looxid Labs can be used to change TV channels or manipulate
2D/3D game interfaces, and remotely control IoT devices on AR
devices [7, 18, 23, 24].

However, in this transitional phase, many BCI studies still lack
consideration of the usability of these systems [2, 16]. They mostly
focus on developing various machine learning or algorithms to
improve classification accuracy or detection speed [14, 20]. On the
other hand, in recent years, there have been some studies that
have tried to improve the usability and accessibility of the BCI
system. For instance, to reduce the discomfort caused by SSVEP
stimuli with flickering lights, alternative approaches such as rotat-
ing patterns and icons are suggested [12, 40]. Other studies have
also compared accuracy and user preference depending on stimulus
size, illuminance, and frequency rate in VR [42], but no studies have
yet attempted to design novel stimuli forms for VR.

In the future, a user experience-related approach will be more
important for BCI to be applied for general usage, especially in
VR [11, 31]. The most challenging part of this VR approach is cre-
ating visually comfortable stimuli for the user and contextualiz-
ing them in a virtual reality environment while maintaining the
performance of the BCI system (e.g., accuracy, classification time,
etc) [26]. In 2D environments, visual comfort was the only feature
that needed to be considered, but in VR environments, it is impor-
tant to develop stimuli that do not break the sense of immersion
since users frequently interact with multiple virtual objects beyond
a simple UI. Therefore, we propose SSVEP stimuli by utilizing the
peripheral vision area to improve the current BCI system for VR
interaction.

3 VR-SSVEPeripheral DESIGN
We aimed to design VR SSVEP stimuli that are both comfortable
and functional in this study. Thus, we gained some insights from
the previous work that utilized peripheral vision areas in VR and
2D environments [19, 26, 46, 52]. First, Xiao and Benko proposed
SparseLightVR, which provides ambient light around the HMD
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lenses to extend the VR contents and nearly fill the human field of
view (FoV) [46]. Through the user test, they verified that Sparse-
LightVR has successfully expanded FoV up to 190°and enhanced
situational awareness. On the other hand, in terms of utilizing the
peripheral field for SSVEP stimuli in a 2D environment, Lee et al.
conducted a study comparing mental fatigue between central and
peripheral SSVEP stimuli [26]. They designed circular stimuli and
divided the central and peripheral into inner and outer circles. The
results of their study indicate some trade-off effects on detection
accuracy when peripheral SSVEP stimuli were used for visual com-
fort. However, it still has a significant effect on decreasing visual
fatigue. Overall, these studies propose possibilities that peripheral
areas in VR HMD could contribute to solving various issues in both
VR and BCI fields.

Inspired by the previous approaches, we designed peripheral
SSVEP stimuli in the VR HMD supported by LEDs. Since various
research reported a trade-off effect between usability and feasibility
when the stimuli are presented in the peripheral area, we used LED
to augment more powerful synchronized brain signal [44, 45]. As
shown in Figure 2, two LED strips (SK6812-RGB-NW)were attached
around the lenses and faced the outer side of HMD to use light
reflection for interference and glare reduction. A total of 20 LED
chips, ten each on the outer side area, were used to implement our
design. When the LED inside of HMD was illuminated, the light
intensity measured at eye level was 5,300K, 147 lx.

In addition, only a single SSVEP stimulus can be presented at
a time in this form. In the 2D environment, providing multiple
stimuli on the screen is essential due to the lack of a targeting
method instead of a mouse cursor. However, in recent VR HMDs,
various targeting methods (i.e., eye and head tracking) are available
to assist users’ selection. Along with these targeting methods, our
approach could widen the range of design space for VR interaction
and promote BCI usage.

Figure 2: An image of VR-SSVEPeripheral activated on Meta
Quest 2 VR HMD. The position of the activated LED strip is
highlighted.

4 EXPERIMENT
To evaluate and verify our SSVEP design, we conducted an offline
experiment that could collect EEG data while viewing each stimulus
in various frequencies (7, 10, and 12 Hz) [40, 42]. We also included

traditional SSVEP stimuli, which present the stimuli on the central
vision area, to compare the usability and verify methods used for
analysis. The target (Sphere, size: 9.5°, Distance: 6 m) was provided
during the trial, and participants were asked to focus on the sphere.
The sphere flickered at a specific frequency in the central SSVEP
presentation stimuli (Central) condition. On the other hand, the
LED placed on the VRHMD peripheral area (Peripheral) is triggered
to flicker in our peripheral SSVEP stimuli condition.

The experiment was performed using Meta Quest 2 (3664 x 1920
resolution, 90 Hz refresh rate, 100°FoV). For brain signal acquisition,
we used a dry-type 32-channel EEG device (CGX Quick-32r). In this
experiment, we utilized only six channels placed on the occipital
lobe (O1, O2, Oz, P3, Pz, P4) with a sampling frequency of 500 Hz.
The experiment was performed using Unity 3D to implement a VR
experiment environment on AMD Ryzan 9 5900X, 32GB RAM, and
an NVIDIA RTX 3090 desktop. Serial communication was used to
send a signal from Unity to trigger peripheral stimuli built with
LED strips wired to Arduino Nano.

4.1 Participants
We recruited 20 participants from the university, but due to poor
EEG calibration, two subjects failed to accomplish the full task
and were excluded. Among the 18 participants who completed
the full task (Mean age=26.61, SD=3.78, 13 Male), all participants
had previous experience using VR, but none had experience using
SSVEP. All of the study protocols and methods were approved by an
Institutional Review Board (IRB) of the university, and participants
were rewarded $20 for participating in the experiment.

4.2 Procedure
The experimenter first explained the task and the experimental
procedure. Then, participants conducted a survey about previous
VR and SSVEP experiences. After the survey, participants wore an
EEG device, and the experimenter adjusted the electrode to lower
the impedance below 600 kΩ to receive clean brain signal data.
After adjustment, they wore VR HMD as Figure 1 and proceeded
to the task. The trial blocks for each SSVEP presentation method
were presented in a counterbalanced order, and flickering frequency
(7, 10, 12 Hz) was presented in randomized order. The experiment
contained 180 trials, 90 trials for each stimuli presentation method,
and a rest phase was provided after every 45 trials. In each trial,
participants were asked to focus on the target for four seconds and
relax when the target was changed to cross for five seconds (see
Figure 3). After each block, participants were asked to fill out the
survey about visual comfort in a 10-point Likert scale [42]. The
entire experimental session took about 50 minutes to complete on
average.

5 RESULTS
During the experiment, brain signals, event logs, and survey re-
sponses were collected. In terms of brain signals, a high and low
pass filter was applied to get signals between 0.1 and 60 Hz. Then,
the data was segmented into trial units based on the event mark-
ers. After preprocessing, it was classified into two ways: target
frequency and activation status. Previous studies only conducted
target frequency classification, classifying the frequency the user
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Figure 3: The illustration of the experiment trial procedure. The SSVEP display method (Central and Peripheral) was presented
in a counterbalanced order, and target frequency (7, 10, and 12 Hz) was provided in random order in each block. A sphere was
presented as a target object during the trial state (4s), and it was changed to the fixation point (cross) in the resting state (5s) to
indicate the target location.

focused on [40, 42]. However, due to the form of our design, which
can not present multiple flickering frequencies simultaneously, the
classification of whether SSVEP stimuli are activated and focused
is required. Thus, we conducted both classifications to explore the
pros and cons of each method and to provide design guidelines for
utilizing SSVEP in VR applications. The detailed analysis methods
and results are as follows.

5.1 Target Flickering Frequency Classification
First, we conducted a Canonical Correlation Analysis (CCA) to clas-
sify which target frequency stimuli the user was focusing on during
each trial. CCA is a commonly used algorithm in the SSVEP-based
BCI method due to its high classification performance and does
not require a pre-training phase [10, 27, 35]. It computes the linear
transformations of EEG data with each template signal (Fourier
series) and recognizes the target frequency by maximizing the cor-
relation (see Figure 1 CCA section). For instance, when the user
focuses on the 7 Hz SSVEP stimuli, the synchronized brain signal is
generated at the multiples of the target frequency (i.e., 7, 14, 21 Hz).
The CCA algorithm computes the correlation between the brain
signal input and each target frequency template and classifies it
based on the maximum correlation value.

The study utilized three template signals (7, 10, and 12 Hz) on
segmented EEG data. Additionally, we examined classification ac-
curacy across various time window lengths, ranging from 0.25s to
2s in 0.05s increments. The CCA was performed using a sliding
window technique (25% overlap) on each trial data (4s), and the
overall results are presented in Figure 4.

The results indicate that traditional SSVEP stimuli, displaying
stimuli on the target object directly, show high accuracy (> 75%)
from the 0.75s time window as the previous studies [33]. However,
the classification accuracy of peripheral SSVEP stimuli was lower
than 50% in all time window lengths. This could be due to the
trade-off effect of displaying the stimuli in the peripheral vision
area rather than directly displaying them in the center [26].

5.2 Stimuli Activation Status Classification
Since peripheral SSVEP stimuli can only present one frequency
at a time, we conducted a classification between the resting state

and stimuli-activated/focused state. Among the resting state EEG
data between each trial (5s), the first second was discarded and
the remaining (4s) was utilized in this analysis. Each data was seg-
mented into two-second lengths, resulting in 120 data samples (60
activated, 60 resting) for each presentation and frequency condition.
Lastly, the data was normalized, and Welch Power Spectral Density
(PSD) was applied to extract the signal power of each frequency
band [8, 48].

In addition to user-dependent (Intra-subject) evaluation, we
evaluated independent (Inter-subject) cases to explore the gen-
eralization and possibility of training-free usage [39, 47]. For user-
dependent conditions, we divided individual data into test and
validation sets at an 8:2 ratio and performed classification on each
participant’s data (5-fold cross-validation). In user-independent
conditions, 17 participants’ data was used for training, and one par-
ticipant was used for model evaluation (18-fold cross-validation).
Overall Support Vector Machine (SVM) was used to conduct classifi-
cation [49] and the cross-validation results are described in Table 1.

From the result, we found that overall user-dependent cases show
high classification accuracy in both central and peripheral stimuli
presentation (> 70% evaluation accuracy in 12 Hz). In addition, the
result showed that the evaluation accuracy increases at a higher
target frequency in peripheral presentation conditions. This result
indicates that peripheral SSVEP stimuli could be utilized for VR
triggering or selection methods. On the other hand, in the user-
independent case, classification performance was not promising to
verify the generalization and train-free usage. This could be due to
the high influence of individual differences of EEG data [37] and
BCI illiteracy [4].

5.3 Visual Comfort
In order to evaluate the stimuli design, a survey regarding visual
comfort was collected after experiencing each SSVEP presentation
method. The survey question was ‘How much visual discomfort
did the stimulation cause?’ and the answer was collected with 1
being discomfort and 10 being comfortable [42]. The responses
were analyzed with the Wilcoxon signed-rank test. As Figure 4, the
result (p=.008, Z=-2.632) showed that our peripheral SSVEP stimuli
design (M=4.78, SD=2.10) was more comfortable than traditional
stimuli (M=3.56, SD=1.65).
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Figure 4: The result of target flickering frequency classification and survey. (A) The average accuracy of CCA results for each
time window (second) length. The error bars represent the 95% confidence intervals. (B) The boxplot illustrating the result of
the SSVEP stimuli comfortableness survey on a 10-point Likert scale (1=discomfort, 10=Comfortable; *=p<0.01).

User Dependent User Independent
Presentation Type Hz Train Acc Eval Acc Train Acc Eval Acc

Central 7 0.920 (0.010) 0.760 (0.053) 0.828 (0.005) 0.695 (0.088)
Peripheral 7 0.886 (0.141) 0.679 (0.054) 0.739 (0.005) 0.584 (0.089)
Central 10 0.919 (0.104) 0.744 (0.050) 0.807 (0.006) 0.660 (0.089)

Peripheral 10 0.892 (0.142) 0.697 (0.067) 0.760 (0.005) 0.588 (0.083)
Central 12 0.910 (0.139) 0.772 (0.064) 0.809 (0.007) 0.685 (0.094)

Peripheral 12 0.907 (0.144) 0.712 (0.054) 0.766 (0.005) 0.596 (0.104)
Central All 0.893 (0.111) 0.779 (0.058) 0.795 (0.004) 0.675 (0.089)

Peripheral All 0.866 (0.139) 0.717 (0.067) 0.739 (0.005) 0.597 (0.098)
Central Average 0.910 (0.012) 0.764 (0.015) 0.810 (0.013) 0.679 (0.015)

Peripheral Average 0.888 (0.017) 0.701 (0.017) 0.751 (0.014) 0.591 (0.006)
Table 1: The average classification accuracy of stimuli activation status based on SVM.We analyzed the performance by dividing
the dataset into presentation type, target frequency, user-dependent, and independent case. Along with the average of each
case, the standard deviation is reported in the parenthesis.

6 DISCUSSION & CONCLUSION
In this paper, we propose VR-SSVEPeripheral, VR-friendly SSVEP
stimuli that utilize peripheral vision areas in VR HMDs. We con-
ducted an offline experiment to technically verify our design and
evaluate its usability. From the result, we found that displaying
SSVEP in the peripheral vision area was more comfortable for
users. In terms of classification performance, the traditional SSVEP
method showed promising results for both target frequency and
stimulus state classification as the previous studies [11]. However,
there was some trade-off effect between comfort and band power at
the target frequencies [26] in the peripheral presentation method
condition. Specifically, the frequency classification (CCA) results

showed less than 50% performance when the stimuli were pre-
sented peripherally, but the result of the stimuli activation status
classification (SVM) task showed promising results (> 70%).

Thus, these results reveal that presenting SSVEP stimuli in the
peripheral vision area is inappropriate for using multiple frequen-
cies. Still, it is possible to detect when a stimulus is present and
focused. This result may be fatal in 2D environments where users
interact with multiple interfaces (e.g., buttons, word inputs). How-
ever, in a VR environment, where there are additional targeting
methods (i.e., eye, head, and hand), SSVEP can open up a new VR
interaction space when used as a triggering method. For instance, if
eye-tracking and EEG are used as a targeting/triggering method in
a teleportation method when exploring a virtual world or remote
space, it will facilitate users’ multitasking by relieving the burden
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of tasks and functions concentrated on the hands [21, 22, 41]. Given
a single target (i.e., teleportation, push buttons, shooting), a periph-
eral presentation form of SSVEP can be used to design a relatively
comfortable and immersive interaction experience.

We have analyzed basic algorithms such as CCA and SVM to vali-
date the new method. Therefore, we expect that several approaches
can be taken to improve the classification performance. First, it
could be improved by using more advanced algorithms and ma-
chine learning models proposed in recent studies (e.g., CNN, RNN,
Filter Bank) [28, 43, 51]. In addition, we found that stimuli activation
classification performance was improved in higher target frequency
in the peripheral SSVEP stimulus condition. Previous studies have
shown that when presenting stimuli with LEDs, unlike screen bases,
higher frequencies can be employed without a maximum frequency
limit [53]. It would be possible that presenting stimuli with higher
flickering frequencies could lead to improved performance and less
intrusive stimuli. Finally, the use of EEG data augmentation [28],
which has recently been proposed as an advance in generative AI,
could improve overall performance, especially in user-independent
cases.

Therefore, future work should first attempt to improve the classi-
fication performance. Then, a more comprehensive user experience
that measures immersion, comfort, and online SSVEP detection per-
formance should be evaluated by adopting these SSVEP methods
for VR interaction (i.e., locomotion, UI selection, and multitasking).
In addition, exploring the interaction effect between VR content
and peripheral SSVEP stimuli could help improve immersion. For
example, it might be possible to try presenting different light in-
tensities or colors of LEDs in conjunction with the context of the
VR content. Based on these improvements, we expect to be able to
present practical design guidelines for utilizing BCI methods for
VR interaction.
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