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Abstract

Nested binomial sums form a particular class of sums that arise in the context of particle
physics computations at higher orders in perturbation theory within QCD and QED, but that
are also mathematically relevant, e.g., in combinatorics. We present the package RICA (Rule
Induced Convolutions for Asymptotics), which aims at calculating Mellin representations and
asymptotic expansions at infinity of those objects. These representations are of particular
interest to perform analytic continuations of such sums.

The package RICA, which stands for Rule Induced Convolutions for Asymptotics, stem from
the need to deal in a systematic way with finite and infinite nested binomial and inverse binomial
sums that appear in the context of particle physics computations at higher orders in perturbation
theory within QCD and QED [2]. This kind of analytic calculations of Feynman integrals, aim at
high precision predictions for particle physics experiments for processes with massless partons but
also massive quarks in QCD. They involve on the mathematical side the computation of increasingly
complex iterated integrals. In the process of doing so, many different classes of functions arise, for
example (generalized) harmonic sums and (generalized) harmonic polylogarithms [4]–[9]. The pack-
age HarmonicSums, developed by Jakob Ablinger [3], allows to manipulate efficiently such objects,
and in particular find closed forms or simpler representations, compute (inverse) Mellin transforms,
asymptotics, etc. thereof. Nevertheless, extensions of nested generalized harmonic sums weighted
by the binomial coefficient

(

2n
n

)

cannot be dealt with in the general case, and a different approach to
treat them has been presented in [1]. Instead of relying on Mellin inversion through solving of dif-
ferential equations [10], the method described in the former paper relies on recursive computations
of Mellin convolutions of the summands of the iterated binomial sums. The main advantage of this
approach is that by defining a set of possible general cases, i.e., classes of functions for which we
can compute in general the Mellin inverse and/or the Mellin convolution, the computation of the
Mellin inverse can be made rather fast and straightforward. Moreover, by identifying new general
cases and adding them to our “dictionary”, we can easily extend the classes of iterated sums we
can deal with, even beyond the binomial case.
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Another advantage in representing the nested binomial sums as Mellin integrals is that one
can perform asymptotic expansions at infinity, which helps us to obtain for example analytic con-
tinuations of those nested sums [1]. There exist several possible methods to perform asymptotic

expansions of functions of the form
∫ 1

0
dxxnf(x), i.e., defined as Mellin transforms of some function

f , depending on the regularity of f . In particular, there is a rather general method [11, 12] that
relies on changes of variables and term by term integration [1], which has been implemented in the
RICA package together with several variations or simpler methods to speed up computations.

Before presenting the main functions and an example of what our package can do, we want to
emphasize the fact that while RICA implements and extends algorithms and methods that have not
been implemented yet, it strongly relies on notations, objects and tools provided both by Carsten
Schneider’s Sigma package [13, 14] and Jakob Ablinger’s HarmonicSums [3] package.

Let us define some notations, following [1]. We consider binomial nested sums, i.e. nested sum
of the form:

BS(n) =

n
∑

i1=1

a1(i1; b1, c1, m1)

n
∑

i2=1

a2(i2; b2, c2, m2) · · ·
n

∑

ik=1

ak(ik; bk, ck, mk)

where ap(i; b, c,m) =
(

2i
i

)b ci

im
, b ∈ {−1, 0, 1}, c ∈ R⋆, m ∈ N, and almost all of the b are 0 except

for some that fit into the case of the theorems described in [1, Section 4]. We also accept coefficients

that have a more general structure, such as ci

2i+1

(

2i
i

)b
, b ∈ {−1, 1}, that we extended to cases of the

form p(i)
q(i)

(

2i
i

)

, where p, q ∈ C[X ], deg p ≤ deg q.1

Now we present the main functionalities of our package. Once installed, we have to load it in
Mathematica:

In[1]:= << RICA.m;
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As stated before, RICA depends on Sigma and HarmonicSums which have to be loaded beforehand.
The three main functions of the package are the following:

• SumToMellin[expr,c,x,opts]: Given an argument expr that is a linear combination of
binomial nested sums, it computes its Mellin inverse. More precisely, the argument expr has
the following form:

expr =

m
∑

i=1

αiGS [{fi,1(VarGL), fi,2(VarGL), . . . , fi,pi(VarGL)}, n] , αi ∈ C, pi ∈ N

and GS is the generalized iterated sum defined in HarmonicSums as

GS [{f1(VarGL), f2(VarGL), . . . , fp(VarGL)}, n] =
∑

1≤ip≤ip−1≤···≤i1≤n

f1(i1)f2(i2) · · · fp(ip).

The second argument c specifies a variable that is used to denote the constants that might
appear in the final expression2, and x is the integration variable in the Mellin integrals.

1Currently we are working on extensions that cover any rational function and more complicated coefficients.
2In particular if we give for example C, the constants will be denoted as Ci.
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Finally, opts is an optional boolean argument called ToGLbBasis which uses HarmonicSums

basis reduction functions to simplify the result further; its default value is True.

The output is returned in the form of a tuple where the first element is a linear combination of
Mellin transforms, using HarmonicSums notation Mellin[kn(x), f(x)] =

∫ 1

0
dx kn(x)f(x) where

kn(x) = (ax)n or kn(x) = (ax)n − 1 is the kernel, i.e.

expr =

p
∑

i=1

αi Mellin[ki,n(x), fi(x)].

The second element is then a list of the values of those constants, i.e.,

{C1 → value1, . . . , Cp → valuep}
that might arise inside of the functions fi(x).

• AsymptoticsMellint[expr, x, n, ord, opts]: This function computes the asymptotic ex-
pansion of a linear combination of Mellin integrals. It takes as the main argument expr which
is a linear combination of Mellin representations as obtained in the output of SumToMellin,
together with x which is the Mellin integration variable, n which is the Mellin parameter,
ord which is the required order of the expansion, and opts which allows to insert possible
fine-tuning options.

The output is returned as an asymptotic expansion similar to what Mathematica does when
using the built-in function Series.

• AsymptoticsSum[expr,n,x,ord]: The function can be seen as a “combination” of both
functions above, i.e. “AsymptoticsSums = AsymptoticsMellint ◦ SumToMellin”. It takes
therefore as the main argument expr, i.e. a linear combination of nested binomial sums in
the GS representation, together with the Mellin parameter n, Mellin integration variable x and
desired expansion order ord.

The output is in the same form as AsymptoticsMellint.

To conclude, below is an explicit example of a computation using all functions above. We
consider the nested binomial sum:

S(n) =
n

∑

i=1

1

i
(

2i
i

)

i
∑

j=1

(−2)j
(

2j
j

)

= GS

[{

1

VarGL
(

2VarGL
VarGL

) , (−2)VarGL
(

2VarGL
VarGL

)

}

, n

]

by introducing it in Mathematica as follows:

In[2]:= sum1 = GS

[{

1

VarGL ∗ Binomial(2VarGL,VarGL)
, (−2)VarGL

∗ Binomial(2VarGL,VarGL)

}

,n

]

;

Now we apply SumToMellin to the input expression and get:

In[3]:= mel1 = SumToMellin[sum1,C, x]

Out[3]=







Mellin



(−2)nxn − 1,

1− 1

6

√

2

√
x+ 1

8

x+ 1

2



− 2

3
Mellin

[

4−nxn − 1,
1√

1− x(x− 4)

]

, {}







As we see, the result is a sum of two Mellin integral representations where no extra constants
arise. We are now in the position to apply the function AsymptoticsMellint to get the asymptotic
expansion, e.g., up to order 4:
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In[4]:= AsymptoticsMellint[mel1[[1]],x,n, 7]

Out[4]= −26425(−1)n2n+3

531441n7
− 2213(−1)n2n+3

177147n6
+
799(−1)n2n+3

59049n5
+
73(−1)n2n+3

6561n4
− 5(−1)n2n+3

729n3
− 7(−1)n2n+3

243n2
+
(−1)n2n+4

27n

Using the function AsymptoticsSum, if we only wanted the asymptotic expansion and not the
Mellin representation we could have simply called it directly:

In[5]:= AsymptoticsSum[sum1,n, x, 7]

Out[5]= −26425(−1)n2n+3

531441n7
− 2213(−1)n2n+3

177147n6
+
799(−1)n2n+3

59049n5
+
73(−1)n2n+3

6561n4
− 5(−1)n2n+3

729n3
− 7(−1)n2n+3

243n2
+
(−1)n2n+4

27n
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