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ABSTRACT
The learning process has always been fundamental in the industrial
environment to correctly learn the right process and to perform it
faster, increasing efficiency by also minimizing errors, consequently.
Nowadays, new technologies that are emerging in this field are
based on augmented reality, and, through a motion capture archi-
tecture, it is possible to real-time follow the operators’ activities
and guide them in the next ones, improving the learning process.
Therefore, this paper presents an architecture setup and the first
preliminary tests, realized in the Industrial Plants and Logistics Lab-
oratory of the University of Padua, in order to study the benefits
that this type of technology can provide. The main findings are the
decrease in the time required to learn the job along with a smaller
operator’s cognitive workload during the training.

KEYWORDS
Motion capture, Tracking, Learning, Augmented reality, Informa-
tion retrieval
ACM Reference Format:
Maurizio Faccio, Irene Granata, and Leonardo Maretto. 2023. The impact of
augmented reality on learning curves and mental workload: a preliminary
experimental study. In 2023 9th International Conference on e-Society, e-
Learning and e-Technologies (ICSLT 2023), June 09–11, 2023, Portsmouth,
United Kingdom. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/
3613944.3613950

1 INTRODUCTION
The learning curve (also called learning or progress) is a tool that
can be used both for strategic assessments related to productive
competitiveness and to design (or reorganize) production systems
taking into account changes that occur over time as a result of the
learning phenomenon. In particular, the learning curve indicates
the relationship between the time required for learning and the
amount of information correctly learned; this is because we gain
experience each time we repeat some activity. The curve, in partic-
ular, is described as a general improvement in performing a task,
thanks to the repetition of the exercise over time [12]. The first
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and most important study on the topic was conducted by [2], who
proposed the model known as “Power Curve” which can be applied
to a wide variety of applications. The basic form of the model is:

𝑡𝑛 = 𝑡1 · 𝑛−𝑏 (1)

where 𝑛 is the number of cycles completed, 𝑡𝑛 is the performance
time to complete the 𝑛𝑡ℎ cycle, 𝑡1 is the performance time to com-
plete the first cycle and 𝑏 is the learning constant. This means that
it is possible to obtain the Learning Slope Φ as follow:

Φ = 100 · 2−𝑏 (2)

This value is defined as the percentage of performance reduction,
each time the experience is doubled and it represents the rate of
learning, and in typical industrial applications is about 65 − 92%.
In particular, the higher the value the less demanding and time
spending it is to learn the task Nowadays, since the migration from
Industry 4.0 to Industry 5.0 with its principles of operators’ well-
being, new technologies are emerging [4], also for the training of
the operators in industrial applications, i.e., the process of learning
the tasks to be performed, and, for this reason, it can be helpful
to perform an evaluation of the benefits that they can offer in
the learning process. One of these emerging technologies can be
developed through the use of Motion Capture (MoCap), which is
the process of live capturing the body movements of a subject, in
order to translate them into a mathematical model that can be used
as input for other systems [9]. Analyzing the state of the art, it
is possible to find different examples of camera-based markerless
motion capture systems applied in the industrial sector [5, 8, 13].
Other works also used feedback, given with augmented reality
systems, to the operators [1, 3, 10]. Among these contributions,
there are few that presented an integration of Motion Capture
systems in the learning process. A Smart-Assembly-Workplace was
proposed by [7], in order to transfer the knowledge to operators
with very low experience. Another solution was proposed by [6]
where through the use of a neural network the authors realized
an assistive setup for assembly. However, because of the lack of
contributions on how these systems influence performance, this
paper proposes the implementation of a complete experimental
setup, that combines depth cameras and skeleton tracking software,
to evaluate how the integration of these technologies, compared to
the traditional supports. The first preliminary results, reported in
this paper, show that the learning process is improved, reducing
both the cycle time and the number of errors. Moreover, the analysis
was also focused on the evaluation of a human factor: the mental
workload. The paper is organized as follows: Section 2 is for the
proposed experimental setup, Section 3 established which variables
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are considered in the tests, while Section 4 presents the results.
Finally, Section 5 draws the conclusions and the future agenda.

2 EXPERIMENTAL SETUP
The purpose of the following experimental setup is to compare the
learning curves that can be obtained with two different supports, in
a pick&place application. The application consists in moving some
objects from one pallet to the other a certain number of times, with
two different types of support systems: traditional instruction-based,
where the task order to be followed by the testers is represented
by an ordered table displayed on a screen, and augmented reality-
based, where the task order is represented by a set of prompts and
suggestions displayed on the same screen. In the latter case, the
testers do not know the sequence in advance, and the pick and place
positions are shown in real-time: the next task to be performed is
shown on the monitor only if the previous task has been correctly
completed. To implement this support, Motion Capture (MoCap)
technologies are necessary because it is required to know in real-
time the positions of the hands of who is performing the tasks since
a pick&place activity is associated with two specific positions in
the pallets. g. The motion capture architecture proposed includes
an Intel RealSense D435 camera, and it uses an RGB sensor and two
sensors for stereophotogrammetry that can measure the distance
of a point from the position of the camera. Motion capture is done
through OpenPose library, which is used for body joints position
recognition in real-time. As stated before, the experiment consists
of pick&place activities, meaning that it is required to move some
objects from one pallet to the other. In order to collect all the neces-
sary data, i.e., pick time, place time, total time, and errors, two smart
pallets are designed. These smart pallets are wooden boxes that
include jigs to rapidly change the type of object because the tests
are carried out with two types of objects, i.e., small spheres and
small cubes, that have to be inserted in the corresponding holes. In
the lower plate, moreover, beneath each hole, proximity sensors are
installed. The use of these smart pallets guarantees not to be tied to
the specific process chosen for the assessment of learning. Typically,
in fact, the times and learning factors obtained are constrained by
the specific operations that must be performed. The setup is also
integrated with the 120Hz binocular Pupil Lab eye tracker, which
allows monitoring the level of mental workload reached by the
tester, through the measurement of the blinks [11]. In particular,
the blinks rate, and latency is analyzed. The complete test station
is shown in Figure 1.

3 EXPERIMENTAL VARIABLES
In order to carry out the tests, different variables are considered
and summarized in Table 1. The difficulty of the task is based on the

Table 1: Experimental variables

Variables Levels

Difficulty of the task Simple Complex
Number of Pick&Place 4 9

Type of support Traditional instruction-based Augmented reality-based

level of required mental workload, and it is modified through the
use of different objects: small spheres that do not require orientation

SOLUZIONE COSTRUTTIVA PALLET - COMPONENTI

Smart pallets Arduino board

Monitor for 
feedbacks/instructions

RGD-D camera

Smart pallets

RGB-D camera

Monitor for feedbacks/suggestions

Arduino board

Figure 1: Experimental setup

(a) No orienta-
tion

(b) 0° orienta-
tion

(c) 180° orien-
tation

Figure 2: Objects for the tests

(simple task), Figure 2a, and small cubes that require orientation
(complex task). To specify their correct positioning, the cubes have
a red circle that has to be placed in correspondence (0°) or at 180°
with respect to the green signs on the jigs; this means that for the
cubes there are two possible orientations. An example is shown
in Figures 2b, 2c. In the test, half of the cubes have to be placed at
0° and the other half at 180°, following the specified instructions.
The number of tasks to be performed is 4 or 9, meaning that for
each test the participant has to pick and place four or nine ob-
jects with a specified sequence. The type of support is traditional
instruction-based or augmented reality-based, as described above.
Each participant has to perform only one level of difficulty but
with all the combinations of the remaining variables, e.g., 4 spheres
traditional instruction-based, 4 spheres augmented reality-based,
9 spheres traditional instruction-based, and 9 spheres augmented
reality-based.

4 PILOT TESTS AND PRELIMINARY RESULTS
Thus far, 12 pilot tests were conducted, in particular, 6 participants
tested the spheres task while the other 6 tested the cubes task. For
the tests with 4 objects (both spheres and cubes) a group of 15
repetitions of the sequence was requested, while for the tests with
9 objects 20 repetitions of the sequence were requested. For each
group of tests, the imposed sequence was different in order not to
have a previous training level derived from the earlier tests. The
number of tests is mathematically defined following the learning
curves, the Most approach [14], for the definition of the standard
times, and the learning factors from the literature. The preliminary
results are shown in Table 2, divided by the type of support used,
i.e., traditional instruction-based (TI-B) and augmented reality-based
(AR-B) and by the type of object used. Moreover, as exempli gratia,
in Figure 3 and in Figure 4 are shown the learning curves of two
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Figure 3: Tests with 9 spheres - 1𝑠𝑡 participant

0 2 4 6 8 10 12 14 16 18 20

n° test

25

30

35

40

45

50

55

60

65

70

T
o
ta

l 
p
ic

k
&

p
la

c
e
 t
im

e
 [
s
]

t
n
 = t

1
 n

-0.3

t
n
 = t

1
 n

-0.06

Traditional instruction based

Augmented reality based

Figure 4: Tests with 9 cubes - 2𝑛𝑑 participant

tests. These figures are derived from the test with 4 objects and from
the test with 9 objects, showing on the x-axes the repetition number
and on the y-axes the total pick&place time for each repetition.

As it can be seen from the table, for the tests with both the
supports, the curves obtained have a 𝑏 factor between 0.35 and
0.04, meaning a Φ between 78% and 97%. It is also understandable
that for the tests with the AR-B support, typically, the rates of
learning Φ obtained are higher than the values obtained with the
TI-B support, meaning that it is easier to learn the correct sequence
and to perform it in a lower overall time. The quite interesting result
is related to the fact that, if the tests with 9 objects are considered,
the improvement in the learning, thanks to the AR-B support, is
generally 10% higher than the learning with 4 objects, meaning
that the more challenging the test, the more this type of support
can be of benefit. Moreover, the total number of errors obtained
for each test, with the second type of support is obviously equal
to 𝑧𝑒𝑟𝑜 , since if the tester does not perform the correct activity
the next suggestion is not generated, while for the other support
the number of errors obtained is reported in Figure 5. Starting
from this analysis, it is possible to evaluate the cases in which
the experimental values of the time to complete the first cycle,
𝑡1, coincide with the theoretical values. From the literature [14],
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Figure 5: Total number of errors traditional instruction-based
support

in order to define 𝑡𝑛 , i.e, the performance time to complete the
𝑛𝑡ℎ cycle, the Basic Most method can be used. In particular, the
pick&place activity is divided into the phases of Get (G), Put (P),
and Return (R), assigning a rating for each of them. The values
obtained are G=1, P=1, and R=1, meaning a total of 30 TMUs (Time
Measurement Units) since the sum has to be multiplied by 10 as
the method imposes. Each TMU corresponds to 0.036 𝑠 , meaning
that the standard time to move one object is 1.08 𝑠 . From this, the
time for moving 4 objects is 𝐶4 = 4.32 𝑠 , while the time for moving
9 objects is 𝐶9 = 9.72 𝑠 . From [2], 𝑡1 can be evaluated as in Eq. 3:

𝑡1 = (53.68 − 0.57Φ) ·𝐶 (3)

while the typical learning slope for activities like the tested ones,
is Φ ≃ 90 for the simple task and Φ ≃ 87 for the complex one,
meaning 𝑡1,4 ≃ 12 𝑠 and 𝑡1,9 ≃ 40 𝑠 . The values obtained for 𝑡1 are
shown in Figure 6a and in Figure 6b respectively. In both cases, the
times obtained with the traditional instruction-based support are
worse than the ones obtained with the augmented-based support,
meaning that, already from the beginning, the latter support can
help to obtain better performance. From now, focusing only on the
9 objects tests, the differences in the learning rates can be analyzed,
taking into account the last row of Table 2, where the average values
of 𝑏 and Φ are reported. In particular, the difference is defined as in
Eq. 4, where C=cubes, S=spheres.

ΔΦ = ΔΦ𝐶 − ΔΦ𝑆 (4)

where Δ(·) = ¯(·)𝐴𝑅 − ¯(·)𝑇 𝐼 . In particular, the values obtained
are:ΔΦ𝑆 = 6.89 and ΔΦ𝐶 = 10.43, meaning ΔΦ = 3.53, i.e., the
increase in the learning slope is bigger for the cubes tests thanks to
the AR-B support, implying that this type of support can provide
more benefits in the more complex task during the learning process.
Moreover, the preliminary results, for the 9 objects tests, of the eye-
tracking analysis, tested by the last six subjects, are here reported:
Figure 7a is for the blinks rate during the tests and, Figure 7b is for
their latency. The meaning of these parameters is reported in Ta-
ble 3, where the increase in the mental workload is associated with
the symbol in the third column; e.g., if the blinks rate increases the
mental workload decreases. From the figures, it is understandable
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Table 2: Learning factors of the pilot tests

Participant 4 spheres 9 spheres 4 cubes 9 cubes

TI-B AR-B TI-B AR-B TI-B AR-B TI-B AR-B

𝑏 Φ [%] 𝑏 Φ [%] 𝑏 Φ [%] 𝑏 Φ [%] 𝑏 Φ [%] 𝑏 Φ [%] 𝑏 Φ [%] 𝑏 Φ [%]

1𝑠𝑡 0.20 87.06 0.11 92.66 0.27 82.93 0.04 97.27 - - - - - - - -
2𝑛𝑑 - - - - - - - - 0.35 78.46 0.11 92.66 0.30 81.23 0.06 95.93
3𝑟𝑑 0.13 91.38 0.06 95.93 0.10 93.30 0.04 97.27 - - - - - - - -
4𝑡ℎ - - - - - - - - 0.35 78.46 0.25 84.09 0.25 84.09 0.10 93.30
5𝑡ℎ 0.25 84.09 0.22 85.86 0.20 87.06 0.10 93.30 - - - - - - - -
6𝑡ℎ - - - - - - - - 0.10 93.30 0.15 90.13 0.27 82.93 0.04 97.27
7𝑡ℎ 0.22 85.86 0.10 93.30 0.15 90.13 0.20 87.06 - - - - - - - -
8𝑡ℎ - - - - - - - - 0.30 81.23 0.20 87.06 0.25 84.09 0.06 95.93
9𝑡ℎ 0.30 81.23 0.15 90.13 0.25 84.09 0.03 97.94 - - - - - - - -
10𝑡ℎ - - - - - - - - 0.20 87.06 0.15 90.13 0.20 87.06 0.10 93.30
11𝑡ℎ 0.25 84.09 0.20 87.06 0.25 84.09 0.15 90.13 - - - - - - - -
12𝑡ℎ - - - - - - - - 0.20 87.06 0.15 90.13 0.20 87.06 0.10 93.30

Average 0.23 85.62 0.14 90.82 0.20 86.93 0.09 93.83 0.25 84.26 0.17 89.03 0.25 84.41 0.08 94.84
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(a) 𝑡1 values for 4 objects tests
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Figure 6: 𝑡1 values obtained compared with the standard ones
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(b) Blinks latency

Figure 7: Blinks evaluation as mental workload driver

that the blinks rate is overall smaller with the TI-B support, mean-
ing a higher mental. The same result is confirmed by the bigger
latency. Studying the Δ(𝑠), as done for the learning factors Φ, some

considerations can be made. In particular, the differences in the
average values of the blinks rate (R) and the latency (L) between
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Table 3: Relation of blinks measures and mental workload

Measure Mental Workload

Blinks
Rate -
Latency +

the two types of supports are analyzed, as described by Eq. 5, 6.

Δ𝑅 = Δ𝑅𝐶 − Δ𝑅𝑆 (5)
Δ𝐿 = Δ𝐿𝐶 − Δ𝐿𝑆 (6)

where Δ(·)𝐶,𝑆 = ¯(·)𝐴𝑅 − ¯(·)𝑇 𝐼 . For the blinks rate, the values ob-
tained are Δ𝑅𝑆 = 0.066 𝑏𝑙𝑖𝑛𝑘𝑠/𝑠 and Δ𝑅𝐶 = 0.028 𝑏𝑙𝑖𝑛𝑘𝑠/𝑠 , that
means Δ𝑅 = −0.0379 𝑏𝑙𝑖𝑛𝑘𝑠/𝑠 , while for the latency the values
obtained are: |Δ𝐿𝑆 | = 0.325 𝑠 and |Δ𝐿𝐶 | = 0.382 𝑠 , that means
Δ𝐿 = 0.058 𝑠 . These last are considered in absolute value because
of the definition of the Δ(𝑠); in fact, since the blinks latency of the
AR-B support is smaller (driver of less mental workload) the differ-
ence with the blinks latency of the TI-B support results negative.
From these results, it appears that in both cases the AR-B support
is helpful in the reduction of the mental workload during the tasks,
but from the blinks rate analysis, it seems to offer bigger support
when the tasks are easier while from the blinks latency analysis, it
seems to be more useful when the tasks are more complex. Table 4
summarizes all the Δ(𝑠) evaluations. Generally, it can be concluded

Table 4: Δ(𝑠) evaluations

Φ̄ 𝑅 𝐿

Δ(·)𝑆 6.89 0.066 -0.325
Δ(·)𝐶 10.43 0.028 -0.382
ΔΦ 3.53
Δ𝑅 -0.0379
Δ𝐿 -0.058

that with the augmented reality-based support the mental workload,
both for the spheres and the cubes, with 4 and 9 objects as well, is
lower, meaning less effort is required during the tests.

5 CONCLUSIONS
Nowadays, the arising of new technologies has also led to the
development of new supports for the learning process because of
its importance in the industrial environment, in order to integrate
thewellness principles of Industry 5.0. Indeed, the better the support
in the learning phase, the faster this is, and with a lower tendency
to perform errors, resulting in an increment in both productivity
and efficiency. For this purpose, i.e., to improve the learning phase,
an architecture setup based on Motion Capture systems is here
presented, with the aim to realize an AR-B support that guides the
operators during the training. The main characteristic of this setup
is the possibility of real-time following the operators’ movements,
and instructing them through video feedback in performing the
correct activities, since it is always known which one they are
executing and if they are making mistakes. Moreover, the use of
smart pallets gives the opportunity to obtain results not linked to
the timing of a specific process. In addition, the use of eye-tracker
device consents to tracking the level of mental workload reached by
the testers. From the preliminary results of the pilot tests conducted,

the learning rates Φ, with this new support, are higher than the
ones obtained with the traditional one, i.e., TI-B support, meaning
less effort in the training phase. Moreover, as the complexity of
the task increases this detachment is increasingly evident, both
in terms of learning factors and in the time spent to complete
the whole job, showing that this new kind of assistance can bring
significant benefits. This is confirmed also by the analysis of the
initial times 𝑡1 that are significantly smaller with the augmented
reality-based support than with the traditional instruction-based
support. Moreover, the blinks rate is bigger, while their latency
is smaller, resulting in a decrease in the mental workload. These
are just the initial results, needed to provide an idea of the actual
usefulness of these supports. The next agenda, of course, will be
the continuation of the experimental tests, defining an adequate
group divided by gender, age, level of education, and experience
with this new support, in order to evaluate a representative sample
of what is the industrial reality. Final results should be published
by the end of 2023.
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