
FFCSA – Finite Field Constructions, Search, and Algorithms
Nuša Zidarič

∗†

Leiden Institute of

Advanced Computer

Science (LIACS),

Leiden University

Leiden, The

Netherlands

Guang Gong

Electrical and

Computer

Engineering,

University of

Waterloo

Waterloo, Canada

Mark Aagaard

Electrical and

Computer

Engineering,

University of

Waterloo

Waterloo, Canada

Aleksandar

Jurišić

Faculty of Computer

and Information

Science, University of

Ljubljana

Ljubljana, Slovenija

Olexandr

Konovalov

School of Computer

Science, University of

St Andrews

St Andrews, Scotland

ABSTRACT
In this work we present the new GAP package FFCSA – Finite Field

Constructions, Search, and Algorithms. It was designed to enable

Design Space Exploration for hardware implementations of crypto-

graphic algorithms defined over finite fields. FFCSA constructions

and searches are used to produce the design space, and FFCSA

algorithms, parameterized for the current candidate field, are used

to generate expressions needed for implementation in hardware.

CCS CONCEPTS
• Computing methodologies→ Symbolic and algebraic ma-
nipulation.

KEYWORDS
FFCSA, GAP, FSR, finite field arithmetic, cryptographic hardware

ACM Reference Format:
Nuša Zidarič, Guang Gong, Mark Aagaard, Aleksandar Jurišić, and Olexandr

Konovalov. 2023. FFCSA – Finite Field Constructions, Search, and Algo-

rithms. In Proceedings of ACM Conference (Conference’17). ACM, New York,

NY, USA, 4 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
In this work we present the new GAP package FFCSA – Finite Field

Constructions, Search, and Algorithms. It was designed to enable

Design Space Exploration (DSE) for hardware implementations of

cryptographic algorithms defined over finite fields. With the rise

of new technologies, such as Internet of Things, Cyber-Physical

Systems, automotive, to name just a few, microchips with com-

munication capabilities are extremely common. Furthermore, they

have diverse hardware implementation requirements, and DSE is

mandatory to select suitable parameters and trade-offs. FFCSA is

a part of a larger framework [15, 19], which includes packages for

automated generation of hardware modules; the entire framework

∗
Corresponding author: Nuša Zidarič n.zidaric@liacs.leidenuniv.nl

†
The majority of this work was done when Nuša Zidarič was affiliated with the

University of Waterloo. She is currently affiliated with LIACS, Leiden University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA
© 2023 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

is beyond the scope of this paper. To build such a framework we

need a Computer Algebra System for symbolic computation that

supports finite fields; we chose the open-source system GAP [5].

Our approach opens numerous possibilities for automated gener-

ation and optimization of hardware guided by the mathematical

properties, and to change mathematical properties of cryptographic

algorithms based on their hardware cost and performance.

2 BACKGROUND
2.1 GAP
GAP [5] is an open source system for discrete computational algebra.

It was selected as a platform for the implementation due to multiple

reasons, in particular, for its excellent support for finite fields, which

includes their constructions, arithmetic operations, factorization

of polynomials, irreducibility check, conjugates, decomposition

of elements w.r.t. a given basis, etc.. GAP also has a well-defined

mechanism of extending it with packages, which are managed

by their authors and maintainers, and may be submitted for the

redistribution with GAP. One of such packages is the JupyterKernel
package [9] which adds Jupyter support to GAP and allows to

make interactive and engaging demonstrations. Finally, GAP and a

number of its packages are included in the SageMath [14].

FFCSA package [16] requires FSR package [18], designed for

cryptographic modules with filtering structures [17], such as the

WG cipher [8]. FFCSA package adds support for tower fields to the

hardware design flow in [17]. FSR and FFCSA were used during

design stage of authenticated encryption scheme WAGE [1, 2, 15].

2.2 Preliminaries
Let F𝑞 be a binary extension field with 𝑞 elements, where 𝑞 = 2

𝑚

and 𝑚 ≥ 1. We consider multivariate polynomial functions 𝑓 :

F𝑡𝑞 → F𝑞 in 𝑡 ≥ 1 variables 𝑥0, . . . , 𝑥𝑡−1 with their corresponding

integer exponents 𝑖 𝑗 (0 ≤ 𝑗 ≤ 𝑡 − 1) and coefficients 𝛾𝑖0,...,𝑖𝑡−1 ∈ F𝑞 :

𝑓 (𝑥0, . . . , 𝑥𝑡−1) =
∑︁

(𝑖0,...,𝑖𝑡−1) ∈ Z𝑡𝑞−1

𝛾𝑖0,...,𝑖𝑡−1𝑥
𝑖0
0
. . . 𝑥

𝑖𝑡−1
𝑡−1 . (1)

The exponents 𝑖 𝑗 are reduced modulo 𝑞 − 1 by the generalization

of the Fermats little theorem [7] (i.e., 𝑥𝑞 = 𝑥 ∀𝑥 ∈ F𝑞) and hence

the 𝑡-tuple (𝑖0, . . . , 𝑖𝑡−1) ∈ Z𝑡𝑞−1 uniquely describes each monomial.

For the remainder of this text, the term expression is of the form

given in Equation (1).

Let K be a finite field and F its extension of degree 𝑚, i.e.,

F/K and 𝑚 = [F : K]. Let 𝐵F/K = {𝜌 (0) , 𝜌 (1) , . . . , 𝜌 (𝑚−1) },
where 𝜌 ∈ F , be an arbitrary basis of F/K . The following are

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA Nuša Zidarič, Guang Gong, Mark Aagaard, Aleksandar Jurišić, and Olexandr Konovalov

the representation of 𝐴 ∈ F w.r.t. 𝐵F/K , its vector form and the

notation for the 𝑖-th coordinate of𝐴, where 𝑎𝑖 ∈ K (0 ≤ 𝑖 ≤ 𝑚− 1):

𝐴=
𝑚−1∑
𝑖=0

𝑎𝑖𝜌
(𝑖)

, [𝐴]𝐵F/K=[𝑎0, 𝑎1, . . . , 𝑎𝑚−1], [𝐴] (𝑖)=𝑎𝑖 .

We use the term “field instance” to refer to a particular finite field

and its basis, i.e., one of the many candidates for the DSE. We will

use ffe to abbreviate a finite field element.

3 BASIC STRUCTURE OF FFCSA
Different algorithms for finite field arithmetic that have been devel-

oped over the years will be simply referred to as “algorithms” (the

letter "A" in "FFCSA", Section 3.1). To list a few examples: classic

two-step multiplication, Massey-Omura multiplication, Itoh-Tsuji

inversion, . . . Some algorithms were optimized for software appli-

cations, and will not necessarily perform well in hardware. An

example of an algorithm optimized for hardware implementations

is the reduced redundancy Massey-Omura parallel multiplier [11].

For DSE we need to generate many field instances, and for hard-

ware design automation we need to extract submodules and gen-

erate expressions for their implementation. From the perspective

of DSE, a candidate field instance is the finite field and its basis;

FFCSA construction and search methods were designed to find the

candidates (letters "CS" in "FFCSA", Section 3.2).

To define F𝑞𝑚 it is enough to construct the basis 𝐵F𝑞𝑚 /F𝑞 [7]. We

introduce a notion of direction for the basis as To and Downto. This
is adopted from a hardware description language called VHDL: its

signals are specified by their domain, range and direction. In order

to merge the worlds of digital hardware design and finite fields,

we map the domain to the subfield and the range to the degree of

extension F/K , and generate our bases according to the desired

direction: To for (0 to m - 1) or Downto for (m-1 downto 0).

3.1 Finite field arithmetic algorithms
In this section we explain how we use symbolic computation to

generate datapaths. We use a simple expression over F𝑞 , where
𝑞 = 2

𝑚
,𝑚 > 1, as an example:

𝑓 (𝑥0, 𝑥1, 𝑥2) = 𝛾1 𝑥0 · 𝑥1 · 𝑥2 + 𝑥2
0
+ 𝛾2 . (2)

Expression (2) has variables 𝑥0, 𝑥1, 𝑥2 ∈ F𝑞 and two arbitrary, not

necessary distinct, constants 𝛾1, 𝛾2 ∈ F∗𝑞 .

BA C

Z

E M

M

x

map GAP variables to input ports:

𝑥0 →A, 𝑥1 →B, 𝑥2 →C
map function 𝑓 to the output port:

𝑓 →Z
Submodules: squarer E, two multipliers M,
and constant multiplier ×𝛾1.

Addition modulo 2: XOR gates,

also used for the additive constant +𝛾1

Figure 1: Circuit schematics for the example in Equation (2).

Figure 1 shows submodules for arithmetic operations needed to

implement expression (2) as top-level hardwaremodule. To generate

the datapath, first all field parameters and constants are set, then:

(1) Extract submodule. To extract the submodules, we parse

the top-level expression. GAP uses algebraic normal form

for expressions such as the right hand side in Equation (1).

We ensure all exponents are reduced modulo 𝑞− 1, then split

the expression into two vectors: monomials and coefficients.

We obtain (i.) the multiplicative and additive constants from

the coefficients, and (ii.) finite field multiplications and ex-

ponentiations from the monomials.

(2) Generate expressions. To implement the submodules, we

need an expression for each output of the submodule. Fig-

ure 2 shows an example of extracted finite field multiplica-

tion on top and generated multiplication expressions, i.e.,

the compoenent functions, on the bottom. The basis 𝐵 must

be known and the designer must select one of the FFCSA

algorithms for the arithmetic operation in basis 𝐵.

c =f (a , ... ,a ,0 m-1 b , ... ,b)0 m-100

c =f (a , ... ,a ,0 m-1 b , ... ,b)0 m-1m-1m-1

extract
submodule

generate
submodule

... ...

A C
B

A B

[c ,c , ... ,c]0 1 m-1
[a ,a , ... ,a]0 1 m-1
[b ,b , ... ,b]0 1 m-1

[]B []B

user-specified multiplication
algorithm for basis B

g
enerate expressions - symbolically

generate testvectors - evaluate

Figure 2: Extracted and generated multiplication

FFCSA implements a collection of methods to generate the re-

quired expressions according to a specified algorithm, parameter-

ized for the current field instance. The package currently supports

basic functionality (Section 3.1.2).

3.1.1 Symbolic computation. The ChooseFieldElms(𝐹) method

prepares vectors 𝑎𝑣𝑒𝑐 = [𝑎0, . . . , 𝑎𝑚−1] and 𝑏𝑣𝑒𝑐 = [𝑏0, . . . , 𝑏𝑚−1]
with default direction To, where𝑚 = [F : K] is the degree of ex-
tension. Method ChooseFieldElmsDownto creates vectors 𝑎𝑣𝑒𝑐 =
[𝑎𝑚−1, . . . , 𝑎0] and 𝑏𝑣𝑒𝑐 = [𝑏𝑚−1, . . . , 𝑏0]. Note that 𝑎𝑖 , 𝑏 𝑗 are not
coefficients, but GAP variables [5] to allow symbolic computation.

3.1.2 Generalized algorithm for multiplication. To compute the

product𝐶 = 𝐴·𝐵, where𝐴, 𝐵 ∈ F /K and𝑚 = [F : K], we begin by
forming the matrix𝑈 for a given basis 𝐵F/K . Expressions obtained

with matrix 𝑈 follow the Generalized algorithm for multiplication
[6]. This method produces a matrix-vector multiplier, where one

of the factors is merged into the matrix𝑈 and then multiplied by

the other factor. We chose this algorithm for multiplication as it is

universal in the sense that it works for an arbitrary basis.

The matrix 𝑈 is an 𝑚 ×𝑚 matrix with components 𝑢𝑖, 𝑗 (0 ≤
𝑖, 𝑗 ≤ 𝑚 − 1) obtained by multiplying an element 𝐴 with the 𝑗-th

basis element 𝜌 (𝑗) and then taking the 𝑖-th coordinate of 𝜌 (𝑗) · 𝐴:

𝑢𝑖, 𝑗 = [𝜌 (𝑗) · 𝐴] (𝑖) . (3)

The columns of matrix 𝑈 are exactly the vectors [𝜌 (𝑗)𝐴]. The
product 𝐶 = 𝐴 · 𝐵 can be written in matrix form as

FFCSA – Finite Field Constructions, Search, and Algorithms Conference’17, July 2017, Washington, DC, USA

𝑐0
𝑐1
.
.
.

𝑐𝑚−1

=

𝑢0,0 𝑢0,1 . . . 𝑢0,𝑚−1
𝑢1,0 𝑢1,1 . . . 𝑢1,𝑚−1
.
.
.

.

.

.
. . .

.

.

.

𝑢𝑚−1,0 𝑢𝑚−1,1 . . . 𝑢𝑚−1,𝑚−1

·

𝑏0
𝑏1
.
.
.

𝑏𝑚−1

. (4)

The expressions for the product 𝐶 can then be obtained by multi-

plying the right hand side of equation (4):

𝑐𝑖 =

𝑚−1∑︁
𝑗=0

𝑢𝑖, 𝑗𝑏 𝑗 (0 ≤ 𝑖 ≤ 𝑚 − 1). (5)

This generates the expressions 𝑐𝑖 = 𝑓𝑖 (𝑎0, . . . , 𝑎𝑚−1, 𝑏0, . . . , 𝑏𝑚−1),
which are used for the implementation of a circuit, where a combi-

national datapath is implemented for each output, e.g., each 𝑐𝑖 for

the multiplier in Figure 2. Similarly, we can generate expressions

for arbitrary exponents of 𝐴, including the inverse. Since these

methods use the 𝑎𝑣𝑒𝑐 variables 𝑎𝑖 more than once, we must ensure

their exponents are reduced modulo |K | − 1 on each step.

FFCSA contains the following methods:

• MatrixUExpression(𝐵, 𝑎𝑣𝑒𝑐) computes the matrix𝑈 with

elements obtained based on Equation (3).

• FFA_mult_matrixU(𝐵, 𝑎𝑣𝑒𝑐, 𝑏𝑣𝑒𝑐) first computes𝑈 with

MatrixUExpression and 𝑎𝑣𝑒𝑐 , and then returns𝑈 ∗ 𝑏𝑣𝑒𝑐 .
• FFA_sq_matrixU(𝐵, 𝑎𝑣𝑒𝑐) first computes𝑈 with themethod

MatrixUExpression and 𝑎𝑣𝑒𝑐 , and then returns𝑈 ∗ 𝑎𝑣𝑒𝑐 .
• FFA_exp_matrixU(𝐵, 𝑎𝑣𝑒𝑐, 𝑒) computes the expressions for

exponentiation 𝐴𝑒
, using a classic square and multiply with

methods FFA_mult_matrixU and FFA_sq_matrixU.
• FFA_inv_matrixU(𝐵, 𝑎𝑣𝑒𝑐) computes the inverse expres-

sions as exponentiation FFA_exp_matrixU with 𝑒 = |F | − 2.

Example 3.1. (Multiplication expressions for F
2
4) We use irre-

ducible polynomial 𝑓 (𝑥) = 𝑥4 + 𝑥 + 1 with root 𝜌 ∈ F
2
4 and the

polynomial basis PB = {1, 𝜌, 𝜌2, 𝜌3}. The GAP code below shows the
setup and the outputs of FFA_mult_matrixU: the expressions used
for the hardware implementation. For example, to drive the multi-
plier output 𝑐0, the expression 𝑎0𝑏0 + 𝑎1𝑏3 + 𝑎2𝑏2 + 𝑎3𝑏1 must be
implemented in hardware. No submodules are needed to compute 𝑎𝑖𝑏 𝑗
terms, since multiplication in F2 is implemented with an AND gate.

GAP code 3.1

gap> K := GF(2);; x := X(K, "x");;
gap> f := x^4+x+1;; F := FieldExtension(K, f);; ChooseFieldElms(F);
variables
["a_0", "a_1", "a_2", "a_3"]
... OMITTED ...
gap> PB := GeneratePB(F, RootOfDefiningPolynomial(F));;
gap> mult := FFA_mult_matrixU(PB, avec, bvec);;
gap> for i in mult do Display(i); od;
a_0*b_0+a_1*b_3+a_2*b_2+a_3*b_1
a_0*b_1+a_1*b_0+a_1*b_3+a_2*b_2+a_2*b_3+a_3*b_1+a_3*b_2
a_0*b_2+a_1*b_1+a_2*b_0+a_2*b_3+a_3*b_2+a_3*b_3
a_0*b_3+a_1*b_2+a_2*b_1+a_3*b_0+a_3*b_3

FFCSA package can also generate other expressions commonly

needed for implementations. MatrixMultByConstExpression(𝐵,
ffe, 𝑎𝑣𝑒𝑐) returns the expressions for implementing a constant

multiplier submodule ×𝛾 , where ffe = 𝛾 ∈ F and 𝐵 the basis. The

method TransitionMatrixExpression(𝐵1, 𝐵2, 𝑎𝑣𝑒𝑐) returns the
expressions needed to implement the basis transition 𝐵1 → 𝐵2.

3.2 Finite field constructions and searches
To produce a candidate list for DSE, we first search for defining

polynomials or normal elements, and then generate the polynomial

or normal bases, respectively. Current version of FFCSA can gener-

ate polynomial bases, normal bases, and their dual bases, and finally,

different tower-field bases (Section 3.2.1). We implemented a set of

methods to find normal elements. FindNormalFFEs♠(𝐹) checks the
elements of F one by one using the method IsNormalFFE(𝐹, ffe).
The symbol

♠
stands for optional IgnoreConjugates and reduces

the search space. Many FFCSA methods use cyclotomic coset lead-

ers to reduce search space [4]. IsNormalFFE check for ffe = 𝜌

computes the polynomial 𝑇𝜌 (𝑥) =
∑𝑚−1
𝑖=0 𝜎𝑖 (𝜌)𝑥𝑖 , where 𝜎 is the

Frobenius map of F , and returns true iff gcd(𝑇𝜌 (𝑥), 𝑥𝑚 − 1) = 1

(by Theorem 5.2.11(1.) in [7]).

3.2.1 Generating tower field bases. For a composite integer𝑚 =

𝑛1 · . . . · 𝑛𝑘 , where 𝑛𝑖 (1 ≤ 𝑖 ≤ 𝑘) is a positive integer (not neces-

sarily prime), it is possible to build F𝑝𝑚 as a tower of extensions

F(...((𝑝𝑛1)𝑛2) ...)𝑛𝑘 over its prime subfield F𝑝 :

F𝑝 = K0 ⊂ K1 ⊂ · · · ⊂ K𝑘−1 ⊂ K𝑘 = F(...((𝑝𝑛1)𝑛2) ...)𝑛𝑘 � F𝑝𝑚 .

We allow different options using either the same type of basis on

each level, or mixed bases, e.g., polynomial basis on one level and

normal basis on the next. In FFCSA package we make a distinction

between reference field defining polynomials (RDP) and extension

field defining polynomial (EDP). For example, the reference field for

F((22)2)2 is the isomorphic F
2
8 with a RDP of degree 8. The tower

field is obtained with EDPs 𝑓1, 𝑓2, 𝑓3 of degree 2, see Table 1.

With each new extension K𝑗/K𝑗−1 (1 ≤ 𝑗 ≤ 𝑘) we find the

“per-level” basis (PLB). For an arbitrary expression over K𝑗/K𝑗−1
we extract and generate all its submodules, as was described in

Section 3.1. We repeat the submodule extraction and generation

for each level of the tower field until K0 = F𝑝 is reached. For each

lower level, we have to call ChooseFieldElms anew. In example

3.2 we need F(22)2 multiplier submodules to compute 𝑎𝑖𝑏 𝑗 terms

appearing in the generated expressions.

Table 1: Tower construction of F((22)2)2

F2
𝑓
1
(𝑥)

−−−−→ F
2
2

𝑓
2
(𝑥)

−−−−→ F(22)2
𝑓
3
(𝑥)

−−−−→ F((22)2)2
Finite field Extension defining “per-level” PB Comments
F
𝑞2

polynomial (EDP) 𝑓𝑖 (𝑥) 𝐵F
𝑞2

/F𝑞 = {1, 𝜌 } 𝑓𝑖 (𝜌) = 0

F((22)2)2 𝑓3 (𝑥) = 𝑥2 + _𝑥 + _2` {1, a } 𝑓3 (a) = 0

F(22)2 𝑓2 (𝑥) = 𝑥2 + _𝑥 + 1 {1, `} 𝑓2 (`) = 0

F
2
2 𝑓1 (𝑥) = 𝑥2 + 𝑥 + 1 {1, _} 𝑓1 (_) = 0

The PLBs lead to the construction of a tower field basis (TFB) of

the isomorphic field F
2
8/F2 obtained as products of PLB elements

as TFBF
2
8/F2 = {𝑡0, 𝑡1, . . . , 𝑡7} = {1, _, `, `_, a, a_, a`, a`_}. When

needed, the TFB is used for transition matrices between the tower

field construction and the isomorphic field, construced with a sin-

gle extension, e.g., between F((22)2)2 and F28 . TFB is also used to

generate the testvectors for the top-level hardware modules.

Example 3.2 shows the interplay of different parts of the FFCSA

package: search for irreducible polynomials, extension fields, bases,

expressions for a multiplier, and finally the TFB for testvectors.

Conference’17, July 2017, Washington, DC, USA Nuša Zidarič, Guang Gong, Mark Aagaard, Aleksandar Jurišić, and Olexandr Konovalov

Example 3.2. (Multiplication expressions for F((22)2)2/F(22)2 .) In
this example we show the construction F((22)2)2 with the EDPs listed
in Table 1. The initial setup requires the list of EDPs selected from the
output generated by FindEDPLAllfromEDL(𝑛1, 𝑛2, 𝑛3). The long out-
puts were manually shortened for this example. The input to method
FFA_mult_matrixU is the “per-level” polynomial basis B3, obtained
for F((22)2)2/F(22)2 . It produces the expressions for the multiplica-
tion on the top level of the tower field F((22)2)2/F(22)2 . Note that
ChooseFieldElms in the GAP code Example 3.2 returns vectors of
length 2, not 8. The multiplications in expressions for the product
need a multiplier from the lower level F(22)2/F22 (submodule). We
also need two subfield constant multipliers for 𝛾1 = _2` ∈ F(22)2
and 𝛾2 = _ ∈ F(22)2 . Although _ ∈ F

2
2 , the product 𝑎1𝑏1 ∈ F(22)2 ,

therefore we must perform ×𝛾2 in F(22)2/F22 .

Example 3.2

gap> K := GF(2);; listall := FindEDPLAllfromEDL([2,2,2]);
[[x^2+x+Z(2)^0], [x^2+Z(2^2)*x+Z(2)^0, ... OMITTED ...],
[x^2+Z(2^4)^3*x+Z(2)^0, ... OMITTED ... , x^2+Z(2^2)*x+Z(2^4),
... OMITTED ... , x^2+Z(2^4)^13*x+Z(2^4)^14]]
gap> EDPlist := [listall[1][1], listall[2][1], listall[3][25]];
[x^2+x+Z(2)^0, x^2+Z(2^2)*x+Z(2)^0, x^2+Z(2^2)*x+Z(2^4)]
gap> f1 := EDPlist[1];; f2 := EDPlist[2];; f3 := EDPlist[3];;
gap> F1 := FieldExtension(K, f1);; F2 := FieldExtension(F1, f2);;
gap> F3 := FieldExtension(F2, f3);; nu := RootOfDefiningPolynomial(F3);;
gap> B3 := GeneratePB(F3, nu); ChooseFieldElms(F3);
Basis(AsField(AsField(GF(2^2), GF(2^4)), GF(2^8)), [Z(2)^0, Z(2^8)^76])
variables
["a_0", "a_1"]
... OMITTED ...
gap> multB3 := FFA_mult_matrixU(B3, avec, bvec);;
gap> for i in multB3 do Display(i); od;
a_0*b_0+Z(2^4)*a_1*b_1
a_0*b_1+a_1*b_0+Z(2^2)*a_1*b_1
gap> lambda := RootOfDefiningPolynomial(F1);;
gap> mu := RootOfDefiningPolynomial(F2);;
gap> lambda^2*mu; lambda;
Z(2^4)
Z(2^2)
gap> Mlist := [["PB", "to"], ["PB", "to"], ["PB", "to"]];
gap> TFB2 := GenerateTFBfromEDPLwithMB(EDPlist, Mlist); nu*mu*lambda;
Basis(GF(2^8), [Z(2)^0, Z(2^2), Z(2^4)^6, Z(2^4)^11, Z(2^8)^76,
Z(2^8)^161, Z(2^8)^178, Z(2^8)^8])
Z(2^8)^8
gap> ffe := Z(2^8)^15;; VecToString(Coefficients(TFB, ffe);
"11101010"

3.3 FFCSA profiling methods
Specialized search is closely linked to the design space exploration:

theoretical estimates can be used to make architectural decisions

early in the design flow and to reduce the design space. For this

purpose we use a set of Hamming weights: a theoretical estimate

of area as is obtained by WeightMatrix(𝑀)method, and a theoret-

ical estimate for delay by WeightMatrixMaxRow(𝑀) method. For

example, ProfileGamma(𝐵) computes the profiles for constants

𝛾𝑖 = 𝜔𝑒𝑖
. The profile is [𝑑,𝐴, 𝑒1, 𝑒2, . . .], where 𝑑 and 𝐴 are the

delay and area of the matrix-vector multiplier for 𝛾𝑖 . The exponents

are grouped together when their delay and area are the same. The

“special” element in this case would be 𝛾𝑖 with the smallest area.

A perfect example of optimizaing implementations based on

search results is the well-known block cipher AES with construc-

tions F(24)2 and F((22)2)2 in [12, 13], and new results still appearing

in the literature [10]. Currenlty, a lot of research is focusing on find-

ing estimates that are more accurate than Hamming weight, e.g.,

sequential XOR count [3]. We will add more sophisticated offline

profiling methods to FFCSA in the future.

4 CONCLUSION
The FFCSA construction methods allow generation of polynomial

and normal bases, their dual bases, and bases for tower fields. The

search algorithms can be classified as exhaustive search (e.g., find

all normal bases), reduced search space (e.g., ignore conjugates),

and specialized search (e.g., find a primitive polynomial with a

specified number of nonzero coefficients). Specialized search is a

form of reduced search space, but the reduction criteria is different.

The main purpose of FFCSA algorithms is on-the-fly generation

of expressions needed for hardware implementations, to enable

automated Design Space Exploration. Future work entails Design

Space Exploration, which requires two additional phases. First is

the automated hardware generation of extracted submodules and

the implementation of the top-level module. Second, the interaction

with CAD tools to obtain post-synthesis results.

ACKNOWLEDGMENTS
The authors would like to thank A. Hasan for discussions and advice

on the Generalized algorithm for multiplication. The research of G.

Gong and M. Aagaard were supported by NSERC Canada and the

research of N. Zidaric by NSERC Canada and NWO Netherlands

through the PROACT project. The research of O. Konovalov was

supported by the OpenDreamKit Horizon 2020 European Research

Infrastructures project.

REFERENCES
[1] M. Aagaard, R. AlTawy, G. Gong, K. Mandal, R. Rohit, and N. Zidaric. 2019. WAGE:

An Authenticated Cipher, NIST LWC Round 2.

[2] R. AlTawy, G. Gong, K. Mandal, and R. Rohit. 2020. WAGE: an authenticated

encryption with a twist. IACR Transactions on Symmetric Cryptology – Special
Issue on Designs for the NIST Lightweight Standardisation Process (2020), 132–159.

[3] C. Beierle, T. Kranz, and G. Leander. 2016. Lightweight Multiplication in𝐺𝐹 (2𝑛)
with Applications to MDS Matrices. In CRYPTO’16. 625–653.

[4] S.W. Golomb and G. Gong. 2005. Signal design for good correlation. Cambridge

University Press, New York, NY.

[5] The GAP Group. 2022. GAP – Groups, Algorithms, and Programming, Version
4.12.2. https://www.gap-system.org

[6] A. Hasan. 2017. Selected Topics in Cryptographic Computations. ECE-720/2,

Lecture notes, University of Waterloo.

[7] G. L. Mullen and D. Panario (Eds.). 2013. Handbook of finite fields. CRC Press,

Boca Raton, FL.

[8] Y. Nawaz and G. Gong. 2008. WG: A family of stream ciphers with designed

randomness properties. Information Sciences 178, 7 (2008), 1903–1916.
[9] M. Pfeiffer, M. Martins, O. Konovalov, and the GAP Team. 2023. JupyterKernel,

Version 1.5.0. https://gap-packages.github.io/JupyterKernel/.
[10] A. Pradeep, V. Mohanty, A. M. Subramaniam, and C. Rebeiro. 2019. Revisiting

AES SBox Composite Field Implementations for FPGAs. IEEE Embedded Systems
Letters 11, 3 (2019), 85–88.

[11] A. Reyhani-Masoleh. 2002. A new construction of Massey-Omura parallel multi-

plier over GF(2
𝑚
). IEEE Trans. Comput. 51, 5 (2002), 511–520.

[12] V. Rijmen. 2000. Efficient Implementation of the Rijndael S-box. Technical Report.
[13] A. Satoh, S. Morioka, K. Takano, and S. Munetoh. 2001. A compact Rijndael

hardware architecture with S-box optimization. In ASIACRYPT’01. 239–254.
[14] The Sage Developers. 2023. SageMath, the Sage Mathematics Software System

(Version 9.8). https://www.sagemath.org.
[15] N. Zidaric. 2020. Automated Design Space Exploration and Datapath Synthesis for

Finite Field Arithmetic with Applications to Lightweight Cryptography. UWSpace.
Ph. D. Dissertation.

[16] N. Zidaric. 2023. FFCSA, Version 1.0.4. https://nzidaric.github.io/ffcsa/.
[17] N. Zidaric, M. Aagaard, and G. Gong. 2018. Rapid Hardware Design for Crypto-

graphic Modules with Filtering Structures over Small Finite Fields. InWAIFI’18,
LNCS, vol. 11321. 128–145.

[18] N. Zidaric, M. Aagaard, and G. Gong. 2019. FSR, Version 1.2.2.

https://nzidaric.github.io/fsr/.
[19] Nuša Zidarič and Mark Aagaard. 2023. POSTER: Tower field support for synthesis

of datapaths. In Computing Frontiers (CF ’23).

https://www.gap-system.org
https://gap-packages.github.io/JupyterKernel/
https://nzidaric.github.io/ffcsa/
https://nzidaric.github.io/fsr/

	Abstract
	1 Introduction
	2 Background
	2.1 GAP
	2.2 Preliminaries

	3 Basic structure of FFCSA
	3.1 Finite field arithmetic algorithms
	3.2 Finite field constructions and searches
	3.3 FFCSA profiling methods

	4 Conclusion
	Acknowledgments
	References

