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ABSTRACT

Large-scale pre-trained models bring significant gains to many
speech-related tasks. However, it is still challenging to use these
large models when computing power of terminal equipment is
limited. Pruning is an effective method to reduce memory footprint
and cost calculation. The imperfect evaluation criteria of existing
pruning methods and the complex fine tuning process result in
a relatively high loss of accuracy. To solve these problems, we
propose a structured pruning method, which introduced the upper
confidence bound of importance scores to assess the potential of
each component of the model more accurately. In addition, we also
introduce a set of learnable pruning threshold parameters that can
be learned via stochastic gradient descent, thereby reducing the
hyper-parameter tuning. We apply our method to HuBERT models
on automatic speech recognition (ASR) task. Our result shows that
for all pruning granularity and pruning ratios, our method yields
higher accuracy and speedup ratios in the inference process.When
sparsity was 60%, our method performed only 0.63% down.
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1 INTRODUCTION

Self-supervised learning (SSL) methods for learning representa-
tions of speech have been successful in many tasks in the past few
years. They can obtain the learning of meaningful and distinctive
features from unlabeled speech data. Pre-trained models based on
Transfomer structures such as Wav2Vec2 [21], HuBERT [9], and
WavLM [2] have made this representation an important component
and have achieved significant results on tasks related to the speech
domain in this way. These models, however, typically have a large
number of parameters and take long inference time, which requires
more storage space and more computational power. The limitations
make these models unsuitable for low-resource devices and difficult
for researchers in academia. Therefore, model compression has
become a research hot-spot and focus in the field of deep learning.

In order to reduce the model size and improve accuracy, a vari-
ety of model compression techniques are proposed [7]. Most com-
monly used techniques include low-rank approximation [13, 16],
weight sharing [4], knowledge distillation [10, 11, 23], quantization
[1, 6, 22, 28], and pruning [3, 17, 18, 25]. In this paper, we focus
on pruning. Pruning methods have been shown to be extremely
effective at reducing the storage size of models fine-tuned for a spe-
cific task. It aims to search for an accurate sub-network in a larger
pre-trained model. It can be broadly classified into two categories
based on the granularity of removed components: (i) Unstructured
pruning, that is, zeroing out insignificant parameters based on
heuristic methods such as magnitude pruning [8], regularization
of L0 [15]. (ii) Structured pruning refers to the structural pruning
of Transformer networks [24], from pruning heads [18], to remov-
ing entire layers [5]. Although various pruning techniques have
been proposed, no matter which kind of pruning methods, there
are some defects. Unstructured pruning can lead to competitive
performance, but it is difficult to accelerate due to irregular sparsity.
As for structured pruning, in order to obtain a reasonable accuracy,
complex hyper-parameter tuning operations are required. Under
the conditions of high sparsity, the accuracy loss is still relatively
high, although they produce hardware-friendly sub-networks.

In this work, we propose a structured pruning approach method
named Learnable Sparsity Structured Pruning(LSSP). In our method,
we introduced the upper confidence bound of importance scores, to
evaluate which components should be pruned out in the model. In
addition, in order to simplify the hyperparameter tuning process,
we introduce a set of learnable pruning ratio parameters that can
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be learned by stochastic gradient descent, and a new regularization
term. We apply our method for HuBERT models on ASR tasks. The
results show for all pruning granularity, and pruning ratios, our
methods all yield higher accuracy and speedup ratios. Especially,
when the sparsity is 60%, the accuracy only decreases by 0.63%
and the speedup ratio reaches 2.4.Next,we will demonstrate from a
variety of novel methods, experiments, and ablation experiments.

2 METHODS

The proposed method can be applied to any transformer-based
acoustic model. For this work, we selected HuBERT, which per-
formed well on SUPERB [27].

2.1 HuBERT

The HuBERT model can be divided into two parts as follows: CNN
Encoder and Transformer Encoder. The input is down sampled and
raise the dimension by CNN Encoder, and then randomly masked
and fed into Transformer Encoder. The labels are obtained by clus-
tering MFCC features or another model’s hidden units.

2.2 Upper Confidence Bound of Importance
Scores

The Background Of Movement Pruning Regardless of whether
the pruning is structured or unstructured, the training strategies
of existing pruning methods can be grouped into the following
two categories: (i) one-time pruning [14] and (ii) iterative pruning
[8]. While one-time pruning removes all redundant parameters at
once and fine-tunes them after ranking their importance, iterative
pruning removes only a portion of the redundant parameters at a
time and continues with the next round of pruning after a short fine-
tuning. However, one-time pruning often requires pre-training for
downstream tasks, which results in poor performance. In this work,
we focus on the latter scenario. Movement pruning [20] performed
better in iterative pruning. It combines the weight of the model with
gradient information to determine the importance. Instinctively,
Movement pruning selects weights that tend to move from 0 in
training, meaning it focuses more on first-order information about
weights. But because the score is estimated based on mini-batch
data and receives complex optimization strategies during training,
it has a fatal error: It does not accurately reflect its contribution
to model performance. Specifically, some weights often alternate
between being clipped and activated, making training unstable.

Optimization Methods To address this problem, we were in-
spired by PLATON [29] to apply upper confidence bound (UCB)
to capture the uncertainty of significance scores in our proposed
structured pruning approach.

Let W € R™ " be a general representation of the weight matrix
in the model (only the square matrix is discussed). To decide which
weights in W should be removed, we introduce an importance
score matrix S € R™" and a masking matrix M € R™™. The
pruning process is the optimization of S to select the most important
weights, and different pruning methods optimize S in different ways.
The actual computation involved is the Hadamard product of the
masking matrix and the weights, i.e., for input x , the corresponding
outputisa = (W © M)x. A common strategy for generating the
masking matrix M is to retain the top v % of the weights. This
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Table 1: Summary of pruning mode

Modes MHA FEN
Hybrid Block Dim
Structure Heads Dim
Unstructure 11 1*1
function is defined as:
RS if Sijisintop 0%
Topur(S)i,; = 0, otherwise

For the movement pruning, its score matrix S is defined as follow:
S=|WoVL((W)|

This formula is derived from the first-order Taylor expansion of L
with respect to W, approximates the change in loss when a weight
or component is subtracted. We have improved on this in two ways:
(i) exponential moving average, which reduces the non-negligible
variability due to mini-batch data and complex optimization strate-
gies.(ii) uncertainty qualification by local time variations, and trend
algorithm discover the potential of weights. Such quantification
can be considered a UCB of estimated importance.

Exponential Moving Average This method forces the model
to retain weights that suddenly drop in importance scores due to
instability in training.Specifically, in the t-th itration of the model,
we define the smoothing value as:

S = pisy Y (1= pr) SO

where 1 €(0,1) is a hyperparameter. The moving average can
effectively alleviate the sudden changes in the scores during the
training process, which makes the training more stable, and the
exponential level can emphasize more recent information, which is
more conducive to the convergence of the model.

Uncertainty Qualification In addition to moving average, we
directly consider uncertainties in the estimation of important scores
to reduce abrupt changes. Specifically, we quantify the uncertainty
of an estimation by local time variation in sensitivity, defined as:

Ut = s - sty

U =Bl ™+ (1= U

Uncertainty quantifies variability by taking into account the dif-
ference between the current significance score and its historical
average. The larger the value, the greater the uncertainty of the
weight, which means its Sy, is less trustworthy, in the sense it can
be considered as the upper confidence bound of Sy,.

Ideally, the criteria would be a combination of the two, followed
by screening, so we define the ultimate significance score as:

(1) gD oy
Sty = Sm’ © Up

When some weight or component has a low Sybut a high Uy, the
model tends to retain and develop its potential.
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Figure 1: Block pruning diagram

2.3 Structured Pruning Methods

In this work, we apply the block pruning method [12] as the basic
framework. The core idea of this method is the same as the Move-
ment pruning method, except that the pruning object is expanded to
the parameter block.Specifically, for each weight matrix W € R?*™,
we set a fixed block structure (a,b). All weights within each block
are delimited into a group and share a common importance score
(using Sycp as designed in the previous section), which is derived
from the corresponding score matrix Sycg € R™2*"/Y_Finally,
the mask weight is calculated by extending the masking matrix:

Whew =W O M(SUCB)[n/axn/b]

The number of parameters in the transform-based models is
mainly concentrated in the feed-forward network layer (FFN) and
the multi-head attention layer (MHA). Where FEN consists of two
matrices W1 and Wy and its shape is Rmodet Xdinner o Rinner Xdmodel
where dipper is the hidden size. The MHA parameters composed
of four matrices, Wx,Wo,Wy and Wq , and are shaped like
Rmode Xdmodel T our experiment, we used three modes to prune the
model, Hybrid, Structure and Unstructure, as shown in Table 1. The
specific shape is as follows:

o Block :(32,32),square blocks.
e Dim :(1,dy0de1) and (dipodels 1),FEN hidden size.
o Heads :(dpeads:dmodel)-attention heads.

Additionally, like Figure 1. If the model masks some complete
heads of the attention or masks some inner dimensions of the FFN,
we will further compact the model and perform a second fine-tuning.
In generating the mask matrix, we use two schemes, one of is the
Topy method mentioned above, called hard-pruning [20], and the
other soft-pruning [20]. For soft-pruning, M is not controlled by
a fixed percentage v, but by a fixed threshold t, such as M = (S >
t). In order to control sparsity, additional regularization terms are
added to control the gradual reduction of importance scores. The
coefficient control the penalty intensity and thus the sparsity level.
The formula is as follows:

Atotal * (AFFNIIo(SFEN) [I+AMAAll 0 (SMAEA) ||

where Aora), AppN @nd Apya are hyper-parameter||Al| = XA
and o is the sigmoid function.

Because of the different sensitivity of different matrices, soft
pruning can set the matrices sparsity flexibly, which makes it better
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than hard pruning. But its sparsity is controlled by the regulariza-
tion term coefficient. It needs complex experiments to achieve the
target sparsity.

2.4 Learnable Pruning Threshold Parameters

Hard pruning is simple to operate, but not flexible. Soft pruning is
the opposite. Therefore, we introduced a set of learning thresholds
[t1,....tn] and applied them to hard pruning to make up for its
shortcomings. The formula is as follows:

if Sijisintop o () %

1,
Topus(S);j = { 0, otherwise

We introduce a new regularization term to drive the model to
achieve the target sparsity, specifically as follows:

Lregu (1) = ((Nremain - Ntarget) /Ntotal)2

Where N represents the number of model parameters. Therefore,
the target loss is:

Loss = Lossctc + Aregu*Lregu

Because of competition between ctc loss and regularization terms,
models are often not pruned in late training to maintain perfor-
mance. Therefore, we redesigned a normalized term coefficient to
make the approximation of target sparsity more accurate. The form
is as follows:

Lregu
2,70 *a
1- (Ntarget/Ntotal)

Aregu = max (/lmax

. T T
min ((Tmax_T) * 5, 10) ST

“s T * 3
Tmax_T ’

— > 0.25

otherwise

where Amax is hyperparameter. T is the number of training steps.
The main idea is to increase the penalty when there is a large gap
between the current sparsity and the target sparsity, and vice versa.
Secondly, a warm-up step is set to limit the penalty to a smaller
range when the sparsity is far away from the target at the beginning
of the training, in order to let the model stabilize first, which is
more conducive to the later training.

3 EXPERIMENTS
3.1 Datasets

For the dataset, we selected audio of less than 14 seconds in the
Librispeech [19] train-clean-100 as our training set and tested it on
the Librispeech test-clean. Librispeech consists of about 1000 hours
of English reading speech corpus and corresponding transcribed
text files, sampled at 16 kHz.

3.2 Baseline

Our baseline model utilizes the framework and pre-trained models
provided by Hugging Face [26], and was fine-tuned using ctc loss
in the same training set. To be fair, the rate of learning and number
of training steps were consistent with subsequent experiments.
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Table 2: Summary of results. In this case, LSSP is short for our proposed method. MvP is short for Movement pruning. S1
represents the first pruning process and s2 represents the further fine-tuning process after the model is compacted WER means

word error rate.

Methods WER s1/s2 Speed-UP Pruning mode Sparsity
HuBERT-Base 7.7./N/A 1.0 N/A
MVP-Hard 14.92/12.77 2.5 Structure
MVP-Soft 12.64/11.22 2.4
LSSP 12/10.85 2.4 60
MVP-Hard 13.4/11.3 2.2 Hybrid
MVP-Soft 10/8.84 2
LSSP 9.4/8.3 2
MVP-Hard 16.21/13.78 33 Structure
MVP-Soft 14.44/12.07 2.7
LSSP 12.89/11.8 2.6 80
MVP-Hard 14.7/13.2 2.9 Hybrid
MVP-Soft 12.69/11.77 2.6
LSSP 11.84/11.11 2.6
MVP-Hard 10.93/N/A 1.0
MVP-Soft 9.47/N/A 1.0 Unstructure 85
LSSP 8.88/N/A 1.0

3.3 Implementation details

We trained the model on three GeForce RTX 3090 for 100,000 steps
in a batch size of 24 hours and less than 21 hours. In terms of
learning rate, we used a warm-up optimization strategy of learning
rate, which linearly increased to 3e-5 in the first 10000 training steps
and decreased to 0 in subsequent training steps. For sparsity control,
our strategy is increase the sparsity rates gradually increase from 0
to 60%. And let it remained constant for the first 10% percent and
the last 20% of step ensure the stability of the model. We select the
exponential moving average parameters f; from {0.80, 0.90} and f»
from ={0.850, 0.950}, and select the regularization term coefficient
Amax from {20000, 40000, 80000}.

4 RESULTS

In this section, we compare our approach to the baseline model,
as well as the hard and soft pruning methods described above,
under the same conditions as the general hyper-parameters, at
sparse levels 60%, 80% and 85%. The results of HuBERT-base model
on Librispeech test-clean are shown in the following Table 2. To
start with the structured pruning method, the Hybrid mode WER
is significantly higher than Structure in pruning mode, but the
acceleration ratio is generally smaller. This phenomenon shows that
different block shapes have obvious different influence on pruning
effect and inference speed. Small chunks mean higher accuracy and
smaller acceleration ratio. Secondly, because the model acceleration
ratio produced by the Hybird and Structured methods was not
significantly different, we further observed that the model learned
to remove the entire head in MHA even though we did not set the
pruning scale to a full head size in the Hybrid method. The pruning
effect is shown in the Figure 2. Based on this, we used a Hybrid
mode as the primary method. As Table 2 shows, no matter the
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sparsity is 60%, 80% or 85%, our method can achieve the best results.
In particular, when sparsity was 60%, our method performed only
0.6% worse compared to baseline after step2 fine-tuning.

Putsant encrcer a

etion o weipht

hubert.encoder.layers.4.feed_forward.output_dense.weight
o

1000 1500 2000 2500 3000

Figure 2: The matrix is pruned under Hybrid method. White
is preserved,black is pruned

4.1 Ablation Experiment

In this section, we will analyze why our method can bring to better
results in the form of ablation experiment.

The Influence Of UCB We first analyzed UCB, the results are
shown in the Table 3. Because of the soft pruning method drives
a diminishing importance score, which conflicts with our UCB, so
we apply UCB only to hard pruning (even if hard pruning is less
effective than soft pruning, the learnable threshold makes up for
it). As we can see, at 60% sparsity.UCB improved the performance
of hard pruning by 2%, but due to the inherent inflexibility of hard
pruning, MVP-UCB was not as effective as soft pruning. Further,
we can see in Figure 3, UCB changes significantly less than the
importance score used in traditional movement pruning, resulting
in a more stable training process and better model performance.

Finally, we tested the sensitivity of the MVP-UCB method to
P1 and Bz, and our results showed that our method was robust for
these two hyper-parameters.
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Figure 3: Score change range graph. Red is UCB. We take the
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Figure 4: Compare the sparsity of the MHA matrix and FFN
matrix

Table 3: Performance comparison of different methods. Only
compare the results of stepl. Among them, MVP-UCB means
only the movement pruning that only adds UCB.

Methods WER
MVP-Hard 13.4
MVP-Soft 10
MVP-UCB 11.3

The Influence Of Learnable Threshold To prove that our
approach can also be as flexible as soft pruning, we compare the
sparsity of MHA matrix and FFN matrix corresponding to each layer
of the pruning model obtained by soft pruning and our method. The
results are shown in Figure 4. Roughly the following pattern can
be obtained: (i) FEN is easier to prune than MHA. (ii) The matrix
near the input is less sparse than that near the output. Our method
learned similar rules to soft pruning. In addition, our method re-
quires only one hyperparameter A4y, which greatly reduces com-
plex operations.

5 CONCLUSIONS

In this paper, we propose a structured pruning method, which in-
troduced upper confidence bound of importance scores, a set of
learnable pruning threshold parameters, and corresponding reg-
ularization terms.Experiments show that our method can more
accurately assess the importance of weights and learn the sensitive
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of different matrices, and the operation is relatively simple. For
all pruning granularity, and pruning ratios, our method all yield
higher accuracy and speedup ratios. In particular, when sparsity
was 60%, our method performed only 0.63% down. Note that this is
the result without distillation loss.

There are some meaningful works left to do, such as add teacher
models and distillation loss, and using it to guide base model prun-
ing, which we believe will yield some gains. Next, try pruning large
model and see how well it works when both large and base model
prune to the same absolute number of parameters. We leave these
questions for future work.
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