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ABSTRACT
Early detection of mild cognitive impairment (MCI) is crucial to
impede dementia progression. Virtual reality (VR) biomarkers are
adept at detecting impairments in instrumental activities of daily
living (IADL), whereas magnetic resonance imaging (MRI) biomark-
ers excel in measuring observable structural changes in the brain.
However, the efficacy of integrating VR and MRI biomarkers to
improve early MCI detection remains unclear. This study aims to
evaluate and compare the effectiveness of VR and MRI biomarkers
and investigates the potential of their combined use for more accu-
rate early MCI detection. Through support vector machine analysis,
distinct characteristics were observed. For identifying MCI, VR
biomarkers demonstrated high specificity (90.0%), whereas MRI
showed high sensitivity (90.9%). The combination of both biomark-
ers yielded superior results in accuracy (94.4%), sensitivity (100.0%),
and specificity (90.9%). Drawing from these results, we suggest a
sequential diagnostic approach, employing VR for initial screening
and MRI for subsequent confirmation of MCI.
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1 INTRODUCTION
Mild cognitive impairment (MCI) represents a critical juncture
in cognitive decline, lying between the normal cognitive aging
process and Alzheimer’s disease (AD). This stage is characterized
by symptoms such as memory loss and difficulty in performing
complex daily activities [1–3]. The progression of MCI towards AD
complicates the reversal of cognitive decline [4, 5], significantly
impacting patient independence [6]. Therefore, intervening during
theMCI stage is essential to potentially slow down cognitive decline.
Early MCI detection is not only crucial to hinder its progression to
AD but also imperative for initiating timely interventions aimed at
reinstating cognitive functions to a normal aging level [7].

Traditionally, MCI diagnosis has depended on biomarkers such
as neuropsychological tests and magnetic resonance imaging (MRI)
[8]. While neuropsychological tests are effective in quantitatively
evaluating cognitive functions [9], they necessitate extensive exam-
ination periods and can yield varied interpretations depending on
the professionals involved [10]. MRI, in contrast, identifies MCI by
detecting structural brain alterations, especially in memory-related
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areas [11, 12], but its use is restricted by its costly nature and [13, 14].
This has led to a growing need for alternative biomarkers that can
economically and accurately detect MCI based on observable be-
havioral patterns in day-to-day activities [16, 17].

Recent advancements have seen the incorporation of virtual real-
ity (VR) technology into traditional diagnostic approaches, such as
MRI, to collect behavioral data pertinent to instrumental activities
of daily living (IADL) and enhance early MCI detection through
machine learning techniques [16–18]. For example, Kim et al. [16]
developed a virtual kiosk test for tasks like food ordering, achieving
a 93.3% success rate in differentiating MCI patients from healthy
controls based on hand and eye movements, as well as task per-
formance. Research by Castegnaro et al. [19] and Howett et al.
[20] investigated the impact of brain damage on performance in
VR tasks, observing significant declines, particularly in those with
entorhinal cortex impairment. Additionally, Cavedoni et al. [17]
highlighted the importance of integrating VR and MRI biomarkers
in understanding MCI. Our study, therefore, seeks to examine the
use of a multimodal learning approach that integrates VR and MRI
biomarkers for enhanced clinical effectiveness and more accurate
early detection of MCI.
Our study is driven by two key objectives. First, we aim to conduct
a comparative analysis of VR and MRI biomarkers against the stan-
dard neuropsychological tests used in MCI diagnosis, to identify the
unique strengths and limitations of each modality. The second ob-
jective is to assess the potential of a multimodal learning model that
utilizes the distinctive characteristics of VR and MRI biomarkers
to improve early MCI detection. This integrated approach aims to
amalgamate the superior attributes of both modalities, endeavoring
towards a more precise and reliable MCI diagnostic method. The
findings of our study propose a novel clinical approach that fur-
nishes clinicians with an improved framework for MCI detection,
employing VR as the primary screening tool followed by secondary
diagnosis via MRI.

2 METHOD
2.1 Participants
We recruited 54 participants aged 50 and above from Hanyang
University Hospitals in Seoul and Guri over the period from Janu-
ary 2022 to July 2023. These participants were selected through a
combination of voluntary sign-ups and outpatient clinic referrals
at the hospitals. To diagnose MCI, we enlisted two neurologists
with extensive experience of 18 and 22 years. They followed the
MCI diagnostic criteria of Albert et al [21], using the Seoul Neu-
ropsychological Screening Battery-Core (SNSB-C), a standardized
assessment tool for the Korean population [22, 23]. Eligible par-
ticipants were required to demonstrate the ability to engage with
VR technology through visual and auditory prompts. We excluded
individuals with a history or predisposition towards neurodegener-
ative diseases or brain surgeries. Each participant was thoroughly
informed about the study and provided written consent. The study
received ethical clearance from the Institutional Review Board of
Hanyang University Hospital, Republic of Korea, in accordance
with the Declaration of Helsinki (HYUH-2021-08-020-004).

2.2 Neuropsychological tests
This study utilized the SNSB-C, a neuropsychological test specif-
ically designed and standardized for the Korean population. The
SNSB-C was utilized to evaluate five cognitive domains through
separate assessments, including: 1) Digit Span Test: Backward
(DST: B) for attention; 2) Short form of the Korean-Boston Naming
Test (S-K-BNT) for language function; 3) Rey Complex Figure Test
(RCFT) for visuospatial function; 4) Seoul Verbal Learning Test-
Elderly’s version: Delayed Recall (SVLT-E: DR) for memory; and 5)
Digit Symbol Coding (DSC) for frontal/executive function.

2.3 VR biomarkers
Our study made use of the virtual kiosk test, a VR tool developed in
previous research [24], to gather VR biomarkers. This test simulates
the process of ordering at a virtual kiosk, aiming to identify early
signs of MCI. The setup included a laptop with an Intel i7-12700H
processor, 16 GB of RAM, and an NVIDIA GeForce RTX 3080 graph-
ics card. For an immersive VR experience, participants used a
head-mounted display with eye-tracking features (HTC VIVE Pro
Eye) and interacted with the kiosk using a hand controller (see
Figure 1). Their movements were tracked by two base stations
throughout the test, which they performed while seated.

The virtual kiosk involved six sequential steps, excluding the
initial ‘Start’ and final ‘End’ stages (see Figure 2). These steps were:
1) selecting a place to eat; 2) choosing a burger item; 3) picking a side
item; 4) selecting a drink item; 5) deciding on a payment method;
and 6) entering a four-digit payment password. Before starting
the test, participants were verbally provided with the following
instructions: “The place to eat is a restaurant. Please use the kiosk
to order a shrimp burger, cheese sticks, and a Coca-Cola. Use a
credit card as the payment method, and the card payment password
is 6289.” Participants were not allowed to take notes or inquire
about the instructions again.

Four key VR biomarkers were derived from the behavioral data
collected during the test (refer to Appendix A’s Figure 4). The first
biomarker was hand movement speed, determined by dividing the
total hand movement distance by the overall duration of the test
[16, 24]. The second biomarker, scanpath length, measured the total
distance covered by the participants’ gaze during the test [26, 27].
The third metric, the time to completion, indicated the time taken
by participants to finish all six steps [28]. Lastly, we counted the
number of errors made during the test [24]. These biomarkers are
indicative of various cognitive functions, including perception and
processing speed.

2.4 MRI biomarkers
MRI scans for our study was conducted at Hanyang University
Hospital in both Guri and Seoul, using the PHILIPS Ingenia CX 3T
scanner. We applied the 3D T1-weighted magnetization prepared
rapid gradient echo technique for these scans, with each location
following a specific protocol. At Guri Hospital, the parameters were
TE/TR=2.9ms/6.3ms, a flip angle of 9°, field of view at 256×256mm,
with 211 slices and a voxel size of 1×1×1mm3. Seoul Hospital’s pro-
tocol involved TE/TR=4.1ms/6.9ms, a flip angle of 8°, field of view
at 300×299mm, 170 slices, and a voxel size of 0.8×0.8×1mm3. The
MRIs were processed using AQUA 3.0 software, which assisted in
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Figure 1: Layout of the virtual kiosk test setup. (A) Various components used in the experiment; (B) The virtual kiosk and
virtual hand within the VR environment.

Figure 2: Six sequential steps of the virtual kiosk test.

accurately identifying and delineating the brain regions of interest
[35].

For this study, we focused on MRI biomarkers linked to brain
areas susceptible to early atrophy in AD [30]. The selected MRI
biomarkers included the amygdala [31], hippocampus [32], entorhi-
nal cortex [33], parahippocampal gyrus [33], fusiform gyrus [34],
and the superior, middle, and inferior temporal gyrus [35], as de-
tailed in Appendix A’s Figure 5. These biomarkers were sourced
from both hemispheres of the brain, culminating in a total of 16
distinct biomarkers for the study. Additionally, we factored in the
intracranial volume (ICV), encompassing the total volume of white
matter, gray matter, and cerebrospinal fluid [36], to account for
overall brain size. All MRI biomarkers were then normalized rel-
ative to the ICV to mitigate variations in brain volume that could
arise from differences in age and gender [14].

2.5 Procedures
Each participant in our study first completed the SNSB-C. Two neu-
rologists then diagnosed MCI according to the criteria set by Albert
et al. [21], utilizing the results from the SNSB-C. Following this,
participants were involved in both the virtual kiosk test and MRI
scans, executed in a counter-balanced sequence. The neurologists
who made the MCI diagnosis also administered the virtual kiosk
test. A radiologist with 16 years of expertise conducted the MRI
scans. To familiarize participants with the VR technology and envi-
ronment, two practice sessions were conducted prior to the virtual
kiosk test. While participants had the option to take breaks or stop
the experiment if they experienced any discomfort or dizziness,

all participants completed the experiment without needing breaks,
with the entire process averaging 54.32 minutes.

2.6 Statistical analysis
The statistical analysis was carried out using IBM SPSS Statistics
27 software. We began with a chi-square (j2) test and independent
sample t-tests to assess differences in demographic characteristics
between healthy controls and MCI patients. Following this, we
conducted analyses of covariance (ANCOVA) with age factored
in as a covariate, to evaluate the variances in neuropsychologi-
cal characteristics, VR biomarkers, and MRI biomarkers between
healthy controls and MCI patients. This approach was instrumental
in identifying specific attributes of each biomarker. Furthermore,
we performed a Pearson correlation analysis to investigate the
interrelationship between VR and MRI biomarkers.

2.7 Multimodal integration
In our research, Python 3 was employed for the purpose of multi-
modal learning, focusing on the integration of VR andMRI biomark-
ers that showed statistical significance. We selected the support
vector machine (SVM) algorithm as our machine learning model
[37–39]. The hyperparameters were determined through grid
search, settling on a radial basis function kernel with C = 1 and
gamma = 0.1. To ensure external validation, we conducted external
validation by employing a train/test split with a ratio of 7:3. Specifi-
cally, 38 participants were assigned to the train subcohort, while the
remaining 16 participants formed the test subcohort. During the
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Table 1: Comparative analysis of demographic characteristics between healthy controls and MCI patients, presented as Mean
(SD).

Characteristics Healthy controls (n = 22) MCI patients (n = 32) p-value

Demographic characteristics
Gender (Female) (n (%)) 14 (63.63) 14 (43.75) .151
Age (years) 69.86 (6.72) 73.47 (8.39) .070
Education level (years) 12.09 (4.46) 9.47 (5.12) .057

Table 2: Comparative analysis of VR biomarkers between healthy controls and MCI patients, presented as Mean (SD).

VR biomarkers Healthy controls (n = 22) MCI patients (n = 32) p-value

Hand movement feature
Hand movement speed (m/s) 0.23 (0.06) 0.17 (0.06) .001
Eye movement feature 23.66 (14.29) 60.36 (54.58) .010
Scanpath length (m)
Performance feature 39.48 (18.96) 105.39 (86.35) .003
The time to completion (s)
The number of errors 1.73 (1.61) 4.00 (2.81) .003

biomarker integration process, we compared the performances of
models that used either VR or MRI biomarkers individually. These
models were evaluated based on various metrics, including accu-
racy, sensitivity, specificity, precision, F1-score, and the area under
the receiver operating characteristic curve (AUC).

3 RESULTS
3.1 Demographic and neuropsychological

characteristics
Analysis of demographic characteristics using chi-square tests and
independent sample t-tests showed no significant differences be-
tween healthy controls and MCI patients (see Table 1). How-
ever, when evaluating neuropsychological characteristics using
ANCOVA, with age as a control variable, there was a clear distinc-
tion between healthy controls and MCI patients (refer to Appendix
B’s Table 4). Notably, MCI patients displayed considerable deficits
in all five assessed cognitive domains. These included attention
(F1,51 = 24.181; p < .001), language function (F1,51 = 14.993; p <
.001), visuospatial function (F1,51 = 19.115; p < .001), memory (F1,51
= 32.542; p < .001), and frontal/executive function (F1,51 = 20.584;
p < .001), all showing significant impairment when compared to
healthy controls.

3.2 Differences in VR biomarkers between
healthy controls and MCI patients

When evaluating VR biomarkers using ANCOVA, accounting for
age as a covariate, there were notable differences between healthy
controls and MCI patients (see Table 2). In the virtual kiosk test,
MCI patients demonstrated considerably slower hand movement
speed (F1,51 = 13.426; p = .001), longer scanpath length (F1,51 =

7.108; p = .010), prolonged time to completion (F1,51 = 9.447; p =

.003), and a larger number of errors (F1,51 = 9.438; p = .003) in
comparison to healthy controls.

3.3 Differences in MRI biomarkers between
Healthy Controls and MCI Patients

Using ANCOVA with age as a control variable, we examined differ-
ences in ICV and its proportion between healthy controls and MCI
patients. While MCI patients showed an increased ICV compared
to healthy controls, this difference was not statistically significant.
However, there was noticeable atrophy in the proportion of ICV
among MCI patients. Table 3 highlights the MRI biomarkers with
statistically significant differences from the total set of 16 biomark-
ers (refer to Appendix B’s Table 5). Notably, significant differences
were observed in the left entorhinal cortex (F1,51 = 7.821; p = .007),
right entorhinal cortex (F1,51 = 11.103; p = .002), left hippocampus
(F1,51 = 11.926; p = .001), right hippocampus (F1,51 = 8.244; p = .006),
left amygdala (F1,51 = 7.979; p = .007), and right amygdala (F1,51 =
6.618; p = .013).

3.4 Correlation between VR and MRI
biomarkers

A Pearson correlation analysis was carried out among the previ-
ously identified statistically significant VR and MRI biomarkers.
Each VR biomarker showed significant correlations with one or
more MRI biomarkers (detailed in Appendix B’s Table 6). Particu-
larly striking was the left hippocampus, which exhibited significant
correlations with all four VR biomarkers: hand movement speed
(r = .396, p = .003), scanpath length (r = -.284, p = .038), the time
to completion (r = -.379, p = .005), and the number of errors (r =
-.392, p = .003).

3.5 Multimodal integration performance of VR
and MRI biomarkers

In our study, the SVM model, which was trained using SNSB-C
components (RCFT and SVLT-E: DR) and regarded as the gold
standard, demonstrated strong performance with accuracy of 94.4%,
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Table 3: Comparative analysis of MRI biomarkers between healthy controls and MCI patients, presented as Mean (SD).

MRI biomarkers Healthy controls (n = 22) MCI patients (n = 32) p-value

Raw volume (cc)
ICV 1490.96 (127.40) 1511.49 (128.89) .566
The proportion of ICV (%)
Left Amygdala 0.24 (0.02) 0.21 (0.03) .001
Right Amygdala 0.12 (0.01) 0.11 (0.01) .002
Left Hippocampus 0.24 (0.02) 0.21 (0.03) .001
Right Hippocampus 0.24 (0.02) 0.22 (0.03) .006
Left Entorhinal cortex 0.15 (0.02) 0.13 (0.02) .007
Right Entorhinal cortex 0.13 (0.01) 0.11 (0.02) .013

sensitivity of 100.0%, specificity of 85.7%, precision of 91.7%, F1-
score of 95.7%, and AUC of 0.93. When utilizing only VR biomarkers
(hand movement speed, scanpath length, and number of errors), the
best-performing SVM model attained accuracy of 88.9%, sensitivity
of 87.5%, specificity of 90.0%, precision of 87.5%, F1-score of 87.5%,
and AUC of 0.84. On the other hand, an SVMmodel using only MRI
biomarkers (specifically the left hippocampus and left entorhinal
cortex) achieved the best results with accuracy of 83.3%, sensitivity
of 90.9%, specificity of 71.4%, precision of 83.3%, F1-score of 87.0%,
and AUC of 0.79. Remarkably, the integration of both VR and MRI
biomarkers led to the highest performance, resulting in accuracy of
94.4%, sensitivity of 100.0%, specificity of 90.9%, precision of 87.5%,
F1-score of 93.3%, and AUC of 0.89.

4 DISCUSSION
This study aimed to evaluate the effectiveness of a multimodal
learning approach that integrates both VR and MRI biomarkers for
the improved detection of early MCI. The findings showed that, in
VR biomarkers, MCI patients demonstrated significantly reduced
hand movement speed, increased scanpath length, longer time to
complete tasks, and more errors in the virtual kiosk test compared
to healthy controls. Similarly, MRI biomarkers revealed substantial
atrophy in key areas such as the bilateral amygdala, hippocampus,
and entorhinal cortex in MCI patients. The integration of VR and
MRI biomarkers through a multimodal learning framework yielded
excellent early MCI detection performance, achieving 94.4% accu-
racy, 100.0% sensitivity, 90.9% specificity, 87.5% precision, a 93.3% F1-
score, and an AUC of 0.89. This integration proved advantageous in
facilitating quicker MCI detection than longer neuropsychological
tests like SNSB-C, typically taking about 2 hours [40]. Furthermore,
it demonstrated superior performance compared to the integration
of VR with other biomarkers such as electroencephalogram [41].

Both VR and MRI biomarkers displayed unique strengths in
identifying MCI. VR biomarkers showed a high level of specificity
(90.0%), in line with previous studies highlighting their effectiveness
in VR-based IADL tasks [15, 42, 43]. MRI biomarkers, conversely,
demonstrated a higher sensitivity (90.9%), effectively identifying
MCI patients, surpassing the sensitivity rates of recent MRI studies
[44, 45]. Our methodological approach, including separate mea-
surements of each hemisphere, the use of sensitive regions like
the hippocampus and entorhinal cortex as MRI biomarkers, and
ICV normalization to adjust for individual brain volume differences

[46–49], likely contributed to this improved sensitivity in detecting
MCI compared to traditional methods. In summary, our findings
underscore the unique benefits of each biomarker and robustly sup-
port the integration of VR and MRI biomarkers as a potent means
to enhance MCI detection.

Our findings also revealed significant correlations between VR
biomarkers and brain changes observed in MRI biomarkers, as
depicted in Figure 3. Specifically, a strong correlation was found
between VR biomarkers and the left hippocampus. Participants
with reduced size in the left hippocampus were found to have
slower hand movement speed, increased scanpath length, longer
time to complete tasks, and more errors in the virtual kiosk test.
These findings align with prior research [50, 51], suggesting that
damage to the hippocampus can lead to cognitive impairments
affecting daily tasks like hand and eye coordination. Furthermore,
there was a notable correlation between eye movement attributes,
MRI biomarkers (especially the left hippocampus), and SNSB-C
outcomes, supporting recent studies that emphasize the role of
eye movements in detecting MCI during complex daily activities
[52, 53]. Additionally, a significant link was found between the
number of errors in the virtual kiosk test and the size of the right
amygdala; participants with a smaller right amygdala tended to
make more errors, which is in line with studies [54, 55] that relate
decreased amygdala volume to cognitive decline. Utilizing VR
biomarkers derived from augmented or virtual reality tests that
simulate daily tasks presents a novel method for early MCI [56, 57],
bridging the gap between behavioral anomalies and key changes
in brain structure [58, 59].

The distinct benefits of VR and MRI biomarkers suggest their
effectiveness as sequential tools in a two-phase diagnostic process,
as described by Galvin and colleagues [60]: the ‘Detection’ phase
and the ‘Assessment & Differentiation’ phase. During the Detection
phase, VR biomarkers serve as a quick screening method to eval-
uate the risk of MCI in a broader elderly population. Their short
test duration and high specificity effectively distinguish between
healthy individuals and those who may have MCI, warranting fur-
ther investigation. Implementing VR biomarkers in local dementia
centers could help in identifying individuals at risk, facilitating their
referral to hospitals for detailed dementia evaluations. Moreover,
VR’s capability for effortless data visualization makes it suitable
for long-term monitoring purposes. In the subsequent Assessment
& Differentiation phase, individuals suspected of having MCI are
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Figure 3: Comparison of hand and eye movements, and MRI findings between healthy controls and MCI patients. (A) A 3D
representation of hand movement trajectories; (B) Participant gaze points with dots, where red, blue, and purple signify the
start, middle, and end of gaze respectively. Dot size reflects fixation duration; (C) Notable atrophy observed in MCI patients.

subjected to an in-depth diagnostic procedure. Here, MRI biomark-
ers, known for their increased sensitivity, play a crucial role in
detecting MCI and providing insights into brain structural changes.
These biomarkers contribute to an accurate diagnosis of MCI, thus
aiding in the development of tailored treatment plans. Integrat-
ing VR biomarkers in the initial screening (Detection phase) and
MRI biomarkers in the detailed diagnostic stage (Assessment &
Differentiation phase) substantially improves early detection. This
integrated approach not only saves time and reduces costs for pa-
tients but also offers essential support to healthcare professionals in
making accurate diagnoses for the aging population. Additionally,
incorporating neuropsychological tests like SNSB-C into an inter-
mediate phase between VR and MRI could further bolster clinical
application.

This study has certain limitations that should be acknowledged.
Primarily, it lacked a diverse sample in terms of racial diversity [60]
and did not include individuals with various neurodegenerative
diseases [61]. Additionally, there is a potential need to explore
and compare other methods to improve classification performance,
such as employing Contrastive Language-Image Pre-training [62].
Future research should aim to include a more diverse range of par-
ticipants and further investigate the complex interactions between
biomarkers using multimodal approaches. Despite these limita-
tions, our study makes a significant contribution by demonstrating
enhanced performance through the integration of VR and MRI
biomarkers via multimodal learning, outperforming the individual
performance of each biomarker. This integrated approach achieved
noteworthy results, with an accuracy of 94.4%, sensitivity of 100.0%,
specificity of 90.9%, precision of 87.5%, an F1-score of 93.3%, and
an AUC of 0.89. These results highlight the combined benefits of
using both VR and MRI biomarkers. Furthermore, our correlation
analysis sheds light on how changes in brain structure may be
reflected in behavioral patterns in daily activities. We suggest a
novel clinical application that employs VR biomarkers, which ex-
hibit high specificity (90.0%) in the initial Detection phase, followed
by MRI biomarkers, showing optimal sensitivity (90.9%) in the As-
sessment & Differentiation phase. This stepwise approach could
potentially reduce the time and financial burden on individuals and
assist clinicians in making more accurate diagnoses. In summary,
our study underscores the improved effectiveness of early MCI

detection through the combined use of VR and MRI biomarkers in
a multimodal learning framework.

5 CONCLUSION
Our study highlights the significance of integrating VR and MRI
biomarkers for the early detection of MCI. The findings indicate
that selecting appropriate biomarkers for different stages of the di-
agnostic process is advantageous. VR biomarkers, characterized by
their high specificity, are well-suited for initial screenings, whereas
MRI biomarkers, known for their high sensitivity, are more apt for
confirming an MCI diagnosis. The most effective strategy, however,
emerges from the integration of both types of biomarkers. This
approach significantly enhances the accuracy of early MCI detec-
tion, illustrating the potential of multimodal learning in improving
diagnostic processes. Furthermore, our study sheds light on the
relationship between VR and MRI biomarkers, offering insights
into how changes in brain structure can translate into behavioral
differences. By adopting a multimodal learning approach that in-
corporates a variety of biomarkers, our study provides valuable
contributions to the field, particularly in enhancing the performance
of early MCI detection.
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