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Miguel A. Marco-Buzunáriz1, Ana Romero2, and Jose Divasón2

1University of Zaragoza, Spain
mmarco@unizar.es

2University of La Rioja, Spain
{ana.romero,jose.divason}@unirioja.es

Abstract

We present an algorithm for constructing the e↵ective homology for the universal cover of simpli-
cial sets with e↵ective homology, provided that a nilpotency condition holds. This can be useful for
computing higher homotopy groups, since this process can be seen as the first step in the Whitehead
tower. Our algorithm can be applied to some spaces satisfying a particular condition. We also present
implementations of this method in SageMath and Kenzo.

1 Introduction

A cover of a connected topological space X is a topological space Y with a map f : Y ! X such that
for every x 2 X, there exists an open neighborhood U of x such that f�1(U) is a disjoint union of
homeomorphic copies of U . If Y is simply connected, then Y is said to be a universal cover of Y , and
satisfies ⇡i(Y ) ⇠= ⇡i(X) for all i � 2. The universal cover of a topological space X provides a convenient
way to study X by lifting paths and other geometric objects to the simpler universal cover. This makes
some topological and geometric problems on X easier to solve, as they can be reduced to the study of the
universal cover. The universal cover can be useful in applying the Whitehead tower method [6], a technique
to determine homotopy groups of simply connected spaces. In fact, the universal cover can be seen as a
first step in the Whitehead tower.

E↵ective homology is a technique developed by F. Sergeraert [4] that permits one to carry out some kinds
of computations over infinite structures, via homotopy equivalences between chain complexes. Kenzo [2] is
a computer algebra system that implements several algorithms to compute homology of infinite structures
using e↵ective homology. In addition, it also allows one to compute algorithmically homotopy groups of
1-reduced spaces by combining the Whitehead tower method and the e↵ective homology technique. Topo-
logical spaces are represented in Kenzo by means of simplicial sets, a combinatorial structure generalizing
the notion of simplicial complex.

In this work we present an algorithm to compute a simplicial model of universal covers and combine
it with the e↵ective homology and homological perturbation techniques to be able to work with spaces
of infinite type with finite fundamental group. Our algorithms have been implemented in the computer
algebra systems SageMath [5] and Kenzo, using a Kenzo interface and an optional package for SageMath
that we developed in a previous work [1]. In that work, we also integrated an algorithm to compute
homotopy groups of simply connected simplicial sets that are not necessary 1-reduced. Combining our new
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constructions with the Whitehead tower method used in [1], we are able now to determine the homotopy
groups of some simplicial sets that are not simply connected.

2 Construction of the universal cover

Given a connected simplicial set X, a presentation of its fundamental group can be found as follows: 1)
choose a maximal tree T in the 1-skeleton of X; 2) take a generator ge for each edge e that is not in T ;
and 3) for each 2-simplex in X, add a relation given by the product of the generators corresponding to
its faces (assuming that the edges in T correspond to the trivial element). The result is a presentation of
G := ⇡1(X). Note that we also get a map ⌧ that assigns an element of the group to each edge (assuming
that the edges in T correspond to the trivial element). This assignment can be lifted to higher-dimensional
simplices by taking the first face. In order to work e↵ectively with this presentation, we need to be able
to solve the word problem in this presentation (which cannot be ensured in the general case, but is solved
for several families of groups, including the cases of finite, free, abelian, polycyclic or simple groups).

With these pieces of data, we can construct the universal cover of X as the simplicial set X̃:

• The sets of simplices are X̃n = G ⇥ Xn

• The degeneracy maps are s̃i(h,�) = (h, si�)
• The face maps for an n-dimensional simplex (h,�) are given by:

⇤ @̃i(h,�) = (h, @i�), for i < n

⇤ @̃n(h,�) = (h · ⌧(�)�1, @n�)

3 E↵ective homology for the universal cover

We say that X has e↵ective homology if there exist two chain complexes DX⇤, EX⇤, where EX⇤ is a
chain complex of finite type (e↵ective) and two reductions (particular cases of homotopy equivalences)
C⇤(X)((DX⇤))EX⇤. In this case, the problem of computing the homology of X can be transfered to
EX⇤, which allows one to compute di↵erent topological properties of X, and of other spaces constructed
from X. One of these possible spaces determined by X is the twisted cartesian product K(G, 0) ⇥⌧ X ,
where K(G, 0) is the Eilenberg–MacLane space of G in dimension 0, and the twisting operator is induced by
the map ⌧ defined before. This space is isomorphic to the construction of the universal cover presented in
the previous section. In order to obtain a space with e↵ective homology, the following nilpotency condition
must be satisfied:

Theorem 1 Let X be a connected simplicial set. Let us suppose that X has e↵ective homology given
by two reductions ⇢X

1 = (fX
1 , gX

1 , hX
1 ) : DX⇤))C⇤(X) and ⇢X

2 = (fX
2 , gX

2 , hX
2 ) : DX⇤))EX⇤. Assume

that the composition hX
2 gX

1 @mfX
1 satisfies that, for every element y 2 DXm, there exists some natural

number n with (hX
2 gX

1 @mfX
1 )n(y) = 0, then the universal cover constructed as the twisted cartesian product

K(G, 0) ⇥⌧ X has e↵ective homology.

This theorem can be proved by means of homological perturbation theory and several lemmas. The
complete proof will be included in a full version of this paper.

4 Implementation and examples

The construction of the universal cover has been implemented in SageMath for simplicial sets of finite type
(with a finite number of non-degenerate simplices) and finite fundamental group. Our implementation is
already available in SageMath10.0.
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We illustrate its usage with an example. We start by creating a simplicial set with finite fundamental
group. In this case, we take the complex corresponding to the usual presentation of the symmetric group
on 3 elements, and take its product with the projective space (note that this simplicial set depends on the
specific presentation of the initial group, not on the group itself).

sage: G = SymmetricGroup (3). as_finitely_presented_group ()

sage: C = simplicial_sets.PresentationComplex(G)

sage: RP3 = simplicial_sets.RealProjectiveSpace (3)

sage: S = C.product(RP3) ; S

Simplicial set with 12 non -degenerate simplices x

RP^3

Creating its universal cover takes 22 seconds in an Intel Core i7-10700, using 260MB of RAM:

sage: SC = S.universal_cover () ; SC

Simplicial set with 4176 non -degenerate simplices

We can check that it is indeed simply connected:

sage: SC.fundamental_group ()

Finitely presented group < | >

And now we can compute its usual topological invariants, as any other simplicial set, and compare
them with the base space (this computation takes about a minute to complete):

sage: [SC.homology(i) for i in range (6)]

[0, 0, Z^11, Z, 0, Z^11]

sage: [S.homology(i) for i in range (6)]

[0, C2 x C2, Z x C2, Z x C2 x C2 , C2 , Z]

The construction of the e↵ective homology for universal covers has been implemented as functions in
the Kenzo system (the code can be found at [3]). With these new functions, it is possible to determine a
simplicial model of the universal cover of simplicial sets of infinite type (with finite fundamental group)
and determine its homology and homotopy groups.

To illustrate our programs and the power of the e↵ective homology theory in our problem, we consider
as a didactic example the following simplicial set of infinite type: we build in Kenzo the cartesian product
of the projective plane with the “semiline” divided in intervals. The projective plane RP is given by non-
degenerate simplices RP0 = {v}, RPND

1 = {a} and RPND
2 = {t}, and faces @0a = @1a = v, @0t = @2t = a

and @1t = s0v; it is a simplicial set of finite type. The “semiline” is represented as a simplicial set A with
non-degenerate simplices given by A0 = {n|n 2 N}, AND

1 = {[n, n + 1]|n 2 N} and @0([n, n + 1]) = n + 1,
@1([n, n + 1]) = n. The simplicial set A has an infinite number of non-degenerate simplices, but we can
construct its e↵ective homology in an explicit way as follows. We construct a reduction ⇢A

2 = (fA
2 , gA

2 , hA
2 ) :

C⇤(A)))C⇤(⇤) where C⇤(⇤) is a chain complex with only one generator ⇤ in degree 0, fA
2 is defined by

fA
2 (x) = ⇤ if x 2 A0 and fA

2 (x) = 0 for all x 2 Cn(A) with n > 0, gA
2 is given by gA

2 (⇤) = 0 2 A0 and
hA

2 (n) = [0, 1] + [1, 2] + · · · + [n� 1, n] (and hA
2 (x) = 0 for x 2 Cn(A) with n > 0). It is easy to verify that

these maps satisfy the properties of reduction. The left reduction in the e↵ective homology of A⇤ is the
identity reduction ⇢A

1 = Id : C⇤(A)((C⇤(X).
Now, the cartesian product X = RP ⇥A is also a simplicial set with e↵ective homology (it is built auto-

matically by Kenzo). Moreover, since A is contractible, its fundamental group is equal to the fundamental
group of RP , that is, ⇡1(RP ) = Z/2Z.

It can be checked that the nilpotency condition is satisfied, so we can construct in Kenzo the simplicial
model for the universal cover of X with its e↵ective homology as follows. We build the cartesian product
of the projective plane and the semiline (we omit the construction of the simplicial sets proj-plane and
semiline) and we store it in the variable X. Then, we define the map ⌧ : XND

1 ! Z/2Z as a function that
receives an edge and returns an element of the group (in this case, 0 or 1) and we store it in X-twop-edges.
Finally, we call the function universal-cover:
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> (setf X-univ-cover (universal-cover X (cyclicgroup 2) X-twop-edges ))

[K45 Simplicial-Set]

As said before, this allows us to determine its homology and homotopy groups. For instance, we
compute the homotopy group of dimension 5:

> (homotopy X-univ-cover 5)

Homotopy in dimension 5 :

Component Z/2Z

which indeed is the correct result, since ⇡5(S2) = Z/2Z.
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