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ABSTRACT
Self-supervised pre-trained audio representation models such as
Wav2vec or HuBERT have brought notable improvements to many
downstream audio-related tasks, but the huge number of parame-
ters of these pre-trained models sets a barrier to their application
on memory-constrained edge devices. Recursive Transformers, rep-
resented by Albert, have proven that parameter sharing through
transformer layers can obviously reduce the size of pre-trained
models while maintaining most of the performance. In this pa-
per, we propose DistilALHuBERT, a lightweight recursive trans-
former audio representation model distilled from Hubert. Evalua-
tion results on the S3PRL benchmark show that DistilALHuBERT
can significantly outperform the DistilHuBERT model with the
same number of parameters. Our code and models are available at
https://github.com/backspacetg/distilAlhubert.

CCS CONCEPTS
• Computing methodologies; • Speech recognition; Unsuper-
vised learning; Transfer learning;

KEYWORDS
Knowledge distillation, model compression, representation learning

ACM Reference Format:
Haoyu Wang, Siyuan Wang, Yaguang Gong, and Wei-Qiang Zhang. 2023.
DistilALHuBERT: A Distilled Parameter Sharing Audio Representation
Model. In 2023 6th International Conference on Signal Processing and Machine
Learning (SPML) (SPML 2023), July 14–16, 2023, Tianjin, China. ACM, New
York, NY, USA, 6 pages. https://doi.org/10.1145/3614008.3614015

1 INTRODUCTION
Self-supervised pre-trained audio representation method has be-
come one of the most attractive superstars in the speech domain.
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Massive amounts of unlabeled data and the huge capacities of the
deep transformer models give these pre-trained models the ability
to transform the raw audio into neural-network-friendly representa-
tions. From speech recognition to speaker verification, pre-trained
models are continuously breaking records in many downstream
tasks [9, 24, 26, 27].

However, pre-trained models, represented by Wav2vec 2.0 [2],
HuBERT [11], and WavLM [4], typically have hundreds of millions
of parameters, making them difficult to be applied on memory-
constrained devices such as laptops and smartphones. Many light-
weight speech tasks, such as speaker verification and keyword
spotting, are usually performed on edge devices, which means that
they cannot easily benefit from these large pre-trained models. As
a result, some model compression methods have been applied to
the pre-trained speech representation models to reduce the number
of parameters.

Knowledge distillation is an efficient method to transfer the rep-
resentation ability from a large pre-trained model to a compact
student. DistilHuBERT uses a 2-layer student model to learn the
representations of a 12-layer HuBERT-base model and appreciably
reduces the model size [3]. Since representations from lower or
deeper layers of the pre-trained model may be suitable for different
tasks, DistilHuBERT designs a multi-task distillation method where
the hidden states of the student model are projected by a group
of linear layers and mimic the hidden states of different layers. In-
spired by FitNets [20], FitHuBERT finds that thin and tall models are
better choices than the wide and short ones with the same number
of parameters [14]. Their student model has superior representation
ability and achieves improved performance with fewer parameters
than the DistilHuBERT model. In knowledge distillation, student
models are usually less complex and more prone to underfitting
in complex tasks [10, 23]. On the other hand, parameter sharing
based on the recursive transformer provides a common solution to
take full advantage of a small-sized model. By repeatedly using the
output of a transformer layer as its input, recursive transformers
can achieve similar performance to a non-recursive model with
much fewer parameters. The recursive transformer structure is
first proposed in the Universal Transformer [7], but is mainly used
to solve the sequence modelling tasks such as algorithmic or lan-
guage understanding. The Universal Transformer can also be used
in speech tasks. The Universal Speech Transformer [28] inherits
the recursive transformer structure, but removes the depth/position
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embeddings and the partial updating of hidden states in the origi-
nal Universal Transformer structure as they are not beneficial for
automatic speech recognition.

ALBERT is a representative example of using the recursive trans-
former as a parameter-reduction method for unsupervised pre-
trained models [13]. ALBERT notably reduces the number of pa-
rameters through cross-layer parameter sharing and outperforms
the BERT model on the GLUE, RACE, and SQuAD benchmarks.
Audio ALBERT is an extension of ALBERT for speech tasks [5]. in-
spired by Mockingjay, Audio ALBERT takes a masked spectrogram
as the input. It also reduces over 90% of the parameters while achiev-
ing comparable performance with the massive Mockingjay model.
W2V2-light also uses cross-layer parameter sharing to build a light-
weight audio representation model but uses contrastive predictive
coding loss following the Wav2vec 2.0 model [12]. Experiments on
the Librispeech dataset show that W2V2-light has a comparable
performance to the Wav2vec 2.0 base model on ASR tasks. Re-
cently, MiniALBERT combines parameter sharing and knowledge
distillation and obtains a compressed BERT model. Their MiniAL-
BERT model achieves satisfactory performance on the GLUE bench-
mark and multiple biomedical Named Entity Recognition (NER)
tasks, proving the feasibility of combining of parameter sharing
and knowledge distillation on the compression of NLP pre-trained
models. We believe that this approach is also likely to yield good
results in pre-trained audio representation models.

In this paper, we propose DistilALHuBERT, a lightweight recur-
sive audio representation model distilled from the HuBERT model.
We design a feature alignment strategy for knowledge distillation,
and demonstrate that the size of the transformer encoder rarely
has a significant impact on the performance of the downstream
tasks when the equivalent number of layers remains unchanged.
Evaluations on the SUPERB benchmark show that our model can
outperform the DistilHuBERT model with the same amount of
parameters.

2 METHODS
2.1 The HuBERT Model
In this paper, our focus is mainly on the HubERT model, but our
approach can be easily extended to other transformer-based pre-
trainingmodels. HuBERT is a successful audio representationmodel
in recent years. As the name suggests, hidden units (Hu) is very
important for HuBERT. Before pre-training, the unlabeled data is
clustered by Kmeans into hundreds of classes, and these discrete
clustered classes are used as the hidden units of an unlabeled speech.
The model is directly trained to predict the hidden units. Com-
pared to the previous pre-training methods of audio representation
models, the explicit introduction of these discrete clustered classes
enables HuBERT to learn higher-level representations, which is ben-
eficial for downstream tasks. The hidden-unit-based pre-training
method has become the foundation of many advanced audio repre-
sentation models (e.g. WavLM, Speech T5 [1], CTC BERT [8], and
Speech LM [25]), and we also believe that our compression method
for Hubert can also be applied to other pre-trained models.

The HuBERT model consists of a CNN audio feature extrac-
tor and an encoder network composed of transformer layers. A
transformer layer is a stack of a multi-head attention block and

Figure 1: An overview of our method. With parameter shar-
ing, a recursive transformer with G=2 can be extended to 12
layers. The prosodic, semantic and content-related features
contained in different teacher layers are all used in the distil-
lation, which is conducive to fully exploiting the parameters
of the student model.

a feed-forward block. For each transformer layer i, let fi be the
transformer layer, the output hi is computed as follows:

ℎ𝑖 = 𝑓𝑖 (ℎ𝑖 − 1) (1)

where hi−1 is the output from the previous layer or the output of
the CNN feature extractor when i=1.

2.2 Cross-layer Parameter Sharing
Cross-layer parameter sharing is applied by repeatedly using the
output of the network as its input. In DistilAL- HuBERT, instead of
looping in a single layer, the hidden states pass through the entire
transformer network and are reused as the input. For each layer i,
let fi be the 𝑖th layer, hj, the output of fi at 𝑗 th loop, can be computed
as follows:

ℎ
𝑗
𝑖
= 𝑓𝑖

(
ℎ
𝑗

𝑖−1

)
(2)

where hj
𝑖−1 is the output from the previous layer or the output of

the previous loop1 when i = 1.

2.3 Feature Alignment Distillation
We use the HuBERT-base model as the teacher and use mean square
error (MSE) loss to mimic its hidden states. Different layers of the
pre-trained model are applicable to different tasks (e.g., features
from the bottom layers are usually related to speaker-related tasks,

1ℎ0 is the output of CNN feature extractor,
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Figure 2: The relationship between the performances and the number of parameters. (a), (b), (c): Results on IC, PR and ASV
tasks. (d): the overall superbs score. Results of APC [6], NPC [15], TERA [16], Mockingjay [17], Wav2vec [21] are from the
SUPERB Benchmark.

while those from the top layers are generally applicable to content-
related tasks such as speech recognition [3]). For better utilization
of the hidden states from all the teacher layers, we apply a feature
alignment distillation strategy (FAD). Inspired by MiniALBERT
[18], we flatten the recursive transformer in DistilALHuBERT and
let the output of certain layers from certain loops be aligned to
the hidden states from the corresponding teacher layers. Formally
speaking, let 𝐻 be the hidden states of the teacher model and �̂�

be that of the student model, the distillation loss is computed as
follows:

𝑙distil
(
�̂�, 𝐻

)
=

∑︁
(𝑖, 𝑗 ) ∈𝑆

𝑙MSE
(
ℎ̂
𝑗
𝑖
, ℎ𝐺 𝑗+𝑖

)
(3)

Each tuple (𝑖, 𝑗) in 𝑆 indicates that the output of layer 𝑖 at loop 𝑗

is selected to compute the MSE loss,𝐺 is the total time of loops, and
ℎ̂, ℎ are the hidden states from a particular layer of the student and
teacher model, respectively. Fig 1 shows an overview of our method
with𝐺 = 2. Our multitask distillation method allows the learning of
different types of features. The student may extract speaker-related

features at the early stage of the loops and content-related features
at the late stage of the loops, which can better adapt to various
downstream tasks, especially in content-related tasks such as ASR.

3 EXPERIMENTS
3.1 Experimental Setup
Model. The basic model structure is similar to the Hubert-base
model and consists of a 6-layer CNN feature extractor and a
parameter-sharing transformer encoder. We design 3 types of trans-
former encoders, each with a different number of parameters. The
large one has 4 transformer layers, and the middle/small one has
3/2 transformer layers. We let the loop times 𝐺 be inversely pro-
portional to the number of parameters. Specifically, for a model
with 𝑁 transformer layers, it is looped for 𝐺 times so that 𝑁 ·𝐺 is
a constant. In our experiments, the large, middle, and small models
are looped 3, 4, and 6 times, respectively.

Training. The distillation is performed on 1000 hours of the
LibriSpeech English dataset [19]. For each model type, we select 6
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Table 1: Results on SUPERB of the baselines, teacher models, the DistilHuBERTmodel, and the proposed model. The bolder text
is for the best results among the 3 proposed models. The performances are evaluated by phoneme error rate (PER%), accuracy
(Acc%), Word Error Rate (WER%), Maximum term weighted value(MTWV), F1 score (F1%), concept error rate (CER%), equal
error rate (EER%), and diarization error rate (DER%). The superbs score can be considered as an average of all these task-specific
scores.

Method PR KS IC SID ER ASR QbE SF ASV SD Superbs↑
PER↓ Acc↑ Acc↑ Acc↑ Acc↑ WER↓ MTWV↑ F1↑/CER↓ EER↓ DER↓

Baselines
FBANK 82.01 41.38 9.65 20.06 48.24 23.18 0.58 69.64/52.94 9.56 10.05 0
Mockingjay [17] 70.19 83.67 34.33 32.29 50.28 22.82 0.07 61.59/58.89 11.66 10.54 59.23
TERA [16] 49.17 89.48 58.42 57.57 56.27 18.17 0.13 67.5/54.17 15.89 9.96 169.22
NPC [15] 43.81 88.96 69.44 55.92 59.08 20.2 2.46 72.79/48.44 9.4 9.34 360.23
APC [6] 41.98 91.01 74.69 60.42 59.33 21.28 3.1 70.46/50.59 8.56 10.53 368.09
Wav2vec [21] 31.58 95.59 84.92 56.56 59.79 15.86 4.85 76.37/43.71 7.99 9.9 491.59
Wav2vec 2.0 Base [2] 5.74 96.23 92.35 75.18 63.43 6.43 2.33 88.3/24.77 6.02 6.08 735
WavLM Base [4] 4.84 96.79 98.63 84.51 65.94 6.21 8.7 89.38/22.86 4.69 4.55 895.995
Teacher
Hubert Base 5.41 96.3 98.34 81.42 64.92 6.42 7.36 88.53/25.2 5.11 5.88 838.07
DistilHuBERT Baseline
DistilHuBERT 16.27 95.98 94.99 73.54 63.02 13.37 5.11 82.57/35.59 8.55 6.19 647.88
Proposed
small 11.34 96.10 96.99 76.88 63.40 11.23 6.80 85.04/30.80 5.46 6.53 753.15
middle 10.94 96.33 96.15 77.51 64.62 10.74 6.38 84.16/30.33 6.10 6.69 742.62
large 10.93 96.33 96.41 80.85 64.58 10.77 6.25 84.93/30.54 6.16 6.51 747.41

𝑖, 𝑗 pairs to ensure that {𝐺𝑖 + 𝑗 : (𝑖, 𝑗 ∈ 𝑆)} = {1, 3, 5, 7, 9, 11}. The
batch size is set to 6 audios and the total number of update steps is
200k. We use a learning rate of 2.0e-4 and a warm-up strategy that
linearly increases the learning rate to the set value in the first 14k
steps. The distillation takes about 30 hours on an RTX 3090 GPU.

3.2 SUPERB Benchmark
SUPERB (Speech processing universal PERformance Benchmark) is
a benchmark for evaluating the performance of pre-trained speech
models [22]. 10 speech tasks from different domains are provided
to test the quality of the features extracted from the pre-trained
models, where these pre-trained models are not updated during
fine-tuning. These tasks include phoneme recognition (PR), auto-
matic speech recognition (ASR), keyword spotting (KS), query-by-
example spoken term detection (QbE), speaker identification (SID),
automatic speaker verification (ASV), speaker diarization (SD), in-
tent classification (IC), slot filling (SF), and emotion recognition (ER).
During fine-tuning, we notice that some of the downstream tasks
tend to overfit under the predefined hyperparameters using our
distillation student model, so we adjust the learning rate and add
some SpecAugment in these tasks. Specifically, we set the learning
rate to 5.0e-5 and add SpecAugment in the SID task, and decrease
the learning rate to 5.0e-4 and 5.0e-5 for the SF and IC tasks, re-
spectively. For the rest of the tasks, we follow all the predefined
training parameters. The hidden states of the last layer and the last
loop are chosen as the features for the downstream tasks.

4 RESULTS
Table 1 shows the evaluation results of our proposed models on the
SUPERB benchmark. The experiments show that the parameter-
sharing-based DistilALHuBERT models outperform the DistilHu-
BERT model on most of the tasks. The comparison between the
DistilALHuBERT-small model and the DistilHuBERT model demon-
strates the effectiveness of parameter sharing more clearly. These
two models have the same amount of parameters and are both
distilled from the Hubert-Base model, but by extending the trans-
former encoder to 12 layers through parameter sharing, the former
achieves a significant improvement in performance, especially on
content-related tasks such as PR, ASR, and SF.

We also use the superbs score to obtain an overall evaluation of
all the tasks. The superbs score is an average of the linear trans-
formations of all the task-specific scores, and the scale intervals
of these transformations are determined by the SOTA model on
the benchmark and a predefined FBANK baseline. At the time of
writing, the SOTA model is the WavLM-Large model, and we calcu-
late all the SUPERB scores according to its performance2. Formally
speaking, superbs score is defined as

𝑠𝑢𝑝𝑒𝑟𝑏𝑠 =
1
𝑇

∑︁
𝑡 ∈𝑇

1000
𝑠𝑡 (𝑠𝑜𝑡𝑎) − 𝑠𝑡 (𝑓 𝑏𝑎𝑛𝑘)

(𝑠𝑡 (𝑢) − 𝑠𝑡 (𝑓 𝑏𝑎𝑛𝑘)) (4)

where 𝑠𝑡 (𝑢) is the metric of task 𝑡 and model 𝑢, superb(fbank) ≡ 0,
superb(sota) ≡ 1000.

The superbs score also shows that the proposed parameter-
sharing-based DistilALHuBERT model significantly outperforms

2The performance of the WavLM-Large model can be found at
https://superbbenchmark.org/leaderboard.
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Table 2: Results of the Kruskal-Wallis test on the SUPERB tasks. We divide the test sets into 10 subsets (5 for the ER task), then
evaluate the models and calculate the H-statistics and p-values. Model size is considered to have a significant effect on a task
when p<0.05.

Tasks H p

PR: phoneme recognition 6.3245 0.0423
KS: keyword spotting 0.1711 0.9180
IC: intent classification 2.0916 0.3514
SID: speaker identification 19.5287 0.0006
ER: emotion recognition 1.6800 0.4317
ASR: automatic speech recognition 1.9000 0.3866
QbE: query-by-example spoken term detection 0.4955 0.7806
SF: slot filling 0.4709 0.7902
ASV: automatic speaker verification 14.3380 0.0007
SD: speaker diarization 2.9445 0.2294

the baseline DistilHuBERT model. On the other hand, there is no
obvious difference between the three DistilALHuBERTmodels with
different sizes of transformer encoders, either in the overall superbs
metrics or in specific SUPERB tasks. Since the size of the evaluation
dataset of some tasks is small and the differences in these tasks
could be due to the randomness, we perform the Kruskal-Wallis test
on all these tasks. We divide the test sets into 10 subsets (except for
the emotion recognition task where cross-validation is required for
evaluation. We simply use these cross-validation results) and calcu-
late the H-statistic and p-value using the results from these subsets.
Our null hypothesis is that the size of the transformer encoder has
no effect on the test results. Table 2 shows that the size of the model
does not have a significant influence on the performance of most
of the tasks, which demonstrates the effectiveness of parameter
sharing. Even when most of the parameters are shared with other
layers, the small model can still achieve comparable performance
to the large model in these tasks. On the other hand, the size of
the transformer encoder does affect the performance in the PR,
SID and ASV tasks. Given that no such significance is observed for
similar tasks such as ASR and SD, this difference may be due to
the structure of the downstream model or specific fine-tuning pa-
rameters, rather than any substantial discrepancies in the extracted
representations.

We also visualize the relationship between the superbs score and
the number of parameters in Fig. 2, where being closer to the top
left means a compressed audio representation model is better. It
can be seen that the DistilALHuBERT small model has comparable
performance to the Wav2vec 2.0 base model with over 60% fewer
parameters, and has a 70% improvement on the superbs score with
an even smaller size.

5 CONCLUSION
In this paper, we propose DistilALHuBERT, a compressed audio
representation model. we use the recursive transformer to imple-
ment cross-layer parameter sharing and use a feature alignment
distillation method to capture the representation ability of the fully
parameterized Hubert-base model. Experiments on the SUPERB
benchmark demonstrate the effectiveness of parameter sharing. By
repeatedly processing the input features using the same transformer

encoder, the proposed model achieves significant improvement in
semantic tasks compared to the DistilHuBERT baseline with the
same amount of parameters. We also perform a Kruskal-Wallis
test to show the effect of the size of the transformer encoders. We
proved that if the equivalent number of transformer layers remains
unchanged, using transformer encoders of different sizes does not
have a significant impact on the performance.
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